3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
13 * et1310_rx.c - Routines used to perform data reception
15 *------------------------------------------------------------------------------
19 * This software is provided subject to the following terms and conditions,
20 * which you should read carefully before using the software. Using this
21 * software indicates your acceptance of these terms and conditions. If you do
22 * not agree with these terms and conditions, do not use the software.
24 * Copyright © 2005 Agere Systems Inc.
25 * All rights reserved.
27 * Redistribution and use in source or binary forms, with or without
28 * modifications, are permitted provided that the following conditions are met:
30 * . Redistributions of source code must retain the above copyright notice, this
31 * list of conditions and the following Disclaimer as comments in the code as
32 * well as in the documentation and/or other materials provided with the
35 * . Redistributions in binary form must reproduce the above copyright notice,
36 * this list of conditions and the following Disclaimer in the documentation
37 * and/or other materials provided with the distribution.
39 * . Neither the name of Agere Systems Inc. nor the names of the contributors
40 * may be used to endorse or promote products derived from this software
41 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
46 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
48 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
49 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
50 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
51 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
52 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
53 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
55 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
60 #include "et131x_version.h"
61 #include "et131x_defs.h"
63 #include <linux/pci.h>
64 #include <linux/init.h>
65 #include <linux/module.h>
66 #include <linux/types.h>
67 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/ptrace.h>
71 #include <linux/slab.h>
72 #include <linux/ctype.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/interrupt.h>
77 #include <linux/delay.h>
79 #include <linux/bitops.h>
80 #include <asm/system.h>
82 #include <linux/netdevice.h>
83 #include <linux/etherdevice.h>
84 #include <linux/skbuff.h>
85 #include <linux/if_arp.h>
86 #include <linux/ioport.h>
87 #include <linux/phy.h>
89 #include "et1310_phy.h"
90 #include "et131x_adapter.h"
91 #include "et1310_rx.h"
94 static inline u32
bump_free_buff_ring(u32
*free_buff_ring
, u32 limit
)
96 u32 tmp_free_buff_ring
= *free_buff_ring
;
98 /* This works for all cases where limit < 1024. The 1023 case
99 works because 1023++ is 1024 which means the if condition is not
100 taken but the carry of the bit into the wrap bit toggles the wrap
102 if ((tmp_free_buff_ring
& ET_DMA10_MASK
) > limit
) {
103 tmp_free_buff_ring
&= ~ET_DMA10_MASK
;
104 tmp_free_buff_ring
^= ET_DMA10_WRAP
;
106 /* For the 1023 case */
107 tmp_free_buff_ring
&= (ET_DMA10_MASK
|ET_DMA10_WRAP
);
108 *free_buff_ring
= tmp_free_buff_ring
;
109 return tmp_free_buff_ring
;
113 * et131x_rx_dma_memory_alloc
114 * @adapter: pointer to our private adapter structure
116 * Returns 0 on success and errno on failure (as defined in errno.h)
118 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
119 * and the Packet Status Ring.
121 int et131x_rx_dma_memory_alloc(struct et131x_adapter
*adapter
)
125 u32 pktstat_ringsize
, fbr_chunksize
;
126 struct rx_ring
*rx_ring
;
128 /* Setup some convenience pointers */
129 rx_ring
= &adapter
->rx_ring
;
131 /* Alloc memory for the lookup table */
133 rx_ring
->fbr
[0] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
135 rx_ring
->fbr
[1] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
137 /* The first thing we will do is configure the sizes of the buffer
138 * rings. These will change based on jumbo packet support. Larger
139 * jumbo packets increases the size of each entry in FBR0, and the
140 * number of entries in FBR0, while at the same time decreasing the
141 * number of entries in FBR1.
143 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
144 * entries are huge in order to accommodate a "jumbo" frame, then it
145 * will have less entries. Conversely, FBR1 will now be relied upon
146 * to carry more "normal" frames, thus it's entry size also increases
147 * and the number of entries goes up too (since it now carries
148 * "small" + "regular" packets.
150 * In this scheme, we try to maintain 512 entries between the two
151 * rings. Also, FBR1 remains a constant size - when it's size doubles
152 * the number of entries halves. FBR0 increases in size, however.
