V4L/DVB (9000): S2API: Cleanup code that prepares tuning structures.
[zen-stable.git] / sound / soc / soc-core.c
blobad381138fc2e482e0bf0110a96cf32c385ba8c04
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood
8 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
9 * with code, comments and ideas from :-
10 * Richard Purdie <richard@openedhand.com>
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
17 * TODO:
18 * o Add hw rules to enforce rates, etc.
19 * o More testing with other codecs/machines.
20 * o Add more codecs and platforms to ensure good API coverage.
21 * o Support TDM on PCM and I2S
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/pm.h>
29 #include <linux/bitops.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
38 /* debug */
39 #define SOC_DEBUG 0
40 #if SOC_DEBUG
41 #define dbg(format, arg...) printk(format, ## arg)
42 #else
43 #define dbg(format, arg...)
44 #endif
46 static DEFINE_MUTEX(pcm_mutex);
47 static DEFINE_MUTEX(io_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
51 * This is a timeout to do a DAPM powerdown after a stream is closed().
52 * It can be used to eliminate pops between different playback streams, e.g.
53 * between two audio tracks.
55 static int pmdown_time = 5000;
56 module_param(pmdown_time, int, 0);
57 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
60 * This function forces any delayed work to be queued and run.
62 static int run_delayed_work(struct delayed_work *dwork)
64 int ret;
66 /* cancel any work waiting to be queued. */
67 ret = cancel_delayed_work(dwork);
69 /* if there was any work waiting then we run it now and
70 * wait for it's completion */
71 if (ret) {
72 schedule_delayed_work(dwork, 0);
73 flush_scheduled_work();
75 return ret;
78 #ifdef CONFIG_SND_SOC_AC97_BUS
79 /* unregister ac97 codec */
80 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
82 if (codec->ac97->dev.bus)
83 device_unregister(&codec->ac97->dev);
84 return 0;
87 /* stop no dev release warning */
88 static void soc_ac97_device_release(struct device *dev){}
90 /* register ac97 codec to bus */
91 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
93 int err;
95 codec->ac97->dev.bus = &ac97_bus_type;
96 codec->ac97->dev.parent = NULL;
97 codec->ac97->dev.release = soc_ac97_device_release;
99 snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
100 codec->card->number, 0, codec->name);
101 err = device_register(&codec->ac97->dev);
102 if (err < 0) {
103 snd_printk(KERN_ERR "Can't register ac97 bus\n");
104 codec->ac97->dev.bus = NULL;
105 return err;
107 return 0;
109 #endif
111 static inline const char *get_dai_name(int type)
113 switch (type) {
114 case SND_SOC_DAI_AC97_BUS:
115 case SND_SOC_DAI_AC97:
116 return "AC97";
117 case SND_SOC_DAI_I2S:
118 return "I2S";
119 case SND_SOC_DAI_PCM:
120 return "PCM";
122 return NULL;
126 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
127 * then initialized and any private data can be allocated. This also calls
128 * startup for the cpu DAI, platform, machine and codec DAI.
130 static int soc_pcm_open(struct snd_pcm_substream *substream)
132 struct snd_soc_pcm_runtime *rtd = substream->private_data;
133 struct snd_soc_device *socdev = rtd->socdev;
134 struct snd_pcm_runtime *runtime = substream->runtime;
135 struct snd_soc_dai_link *machine = rtd->dai;
136 struct snd_soc_platform *platform = socdev->platform;
137 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
138 struct snd_soc_dai *codec_dai = machine->codec_dai;
139 int ret = 0;
141 mutex_lock(&pcm_mutex);
143 /* startup the audio subsystem */
144 if (cpu_dai->ops.startup) {
145 ret = cpu_dai->ops.startup(substream);
146 if (ret < 0) {
147 printk(KERN_ERR "asoc: can't open interface %s\n",
148 cpu_dai->name);
149 goto out;
153 if (platform->pcm_ops->open) {
154 ret = platform->pcm_ops->open(substream);
155 if (ret < 0) {
156 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
157 goto platform_err;
161 if (codec_dai->ops.startup) {
162 ret = codec_dai->ops.startup(substream);
163 if (ret < 0) {
164 printk(KERN_ERR "asoc: can't open codec %s\n",
165 codec_dai->name);
166 goto codec_dai_err;
170 if (machine->ops && machine->ops->startup) {
171 ret = machine->ops->startup(substream);
172 if (ret < 0) {
173 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
174 goto machine_err;
178 /* Check that the codec and cpu DAI's are compatible */
179 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
180 runtime->hw.rate_min =
181 max(codec_dai->playback.rate_min,
182 cpu_dai->playback.rate_min);
183 runtime->hw.rate_max =
184 min(codec_dai->playback.rate_max,
185 cpu_dai->playback.rate_max);
186 runtime->hw.channels_min =
187 max(codec_dai->playback.channels_min,
188 cpu_dai->playback.channels_min);
189 runtime->hw.channels_max =
190 min(codec_dai->playback.channels_max,
191 cpu_dai->playback.channels_max);
192 runtime->hw.formats =
193 codec_dai->playback.formats & cpu_dai->playback.formats;
194 runtime->hw.rates =
195 codec_dai->playback.rates & cpu_dai->playback.rates;
196 } else {
197 runtime->hw.rate_min =
198 max(codec_dai->capture.rate_min,
199 cpu_dai->capture.rate_min);
200 runtime->hw.rate_max =
201 min(codec_dai->capture.rate_max,
202 cpu_dai->capture.rate_max);
203 runtime->hw.channels_min =
204 max(codec_dai->capture.channels_min,
205 cpu_dai->capture.channels_min);
206 runtime->hw.channels_max =
207 min(codec_dai->capture.channels_max,
208 cpu_dai->capture.channels_max);
209 runtime->hw.formats =
210 codec_dai->capture.formats & cpu_dai->capture.formats;
211 runtime->hw.rates =
212 codec_dai->capture.rates & cpu_dai->capture.rates;
215 snd_pcm_limit_hw_rates(runtime);
216 if (!runtime->hw.rates) {
217 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
218 codec_dai->name, cpu_dai->name);
219 goto machine_err;
221 if (!runtime->hw.formats) {
222 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
223 codec_dai->name, cpu_dai->name);
224 goto machine_err;
226 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
227 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
228 codec_dai->name, cpu_dai->name);
229 goto machine_err;
232 dbg("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
233 dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
234 dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
235 runtime->hw.channels_max);
236 dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
237 runtime->hw.rate_max);
239 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
240 cpu_dai->playback.active = codec_dai->playback.active = 1;
241 else
242 cpu_dai->capture.active = codec_dai->capture.active = 1;
243 cpu_dai->active = codec_dai->active = 1;
244 cpu_dai->runtime = runtime;
245 socdev->codec->active++;
246 mutex_unlock(&pcm_mutex);
247 return 0;
249 machine_err:
250 if (machine->ops && machine->ops->shutdown)
251 machine->ops->shutdown(substream);
253 codec_dai_err:
254 if (platform->pcm_ops->close)
255 platform->pcm_ops->close(substream);
257 platform_err:
258 if (cpu_dai->ops.shutdown)
259 cpu_dai->ops.shutdown(substream);
260 out:
261 mutex_unlock(&pcm_mutex);
262 return ret;
266 * Power down the audio subsystem pmdown_time msecs after close is called.
