2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood
8 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
9 * with code, comments and ideas from :-
10 * Richard Purdie <richard@openedhand.com>
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * o Add hw rules to enforce rates, etc.
19 * o More testing with other codecs/machines.
20 * o Add more codecs and platforms to ensure good API coverage.
21 * o Support TDM on PCM and I2S
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
29 #include <linux/bitops.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
41 #define dbg(format, arg...) printk(format, ## arg)
43 #define dbg(format, arg...)
46 static DEFINE_MUTEX(pcm_mutex
);
47 static DEFINE_MUTEX(io_mutex
);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq
);
51 * This is a timeout to do a DAPM powerdown after a stream is closed().
52 * It can be used to eliminate pops between different playback streams, e.g.
53 * between two audio tracks.
55 static int pmdown_time
= 5000;
56 module_param(pmdown_time
, int, 0);
57 MODULE_PARM_DESC(pmdown_time
, "DAPM stream powerdown time (msecs)");
60 * This function forces any delayed work to be queued and run.
62 static int run_delayed_work(struct delayed_work
*dwork
)
66 /* cancel any work waiting to be queued. */
67 ret
= cancel_delayed_work(dwork
);
69 /* if there was any work waiting then we run it now and
70 * wait for it's completion */
72 schedule_delayed_work(dwork
, 0);
73 flush_scheduled_work();
78 #ifdef CONFIG_SND_SOC_AC97_BUS
79 /* unregister ac97 codec */
80 static int soc_ac97_dev_unregister(struct snd_soc_codec
*codec
)
82 if (codec
->ac97
->dev
.bus
)
83 device_unregister(&codec
->ac97
->dev
);
87 /* stop no dev release warning */
88 static void soc_ac97_device_release(struct device
*dev
){}
90 /* register ac97 codec to bus */
91 static int soc_ac97_dev_register(struct snd_soc_codec
*codec
)
95 codec
->ac97
->dev
.bus
= &ac97_bus_type
;
96 codec
->ac97
->dev
.parent
= NULL
;
97 codec
->ac97
->dev
.release
= soc_ac97_device_release
;
99 snprintf(codec
->ac97
->dev
.bus_id
, BUS_ID_SIZE
, "%d-%d:%s",
100 codec
->card
->number
, 0, codec
->name
);
101 err
= device_register(&codec
->ac97
->dev
);
103 snd_printk(KERN_ERR
"Can't register ac97 bus\n");
104 codec
->ac97
->dev
.bus
= NULL
;
111 static inline const char *get_dai_name(int type
)
114 case SND_SOC_DAI_AC97_BUS
:
115 case SND_SOC_DAI_AC97
:
117 case SND_SOC_DAI_I2S
:
119 case SND_SOC_DAI_PCM
:
126 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
127 * then initialized and any private data can be allocated. This also calls
128 * startup for the cpu DAI, platform, machine and codec DAI.
130 static int soc_pcm_open(struct snd_pcm_substream
*substream
)
132 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
133 struct snd_soc_device
*socdev
= rtd
->socdev
;
134 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
135 struct snd_soc_dai_link
*machine
= rtd
->dai
;
136 struct snd_soc_platform
*platform
= socdev
->platform
;
137 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
138 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
141 mutex_lock(&pcm_mutex
);
143 /* startup the audio subsystem */
144 if (cpu_dai
->ops
.startup
) {
145 ret
= cpu_dai
->ops
.startup(substream
);
147 printk(KERN_ERR
"asoc: can't open interface %s\n",
153 if (platform
->pcm_ops
->open
) {
154 ret
= platform
->pcm_ops
->open(substream
);
156 printk(KERN_ERR
"asoc: can't open platform %s\n", platform
->name
);
161 if (codec_dai
->ops
.startup
) {
162 ret
= codec_dai
->ops
.startup(substream
);
164 printk(KERN_ERR
"asoc: can't open codec %s\n",
170 if (machine
->ops
&& machine
->ops
->startup
) {
171 ret
= machine
->ops
->startup(substream
);
173 printk(KERN_ERR
"asoc: %s startup failed\n", machine
->name
);
178 /* Check that the codec and cpu DAI's are compatible */
179 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
180 runtime
->hw
.rate_min
=
181 max(codec_dai
->playback
.rate_min
,
182 cpu_dai
->playback
.rate_min
);
183 runtime
->hw
.rate_max
=
184 min(codec_dai
->playback
.rate_max
,
185 cpu_dai
->playback
.rate_max
);
186 runtime
->hw
.channels_min
=
187 max(codec_dai
->playback
.channels_min
,
188 cpu_dai
->playback
.channels_min
);
189 runtime
->hw
.channels_max
=
190 min(codec_dai
->playback
.channels_max
,
191 cpu_dai
->playback
.channels_max
);
192 runtime
->hw
.formats
=
193 codec_dai
->playback
.formats
& cpu_dai
->playback
.formats
;
195 codec_dai
->playback
.rates
& cpu_dai
->playback
.rates
;
197 runtime
->hw
.rate_min
=
198 max(codec_dai
->capture
.rate_min
,
199 cpu_dai
->capture
.rate_min
);
200 runtime
->hw
.rate_max
=
201 min(codec_dai
->capture
.rate_max
,
202 cpu_dai
->capture
.rate_max
);
203 runtime
->hw
.channels_min
=
204 max(codec_dai
->capture
.channels_min
,
205 cpu_dai
->capture
.channels_min
);
206 runtime
->hw
.channels_max
=
207 min(codec_dai
->capture
.channels_max
,
208 cpu_dai
->capture
.channels_max
);
209 runtime
->hw
.formats
=
210 codec_dai
->capture
.formats
& cpu_dai
->capture
.formats
;
212 codec_dai
->capture
.rates
& cpu_dai
->capture
.rates
;
215 snd_pcm_limit_hw_rates(runtime
);
216 if (!runtime
->hw
.rates
) {
217 printk(KERN_ERR
"asoc: %s <-> %s No matching rates\n",
218 codec_dai
->name
, cpu_dai
->name
);
221 if (!runtime
->hw
.formats
) {
222 printk(KERN_ERR
"asoc: %s <-> %s No matching formats\n",
223 codec_dai
->name
, cpu_dai
->name
);
226 if (!runtime
->hw
.channels_min
|| !runtime
->hw
.channels_max
) {
227 printk(KERN_ERR
"asoc: %s <-> %s No matching channels\n",
228 codec_dai
->name
, cpu_dai
->name
);
232 dbg("asoc: %s <-> %s info:\n", codec_dai
->name
, cpu_dai
->name
);
233 dbg("asoc: rate mask 0x%x\n", runtime
->hw
.rates
);
234 dbg("asoc: min ch %d max ch %d\n", runtime
->hw
.channels_min
,
235 runtime
->hw
.channels_max
);
236 dbg("asoc: min rate %d max rate %d\n", runtime
->hw
.rate_min
,
237 runtime
->hw
.rate_max
);
239 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
240 cpu_dai
->playback
.active
= codec_dai
->playback
.active
= 1;
242 cpu_dai
->capture
.active
= codec_dai
->capture
.active
= 1;
243 cpu_dai
->active
= codec_dai
->active
= 1;
244 cpu_dai
->runtime
= runtime
;
245 socdev
->codec
->active
++;
246 mutex_unlock(&pcm_mutex
);
250 if (machine
->ops
&& machine
->ops
->shutdown
)
251 machine
->ops
->shutdown(substream
);
254 if (platform
->pcm_ops
->close
)
255 platform
->pcm_ops
->close(substream
);
258 if (cpu_dai
->ops
.shutdown
)
259 cpu_dai
->ops
.shutdown(substream
);
261 mutex_unlock(&pcm_mutex
);
266 * Power down the audio subsystem pmdown_time msecs after close is called.