155 if (adapter
->registry_jumbo_packet
< 2048) {
157 rx_ring
->fbr0_buffsize
= 256;
158 rx_ring
->fbr0_num_entries
= 512;
160 rx_ring
->fbr1_buffsize
= 2048;
161 rx_ring
->fbr1_num_entries
= 512;
162 } else if (adapter
->registry_jumbo_packet
< 4096) {
164 rx_ring
->fbr0_buffsize
= 512;
165 rx_ring
->fbr0_num_entries
= 1024;
167 rx_ring
->fbr1_buffsize
= 4096;
168 rx_ring
->fbr1_num_entries
= 512;
171 rx_ring
->fbr0_buffsize
= 1024;
172 rx_ring
->fbr0_num_entries
= 768;
174 rx_ring
->fbr1_buffsize
= 16384;
175 rx_ring
->fbr1_num_entries
= 128;
179 adapter
->rx_ring
.psr_num_entries
= adapter
->rx_ring
.fbr0_num_entries
+
180 adapter
->rx_ring
.fbr1_num_entries
;
182 adapter
->rx_ring
.psr_num_entries
= adapter
->rx_ring
.fbr1_num_entries
;
185 /* Allocate an area of memory for Free Buffer Ring 1 */
186 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr1_num_entries
) + 0xfff;
187 rx_ring
->fbr1_ring_virtaddr
= pci_alloc_consistent(adapter
->pdev
,
189 &rx_ring
->fbr1_ring_physaddr
);
190 if (!rx_ring
->fbr1_ring_virtaddr
) {
191 dev_err(&adapter
->pdev
->dev
,
192 "Cannot alloc memory for Free Buffer Ring 1\n");
196 /* Save physical address
198 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
199 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
200 * are ever returned, make sure the high part is retrieved here
201 * before storing the adjusted address.
203 rx_ring
->fbr1_real_physaddr
= rx_ring
->fbr1_ring_physaddr
;
205 /* Align Free Buffer Ring 1 on a 4K boundary */
206 et131x_align_allocated_memory(adapter
,
207 &rx_ring
->fbr1_real_physaddr
,
208 &rx_ring
->fbr1_offset
, 0x0FFF);
210 rx_ring
->fbr1_ring_virtaddr
=
211 (void *)((u8
*) rx_ring
->fbr1_ring_virtaddr
+
212 rx_ring
->fbr1_offset
);
215 /* Allocate an area of memory for Free Buffer Ring 0 */
216 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr0_num_entries
) + 0xfff;
217 rx_ring
->fbr0_ring_virtaddr
= pci_alloc_consistent(adapter
->pdev
,
219 &rx_ring
->fbr0_ring_physaddr
);
220 if (!rx_ring
->fbr0_ring_virtaddr
) {
221 dev_err(&adapter
->pdev
->dev
,
222 "Cannot alloc memory for Free Buffer Ring 0\n");
226 /* Save physical address
228 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
229 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
230 * are ever returned, make sure the high part is retrieved here before
231 * storing the adjusted address.
233 rx_ring
->fbr0_real_physaddr
= rx_ring
->fbr0_ring_physaddr
;
235 /* Align Free Buffer Ring 0 on a 4K boundary */
236 et131x_align_allocated_memory(adapter
,
237 &rx_ring
->fbr0_real_physaddr
,
238 &rx_ring
->fbr0_offset
, 0x0FFF);
240 rx_ring
->fbr0_ring_virtaddr
=
241 (void *)((u8
*) rx_ring
->fbr0_ring_virtaddr
+
242 rx_ring
->fbr0_offset
);
244 for (i
= 0; i
< (rx_ring
->fbr1_num_entries
/ FBR_CHUNKS
); i
++) {
246 u64 fbr1_tmp_physaddr
;
249 /* This code allocates an area of memory big enough for N
250 * free buffers + (buffer_size - 1) so that the buffers can
251 * be aligned on 4k boundaries. If each buffer were aligned
252 * to a buffer_size boundary, the effect would be to double
253 * the size of FBR0. By allocating N buffers at once, we
254 * reduce this overhead.