267 * This is to ensure there are no pops or clicks in between any music tracks
268 * due to DAPM power cycling.
270 static void close_delayed_work(struct work_struct *work)
272 struct snd_soc_device *socdev =
273 container_of(work, struct snd_soc_device, delayed_work.work);
274 struct snd_soc_codec *codec = socdev->codec;
275 struct snd_soc_dai *codec_dai;
276 int i;
278 mutex_lock(&pcm_mutex);
279 for (i = 0; i < codec->num_dai; i++) {
280 codec_dai = &codec->dai[i];
282 dbg("pop wq checking: %s status: %s waiting: %s\n",
283 codec_dai->playback.stream_name,
284 codec_dai->playback.active ? "active" : "inactive",
285 codec_dai->pop_wait ? "yes" : "no");
287 /* are we waiting on this codec DAI stream */
288 if (codec_dai->pop_wait == 1) {
290 /* Reduce power if no longer active */
291 if (codec->active == 0) {
292 dbg("pop wq D1 %s %s\n", codec->name,
293 codec_dai->playback.stream_name);
294 snd_soc_dapm_set_bias_level(socdev,
295 SND_SOC_BIAS_PREPARE);
298 codec_dai->pop_wait = 0;
299 snd_soc_dapm_stream_event(codec,
300 codec_dai->playback.stream_name,
301 SND_SOC_DAPM_STREAM_STOP);
303 /* Fall into standby if no longer active */
304 if (codec->active == 0) {
305 dbg("pop wq D3 %s %s\n", codec->name,
306 codec_dai->playback.stream_name);
307 snd_soc_dapm_set_bias_level(socdev,
308 SND_SOC_BIAS_STANDBY);
312 mutex_unlock(&pcm_mutex);
316 * Called by ALSA when a PCM substream is closed. Private data can be
317 * freed here. The cpu DAI, codec DAI, machine and platform are also
318 * shutdown.
320 static int soc_codec_close(struct snd_pcm_substream *substream)
322 struct snd_soc_pcm_runtime *rtd = substream->private_data;
323 struct snd_soc_device *socdev = rtd->socdev;
324 struct snd_soc_dai_link *machine = rtd->dai;
325 struct snd_soc_platform *platform = socdev->platform;
326 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
327 struct snd_soc_dai *codec_dai = machine->codec_dai;
328 struct snd_soc_codec *codec = socdev->codec;
330 mutex_lock(&pcm_mutex);
332 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
333 cpu_dai->playback.active = codec_dai->playback.active = 0;
334 else
335 cpu_dai->capture.active = codec_dai->capture.active = 0;
337 if (codec_dai->playback.active == 0 &&
338 codec_dai->capture.active == 0) {
339 cpu_dai->active = codec_dai->active = 0;
341 codec->active--;
343 /* Muting the DAC suppresses artifacts caused during digital
344 * shutdown, for example from stopping clocks.
346 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
347 snd_soc_dai_digital_mute(codec_dai, 1);
349 if (cpu_dai->ops.shutdown)
350 cpu_dai->ops.shutdown(substream);
352 if (codec_dai->ops.shutdown)
353 codec_dai->ops.shutdown(substream);
355 if (machine->ops && machine->ops->shutdown)
356 machine->ops->shutdown(substream);
358 if (platform->pcm_ops->close)
359 platform->pcm_ops->close(substream);
360 cpu_dai->runtime = NULL;
362 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
363 /* start delayed pop wq here for playback streams */
364 codec_dai->pop_wait = 1;
365 schedule_delayed_work(&socdev->delayed_work,
366 msecs_to_jiffies(pmdown_time));
367 } else {
368 /* capture streams can be powered down now */
369 snd_soc_dapm_stream_event(codec,
370 codec_dai->capture.stream_name,
371 SND_SOC_DAPM_STREAM_STOP);
373 if (codec->active == 0 && codec_dai->pop_wait == 0)
374 snd_soc_dapm_set_bias_level(socdev,
375 SND_SOC_BIAS_STANDBY);
378 mutex_unlock(&pcm_mutex);
379 return 0;
383 * Called by ALSA when the PCM substream is prepared, can set format, sample
384 * rate, etc. This function is non atomic and can be called multiple times,
385 * it can refer to the runtime info.
387 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
389 struct snd_soc_pcm_runtime *rtd = substream->private_data;
390 struct snd_soc_device *socdev = rtd->socdev;
391 struct snd_soc_dai_link *machine = rtd->dai;
392 struct snd_soc_platform *platform = socdev->platform;
393 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
394 struct snd_soc_dai *codec_dai = machine->codec_dai;
395 struct snd_soc_codec *codec = socdev->codec;
396 int ret = 0;
398 mutex_lock(&pcm_mutex);
400 if (machine->ops && machine->ops->prepare) {
401 ret = machine->ops->prepare(substream);
402 if (ret < 0) {
403 printk(KERN_ERR "asoc: machine prepare error\n");
404 goto out;
408 if (platform->pcm_ops->prepare) {
409 ret = platform->pcm_ops->prepare(substream);
410 if (ret < 0) {
411 printk(KERN_ERR "asoc: platform prepare error\n");
412 goto out;
416 if (codec_dai->ops.prepare) {
417 ret = codec_dai->ops.prepare(substream);
418 if (ret < 0) {
419 printk(KERN_ERR "asoc: codec DAI prepare error\n");
420 goto out;
424 if (cpu_dai->ops.prepare) {
425 ret = cpu_dai->ops.prepare(substream);
426 if (ret < 0) {
427 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
428 goto out;
432 /* we only want to start a DAPM playback stream if we are not waiting
433 * on an existing one stopping */
434 if (codec_dai->pop_wait) {
435 /* we are waiting for the delayed work to start */
436 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
437 snd_soc_dapm_stream_event(socdev->codec,
438 codec_dai->capture.stream_name,
439 SND_SOC_DAPM_STREAM_START);
440 else {
441 codec_dai->pop_wait = 0;
442 cancel_delayed_work(&socdev->delayed_work);
443 snd_soc_dai_digital_mute(codec_dai, 0);
445 } else {
446 /* no delayed work - do we need to power up codec */
447 if (codec->bias_level != SND_SOC_BIAS_ON) {
449 snd_soc_dapm_set_bias_level(socdev,
450 SND_SOC_BIAS_PREPARE);
452 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
453 snd_soc_dapm_stream_event(codec,
454 codec_dai->playback.stream_name,
455 SND_SOC_DAPM_STREAM_START);
456 else
457 snd_soc_dapm_stream_event(codec,
458 codec_dai->capture.stream_name,
459 SND_SOC_DAPM_STREAM_START);
461 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
462 snd_soc_dai_digital_mute(codec_dai, 0);
464 } else {
465 /* codec already powered - power on widgets */
466 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
467 snd_soc_dapm_stream_event(codec,
468 codec_dai->playback.stream_name,
469 SND_SOC_DAPM_STREAM_START);
470 else
471 snd_soc_dapm_stream_event(codec,
472 codec_dai->capture.stream_name,
473 SND_SOC_DAPM_STREAM_START);
475 snd_soc_dai_digital_mute(codec_dai, 0);
479 out:
480 mutex_unlock(&pcm_mutex);
481 return ret;
485 * Called by ALSA when the hardware params are set by application. This
486 * function can also be called multiple times and can allocate buffers
487 * (using snd_pcm_lib_* ). It's non-atomic.