267 * This is to ensure there are no pops or clicks in between any music tracks
268 * due to DAPM power cycling.
270 static void close_delayed_work(struct work_struct
*work
)
272 struct snd_soc_device
*socdev
=
273 container_of(work
, struct snd_soc_device
, delayed_work
.work
);
274 struct snd_soc_codec
*codec
= socdev
->codec
;
275 struct snd_soc_dai
*codec_dai
;
278 mutex_lock(&pcm_mutex
);
279 for (i
= 0; i
< codec
->num_dai
; i
++) {
280 codec_dai
= &codec
->dai
[i
];
282 dbg("pop wq checking: %s status: %s waiting: %s\n",
283 codec_dai
->playback
.stream_name
,
284 codec_dai
->playback
.active
? "active" : "inactive",
285 codec_dai
->pop_wait
? "yes" : "no");
287 /* are we waiting on this codec DAI stream */
288 if (codec_dai
->pop_wait
== 1) {
290 /* Reduce power if no longer active */
291 if (codec
->active
== 0) {
292 dbg("pop wq D1 %s %s\n", codec
->name
,
293 codec_dai
->playback
.stream_name
);
294 snd_soc_dapm_set_bias_level(socdev
,
295 SND_SOC_BIAS_PREPARE
);
298 codec_dai
->pop_wait
= 0;
299 snd_soc_dapm_stream_event(codec
,
300 codec_dai
->playback
.stream_name
,
301 SND_SOC_DAPM_STREAM_STOP
);
303 /* Fall into standby if no longer active */
304 if (codec
->active
== 0) {
305 dbg("pop wq D3 %s %s\n", codec
->name
,
306 codec_dai
->playback
.stream_name
);
307 snd_soc_dapm_set_bias_level(socdev
,
308 SND_SOC_BIAS_STANDBY
);
312 mutex_unlock(&pcm_mutex
);
316 * Called by ALSA when a PCM substream is closed. Private data can be
317 * freed here. The cpu DAI, codec DAI, machine and platform are also
320 static int soc_codec_close(struct snd_pcm_substream
*substream
)
322 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
323 struct snd_soc_device
*socdev
= rtd
->socdev
;
324 struct snd_soc_dai_link
*machine
= rtd
->dai
;
325 struct snd_soc_platform
*platform
= socdev
->platform
;
326 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
327 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
328 struct snd_soc_codec
*codec
= socdev
->codec
;
330 mutex_lock(&pcm_mutex
);
332 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
333 cpu_dai
->playback
.active
= codec_dai
->playback
.active
= 0;
335 cpu_dai
->capture
.active
= codec_dai
->capture
.active
= 0;
337 if (codec_dai
->playback
.active
== 0 &&
338 codec_dai
->capture
.active
== 0) {
339 cpu_dai
->active
= codec_dai
->active
= 0;
343 /* Muting the DAC suppresses artifacts caused during digital
344 * shutdown, for example from stopping clocks.
346 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
347 snd_soc_dai_digital_mute(codec_dai
, 1);
349 if (cpu_dai
->ops
.shutdown
)
350 cpu_dai
->ops
.shutdown(substream
);
352 if (codec_dai
->ops
.shutdown
)
353 codec_dai
->ops
.shutdown(substream
);
355 if (machine
->ops
&& machine
->ops
->shutdown
)
356 machine
->ops
->shutdown(substream
);
358 if (platform
->pcm_ops
->close
)
359 platform
->pcm_ops
->close(substream
);
360 cpu_dai
->runtime
= NULL
;
362 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
363 /* start delayed pop wq here for playback streams */
364 codec_dai
->pop_wait
= 1;
365 schedule_delayed_work(&socdev
->delayed_work
,
366 msecs_to_jiffies(pmdown_time
));
368 /* capture streams can be powered down now */
369 snd_soc_dapm_stream_event(codec
,
370 codec_dai
->capture
.stream_name
,
371 SND_SOC_DAPM_STREAM_STOP
);
373 if (codec
->active
== 0 && codec_dai
->pop_wait
== 0)
374 snd_soc_dapm_set_bias_level(socdev
,
375 SND_SOC_BIAS_STANDBY
);
378 mutex_unlock(&pcm_mutex
);
383 * Called by ALSA when the PCM substream is prepared, can set format, sample
384 * rate, etc. This function is non atomic and can be called multiple times,
385 * it can refer to the runtime info.
387 static int soc_pcm_prepare(struct snd_pcm_substream
*substream
)
389 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
390 struct snd_soc_device
*socdev
= rtd
->socdev
;
391 struct snd_soc_dai_link
*machine
= rtd
->dai
;
392 struct snd_soc_platform
*platform
= socdev
->platform
;
393 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
394 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
395 struct snd_soc_codec
*codec
= socdev
->codec
;
398 mutex_lock(&pcm_mutex
);
400 if (machine
->ops
&& machine
->ops
->prepare
) {
401 ret
= machine
->ops
->prepare(substream
);
403 printk(KERN_ERR
"asoc: machine prepare error\n");
408 if (platform
->pcm_ops
->prepare
) {
409 ret
= platform
->pcm_ops
->prepare(substream
);
411 printk(KERN_ERR
"asoc: platform prepare error\n");
416 if (codec_dai
->ops
.prepare
) {
417 ret
= codec_dai
->ops
.prepare(substream
);
419 printk(KERN_ERR
"asoc: codec DAI prepare error\n");
424 if (cpu_dai
->ops
.prepare
) {
425 ret
= cpu_dai
->ops
.prepare(substream
);
427 printk(KERN_ERR
"asoc: cpu DAI prepare error\n");
432 /* we only want to start a DAPM playback stream if we are not waiting
433 * on an existing one stopping */
434 if (codec_dai
->pop_wait
) {
435 /* we are waiting for the delayed work to start */
436 if (substream
->stream
== SNDRV_PCM_STREAM_CAPTURE
)
437 snd_soc_dapm_stream_event(socdev
->codec
,
438 codec_dai
->capture
.stream_name
,
439 SND_SOC_DAPM_STREAM_START
);
441 codec_dai
->pop_wait
= 0;
442 cancel_delayed_work(&socdev
->delayed_work
);
443 snd_soc_dai_digital_mute(codec_dai
, 0);
446 /* no delayed work - do we need to power up codec */
447 if (codec
->bias_level
!= SND_SOC_BIAS_ON
) {
449 snd_soc_dapm_set_bias_level(socdev
,
450 SND_SOC_BIAS_PREPARE
);
452 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
453 snd_soc_dapm_stream_event(codec
,
454 codec_dai
->playback
.stream_name
,
455 SND_SOC_DAPM_STREAM_START
);
457 snd_soc_dapm_stream_event(codec
,
458 codec_dai
->capture
.stream_name
,
459 SND_SOC_DAPM_STREAM_START
);
461 snd_soc_dapm_set_bias_level(socdev
, SND_SOC_BIAS_ON
);
462 snd_soc_dai_digital_mute(codec_dai
, 0);
465 /* codec already powered - power on widgets */
466 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
467 snd_soc_dapm_stream_event(codec
,
468 codec_dai
->playback
.stream_name
,
469 SND_SOC_DAPM_STREAM_START
);
471 snd_soc_dapm_stream_event(codec
,
472 codec_dai
->capture
.stream_name
,
473 SND_SOC_DAPM_STREAM_START
);
475 snd_soc_dai_digital_mute(codec_dai
, 0);
480 mutex_unlock(&pcm_mutex
);
485 * Called by ALSA when the hardware params are set by application. This
486 * function can also be called multiple times and can allocate buffers
487 * (using snd_pcm_lib_* ). It's non-atomic.