256 if (rx_ring
->fbr1_buffsize
> 4096)
259 fbr1_align
= rx_ring
->fbr1_buffsize
;
262 (FBR_CHUNKS
* rx_ring
->fbr1_buffsize
) + fbr1_align
- 1;
263 rx_ring
->fbr1_mem_virtaddrs
[i
] =
264 pci_alloc_consistent(adapter
->pdev
, fbr_chunksize
,
265 &rx_ring
->fbr1_mem_physaddrs
[i
]);
267 if (!rx_ring
->fbr1_mem_virtaddrs
[i
]) {
268 dev_err(&adapter
->pdev
->dev
,
269 "Could not alloc memory\n");
273 /* See NOTE in "Save Physical Address" comment above */
274 fbr1_tmp_physaddr
= rx_ring
->fbr1_mem_physaddrs
[i
];
276 et131x_align_allocated_memory(adapter
,
278 &fbr1_offset
, (fbr1_align
- 1));
280 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
281 u32 index
= (i
* FBR_CHUNKS
) + j
;
283 /* Save the Virtual address of this index for quick
286 rx_ring
->fbr
[1]->virt
[index
] =
287 (u8
*) rx_ring
->fbr1_mem_virtaddrs
[i
] +
288 (j
* rx_ring
->fbr1_buffsize
) + fbr1_offset
;
290 /* now store the physical address in the descriptor
291 * so the device can access it
293 rx_ring
->fbr
[1]->bus_high
[index
] =
294 (u32
) (fbr1_tmp_physaddr
>> 32);
295 rx_ring
->fbr
[1]->bus_low
[index
] =
296 (u32
) fbr1_tmp_physaddr
;
298 fbr1_tmp_physaddr
+= rx_ring
->fbr1_buffsize
;
300 rx_ring
->fbr
[1]->buffer1
[index
] =
301 rx_ring
->fbr
[1]->virt
[index
];
302 rx_ring
->fbr
[1]->buffer2
[index
] =
303 rx_ring
->fbr
[1]->virt
[index
] - 4;
308 /* Same for FBR0 (if in use) */
309 for (i
= 0; i
< (rx_ring
->fbr0_num_entries
/ FBR_CHUNKS
); i
++) {
311 u64 fbr0_tmp_physaddr
;
314 ((FBR_CHUNKS
+ 1) * rx_ring
->fbr0_buffsize
) - 1;
315 rx_ring
->fbr0_mem_virtaddrs
[i
] =
316 pci_alloc_consistent(adapter
->pdev
, fbr_chunksize
,
317 &rx_ring
->fbr0_mem_physaddrs
[i
]);
319 if (!rx_ring
->fbr0_mem_virtaddrs
[i
]) {
320 dev_err(&adapter
->pdev
->dev
,
321 "Could not alloc memory\n");
325 /* See NOTE in "Save Physical Address" comment above */
326 fbr0_tmp_physaddr
= rx_ring
->fbr0_mem_physaddrs
[i
];
328 et131x_align_allocated_memory(adapter
,
331 rx_ring
->fbr0_buffsize
- 1);
333 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
334 u32 index
= (i
* FBR_CHUNKS
) + j
;
336 rx_ring
->fbr
[0]->virt
[index
] =
337 (u8
*) rx_ring
->fbr0_mem_virtaddrs
[i
] +
338 (j
* rx_ring
->fbr0_buffsize
) + fbr0_offset
;
340 rx_ring
->fbr
[0]->bus_high
[index
] =
341 (u32
) (fbr0_tmp_physaddr
>> 32);
342 rx_ring
->fbr
[0]->bus_low
[index
] =
343 (u32
) fbr0_tmp_physaddr
;
345 fbr0_tmp_physaddr
+= rx_ring
->fbr0_buffsize
;
347 rx_ring
->fbr
[0]->buffer1
[index
] =
348 rx_ring
->fbr
[0]->virt
[index
];
349 rx_ring
->fbr
[0]->buffer2
[index
] =
350 rx_ring
->fbr
[0]->virt
[index
] - 4;
355 /* Allocate an area of memory for FIFO of Packet Status ring entries */
357 sizeof(struct pkt_stat_desc
) * adapter
->rx_ring
.psr_num_entries
;
359 rx_ring
->ps_ring_virtaddr
= pci_alloc_consistent(adapter
->pdev
,
361 &rx_ring
->ps_ring_physaddr
);
363 if (!rx_ring
->ps_ring_virtaddr
) {
364 dev_err(&adapter
->pdev
->dev
,
365 "Cannot alloc memory for Packet Status Ring\n");
368 printk(KERN_INFO
"Packet Status Ring %lx\n",
369 (unsigned long) rx_ring
->ps_ring_physaddr
);
372 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
373 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
374 * are ever returned, make sure the high part is retrieved here before
375 * storing the adjusted address.