489 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
490 struct snd_pcm_hw_params *params)
492 struct snd_soc_pcm_runtime *rtd = substream->private_data;
493 struct snd_soc_device *socdev = rtd->socdev;
494 struct snd_soc_dai_link *machine = rtd->dai;
495 struct snd_soc_platform *platform = socdev->platform;
496 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
497 struct snd_soc_dai *codec_dai = machine->codec_dai;
498 int ret = 0;
500 mutex_lock(&pcm_mutex);
502 if (machine->ops && machine->ops->hw_params) {
503 ret = machine->ops->hw_params(substream, params);
504 if (ret < 0) {
505 printk(KERN_ERR "asoc: machine hw_params failed\n");
506 goto out;
510 if (codec_dai->ops.hw_params) {
511 ret = codec_dai->ops.hw_params(substream, params);
512 if (ret < 0) {
513 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
514 codec_dai->name);
515 goto codec_err;
519 if (cpu_dai->ops.hw_params) {
520 ret = cpu_dai->ops.hw_params(substream, params);
521 if (ret < 0) {
522 printk(KERN_ERR "asoc: interface %s hw params failed\n",
523 cpu_dai->name);
524 goto interface_err;
528 if (platform->pcm_ops->hw_params) {
529 ret = platform->pcm_ops->hw_params(substream, params);
530 if (ret < 0) {
531 printk(KERN_ERR "asoc: platform %s hw params failed\n",
532 platform->name);
533 goto platform_err;
537 out:
538 mutex_unlock(&pcm_mutex);
539 return ret;
541 platform_err:
542 if (cpu_dai->ops.hw_free)
543 cpu_dai->ops.hw_free(substream);
545 interface_err:
546 if (codec_dai->ops.hw_free)
547 codec_dai->ops.hw_free(substream);
549 codec_err:
550 if (machine->ops && machine->ops->hw_free)
551 machine->ops->hw_free(substream);
553 mutex_unlock(&pcm_mutex);
554 return ret;
558 * Free's resources allocated by hw_params, can be called multiple times
560 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
562 struct snd_soc_pcm_runtime *rtd = substream->private_data;
563 struct snd_soc_device *socdev = rtd->socdev;
564 struct snd_soc_dai_link *machine = rtd->dai;
565 struct snd_soc_platform *platform = socdev->platform;
566 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
567 struct snd_soc_dai *codec_dai = machine->codec_dai;
568 struct snd_soc_codec *codec = socdev->codec;
570 mutex_lock(&pcm_mutex);
572 /* apply codec digital mute */
573 if (!codec->active)
574 snd_soc_dai_digital_mute(codec_dai, 1);
576 /* free any machine hw params */
577 if (machine->ops && machine->ops->hw_free)
578 machine->ops->hw_free(substream);
580 /* free any DMA resources */
581 if (platform->pcm_ops->hw_free)
582 platform->pcm_ops->hw_free(substream);
584 /* now free hw params for the DAI's */
585 if (codec_dai->ops.hw_free)
586 codec_dai->ops.hw_free(substream);
588 if (cpu_dai->ops.hw_free)
589 cpu_dai->ops.hw_free(substream);
591 mutex_unlock(&pcm_mutex);
592 return 0;
595 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
597 struct snd_soc_pcm_runtime *rtd = substream->private_data;
598 struct snd_soc_device *socdev = rtd->socdev;
599 struct snd_soc_dai_link *machine = rtd->dai;
600 struct snd_soc_platform *platform = socdev->platform;
601 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
602 struct snd_soc_dai *codec_dai = machine->codec_dai;
603 int ret;
605 if (codec_dai->ops.trigger) {
606 ret = codec_dai->ops.trigger(substream, cmd);
607 if (ret < 0)
608 return ret;
611 if (platform->pcm_ops->trigger) {
612 ret = platform->pcm_ops->trigger(substream, cmd);
613 if (ret < 0)
614 return ret;
617 if (cpu_dai->ops.trigger) {
618 ret = cpu_dai->ops.trigger(substream, cmd);
619 if (ret < 0)
620 return ret;
622 return 0;
625 /* ASoC PCM operations */
626 static struct snd_pcm_ops soc_pcm_ops = {
627 .open = soc_pcm_open,
628 .close = soc_codec_close,
629 .hw_params = soc_pcm_hw_params,
630 .hw_free = soc_pcm_hw_free,
631 .prepare = soc_pcm_prepare,
632 .trigger = soc_pcm_trigger,
635 #ifdef CONFIG_PM
636 /* powers down audio subsystem for suspend */
637 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
639 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
640 struct snd_soc_machine *machine = socdev->machine;
641 struct snd_soc_platform *platform = socdev->platform;
642 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
643 struct snd_soc_codec *codec = socdev->codec;
644 int i;
646 /* Due to the resume being scheduled into a workqueue we could
647 * suspend before that's finished - wait for it to complete.