489 static int soc_pcm_hw_params(struct snd_pcm_substream
*substream
,
490 struct snd_pcm_hw_params
*params
)
492 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
493 struct snd_soc_device
*socdev
= rtd
->socdev
;
494 struct snd_soc_dai_link
*machine
= rtd
->dai
;
495 struct snd_soc_platform
*platform
= socdev
->platform
;
496 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
497 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
500 mutex_lock(&pcm_mutex
);
502 if (machine
->ops
&& machine
->ops
->hw_params
) {
503 ret
= machine
->ops
->hw_params(substream
, params
);
505 printk(KERN_ERR
"asoc: machine hw_params failed\n");
510 if (codec_dai
->ops
.hw_params
) {
511 ret
= codec_dai
->ops
.hw_params(substream
, params
);
513 printk(KERN_ERR
"asoc: can't set codec %s hw params\n",
519 if (cpu_dai
->ops
.hw_params
) {
520 ret
= cpu_dai
->ops
.hw_params(substream
, params
);
522 printk(KERN_ERR
"asoc: interface %s hw params failed\n",
528 if (platform
->pcm_ops
->hw_params
) {
529 ret
= platform
->pcm_ops
->hw_params(substream
, params
);
531 printk(KERN_ERR
"asoc: platform %s hw params failed\n",
538 mutex_unlock(&pcm_mutex
);
542 if (cpu_dai
->ops
.hw_free
)
543 cpu_dai
->ops
.hw_free(substream
);
546 if (codec_dai
->ops
.hw_free
)
547 codec_dai
->ops
.hw_free(substream
);
550 if (machine
->ops
&& machine
->ops
->hw_free
)
551 machine
->ops
->hw_free(substream
);
553 mutex_unlock(&pcm_mutex
);
558 * Free's resources allocated by hw_params, can be called multiple times
560 static int soc_pcm_hw_free(struct snd_pcm_substream
*substream
)
562 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
563 struct snd_soc_device
*socdev
= rtd
->socdev
;
564 struct snd_soc_dai_link
*machine
= rtd
->dai
;
565 struct snd_soc_platform
*platform
= socdev
->platform
;
566 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
567 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
568 struct snd_soc_codec
*codec
= socdev
->codec
;
570 mutex_lock(&pcm_mutex
);
572 /* apply codec digital mute */
574 snd_soc_dai_digital_mute(codec_dai
, 1);
576 /* free any machine hw params */
577 if (machine
->ops
&& machine
->ops
->hw_free
)
578 machine
->ops
->hw_free(substream
);
580 /* free any DMA resources */
581 if (platform
->pcm_ops
->hw_free
)
582 platform
->pcm_ops
->hw_free(substream
);
584 /* now free hw params for the DAI's */
585 if (codec_dai
->ops
.hw_free
)
586 codec_dai
->ops
.hw_free(substream
);
588 if (cpu_dai
->ops
.hw_free
)
589 cpu_dai
->ops
.hw_free(substream
);
591 mutex_unlock(&pcm_mutex
);
595 static int soc_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
597 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
598 struct snd_soc_device
*socdev
= rtd
->socdev
;
599 struct snd_soc_dai_link
*machine
= rtd
->dai
;
600 struct snd_soc_platform
*platform
= socdev
->platform
;
601 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
602 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
605 if (codec_dai
->ops
.trigger
) {
606 ret
= codec_dai
->ops
.trigger(substream
, cmd
);
611 if (platform
->pcm_ops
->trigger
) {
612 ret
= platform
->pcm_ops
->trigger(substream
, cmd
);
617 if (cpu_dai
->ops
.trigger
) {
618 ret
= cpu_dai
->ops
.trigger(substream
, cmd
);
625 /* ASoC PCM operations */
626 static struct snd_pcm_ops soc_pcm_ops
= {
627 .open
= soc_pcm_open
,
628 .close
= soc_codec_close
,
629 .hw_params
= soc_pcm_hw_params
,
630 .hw_free
= soc_pcm_hw_free
,
631 .prepare
= soc_pcm_prepare
,
632 .trigger
= soc_pcm_trigger
,
636 /* powers down audio subsystem for suspend */
637 static int soc_suspend(struct platform_device
*pdev
, pm_message_t state
)
639 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
640 struct snd_soc_machine
*machine
= socdev
->machine
;
641 struct snd_soc_platform
*platform
= socdev
->platform
;
642 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
643 struct snd_soc_codec
*codec
= socdev
->codec
;
646 /* Due to the resume being scheduled into a workqueue we could
647 * suspend before that's finished - wait for it to complete.
649 snd_power_lock(codec
->card
);
650 snd_power_wait(codec
->card
, SNDRV_CTL_POWER_D0
);
651 snd_power_unlock(codec
->card
);
653 /* we're going to block userspace touching us until resume completes */
654 snd_power_change_state(codec
->card
, SNDRV_CTL_POWER_D3hot
);
656 /* mute any active DAC's */
657 for (i
= 0; i
< machine
->num_links
; i
++) {
658 struct snd_soc_dai
*dai
= machine
->dai_link
[i
].codec_dai
;
659 if (dai
->dai_ops
.digital_mute
&& dai
->playback
.active
)
660 dai
->dai_ops
.digital_mute(dai
, 1);
663 /* suspend all pcms */
664 for (i
= 0; i
< machine
->num_links
; i
++)
665 snd_pcm_suspend_all(machine
->dai_link
[i
].pcm
);
667 if (machine
->suspend_pre
)
668 machine
->suspend_pre(pdev
, state
);
670 for (i
= 0; i
< machine
->num_links
; i
++) {
671 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
672 if (cpu_dai
->suspend
&& cpu_dai
->type
!= SND_SOC_DAI_AC97
)
673 cpu_dai
->suspend(pdev
, cpu_dai
);
674 if (platform
->suspend
)
675 platform
->suspend(pdev
, cpu_dai
);
678 /* close any waiting streams and save state */
679 run_delayed_work(&socdev
->delayed_work
);
680 codec
->suspend_bias_level
= codec
->bias_level
;
682 for (i
= 0; i
< codec
->num_dai
; i
++) {
683 char *stream
= codec
->dai
[i
].playback
.stream_name
;
685 snd_soc_dapm_stream_event(codec
, stream
,
686 SND_SOC_DAPM_STREAM_SUSPEND
);
687 stream
= codec
->dai
[i
].capture
.stream_name
;
689 snd_soc_dapm_stream_event(codec
, stream
,
690 SND_SOC_DAPM_STREAM_SUSPEND
);
693 if (codec_dev
->suspend
)
694 codec_dev
->suspend(pdev
, state
);
696 for (i
= 0; i
< machine
->num_links
; i
++) {
697 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
698 if (cpu_dai
->suspend
&& cpu_dai
->type
== SND_SOC_DAI_AC97
)
699 cpu_dai
->suspend(pdev
, cpu_dai
);
702 if (machine
->suspend_post
)
703 machine
->suspend_post(pdev
, state
);
708 /* deferred resume work, so resume can complete before we finished
709 * setting our codec back up, which can be very slow on I2C
711 static void soc_resume_deferred(struct work_struct
*work
)
713 struct snd_soc_device
*socdev
= container_of(work
,
714 struct snd_soc_device
,
715 deferred_resume_work
);
716 struct snd_soc_machine
*machine
= socdev
->machine
;
717 struct snd_soc_platform
*platform
= socdev
->platform
;
718 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
719 struct snd_soc_codec
*codec
= socdev
->codec
;
720 struct platform_device
*pdev
= to_platform_device(socdev
->dev
);
723 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
724 * so userspace apps are blocked from touching us
727 dev_info(socdev
->dev
, "starting resume work\n");
729 if (machine
->resume_pre
)
730 machine
->resume_pre(pdev
);
732 for (i
= 0; i
< machine
->num_links
; i
++) {