378 /* Allocate an area of memory for writeback of status information */
379 rx_ring
->rx_status_block
= pci_alloc_consistent(adapter
->pdev
,
380 sizeof(struct rx_status_block
),
381 &rx_ring
->rx_status_bus
);
382 if (!rx_ring
->rx_status_block
) {
383 dev_err(&adapter
->pdev
->dev
,
384 "Cannot alloc memory for Status Block\n");
387 rx_ring
->num_rfd
= NIC_DEFAULT_NUM_RFD
;
388 printk(KERN_INFO
"PRS %lx\n", (unsigned long)rx_ring
->rx_status_bus
);
391 * pci_pool_create initializes a lookaside list. After successful
392 * creation, nonpaged fixed-size blocks can be allocated from and
393 * freed to the lookaside list.
394 * RFDs will be allocated from this pool.
396 rx_ring
->recv_lookaside
= kmem_cache_create(adapter
->netdev
->name
,
403 adapter
->flags
|= fMP_ADAPTER_RECV_LOOKASIDE
;
405 /* The RFDs are going to be put on lists later on, so initialize the
408 INIT_LIST_HEAD(&rx_ring
->recv_list
);
413 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
414 * @adapter: pointer to our private adapter structure
416 void et131x_rx_dma_memory_free(struct et131x_adapter
*adapter
)
420 u32 pktstat_ringsize
;
422 struct rx_ring
*rx_ring
;
424 /* Setup some convenience pointers */
425 rx_ring
= &adapter
->rx_ring
;
427 /* Free RFDs and associated packet descriptors */
428 WARN_ON(rx_ring
->num_ready_recv
!= rx_ring
->num_rfd
);
430 while (!list_empty(&rx_ring
->recv_list
)) {
431 rfd
= (struct rfd
*) list_entry(rx_ring
->recv_list
.next
,
432 struct rfd
, list_node
);
434 list_del(&rfd
->list_node
);
436 kmem_cache_free(adapter
->rx_ring
.recv_lookaside
, rfd
);
439 /* Free Free Buffer Ring 1 */
440 if (rx_ring
->fbr1_ring_virtaddr
) {
441 /* First the packet memory */
442 for (index
= 0; index
<
443 (rx_ring
->fbr1_num_entries
/ FBR_CHUNKS
); index
++) {
444 if (rx_ring
->fbr1_mem_virtaddrs
[index
]) {
447 if (rx_ring
->fbr1_buffsize
> 4096)
450 fbr1_align
= rx_ring
->fbr1_buffsize
;
453 (rx_ring
->fbr1_buffsize
* FBR_CHUNKS
) +
456 pci_free_consistent(adapter
->pdev
,
458 rx_ring
->fbr1_mem_virtaddrs
[index
],
459 rx_ring
->fbr1_mem_physaddrs
[index
]);
461 rx_ring
->fbr1_mem_virtaddrs
[index
] = NULL
;
465 /* Now the FIFO itself */
466 rx_ring
->fbr1_ring_virtaddr
= (void *)((u8
*)
467 rx_ring
->fbr1_ring_virtaddr
- rx_ring
->fbr1_offset
);
469 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr1_num_entries
)
472 pci_free_consistent(adapter
->pdev
, bufsize
,
473 rx_ring
->fbr1_ring_virtaddr
,
474 rx_ring
->fbr1_ring_physaddr
);
476 rx_ring
->fbr1_ring_virtaddr
= NULL
;
480 /* Now the same for Free Buffer Ring 0 */
481 if (rx_ring
->fbr0_ring_virtaddr
) {
482 /* First the packet memory */
483 for (index
= 0; index
<
484 (rx_ring
->fbr0_num_entries
/ FBR_CHUNKS
); index
++) {
485 if (rx_ring
->fbr0_mem_virtaddrs
[index
]) {
487 (rx_ring
->fbr0_buffsize
*
488 (FBR_CHUNKS
+ 1)) - 1;
490 pci_free_consistent(adapter
->pdev
,
492 rx_ring
->fbr0_mem_virtaddrs
[index
],
493 rx_ring
->fbr0_mem_physaddrs
[index
]);
495 rx_ring
->fbr0_mem_virtaddrs
[index
] = NULL
;
499 /* Now the FIFO itself */
500 rx_ring