649 snd_power_lock(codec->card);
650 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
651 snd_power_unlock(codec->card);
653 /* we're going to block userspace touching us until resume completes */
654 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
656 /* mute any active DAC's */
657 for (i = 0; i < machine->num_links; i++) {
658 struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
659 if (dai->dai_ops.digital_mute && dai->playback.active)
660 dai->dai_ops.digital_mute(dai, 1);
663 /* suspend all pcms */
664 for (i = 0; i < machine->num_links; i++)
665 snd_pcm_suspend_all(machine->dai_link[i].pcm);
667 if (machine->suspend_pre)
668 machine->suspend_pre(pdev, state);
670 for (i = 0; i < machine->num_links; i++) {
671 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
672 if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
673 cpu_dai->suspend(pdev, cpu_dai);
674 if (platform->suspend)
675 platform->suspend(pdev, cpu_dai);
678 /* close any waiting streams and save state */
679 run_delayed_work(&socdev->delayed_work);
680 codec->suspend_bias_level = codec->bias_level;
682 for (i = 0; i < codec->num_dai; i++) {
683 char *stream = codec->dai[i].playback.stream_name;
684 if (stream != NULL)
685 snd_soc_dapm_stream_event(codec, stream,
686 SND_SOC_DAPM_STREAM_SUSPEND);
687 stream = codec->dai[i].capture.stream_name;
688 if (stream != NULL)
689 snd_soc_dapm_stream_event(codec, stream,
690 SND_SOC_DAPM_STREAM_SUSPEND);
693 if (codec_dev->suspend)
694 codec_dev->suspend(pdev, state);
696 for (i = 0; i < machine->num_links; i++) {
697 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
698 if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
699 cpu_dai->suspend(pdev, cpu_dai);
702 if (machine->suspend_post)
703 machine->suspend_post(pdev, state);
705 return 0;
708 /* deferred resume work, so resume can complete before we finished
709 * setting our codec back up, which can be very slow on I2C
711 static void soc_resume_deferred(struct work_struct *work)
713 struct snd_soc_device *socdev = container_of(work,
714 struct snd_soc_device,
715 deferred_resume_work);
716 struct snd_soc_machine *machine = socdev->machine;
717 struct snd_soc_platform *platform = socdev->platform;
718 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
719 struct snd_soc_codec *codec = socdev->codec;
720 struct platform_device *pdev = to_platform_device(socdev->dev);
721 int i;
723 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
724 * so userspace apps are blocked from touching us
727 dev_info(socdev->dev, "starting resume work\n");
729 if (machine->resume_pre)
730 machine->resume_pre(pdev);
732 for (i = 0; i < machine->num_links; i++) {
733 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
734 if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
735 cpu_dai->resume(pdev, cpu_dai);
738 if (codec_dev->resume)
739 codec_dev->resume(pdev);
741 for (i = 0; i < codec->num_dai; i++) {
742 char *stream = codec->dai[i].playback.stream_name;
743 if (stream != NULL)
744 snd_soc_dapm_stream_event(codec, stream,
745 SND_SOC_DAPM_STREAM_RESUME);
746 stream = codec->dai[i].capture.stream_name;
747 if (stream != NULL)
748 snd_soc_dapm_stream_event(codec, stream,
749 SND_SOC_DAPM_STREAM_RESUME);
752 /* unmute any active DACs */
753 for (i = 0; i < machine->num_links; i++) {
754 struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
755 if (dai->dai_ops.digital_mute && dai->playback.active)
756 dai->dai_ops.digital_mute(dai, 0);
759 for (i = 0; i < machine->num_links; i++) {
760 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
761 if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
762 cpu_dai->resume(pdev, cpu_dai);
763 if (platform->resume)
764 platform->resume(pdev, cpu_dai);
767 if (machine->resume_post)
768 machine->resume_post(pdev);
770 dev_info(socdev->dev, "resume work completed\n");
772 /* userspace can access us now we are back as we were before */
773 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
776 /* powers up audio subsystem after a suspend */
777 static int soc_resume(struct platform_device *pdev)
779 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
781 dev_info(socdev->dev, "scheduling resume work\n");
783 if (!schedule_work(&socdev->deferred_resume_work))
784 dev_err(socdev->dev, "work item may be lost\n");
786 return 0;
789 #else
790 #define soc_suspend NULL
791 #define soc_resume NULL
792 #endif
794 /* probes a new socdev */
795 static int soc_probe(struct platform_device *pdev)
797 int ret = 0, i;
798 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
799 struct snd_soc_machine *machine = socdev->machine;
800 struct snd_soc_platform *platform = socdev->platform;
801 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
803 if (machine->probe) {
804 ret = machine->probe(pdev);
805 if (ret < 0)
806 return ret;
809 for (i = 0; i < machine->num_links; i++) {
810 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
811 if (cpu_dai->probe) {
812 ret = cpu_dai->probe(pdev, cpu_dai);
813 if (ret < 0)
814 goto cpu_dai_err;
818 if (codec_dev->probe) {
819 ret = codec_dev->probe(pdev);
820 if (ret < 0)
821 goto cpu_dai_err;
824 if (platform->probe) {
825 ret = platform->probe(pdev);
826 if (ret < 0)
827 goto platform_err;
830 /* DAPM stream work */
831 INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
832 #ifdef CONFIG_PM
833 /* deferred resume work */
834 INIT_WORK(&socdev->deferred_resume_work, soc_resume_deferred);
835 #endif
837 return 0;
839 platform_err:
840 if (codec_dev->remove)
841 codec_dev->remove(pdev);
843 cpu_dai_err:
844 for (i--; i >= 0; i--) {
845 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
846 if (cpu_dai->remove)
847 cpu_dai->remove(pdev, cpu_dai);
850 if (machine->remove)
851 machine->remove(pdev);
853 return ret;
856 /* removes a socdev */
857 static int soc_remove(struct platform_device *pdev)
859 int i;
860 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
861 struct snd_soc_machine *machine = socdev->machine;
862 struct snd_soc_platform *platform = socdev->platform;
863 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
865 run_delayed_work(&socdev->delayed_work);
867 if (platform->remove)
868 platform->remove(pdev);
870 if (codec_dev->remove)
871 codec_dev->remove(pdev);
873 for (i = 0; i < machine->num_links; i++) {
874 struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
875 if (cpu_dai->remove)
876 cpu_dai->remove(pdev, cpu_dai);
879 if (machine->remove)
880 machine->remove(pdev);
882 return 0;
885 /* ASoC platform driver */
886 static struct platform_driver soc_driver = {
887 .driver = {
888 .name = "soc-audio",
889 .owner = THIS_MODULE,
891 .probe = soc_probe,
892 .remove = soc_remove,
893 .suspend = soc_suspend,
894 .resume = soc_resume,
897 /* create a new pcm */
898 static int soc_new_pcm(struct snd_soc_device *socdev,
899 struct snd_soc_dai_link *dai_link, int num)
901 struct snd_soc_codec *codec = socdev->codec;
902 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