733 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
734 if (cpu_dai
->resume
&& cpu_dai
->type
== SND_SOC_DAI_AC97
)
735 cpu_dai
->resume(pdev
, cpu_dai
);
738 if (codec_dev
->resume
)
739 codec_dev
->resume(pdev
);
741 for (i
= 0; i
< codec
->num_dai
; i
++) {
742 char *stream
= codec
->dai
[i
].playback
.stream_name
;
744 snd_soc_dapm_stream_event(codec
, stream
,
745 SND_SOC_DAPM_STREAM_RESUME
);
746 stream
= codec
->dai
[i
].capture
.stream_name
;
748 snd_soc_dapm_stream_event(codec
, stream
,
749 SND_SOC_DAPM_STREAM_RESUME
);
752 /* unmute any active DACs */
753 for (i
= 0; i
< machine
->num_links
; i
++) {
754 struct snd_soc_dai
*dai
= machine
->dai_link
[i
].codec_dai
;
755 if (dai
->dai_ops
.digital_mute
&& dai
->playback
.active
)
756 dai
->dai_ops
.digital_mute(dai
, 0);
759 for (i
= 0; i
< machine
->num_links
; i
++) {
760 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
761 if (cpu_dai
->resume
&& cpu_dai
->type
!= SND_SOC_DAI_AC97
)
762 cpu_dai
->resume(pdev
, cpu_dai
);
763 if (platform
->resume
)
764 platform
->resume(pdev
, cpu_dai
);
767 if (machine
->resume_post
)
768 machine
->resume_post(pdev
);
770 dev_info(socdev
->dev
, "resume work completed\n");
772 /* userspace can access us now we are back as we were before */
773 snd_power_change_state(codec
->card
, SNDRV_CTL_POWER_D0
);
776 /* powers up audio subsystem after a suspend */
777 static int soc_resume(struct platform_device
*pdev
)
779 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
781 dev_info(socdev
->dev
, "scheduling resume work\n");
783 if (!schedule_work(&socdev
->deferred_resume_work
))
784 dev_err(socdev
->dev
, "work item may be lost\n");
790 #define soc_suspend NULL
791 #define soc_resume NULL
794 /* probes a new socdev */
795 static int soc_probe(struct platform_device
*pdev
)
798 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
799 struct snd_soc_machine
*machine
= socdev
->machine
;
800 struct snd_soc_platform
*platform
= socdev
->platform
;
801 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
803 if (machine
->probe
) {
804 ret
= machine
->probe(pdev
);
809 for (i
= 0; i
< machine
->num_links
; i
++) {
810 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
811 if (cpu_dai
->probe
) {
812 ret
= cpu_dai
->probe(pdev
, cpu_dai
);
818 if (codec_dev
->probe
) {
819 ret
= codec_dev
->probe(pdev
);
824 if (platform
->probe
) {
825 ret
= platform
->probe(pdev
);
830 /* DAPM stream work */
831 INIT_DELAYED_WORK(&socdev
->delayed_work
, close_delayed_work
);
833 /* deferred resume work */
834 INIT_WORK(&socdev
->deferred_resume_work
, soc_resume_deferred
);
840 if (codec_dev
->remove
)
841 codec_dev
->remove(pdev
);
844 for (i
--; i
>= 0; i
--) {
845 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
847 cpu_dai
->remove(pdev
, cpu_dai
);
851 machine
->remove(pdev
);
856 /* removes a socdev */
857 static int soc_remove(struct platform_device
*pdev
)
860 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
861 struct snd_soc_machine
*machine
= socdev
->machine
;
862 struct snd_soc_platform
*platform
= socdev
->platform
;
863 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
865 run_delayed_work(&socdev
->delayed_work
);
867 if (platform
->remove
)
868 platform
->remove(pdev
);
870 if (codec_dev
->remove
)
871 codec_dev
->remove(pdev
);
873 for (i
= 0; i
< machine
->num_links
; i
++) {
874 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
876 cpu_dai
->remove(pdev
, cpu_dai
);
880 machine
->remove(pdev
);
885 /* ASoC platform driver */
886 static struct platform_driver soc_driver
= {
889 .owner
= THIS_MODULE
,
892 .remove
= soc_remove
,
893 .suspend
= soc_suspend
,
894 .resume
= soc_resume
,
897 /* create a new pcm */
898 static int soc_new_pcm(struct snd_soc_device
*socdev
,
899 struct snd_soc_dai_link
*dai_link
, int num
)
901 struct snd_soc_codec
*codec
= socdev
->codec
;
902 struct snd_soc_dai
*codec_dai
= dai_link
->codec_dai
;
903 struct snd_soc_dai
*cpu_dai
= dai_link
->cpu_dai
;
904 struct snd_soc_pcm_runtime
*rtd
;
907 int ret
= 0, playback
= 0, capture
= 0;
909 rtd
= kzalloc(sizeof(struct snd_soc_pcm_runtime
), GFP_KERNEL
);
914 rtd
->socdev
= socdev
;
915 codec_dai
->codec
= socdev
->codec
;
917 /* check client and interface hw capabilities */
918 sprintf(new_name
, "%s %s-%s-%d", dai_link
->stream_name
, codec_dai
->name
,
919 get_dai_name(cpu_dai
->type
), num
);
921 if (codec_dai
->playback
.channels_min
)
923 if (codec_dai
->capture
.channels_min
)
926 ret
= snd_pcm_new(codec
->card
, new_name
, codec
->pcm_devs
++, playback
,
929 printk(KERN_ERR
"asoc: can't create pcm for codec %s\n",
936 pcm
->private_data
= rtd
;
937 soc_pcm_ops
.mmap
= socdev
->platform
->pcm_ops
->mmap
;
938 soc_pcm_ops
.pointer
= socdev
->platform
->pcm_ops
->pointer
;
939 soc_pcm_ops
.ioctl
= socdev
->platform
->pcm_ops
->ioctl
;
940 soc_pcm_ops
.copy
= socdev
->platform
->pcm_ops
->copy
;
941 soc_pcm_ops
.silence
= socdev
->platform
->pcm_ops
->silence
;
942 soc_pcm_ops
.ack
= socdev
->platform
->pcm_ops
->ack
;
943 soc_pcm_ops
.page
= socdev
->platform
->pcm_ops
->page
;
946 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &soc_pcm_ops
);
949 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &soc_pcm_ops
);
951 ret
= socdev
->platform
->pcm_new(codec
->card
, codec_dai
, pcm
);
953 printk(KERN_ERR
"asoc: platform pcm constructor failed\n");
958 pcm
->private_free
= socdev
->platform
->pcm_free
;
959 printk(KERN_INFO
"asoc: %s <-> %s mapping ok\n", codec_dai
->name
,
964 /* codec register dump */
965 static ssize_t
codec_reg_show(struct device
*dev
,
966 struct device_attribute
*attr
, char *buf
)
968 struct snd_soc_device
*devdata
= dev_get_drvdata(dev
);
969 struct snd_soc_codec
*codec
= devdata
->codec
;
970 int i
, step
= 1, count
= 0;
972 if (!codec
->reg_cache_size
)
975 if (codec
->reg_cache_step
)
976 step
= codec
->reg_cache_step
;
978 count
+= sprintf(buf
, "%s registers\n", codec
->name
);
979 for (i
= 0; i
< codec
->reg_cache_size
; i
+= step
) {
980 count
+= sprintf(buf
+ count
, "%2x: ", i
);
981 if (count
>= PAGE_SIZE
- 1)
984 if (codec
->display_register
)
985 count
+= codec
->display_register(codec
, buf
+ count
,
986 PAGE_SIZE
- count
, i
);
988 count
+= snprintf(buf
+ count
, PAGE_SIZE
- count
,
989 "%4x", codec
->read(codec
, i
));
991 if (count
>= PAGE_SIZE
- 1)
994 count
+= snprintf(buf
+ count
, PAGE_SIZE
- count
, "\n");
995 if (count
>= PAGE_SIZE
- 1)
999 /* Truncate count; min() would cause a warning */
1000 if (count
>= PAGE_SIZE
)
1001 count
= PAGE_SIZE
- 1;
1005 static DEVICE_ATTR(codec_reg
, 0444, codec_reg_show
, NULL
);
1008 * snd_soc_new_ac97_codec - initailise AC97 device
1009 * @codec: audio codec
1010 * @ops: AC97 bus operations
1011 * @num: AC97 codec number
1013 * Initialises AC97 codec resources for use by ad-hoc devices only.