->fbr0_ring_virtaddr
= (void *)((u8
*)
501 rx_ring
->fbr0_ring_virtaddr
- rx_ring
->fbr0_offset
);
503 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr0_num_entries
)
506 pci_free_consistent(adapter
->pdev
,
508 rx_ring
->fbr0_ring_virtaddr
,
509 rx_ring
->fbr0_ring_physaddr
);
511 rx_ring
->fbr0_ring_virtaddr
= NULL
;
515 /* Free Packet Status Ring */
516 if (rx_ring
->ps_ring_virtaddr
) {
518 sizeof(struct pkt_stat_desc
) *
519 adapter
->rx_ring
.psr_num_entries
;
521 pci_free_consistent(adapter
->pdev
, pktstat_ringsize
,
522 rx_ring
->ps_ring_virtaddr
,
523 rx_ring
->ps_ring_physaddr
);
525 rx_ring
->ps_ring_virtaddr
= NULL
;
528 /* Free area of memory for the writeback of status information */
529 if (rx_ring
->rx_status_block
) {
530 pci_free_consistent(adapter
->pdev
,
531 sizeof(struct rx_status_block
),
532 rx_ring
->rx_status_block
, rx_ring
->rx_status_bus
);
533 rx_ring
->rx_status_block
= NULL
;
536 /* Free receive buffer pool */
538 /* Free receive packet pool */
540 /* Destroy the lookaside (RFD) pool */
541 if (adapter
->flags
& fMP_ADAPTER_RECV_LOOKASIDE
) {
542 kmem_cache_destroy(rx_ring
->recv_lookaside
);
543 adapter
->flags
&= ~fMP_ADAPTER_RECV_LOOKASIDE
;
546 /* Free the FBR Lookup Table */
548 kfree(rx_ring
->fbr
[0]);
551 kfree(rx_ring
->fbr
[1]);
554 rx_ring
->num_ready_recv
= 0;
558 * et131x_init_recv - Initialize receive data structures.
559 * @adapter: pointer to our private adapter structure
561 * Returns 0 on success and errno on failure (as defined in errno.h)
563 int et131x_init_recv(struct et131x_adapter
*adapter
)
565 int status
= -ENOMEM
;
566 struct rfd
*rfd
= NULL
;
569 struct rx_ring
*rx_ring
;
571 /* Setup some convenience pointers */
572 rx_ring
= &adapter
->rx_ring
;
575 for (rfdct
= 0; rfdct
< rx_ring
->num_rfd
; rfdct
++) {
576 rfd
= kmem_cache_alloc(rx_ring
->recv_lookaside
,
577 GFP_ATOMIC
| GFP_DMA
);
580 dev_err(&adapter
->pdev
->dev
,
581 "Couldn't alloc RFD out of kmem_cache\n");
588 /* Add this RFD to the recv_list */
589 list_add_tail(&rfd
->list_node
, &rx_ring
->recv_list
);
591 /* Increment both the available RFD's, and the total RFD's. */
592 rx_ring
->num_ready_recv
++;
596 if (numrfd
> NIC_MIN_NUM_RFD
)
599 rx_ring
->num_rfd
= numrfd
;
602 kmem_cache_free(rx_ring
->recv_lookaside
, rfd
);
603 dev_err(&adapter
->pdev
->dev
,
604 "Allocation problems in et131x_init_recv\n");
610 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
611 * @adapter: pointer to our adapter structure
613 void et131x_config_rx_dma_regs(struct et131x_adapter
*adapter
)
615 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
616 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
617 struct fbr_desc
*fbr_entry
;
622 /* Halt RXDMA to perform the reconfigure. */
623 et131x_rx_dma_disable(adapter
);
625 /* Load the completion writeback physical address
627 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
628 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
629 * are ever returned, make sure the high part is retrieved here
630 * before storing the adjusted address.