903 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
904 struct snd_soc_pcm_runtime *rtd;
905 struct snd_pcm *pcm;
906 char new_name[64];
907 int ret = 0, playback = 0, capture = 0;
909 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
910 if (rtd == NULL)
911 return -ENOMEM;
913 rtd->dai = dai_link;
914 rtd->socdev = socdev;
915 codec_dai->codec = socdev->codec;
917 /* check client and interface hw capabilities */
918 sprintf(new_name, "%s %s-%s-%d", dai_link->stream_name, codec_dai->name,
919 get_dai_name(cpu_dai->type), num);
921 if (codec_dai->playback.channels_min)
922 playback = 1;
923 if (codec_dai->capture.channels_min)
924 capture = 1;
926 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
927 capture, &pcm);
928 if (ret < 0) {
929 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
930 codec->name);
931 kfree(rtd);
932 return ret;
935 dai_link->pcm = pcm;
936 pcm->private_data = rtd;
937 soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
938 soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
939 soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
940 soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
941 soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
942 soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
943 soc_pcm_ops.page = socdev->platform->pcm_ops->page;
945 if (playback)
946 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
948 if (capture)
949 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
951 ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
952 if (ret < 0) {
953 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
954 kfree(rtd);
955 return ret;
958 pcm->private_free = socdev->platform->pcm_free;
959 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
960 cpu_dai->name);
961 return ret;
964 /* codec register dump */
965 static ssize_t codec_reg_show(struct device *dev,
966 struct device_attribute *attr, char *buf)
968 struct snd_soc_device *devdata = dev_get_drvdata(dev);
969 struct snd_soc_codec *codec = devdata->codec;
970 int i, step = 1, count = 0;
972 if (!codec->reg_cache_size)
973 return 0;
975 if (codec->reg_cache_step)
976 step = codec->reg_cache_step;
978 count += sprintf(buf, "%s registers\n", codec->name);
979 for (i = 0; i < codec->reg_cache_size; i += step) {
980 count += sprintf(buf + count, "%2x: ", i);
981 if (count >= PAGE_SIZE - 1)
982 break;
984 if (codec->display_register)
985 count += codec->display_register(codec, buf + count,
986 PAGE_SIZE - count, i);
987 else
988 count += snprintf(buf + count, PAGE_SIZE - count,
989 "%4x", codec->read(codec, i));
991 if (count >= PAGE_SIZE - 1)
992 break;
994 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
995 if (count >= PAGE_SIZE - 1)
996 break;
999 /* Truncate count; min() would cause a warning */
1000 if (count >= PAGE_SIZE)
1001 count = PAGE_SIZE - 1;
1003 return count;
1005 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1008 * snd_soc_new_ac97_codec - initailise AC97 device
1009 * @codec: audio codec
1010 * @ops: AC97 bus operations
1011 * @num: AC97 codec number
1013 * Initialises AC97 codec resources for use by ad-hoc devices only.
1015 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1016 struct snd_ac97_bus_ops *ops, int num)
1018 mutex_lock(&codec->mutex);
1020 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1021 if (codec->ac97 == NULL) {
1022 mutex_unlock(&codec->mutex);
1023 return -ENOMEM;
1026 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1027 if (codec->ac97->bus == NULL) {
1028 kfree(codec->ac97);
1029 codec->ac97 = NULL;
1030 mutex_unlock(&codec->mutex);
1031 return -ENOMEM;
1034 codec->ac97->bus->ops = ops;
1035 codec->ac97->num = num;
1036 mutex_unlock(&codec->mutex);
1037 return 0;
1039 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1042 * snd_soc_free_ac97_codec - free AC97 codec device
1043 * @codec: audio codec
1045 * Frees AC97 codec device resources.
1047 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1049 mutex_lock(&codec->mutex);
1050 kfree(codec->ac97->bus);
1051 kfree(codec->ac97);
1052 codec->ac97 = NULL;
1053 mutex_unlock(&codec->mutex);
1055 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1058 * snd_soc_update_bits - update codec register bits
1059 * @codec: audio codec
1060 * @reg: codec register
1061 * @mask: register mask
1062 * @value: new value
1064 * Writes new register value.
1066 * Returns 1 for change else 0.
1068 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1069 unsigned short mask, unsigned short value)
1071 int change;
1072 unsigned short old, new;
1074 mutex_lock(&io_mutex);
1075 old = snd_soc_read(codec, reg);
1076 new = (old & ~mask) | value;
1077 change = old != new;
1078 if (change)
1079 snd_soc_write(codec, reg, new);
1081 mutex_unlock(&io_mutex);
1082 return change;
1084 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1087 * snd_soc_test_bits - test register for change
1088 * @codec: audio codec
1089 * @reg: codec register
1090 * @mask: register mask
1091 * @value: new value
1093 * Tests a register with a new value and checks if the new value is
1094 * different from the old value.
1096 * Returns 1 for change else 0.
1098 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1099 unsigned short mask, unsigned short value)
1101 int change;
1102 unsigned short old, new;
1104 mutex_lock(&io_mutex);
1105 old = snd_soc_read(codec, reg);
1106 new = (old & ~mask) | value;
1107 change = old != new;
1108 mutex_unlock(&io_mutex);
1110 return change;
1112 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1115 * snd_soc_new_pcms - create new sound card and pcms
1116 * @socdev: the SoC audio device
1118 * Create a new sound card based upon the codec and interface pcms.
1120 * Returns 0 for success, else error.
1122 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1124 struct snd_soc_codec *codec = socdev->codec;
1125 struct snd_soc_machine *machine = socdev->machine;
1126 int ret = 0, i;
1128 mutex_lock(&codec->mutex);
1130 /* register a sound card */
1131 codec->card = snd_card_new(idx, xid, codec->owner, 0);
1132 if (!codec->card) {
1133 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1134 codec->name);
1135 mutex_unlock(&codec->mutex);
1136 return -ENODEV;
1139 codec->card->dev = socdev->dev;
1140 codec->card->private_data = codec;
1141 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1143 /* create the pcms */
1144 for (i = 0; i < machine->num_links; i++) {
1145 ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1146 if (ret < 0) {
1147 printk(KERN_ERR "asoc: can't create pcm %s\n",
1148 machine->dai_link[i].stream_name);
1149 mutex_unlock(&codec->mutex);
1150 return ret;
1154 mutex_unlock(&codec->mutex);
1155 return ret;
1157 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1160 * snd_soc_register_card - register sound card
1161 * @socdev: the SoC audio device
1163 * Register a SoC sound card. Also registers an AC97 device if the
1164 * codec is AC97 for ad hoc devices.