1015 int snd_soc_new_ac97_codec(struct snd_soc_codec
*codec
,
1016 struct snd_ac97_bus_ops
*ops
, int num
)
1018 mutex_lock(&codec
->mutex
);
1020 codec
->ac97
= kzalloc(sizeof(struct snd_ac97
), GFP_KERNEL
);
1021 if (codec
->ac97
== NULL
) {
1022 mutex_unlock(&codec
->mutex
);
1026 codec
->ac97
->bus
= kzalloc(sizeof(struct snd_ac97_bus
), GFP_KERNEL
);
1027 if (codec
->ac97
->bus
== NULL
) {
1030 mutex_unlock(&codec
->mutex
);
1034 codec
->ac97
->bus
->ops
= ops
;
1035 codec
->ac97
->num
= num
;
1036 mutex_unlock(&codec
->mutex
);
1039 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec
);
1042 * snd_soc_free_ac97_codec - free AC97 codec device
1043 * @codec: audio codec
1045 * Frees AC97 codec device resources.
1047 void snd_soc_free_ac97_codec(struct snd_soc_codec
*codec
)
1049 mutex_lock(&codec
->mutex
);
1050 kfree(codec
->ac97
->bus
);
1053 mutex_unlock(&codec
->mutex
);
1055 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec
);
1058 * snd_soc_update_bits - update codec register bits
1059 * @codec: audio codec
1060 * @reg: codec register
1061 * @mask: register mask
1064 * Writes new register value.
1066 * Returns 1 for change else 0.
1068 int snd_soc_update_bits(struct snd_soc_codec
*codec
, unsigned short reg
,
1069 unsigned short mask
, unsigned short value
)
1072 unsigned short old
, new;
1074 mutex_lock(&io_mutex
);
1075 old
= snd_soc_read(codec
, reg
);
1076 new = (old
& ~mask
) | value
;
1077 change
= old
!= new;
1079 snd_soc_write(codec
, reg
, new);
1081 mutex_unlock(&io_mutex
);
1084 EXPORT_SYMBOL_GPL(snd_soc_update_bits
);
1087 * snd_soc_test_bits - test register for change
1088 * @codec: audio codec
1089 * @reg: codec register
1090 * @mask: register mask
1093 * Tests a register with a new value and checks if the new value is
1094 * different from the old value.
1096 * Returns 1 for change else 0.
1098 int snd_soc_test_bits(struct snd_soc_codec
*codec
, unsigned short reg
,
1099 unsigned short mask
, unsigned short value
)
1102 unsigned short old
, new;
1104 mutex_lock(&io_mutex
);
1105 old
= snd_soc_read(codec
, reg
);
1106 new = (old
& ~mask
) | value
;
1107 change
= old
!= new;
1108 mutex_unlock(&io_mutex
);
1112 EXPORT_SYMBOL_GPL(snd_soc_test_bits
);
1115 * snd_soc_new_pcms - create new sound card and pcms
1116 * @socdev: the SoC audio device
1118 * Create a new sound card based upon the codec and interface pcms.
1120 * Returns 0 for success, else error.
1122 int snd_soc_new_pcms(struct snd_soc_device
*socdev
, int idx
, const char *xid
)
1124 struct snd_soc_codec
*codec
= socdev
->codec
;
1125 struct snd_soc_machine
*machine
= socdev
->machine
;
1128 mutex_lock(&codec
->mutex
);
1130 /* register a sound card */
1131 codec
->card
= snd_card_new(idx
, xid
, codec
->owner
, 0);
1133 printk(KERN_ERR
"asoc: can't create sound card for codec %s\n",
1135 mutex_unlock(&codec
->mutex
);
1139 codec
->card
->dev
= socdev
->dev
;
1140 codec
->card
->private_data
= codec
;
1141 strncpy(codec
->card
->driver
, codec
->name
, sizeof(codec
->card
->driver
));
1143 /* create the pcms */
1144 for (i
= 0; i
< machine
->num_links
; i
++) {
1145 ret
= soc_new_pcm(socdev
, &machine
->dai_link
[i
], i
);
1147 printk(KERN_ERR
"asoc: can't create pcm %s\n",
1148 machine
->dai_link
[i
].stream_name
);
1149 mutex_unlock(&codec
->mutex
);
1154 mutex_unlock(&codec
->mutex
);
1157 EXPORT_SYMBOL_GPL(snd_soc_new_pcms
);
1160 * snd_soc_register_card - register sound card
1161 * @socdev: the SoC audio device
1163 * Register a SoC sound card. Also registers an AC97 device if the
1164 * codec is AC97 for ad hoc devices.
1166 * Returns 0 for success, else error.