632 writel((u32
) ((u64
)rx_local
->rx_status_bus
>> 32),
633 &rx_dma
->dma_wb_base_hi
);
634 writel((u32
) rx_local
->rx_status_bus
, &rx_dma
->dma_wb_base_lo
);
636 memset(rx_local
->rx_status_block
, 0, sizeof(struct rx_status_block
));
638 /* Set the address and parameters of the packet status ring into the
641 writel((u32
) ((u64
)rx_local
->ps_ring_physaddr
>> 32),
642 &rx_dma
->psr_base_hi
);
643 writel((u32
) rx_local
->ps_ring_physaddr
, &rx_dma
->psr_base_lo
);
644 writel(rx_local
->psr_num_entries
- 1, &rx_dma
->psr_num_des
);
645 writel(0, &rx_dma
->psr_full_offset
);
647 psr_num_des
= readl(&rx_dma
->psr_num_des
) & 0xFFF;
648 writel((psr_num_des
* LO_MARK_PERCENT_FOR_PSR
) / 100,
649 &rx_dma
->psr_min_des
);
651 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
653 /* These local variables track the PSR in the adapter structure */
654 rx_local
->local_psr_full
= 0;
656 /* Now's the best time to initialize FBR1 contents */
657 fbr_entry
= (struct fbr_desc
*) rx_local
->fbr1_ring_virtaddr
;
658 for (entry
= 0; entry
< rx_local
->fbr1_num_entries
; entry
++) {
659 fbr_entry
->addr_hi
= rx_local
->fbr
[1]->bus_high
[entry
];
660 fbr_entry
->addr_lo
= rx_local
->fbr
[1]->bus_low
[entry
];
661 fbr_entry
->word2
= entry
;
665 /* Set the address and parameters of Free buffer ring 1 (and 0 if
666 * required) into the 1310's registers
668 writel((u32
) (rx_local
->fbr1_real_physaddr
>> 32),
669 &rx_dma
->fbr1_base_hi
);
670 writel((u32
) rx_local
->fbr1_real_physaddr
, &rx_dma
->fbr1_base_lo
);
671 writel(rx_local
->fbr1_num_entries
- 1, &rx_dma
->fbr1_num_des
);
672 writel(ET_DMA10_WRAP
, &rx_dma
->fbr1_full_offset
);
674 /* This variable tracks the free buffer ring 1 full position, so it
675 * has to match the above.
677 rx_local
->local_fbr1_full
= ET_DMA10_WRAP
;
679 ((rx_local
->fbr1_num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
680 &rx_dma
->fbr1_min_des
);
683 /* Now's the best time to initialize FBR0 contents */
684 fbr_entry
= (struct fbr_desc
*) rx_local
->fbr0_ring_virtaddr
;
685 for (entry
= 0; entry
< rx_local
->fbr0_num_entries
; entry
++) {
686 fbr_entry
->addr_hi
= rx_local
->fbr
[0]->bus_high
[entry
];
687 fbr_entry
->addr_lo
= rx_local
->fbr
[0]->bus_low
[entry
];
688 fbr_entry
->word2
= entry
;
692 writel((u32
) (rx_local
->fbr0_real_physaddr
>> 32),
693 &rx_dma
->fbr0_base_hi
);
694 writel((u32
) rx_local
->fbr0_real_physaddr
, &rx_dma
->fbr0_base_lo
);
695 writel(rx_local
->fbr0_num_entries
- 1, &rx_dma
->fbr0_num_des
);
696 writel(ET_DMA10_WRAP
, &rx_dma
->fbr0_full_offset
);
698 /* This variable tracks the free buffer ring 0 full position, so it
699 * has to match the above.