1166 * Returns 0 for success, else error.
1168 int snd_soc_register_card(struct snd_soc_device *socdev)
1170 struct snd_soc_codec *codec = socdev->codec;
1171 struct snd_soc_machine *machine = socdev->machine;
1172 int ret = 0, i, ac97 = 0, err = 0;
1174 for (i = 0; i < machine->num_links; i++) {
1175 if (socdev->machine->dai_link[i].init) {
1176 err = socdev->machine->dai_link[i].init(codec);
1177 if (err < 0) {
1178 printk(KERN_ERR "asoc: failed to init %s\n",
1179 socdev->machine->dai_link[i].stream_name);
1180 continue;
1183 if (socdev->machine->dai_link[i].codec_dai->type ==
1184 SND_SOC_DAI_AC97_BUS)
1185 ac97 = 1;
1187 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1188 "%s", machine->name);
1189 snprintf(codec->card->longname, sizeof(codec->card->longname),
1190 "%s (%s)", machine->name, codec->name);
1192 ret = snd_card_register(codec->card);
1193 if (ret < 0) {
1194 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1195 codec->name);
1196 goto out;
1199 mutex_lock(&codec->mutex);
1200 #ifdef CONFIG_SND_SOC_AC97_BUS
1201 if (ac97) {
1202 ret = soc_ac97_dev_register(codec);
1203 if (ret < 0) {
1204 printk(KERN_ERR "asoc: AC97 device register failed\n");
1205 snd_card_free(codec->card);
1206 mutex_unlock(&codec->mutex);
1207 goto out;
1210 #endif
1212 err = snd_soc_dapm_sys_add(socdev->dev);
1213 if (err < 0)
1214 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1216 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1217 if (err < 0)
1218 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1220 mutex_unlock(&codec->mutex);
1222 out:
1223 return ret;
1225 EXPORT_SYMBOL_GPL(snd_soc_register_card);
1228 * snd_soc_free_pcms - free sound card and pcms
1229 * @socdev: the SoC audio device
1231 * Frees sound card and pcms associated with the socdev.
1232 * Also unregister the codec if it is an AC97 device.
1234 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1236 struct snd_soc_codec *codec = socdev->codec;
1237 #ifdef CONFIG_SND_SOC_AC97_BUS
1238 struct snd_soc_dai *codec_dai;
1239 int i;
1240 #endif
1242 mutex_lock(&codec->mutex);
1243 #ifdef CONFIG_SND_SOC_AC97_BUS
1244 for (i = 0; i < codec->num_dai; i++) {
1245 codec_dai = &codec->dai[i];
1246 if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
1247 soc_ac97_dev_unregister(codec);
1248 goto free_card;
1251 free_card:
1252 #endif
1254 if (codec->card)
1255 snd_card_free(codec->card);
1256 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1257 mutex_unlock(&codec->mutex);
1259 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1262 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1263 * @substream: the pcm substream
1264 * @hw: the hardware parameters
1266 * Sets the substream runtime hardware parameters.
1268 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1269 const struct snd_pcm_hardware *hw)
1271 struct snd_pcm_runtime *runtime = substream->runtime;
1272 runtime->hw.info = hw->info;
1273 runtime->hw.formats = hw->formats;
1274 runtime->hw.period_bytes_min = hw->period_bytes_min;
1275 runtime->hw.period_bytes_max = hw->period_bytes_max;
1276 runtime->hw.periods_min = hw->periods_min;
1277 runtime->hw.periods_max = hw->periods_max;
1278 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1279 runtime->hw.fifo_size = hw->fifo_size;
1280 return 0;
1282 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1285 * snd_soc_cnew - create new control
1286 * @_template: control template
1287 * @data: control private data
1288 * @lnng_name: control long name
1290 * Create a new mixer control from a template control.
1292 * Returns 0 for success, else error.
1294 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1295 void *data, char *long_name)
1297 struct snd_kcontrol_new template;
1299 memcpy(&template, _template, sizeof(template));
1300 if (long_name)
1301 template.name = long_name;
1302 template.index = 0;
1304 return snd_ctl_new1(&template, data);
1306 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1309 * snd_soc_info_enum_double - enumerated double mixer info callback
1310 * @kcontrol: mixer control
1311 * @uinfo: control element information
1313 * Callback to provide information about a double enumerated
1314 * mixer control.
1316 * Returns 0 for success.
1318 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1319 struct snd_ctl_elem_info *uinfo)
1321 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1323 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1324 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1325 uinfo->value.enumerated.items = e->max;
1327 if (uinfo->value.enumerated.item > e->max - 1)
1328 uinfo->value.enumerated.item = e->max - 1;
1329 strcpy(uinfo->value.enumerated.name,
1330 e->texts[uinfo->value.enumerated.item]);
1331 return 0;
1333 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1336 * snd_soc_get_enum_double - enumerated double mixer get callback
1337 * @kcontrol: mixer control
1338 * @uinfo: control element information
1340 * Callback to get the value of a double enumerated mixer.
1342 * Returns 0 for success.
1344 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1345 struct snd_ctl_elem_value *ucontrol)
1347 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1348 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1349 unsigned short val, bitmask;
1351 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1353 val = snd_soc_read(codec, e->reg);
1354 ucontrol->value.enumerated.item[0]
1355 = (val >> e->shift_l) & (bitmask - 1);
1356 if (e->shift_l != e->shift_r)
1357 ucontrol->value.enumerated.item[1] =
1358 (val >> e->shift_r) & (bitmask - 1);
1360 return 0;
1362 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1365 * snd_soc_put_enum_double - enumerated double mixer put callback
1366 * @kcontrol: mixer control
1367 * @uinfo: control element information
1369 * Callback to set the value of a double enumerated mixer.
1371 * Returns 0 for success.
1373 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1374 struct snd_ctl_elem_value *ucontrol)
1376 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1377 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1378 unsigned short val;
1379 unsigned short mask, bitmask;
1381 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1383 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1384 return -EINVAL;
1385 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1386 mask = (bitmask - 1) << e->shift_l;
1387 if (e->shift_l != e->shift_r) {
1388 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1389 return -EINVAL;
1390 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1391 mask |= (bitmask - 1) << e->shift_r;
1394 return snd_soc_update_bits(codec, e->reg, mask, val);
1396 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1399 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1400 * @kcontrol: mixer control
1401 * @uinfo: control element information
1403 * Callback to provide information about an external enumerated
1404 * single mixer.
1406 * Returns 0 for success.