1168 int snd_soc_register_card(struct snd_soc_device
*socdev
)
1170 struct snd_soc_codec
*codec
= socdev
->codec
;
1171 struct snd_soc_machine
*machine
= socdev
->machine
;
1172 int ret
= 0, i
, ac97
= 0, err
= 0;
1174 for (i
= 0; i
< machine
->num_links
; i
++) {
1175 if (socdev
->machine
->dai_link
[i
].init
) {
1176 err
= socdev
->machine
->dai_link
[i
].init(codec
);
1178 printk(KERN_ERR
"asoc: failed to init %s\n",
1179 socdev
->machine
->dai_link
[i
].stream_name
);
1183 if (socdev
->machine
->dai_link
[i
].codec_dai
->type
==
1184 SND_SOC_DAI_AC97_BUS
)
1187 snprintf(codec
->card
->shortname
, sizeof(codec
->card
->shortname
),
1188 "%s", machine
->name
);
1189 snprintf(codec
->card
->longname
, sizeof(codec
->card
->longname
),
1190 "%s (%s)", machine
->name
, codec
->name
);
1192 ret
= snd_card_register(codec
->card
);
1194 printk(KERN_ERR
"asoc: failed to register soundcard for %s\n",
1199 mutex_lock(&codec
->mutex
);
1200 #ifdef CONFIG_SND_SOC_AC97_BUS
1202 ret
= soc_ac97_dev_register(codec
);
1204 printk(KERN_ERR
"asoc: AC97 device register failed\n");
1205 snd_card_free(codec
->card
);
1206 mutex_unlock(&codec
->mutex
);
1212 err
= snd_soc_dapm_sys_add(socdev
->dev
);
1214 printk(KERN_WARNING
"asoc: failed to add dapm sysfs entries\n");
1216 err
= device_create_file(socdev
->dev
, &dev_attr_codec_reg
);
1218 printk(KERN_WARNING
"asoc: failed to add codec sysfs files\n");
1220 mutex_unlock(&codec
->mutex
);
1225 EXPORT_SYMBOL_GPL(snd_soc_register_card
);
1228 * snd_soc_free_pcms - free sound card and pcms
1229 * @socdev: the SoC audio device
1231 * Frees sound card and pcms associated with the socdev.
1232 * Also unregister the codec if it is an AC97 device.
1234 void snd_soc_free_pcms(struct snd_soc_device
*socdev
)
1236 struct snd_soc_codec
*codec
= socdev
->codec
;
1237 #ifdef CONFIG_SND_SOC_AC97_BUS
1238 struct snd_soc_dai
*codec_dai
;
1242 mutex_lock(&codec
->mutex
);
1243 #ifdef CONFIG_SND_SOC_AC97_BUS
1244 for (i
= 0; i
< codec
->num_dai
; i
++) {
1245 codec_dai
= &codec
->dai
[i
];
1246 if (codec_dai
->type
== SND_SOC_DAI_AC97_BUS
&& codec
->ac97
) {
1247 soc_ac97_dev_unregister(codec
);
1255 snd_card_free(codec
->card
);
1256 device_remove_file(socdev
->dev
, &dev_attr_codec_reg
);
1257 mutex_unlock(&codec
->mutex
);
1259 EXPORT_SYMBOL_GPL(snd_soc_free_pcms
);
1262 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1263 * @substream: the pcm substream
1264 * @hw: the hardware parameters
1266 * Sets the substream runtime hardware parameters.
1268 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream
*substream
,
1269 const struct snd_pcm_hardware
*hw
)
1271 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1272 runtime
->hw
.info
= hw
->info
;
1273 runtime
->hw
.formats
= hw
->formats
;
1274 runtime
->hw
.period_bytes_min
= hw
->period_bytes_min
;
1275 runtime
->hw
.period_bytes_max
= hw
->period_bytes_max
;
1276 runtime
->hw
.periods_min
= hw
->periods_min
;
1277 runtime
->hw
.periods_max
= hw
->periods_max
;
1278 runtime
->hw
.buffer_bytes_max
= hw
->buffer_bytes_max
;
1279 runtime
->hw
.fifo_size
= hw
->fifo_size
;
1282 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams
);
1285 * snd_soc_cnew - create new control
1286 * @_template: control template
1287 * @data: control private data
1288 * @lnng_name: control long name
1290 * Create a new mixer control from a template control.
1292 * Returns 0 for success, else error.
1294 struct snd_kcontrol
*snd_soc_cnew(const struct snd_kcontrol_new
*_template
,
1295 void *data
, char *long_name
)
1297 struct snd_kcontrol_new
template;
1299 memcpy(&template, _template
, sizeof(template));
1301 template.name
= long_name
;
1304 return snd_ctl_new1(&template, data
);
1306 EXPORT_SYMBOL_GPL(snd_soc_cnew
);
1309 * snd_soc_info_enum_double - enumerated double mixer info callback
1310 * @kcontrol: mixer control
1311 * @uinfo: control element information
1313 * Callback to provide information about a double enumerated
1316 * Returns 0 for success.
1318 int snd_soc_info_enum_double(struct snd_kcontrol
*kcontrol
,
1319 struct snd_ctl_elem_info
*uinfo
)
1321 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1323 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_ENUMERATED
;
1324 uinfo
->count
= e
->shift_l
== e
->shift_r
? 1 : 2;
1325 uinfo
->value
.enumerated
.items
= e
->max
;
1327 if (uinfo
->value
.enumerated
.item
> e
->max
- 1)
1328 uinfo
->value
.enumerated
.item
= e
->max
- 1;
1329 strcpy(uinfo
->value
.enumerated
.name
,
1330 e
->texts
[uinfo
->value
.enumerated
.item
]);
1333 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double
);
1336 * snd_soc_get_enum_double - enumerated double mixer get callback
1337 * @kcontrol: mixer control
1338 * @uinfo: control element information
1340 * Callback to get the value of a double enumerated mixer.
1342 * Returns 0 for success.
1344 int snd_soc_get_enum_double(struct snd_kcontrol
*kcontrol
,
1345 struct snd_ctl_elem_value
*ucontrol
)
1347 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1348 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1349 unsigned short val
, bitmask
;
1351 for (bitmask
= 1; bitmask
< e
->max
; bitmask
<<= 1)
1353 val
= snd_soc_read(codec
, e
->reg
);
1354 ucontrol
->value
.enumerated
.item
[0]
1355 = (val
>> e
->shift_l
) & (bitmask
- 1);
1356 if (e
->shift_l
!= e
->shift_r
)
1357 ucontrol
->value
.enumerated
.item
[1] =
1358 (val
>> e
->shift_r
) & (bitmask
- 1);
1362 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double
);
1365 * snd_soc_put_enum_double - enumerated double mixer put callback
1366 * @kcontrol: mixer control
1367 * @uinfo: control element information
1369 * Callback to set the value of a double enumerated mixer.
1371 * Returns 0 for success.
1373 int snd_soc_put_enum_double(struct snd_kcontrol
*kcontrol
,
1374 struct snd_ctl_elem_value
*ucontrol
)
1376 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1377 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1379 unsigned short mask
, bitmask
;
1381 for (bitmask
= 1; bitmask
< e
->max
; bitmask
<<= 1)
1383 if (ucontrol
->value
.enumerated
.item
[0] > e
->max
- 1)
1385 val
= ucontrol
->value
.enumerated
.item
[0] << e
->shift_l
;
1386 mask
= (bitmask
- 1) << e
->shift_l
;
1387 if (e
->shift_l
!= e
->shift_r
) {
1388 if (ucontrol
->value
.enumerated
.item
[1] > e
->max
- 1)
1390 val
|= ucontrol
->value
.enumerated
.item
[1] << e
->shift_r
;
1391 mask
|= (bitmask
- 1) << e
->shift_r
;
1394 return snd_soc_update_bits(codec
, e
->reg
, mask
, val
);
1396 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double
);
1399 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1400 * @kcontrol: mixer control
1401 * @uinfo: control element information
1403 * Callback to provide information about an external enumerated
1406 * Returns 0 for success.