701 rx_local
->local_fbr0_full
= ET_DMA10_WRAP
;
703 ((rx_local
->fbr0_num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
704 &rx_dma
->fbr0_min_des
);
707 /* Program the number of packets we will receive before generating an
709 * For version B silicon, this value gets updated once autoneg is
712 writel(PARM_RX_NUM_BUFS_DEF
, &rx_dma
->num_pkt_done
);
714 /* The "time_done" is not working correctly to coalesce interrupts
715 * after a given time period, but rather is giving us an interrupt
716 * regardless of whether we have received packets.
717 * This value gets updated once autoneg is complete.
719 writel(PARM_RX_TIME_INT_DEF
, &rx_dma
->max_pkt_time
);
721 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
725 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
726 * @adapter: pointer to our adapter structure
728 void et131x_set_rx_dma_timer(struct et131x_adapter
*adapter
)
730 struct phy_device
*phydev
= adapter
->phydev
;
735 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
736 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
738 if ((phydev
->speed
== SPEED_100
) || (phydev
->speed
== SPEED_10
)) {
739 writel(0, &adapter
->regs
->rxdma
.max_pkt_time
);
740 writel(1, &adapter
->regs
->rxdma
.num_pkt_done
);
745 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
746 * @adapter: pointer to our adapter
747 * @rfd: pointer to the RFD
749 static void nic_return_rfd(struct et131x_adapter
*adapter
, struct rfd
*rfd
)
751 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
752 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
753 u16 buff_index
= rfd
->bufferindex
;
754 u8 ring_index
= rfd
->ringindex
;
757 /* We don't use any of the OOB data besides status. Otherwise, we
758 * need to clean up OOB data
762 (ring_index
== 0 && buff_index
< rx_local
->fbr0_num_entries
) ||
764 (ring_index
== 1 && buff_index
< rx_local
->fbr1_num_entries
)) {
765 spin_lock_irqsave(&adapter
->fbr_lock
, flags
);
767 if (ring_index
== 1) {
768 struct fbr_desc
*next
=
769 (struct fbr_desc
*) (rx_local
->fbr1_ring_virtaddr
) +
770 INDEX10(rx_local
->local_fbr1_full
);
772 /* Handle the Free Buffer Ring advancement here. Write
773 * the PA / Buffer Index for the returned buffer into
774 * the oldest (next to be freed)FBR entry
776 next
->addr_hi
= rx_local
->fbr
[1]->bus_high
[buff_index
];
777 next
->addr_lo
= rx_local
->fbr
[1]->bus_low
[buff_index
];
778 next
->word2
= buff_index
;
780 writel(bump_free_buff_ring(&rx_local
->local_fbr1_full
,
781 rx_local
->fbr1_num_entries
- 1),
782 &rx_dma
->fbr1_full_offset
);
786 struct fbr_desc
*next
= (struct fbr_desc
*)
787 rx_local
->fbr0_ring_virtaddr
+
788 INDEX10(rx_local
->local_fbr0_full
);
790 /* Handle the Free Buffer Ring advancement here. Write
791 * the PA / Buffer Index for the returned buffer into
792 * the oldest (next to be freed) FBR entry
794 next
->addr_hi
= rx_local
->fbr
[0]->bus_high
[buff_index
];
795 next
->addr_lo
= rx_local
->fbr
[0]->bus_low
[buff_index
];
796 next
->word2
= buff_index
;
798 writel(bump_free_buff_ring(&rx_local
->local_fbr0_full
,
799 rx_local
->fbr0_num_entries
- 1),
800 &rx_dma
->fbr0_full_offset
);
803 spin_unlock_irqrestore(&adapter
->fbr_lock
, flags
);
805 dev_err(&adapter
->pdev
->dev
,
806 "%s illegal Buffer Index returned\n", __func__
);
809 /* The processing on this RFD is done, so put it back on the tail of
812 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
813 list_add_tail(&rfd