1408 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1409 struct snd_ctl_elem_info *uinfo)
1411 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1413 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1414 uinfo->count = 1;
1415 uinfo->value.enumerated.items = e->max;
1417 if (uinfo->value.enumerated.item > e->max - 1)
1418 uinfo->value.enumerated.item = e->max - 1;
1419 strcpy(uinfo->value.enumerated.name,
1420 e->texts[uinfo->value.enumerated.item]);
1421 return 0;
1423 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1426 * snd_soc_info_volsw_ext - external single mixer info callback
1427 * @kcontrol: mixer control
1428 * @uinfo: control element information
1430 * Callback to provide information about a single external mixer control.
1432 * Returns 0 for success.
1434 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1435 struct snd_ctl_elem_info *uinfo)
1437 int max = kcontrol->private_value;
1439 if (max == 1)
1440 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1441 else
1442 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1444 uinfo->count = 1;
1445 uinfo->value.integer.min = 0;
1446 uinfo->value.integer.max = max;
1447 return 0;
1449 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1452 * snd_soc_info_volsw - single mixer info callback
1453 * @kcontrol: mixer control
1454 * @uinfo: control element information
1456 * Callback to provide information about a single mixer control.
1458 * Returns 0 for success.
1460 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1461 struct snd_ctl_elem_info *uinfo)
1463 struct soc_mixer_control *mc =
1464 (struct soc_mixer_control *)kcontrol->private_value;
1465 int max = mc->max;
1466 unsigned int shift = mc->min;
1467 unsigned int rshift = mc->rshift;
1469 if (max == 1)
1470 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1471 else
1472 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1474 uinfo->count = shift == rshift ? 1 : 2;
1475 uinfo->value.integer.min = 0;
1476 uinfo->value.integer.max = max;
1477 return 0;
1479 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1482 * snd_soc_get_volsw - single mixer get callback
1483 * @kcontrol: mixer control
1484 * @uinfo: control element information
1486 * Callback to get the value of a single mixer control.
1488 * Returns 0 for success.
1490 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1491 struct snd_ctl_elem_value *ucontrol)
1493 struct soc_mixer_control *mc =
1494 (struct soc_mixer_control *)kcontrol->private_value;
1495 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1496 unsigned int reg = mc->reg;
1497 unsigned int shift = mc->shift;
1498 unsigned int rshift = mc->rshift;
1499 int max = mc->max;
1500 unsigned int mask = (1 << fls(max)) - 1;
1501 unsigned int invert = mc->invert;
1503 ucontrol->value.integer.value[0] =
1504 (snd_soc_read(codec, reg) >> shift) & mask;
1505 if (shift != rshift)
1506 ucontrol->value.integer.value[1] =
1507 (snd_soc_read(codec, reg) >> rshift) & mask;
1508 if (invert) {
1509 ucontrol->value.integer.value[0] =
1510 max - ucontrol->value.integer.value[0];
1511 if (shift != rshift)
1512 ucontrol->value.integer.value[1] =
1513 max - ucontrol->value.integer.value[1];
1516 return 0;
1518 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1521 * snd_soc_put_volsw - single mixer put callback
1522 * @kcontrol: mixer control
1523 * @uinfo: control element information
1525 * Callback to set the value of a single mixer control.
1527 * Returns 0 for success.
1529 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1530 struct snd_ctl_elem_value *ucontrol)
1532 struct soc_mixer_control *mc =
1533 (struct soc_mixer_control *)kcontrol->private_value;
1534 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1535 unsigned int reg = mc->reg;
1536 unsigned int shift = mc->shift;
1537 unsigned int rshift = mc->rshift;
1538 int max = mc->max;
1539 unsigned int mask = (1 << fls(max)) - 1;
1540 unsigned int invert = mc->invert;
1541 unsigned short val, val2, val_mask;
1543 val = (ucontrol->value.integer.value[0] & mask);
1544 if (invert)
1545 val = max - val;
1546 val_mask = mask << shift;
1547 val = val << shift;
1548 if (shift != rshift) {
1549 val2 = (ucontrol->value.integer.value[1] & mask);
1550 if (invert)
1551 val2 = max - val2;
1552 val_mask |= mask << rshift;
1553 val |= val2 << rshift;
1555 return snd_soc_update_bits(codec, reg, val_mask, val);
1557 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1560 * snd_soc_info_volsw_2r - double mixer info callback
1561 * @kcontrol: mixer control
1562 * @uinfo: control element information
1564 * Callback to provide information about a double mixer control that
1565 * spans 2 codec registers.
1567 * Returns 0 for success.
1569 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1570 struct snd_ctl_elem_info *uinfo)
1572 struct soc_mixer_control *mc =
1573 (struct soc_mixer_control *)kcontrol->private_value;
1574 int max = mc->max;
1576 if (max == 1)
1577 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1578 else
1579 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1581 uinfo->count = 2;
1582 uinfo->value.integer.min = 0;
1583 uinfo->value.integer.max = max;
1584 return 0;
1586 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1589 * snd_soc_get_volsw_2r - double mixer get callback
1590 * @kcontrol: mixer control
1591 * @uinfo: control element information
1593 * Callback to get the value of a double mixer control that spans 2 registers.
1595 * Returns 0 for success.
1597 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1598 struct snd_ctl_elem_value *ucontrol)
1600 struct soc_mixer_control *mc =
1601 (struct soc_mixer_control *)kcontrol->private_value;
1602 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1603 unsigned int reg = mc->reg;
1604 unsigned int reg2 = mc->rreg;
1605 unsigned int shift = mc->shift;
1606 int max = mc->max;
1607 unsigned int mask = (1<<fls(max))-1;
1608 unsigned int invert = mc->invert;
1610 ucontrol->value.integer.value[0] =
1611 (snd_soc_read(codec, reg) >> shift) & mask;
1612 ucontrol->value.integer.value[1] =
1613 (snd_soc_read(codec, reg2) >> shift) & mask;
1614 if (invert) {
1615 ucontrol->value.integer.value[0] =
1616 max - ucontrol->value.integer.value[0];
1617 ucontrol->value.integer.value[1] =
1618 max - ucontrol->value.integer.value[1];
1621 return 0;
1623 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1626 * snd_soc_put_volsw_2r - double mixer set callback
1627 * @kcontrol: mixer control
1628 * @uinfo: control element information
1630 * Callback to set the value of a double mixer control that spans 2 registers.
1632 * Returns 0 for success.