1408 int snd_soc_info_enum_ext(struct snd_kcontrol
*kcontrol
,
1409 struct snd_ctl_elem_info
*uinfo
)
1411 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1413 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_ENUMERATED
;
1415 uinfo
->value
.enumerated
.items
= e
->max
;
1417 if (uinfo
->value
.enumerated
.item
> e
->max
- 1)
1418 uinfo
->value
.enumerated
.item
= e
->max
- 1;
1419 strcpy(uinfo
->value
.enumerated
.name
,
1420 e
->texts
[uinfo
->value
.enumerated
.item
]);
1423 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext
);
1426 * snd_soc_info_volsw_ext - external single mixer info callback
1427 * @kcontrol: mixer control
1428 * @uinfo: control element information
1430 * Callback to provide information about a single external mixer control.
1432 * Returns 0 for success.
1434 int snd_soc_info_volsw_ext(struct snd_kcontrol
*kcontrol
,
1435 struct snd_ctl_elem_info
*uinfo
)
1437 int max
= kcontrol
->private_value
;
1440 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
1442 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1445 uinfo
->value
.integer
.min
= 0;
1446 uinfo
->value
.integer
.max
= max
;
1449 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext
);
1452 * snd_soc_info_volsw - single mixer info callback
1453 * @kcontrol: mixer control
1454 * @uinfo: control element information
1456 * Callback to provide information about a single mixer control.
1458 * Returns 0 for success.
1460 int snd_soc_info_volsw(struct snd_kcontrol
*kcontrol
,
1461 struct snd_ctl_elem_info
*uinfo
)
1463 struct soc_mixer_control
*mc
=
1464 (struct soc_mixer_control
*)kcontrol
->private_value
;
1466 unsigned int shift
= mc
->min
;
1467 unsigned int rshift
= mc
->rshift
;
1470 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
1472 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1474 uinfo
->count
= shift
== rshift
? 1 : 2;
1475 uinfo
->value
.integer
.min
= 0;
1476 uinfo
->value
.integer
.max
= max
;
1479 EXPORT_SYMBOL_GPL(snd_soc_info_volsw
);
1482 * snd_soc_get_volsw - single mixer get callback
1483 * @kcontrol: mixer control
1484 * @uinfo: control element information
1486 * Callback to get the value of a single mixer control.
1488 * Returns 0 for success.
1490 int snd_soc_get_volsw(struct snd_kcontrol
*kcontrol
,
1491 struct snd_ctl_elem_value
*ucontrol
)
1493 struct soc_mixer_control
*mc
=
1494 (struct soc_mixer_control
*)kcontrol
->private_value
;
1495 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1496 unsigned int reg
= mc
->reg
;
1497 unsigned int shift
= mc
->shift
;
1498 unsigned int rshift
= mc
->rshift
;
1500 unsigned int mask
= (1 << fls(max
)) - 1;
1501 unsigned int invert
= mc
->invert
;
1503 ucontrol
->value
.integer
.value
[0] =
1504 (snd_soc_read(codec
, reg
) >> shift
) & mask
;
1505 if (shift
!= rshift
)
1506 ucontrol
->value
.integer
.value
[1] =
1507 (snd_soc_read(codec
, reg
) >> rshift
) & mask
;
1509 ucontrol
->value
.integer
.value
[0] =
1510 max
- ucontrol
->value
.integer
.value
[0];
1511 if (shift
!= rshift
)
1512 ucontrol
->value
.integer
.value
[1] =
1513 max
- ucontrol
->value
.integer
.value
[1];
1518 EXPORT_SYMBOL_GPL(snd_soc_get_volsw
);
1521 * snd_soc_put_volsw - single mixer put callback
1522 * @kcontrol: mixer control
1523 * @uinfo: control element information
1525 * Callback to set the value of a single mixer control.
1527 * Returns 0 for success.
1529 int snd_soc_put_volsw(struct snd_kcontrol
*kcontrol
,
1530 struct snd_ctl_elem_value
*ucontrol
)
1532 struct soc_mixer_control
*mc
=
1533 (struct soc_mixer_control
*)kcontrol
->private_value
;
1534 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1535 unsigned int reg
= mc
->reg
;
1536 unsigned int shift
= mc
->shift
;
1537 unsigned int rshift
= mc
->rshift
;
1539 unsigned int mask
= (1 << fls(max
)) - 1;
1540 unsigned int invert
= mc
->invert
;
1541 unsigned short val
, val2
, val_mask
;
1543 val
= (ucontrol
->value
.integer
.value
[0] & mask
);
1546 val_mask
= mask
<< shift
;
1548 if (shift
!= rshift
) {
1549 val2
= (ucontrol
->value
.integer
.value
[1] & mask
);
1552 val_mask
|= mask
<< rshift
;
1553 val
|= val2
<< rshift
;
1555 return snd_soc_update_bits(codec
, reg
, val_mask
, val
);
1557 EXPORT_SYMBOL_GPL(snd_soc_put_volsw
);
1560 * snd_soc_info_volsw_2r - double mixer info callback
1561 * @kcontrol: mixer control
1562 * @uinfo: control element information
1564 * Callback to provide information about a double mixer control that
1565 * spans 2 codec registers.
1567 * Returns 0 for success.
1569 int snd_soc_info_volsw_2r(struct snd_kcontrol
*kcontrol
,
1570 struct snd_ctl_elem_info
*uinfo
)
1572 struct soc_mixer_control
*mc
=
1573 (struct soc_mixer_control
*)kcontrol
->private_value
;
1577 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
1579 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1582 uinfo
->value
.integer
.min
= 0;
1583 uinfo
->value
.integer
.max
= max
;
1586 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r
);
1589 * snd_soc_get_volsw_2r - double mixer get callback
1590 * @kcontrol: mixer control
1591 * @uinfo: control element information
1593 * Callback to get the value of a double mixer control that spans 2 registers.
1595 * Returns 0 for success.
1597 int snd_soc_get_volsw_2r(struct snd_kcontrol
*kcontrol
,
1598 struct snd_ctl_elem_value
*ucontrol
)
1600 struct soc_mixer_control
*mc
=
1601 (struct soc_mixer_control
*)kcontrol
->private_value
;
1602 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1603 unsigned int reg
= mc
->reg
;
1604 unsigned int reg2
= mc
->rreg
;
1605 unsigned int shift
= mc
->shift
;
1607 unsigned int mask
= (1<<fls(max
))-1;
1608 unsigned int invert
= mc
->invert
;
1610 ucontrol
->value
.integer
.value
[0] =
1611 (snd_soc_read(codec
, reg
) >> shift
) & mask
;
1612 ucontrol
->value
.integer
.value
[1] =
1613 (snd_soc_read(codec
, reg2
) >> shift
) & mask
;
1615 ucontrol
->value
.integer
.value
[0] =
1616 max
- ucontrol
->value
.integer
.value
[0];
1617 ucontrol
->value
.integer
.value
[1] =
1618 max
- ucontrol
->value
.integer
.value
[1];
1623 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r
);
1626 * snd_soc_put_volsw_2r - double mixer set callback
1627 * @kcontrol: mixer control
1628 * @uinfo: control element information
1630 * Callback to set the value of a double mixer control that spans 2 registers.
1632 * Returns 0 for success.
1634 int snd_soc_put_volsw_2r(struct snd_kcontrol
*kcontrol
,
1635 struct snd_ctl_elem_value
*ucontrol
)
1637 struct soc_mixer_control
*mc
=
1638 (struct soc_mixer_control
*)kcontrol
->private_value
;
1639 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1640 unsigned int reg
= mc
->reg
;
1641 unsigned int reg2
= mc
->rreg
;
1642 unsigned int shift
= mc
->shift
;
1644 unsigned int mask
= (1 << fls(max
)) - 1;
1645 unsigned int invert
= mc
->invert
;
1647 unsigned short val
, val2
, val_mask
;
1649 val_mask
= mask
<< shift
;
1650 val
= (ucontrol
->value
.integer
.value
[0] & mask
);
1651 val2
= (ucontrol
->value
.integer
.value
[1] & mask
);
1659 val2
= val2
<< shift
;
1661 err
= snd_soc_update_bits(codec
, reg
, val_mask
, val
);
1665 err
= snd_soc_update_bits(codec
, reg2
, val_mask
, val2
);
1668 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r
);
1671 * snd_soc_info_volsw_s8 - signed mixer info callback
1672 * @kcontrol: mixer control
1673 * @uinfo: control element information
1675 * Callback to provide information about a signed mixer control.
1677 * Returns 0 for success.
1679 int snd_soc_info_volsw_s8(struct snd_kcontrol
*kcontrol
,
1680 struct snd_ctl_elem_info
*uinfo
)
1682 struct soc_mixer_control
*mc
=
1683 (struct soc_mixer_control
*)kcontrol
->private_value
;
1687 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1689 uinfo
->value
.integer
.min
= 0;
1690 uinfo
->value
.integer
.max
= max
-min
;
1693 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8
);
1696 * snd_soc_get_volsw_s8 - signed mixer get callback
1697 * @kcontrol: mixer control
1698 * @uinfo: control element information
1700 * Callback to get the value of a signed mixer control.
1702 * Returns 0 for success.
1704 int snd_soc_get_volsw_s8(struct snd_kcontrol
*kcontrol
,
1705 struct snd_ctl_elem_value
*ucontrol
)
1707 struct soc_mixer_control
*mc
=
1708 (struct soc_mixer_control
*)kcontrol
->private_value
;
1709 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1710 unsigned int reg
= mc
->reg
;
1712 int val
= snd_soc_read(codec
, reg
);
1714 ucontrol
->value
.integer
.value
[0] =
1715 ((signed char)(val
& 0xff))-min
;
1716 ucontrol
->value
.integer
.value
[1] =
1717 ((signed char)((val
>> 8) & 0xff))-min
;
1720 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8
);
1723 * snd_soc_put_volsw_sgn - signed mixer put callback
1724 * @kcontrol: mixer control
1725 * @uinfo: control element information
1727 * Callback to set the value of a signed mixer control.
1729 * Returns 0 for success.
1731 int snd_soc_put_volsw_s8(struct snd_kcontrol
*kcontrol
,
1732 struct snd_ctl_elem_value
*ucontrol
)
1734 struct soc_mixer_control
*mc
=
1735 (struct soc_mixer_control
*)kcontrol
->private_value
;
1736 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1737 unsigned int reg
= mc
->reg
;
1741 val
= (ucontrol
->value
.integer
.value
[0]+min
) & 0xff;
1742 val
|= ((ucontrol
->value
.integer
.value
[1]+min
) & 0xff) << 8;
1744 return snd_soc_update_bits(codec
, reg
, 0xffff, val
);
1746 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8
);
1749 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
1751 * @clk_id: DAI specific clock ID
1752 * @freq: new clock frequency in Hz
1753 * @dir: new clock direction - input/output.
1755 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
1757 int snd_soc_dai_set_sysclk(struct snd_soc_dai
*dai
, int clk_id
,
1758 unsigned int freq
, int dir
)
1760 if (dai
->dai_ops
.set_sysclk
)
1761 return dai
->dai_ops
.set_sysclk(dai
, clk_id
, freq
, dir
);
1765 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk
);
1768 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
1770 * @clk_id: DAI specific clock divider ID
1771 * @div: new clock divisor.
1773 * Configures the clock dividers. This is used to derive the best DAI bit and
1774 * frame clocks from the system or master clock. It's best to set the DAI bit
1775 * and frame clocks as low as possible to save system power.
1777 int snd_soc_dai_set_clkdiv(struct snd_soc_dai
*dai
,
1778 int div_id
, int div
)
1780 if (dai
->dai_ops
.set_clkdiv
)
1781 return dai
->dai_ops
.set_clkdiv(dai
, div_id
, div
);
1785 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv
);
1788 * snd_soc_dai_set_pll - configure DAI PLL.
1790 * @pll_id: DAI specific PLL ID
1791 * @freq_in: PLL input clock frequency in Hz
1792 * @freq_out: requested PLL output clock frequency in Hz
1794 * Configures and enables PLL to generate output clock based on input clock.
1796 int snd_soc_dai_set_pll(struct snd_soc_dai
*dai
,
1797 int pll_id
, unsigned int freq_in
, unsigned int freq_out
)
1799 if (dai
->dai_ops
.set_pll
)
1800 return dai
->dai_ops
.set_pll(dai
, pll_id
, freq_in
, freq_out
);
1804 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll
);
1807 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
1809 * @clk_id: DAI specific clock ID
1810 * @fmt: SND_SOC_DAIFMT_ format value.
1812 * Configures the DAI hardware format and clocking.
1814 int snd_soc_dai_set_fmt(struct snd_soc_dai
*dai
, unsigned int fmt
)
1816 if (dai
->dai_ops
.set_fmt
)
1817 return dai
->dai_ops
.set_fmt(dai
, fmt
);
1821 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt
);
1824 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
1826 * @mask: DAI specific mask representing used slots.
1827 * @slots: Number of slots in use.
1829 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
1832 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai
*dai
,
1833 unsigned int mask
, int slots
)
1835 if (dai
->dai_ops
.set_sysclk
)
1836 return dai
->dai_ops
.set_tdm_slot(dai
, mask
, slots
);
1840 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot
);
1843 * snd_soc_dai_set_tristate - configure DAI system or master clock.
1845 * @tristate: tristate enable
1847 * Tristates the DAI so that others can use it.
1849 int snd_soc_dai_set_tristate(struct snd_soc_dai
*dai
, int tristate
)
1851 if (dai
->dai_ops
.set_sysclk
)
1852 return dai
->dai_ops
.set_tristate(dai
, tristate
);
1856 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate
);
1859 * snd_soc_dai_digital_mute - configure DAI system or master clock.
1861 * @mute: mute enable
1863 * Mutes the DAI DAC.
1865 int snd_soc_dai_digital_mute(struct snd_soc_dai
*dai
, int mute
)
1867 if (dai
->dai_ops
.digital_mute
)
1868 return dai
->dai_ops
.digital_mute(dai
, mute
);
1872 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute
);
1874 static int __devinit
snd_soc_init(void)
1876 printk(KERN_INFO
"ASoC version %s\n", SND_SOC_VERSION
);
1877 return platform_driver_register(&soc_driver
);
1880 static void snd_soc_exit(void)
1882 platform_driver_unregister(&soc_driver
);
1885 module_init(snd_soc_init
);
1886 module_exit(snd_soc_exit
);
1888 /* Module information */
1889 MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1890 MODULE_DESCRIPTION("ALSA SoC Core");
1891 MODULE_LICENSE("GPL");
1892 MODULE_ALIAS("platform:soc-audio");