1634 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1635 struct snd_ctl_elem_value *ucontrol)
1637 struct soc_mixer_control *mc =
1638 (struct soc_mixer_control *)kcontrol->private_value;
1639 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1640 unsigned int reg = mc->reg;
1641 unsigned int reg2 = mc->rreg;
1642 unsigned int shift = mc->shift;
1643 int max = mc->max;
1644 unsigned int mask = (1 << fls(max)) - 1;
1645 unsigned int invert = mc->invert;
1646 int err;
1647 unsigned short val, val2, val_mask;
1649 val_mask = mask << shift;
1650 val = (ucontrol->value.integer.value[0] & mask);
1651 val2 = (ucontrol->value.integer.value[1] & mask);
1653 if (invert) {
1654 val = max - val;
1655 val2 = max - val2;
1658 val = val << shift;
1659 val2 = val2 << shift;
1661 err = snd_soc_update_bits(codec, reg, val_mask, val);
1662 if (err < 0)
1663 return err;
1665 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1666 return err;
1668 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1671 * snd_soc_info_volsw_s8 - signed mixer info callback
1672 * @kcontrol: mixer control
1673 * @uinfo: control element information
1675 * Callback to provide information about a signed mixer control.
1677 * Returns 0 for success.
1679 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1680 struct snd_ctl_elem_info *uinfo)
1682 struct soc_mixer_control *mc =
1683 (struct soc_mixer_control *)kcontrol->private_value;
1684 int max = mc->max;
1685 int min = mc->min;
1687 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1688 uinfo->count = 2;
1689 uinfo->value.integer.min = 0;
1690 uinfo->value.integer.max = max-min;
1691 return 0;
1693 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1696 * snd_soc_get_volsw_s8 - signed mixer get callback
1697 * @kcontrol: mixer control
1698 * @uinfo: control element information
1700 * Callback to get the value of a signed mixer control.
1702 * Returns 0 for success.
1704 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1705 struct snd_ctl_elem_value *ucontrol)
1707 struct soc_mixer_control *mc =
1708 (struct soc_mixer_control *)kcontrol->private_value;
1709 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1710 unsigned int reg = mc->reg;
1711 int min = mc->min;
1712 int val = snd_soc_read(codec, reg);
1714 ucontrol->value.integer.value[0] =
1715 ((signed char)(val & 0xff))-min;
1716 ucontrol->value.integer.value[1] =
1717 ((signed char)((val >> 8) & 0xff))-min;
1718 return 0;
1720 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
1723 * snd_soc_put_volsw_sgn - signed mixer put callback
1724 * @kcontrol: mixer control
1725 * @uinfo: control element information
1727 * Callback to set the value of a signed mixer control.
1729 * Returns 0 for success.
1731 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
1732 struct snd_ctl_elem_value *ucontrol)
1734 struct soc_mixer_control *mc =
1735 (struct soc_mixer_control *)kcontrol->private_value;
1736 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1737 unsigned int reg = mc->reg;
1738 int min = mc->min;
1739 unsigned short val;
1741 val = (ucontrol->value.integer.value[0]+min) & 0xff;
1742 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
1744 return snd_soc_update_bits(codec, reg, 0xffff, val);
1746 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
1749 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
1750 * @dai: DAI
1751 * @clk_id: DAI specific clock ID
1752 * @freq: new clock frequency in Hz
1753 * @dir: new clock direction - input/output.
1755 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
1757 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
1758 unsigned int freq, int dir)
1760 if (dai->dai_ops.set_sysclk)
1761 return dai->dai_ops.set_sysclk(dai, clk_id, freq, dir);
1762 else
1763 return -EINVAL;
1765 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
1768 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
1769 * @dai: DAI
1770 * @clk_id: DAI specific clock divider ID
1771 * @div: new clock divisor.
1773 * Configures the clock dividers. This is used to derive the best DAI bit and
1774 * frame clocks from the system or master clock. It's best to set the DAI bit
1775 * and frame clocks as low as possible to save system power.
1777 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
1778 int div_id, int div)
1780 if (dai->dai_ops.set_clkdiv)
1781 return dai->dai_ops.set_clkdiv(dai, div_id, div);
1782 else
1783 return -EINVAL;
1785 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
1788 * snd_soc_dai_set_pll - configure DAI PLL.
1789 * @dai: DAI
1790 * @pll_id: DAI specific PLL ID
1791 * @freq_in: PLL input clock frequency in Hz
1792 * @freq_out: requested PLL output clock frequency in Hz
1794 * Configures and enables PLL to generate output clock based on input clock.
1796 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
1797 int pll_id, unsigned int freq_in, unsigned int freq_out)
1799 if (dai->dai_ops.set_pll)
1800 return dai->dai_ops.set_pll(dai, pll_id, freq_in, freq_out);
1801 else
1802 return -EINVAL;
1804 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
1807 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
1808 * @dai: DAI
1809 * @clk_id: DAI specific clock ID
1810 * @fmt: SND_SOC_DAIFMT_ format value.
1812 * Configures the DAI hardware format and clocking.
1814 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1816 if (dai->dai_ops.set_fmt)
1817 return dai->dai_ops.set_fmt(dai, fmt);
1818 else
1819 return -EINVAL;
1821 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
1824 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
1825 * @dai: DAI
1826 * @mask: DAI specific mask representing used slots.
1827 * @slots: Number of slots in use.
1829 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
1830 * specific.
1832 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
1833 unsigned int mask, int slots)
1835 if (dai->dai_ops.set_sysclk)
1836 return dai->dai_ops.set_tdm_slot(dai, mask, slots);
1837 else
1838 return -EINVAL;
1840 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
1843 * snd_soc_dai_set_tristate - configure DAI system or master clock.
1844 * @dai: DAI
1845 * @tristate: tristate enable
1847 * Tristates the DAI so that others can use it.
1849 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
1851 if (dai->dai_ops.set_sysclk)
1852 return dai->dai_ops.set_tristate(dai, tristate);
1853 else
1854 return -EINVAL;
1856 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
1859 * snd_soc_dai_digital_mute - configure DAI system or master clock.
1860 * @dai: DAI
1861 * @mute: mute enable
1863 * Mutes the DAI DAC.
1865 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
1867 if (dai->dai_ops.digital_mute)
1868 return dai->dai_ops.digital_mute(dai, mute);
1869 else
1870 return -EINVAL;
1872 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
1874 static int __devinit snd_soc_init(void)
1876 printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1877 return platform_driver_register(&soc_driver);
1880 static void snd_soc_exit(void)
1882 platform_driver_unregister(&soc_driver);
1885 module_init(snd_soc_init);
1886 module_exit(snd_soc_exit);
1888 /* Module information */
1889 MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1890 MODULE_DESCRIPTION("ALSA SoC Core");
1891 MODULE_LICENSE("GPL");
1892 MODULE_ALIAS("platform:soc-audio");