->list_node
, &rx_local
->recv_list
);
814 rx_local
->num_ready_recv
++;
815 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
817 WARN_ON(rx_local
->num_ready_recv
> rx_local
->num_rfd
);
821 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
822 * @adapter: pointer to our adapter structure
824 void et131x_rx_dma_disable(struct et131x_adapter
*adapter
)
827 /* Setup the receive dma configuration register */
828 writel(0x00002001, &adapter
->regs
->rxdma
.csr
);
829 csr
= readl(&adapter
->regs
->rxdma
.csr
);
830 if ((csr
& 0x00020000) == 0) { /* Check halt status (bit 17) */
832 csr
= readl(&adapter
->regs
->rxdma
.csr
);
833 if ((csr
& 0x00020000) == 0)
834 dev_err(&adapter
->pdev
->dev
,
835 "RX Dma failed to enter halt state. CSR 0x%08x\n",
841 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
842 * @adapter: pointer to our adapter structure
844 void et131x_rx_dma_enable(struct et131x_adapter
*adapter
)
846 /* Setup the receive dma configuration register for normal operation */
847 u32 csr
= 0x2000; /* FBR1 enable */
849 if (adapter
->rx_ring
.fbr1_buffsize
== 4096)
851 else if (adapter
->rx_ring
.fbr1_buffsize
== 8192)
853 else if (adapter
->rx_ring
.fbr1_buffsize
== 16384)
856 csr
|= 0x0400; /* FBR0 enable */
857 if (adapter
->rx_ring
.fbr0_buffsize
== 256)
859 else if (adapter
->rx_ring
.fbr0_buffsize
== 512)
861 else if (adapter
->rx_ring
.fbr0_buffsize
== 1024)
864 writel(csr
, &adapter
->regs
->rxdma
.csr
);
866 csr
= readl(&adapter
->regs
->rxdma
.csr
);
867 if ((csr
& 0x00020000) != 0) {
869 csr
= readl(&adapter
->regs
->rxdma
.csr
);
870 if ((csr
& 0x00020000) != 0) {
871 dev_err(&adapter
->pdev
->dev
,
872 "RX Dma failed to exit halt state. CSR 0x%08x\n",
879 * nic_rx_pkts - Checks the hardware for available packets
880 * @adapter: pointer to our adapter
882 * Returns rfd, a pointer to our MPRFD.
884 * Checks the hardware for available packets, using completion ring
885 * If packets are available, it gets an RFD from the recv_list, attaches
886 * the packet to it, puts the RFD in the RecvPendList, and also returns
887 * the pointer to the RFD.
889 static struct rfd
*nic_rx_pkts(struct et131x_adapter
*adapter
)
891 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
892 struct rx_status_block
*status
;
893 struct pkt_stat_desc
*psr
;
898 struct list_head
*element
;
905 /* RX Status block is written by the DMA engine prior to every
906 * interrupt. It contains the next to be used entry in the Packet
907 * Status Ring, and also the two Free Buffer rings.
909 status
= rx_local
->rx_status_block
;
910 word1
= status
->word1
>> 16; /* Get the useful bits */
912 /* Check the PSR and wrap bits do not match */
913 if ((word1
& 0x1FFF) == (rx_local
->local_psr_full
& 0x1FFF))
914 /* Looks like this ring is not updated yet */
917 /* The packet status ring indicates that data is available. */
918 psr
= (struct pkt_stat_desc
*) (rx_local
->ps_ring_virtaddr
) +
919 (rx_local
->local_psr_full
& 0xFFF);
921 /* Grab any information that is required once the PSR is
922 * advanced, since we can no longer rely on the memory being
925 len
= psr
->word1
& 0xFFFF;
926 ring_index
= (psr
->word1
>> 26) & 0x03;
927 buff_index
= (psr
->word1
>> 16) & 0x3FF;
930 /* Indicate that we have used this PSR entry. */
932 add_12bit(&rx_local
->local_psr_full
, 1);
934 (rx_local
->local_psr_full
& 0xFFF) > rx_local
->psr_num_entries
- 1) {
935 /* Clear psr full and toggle the wrap bit */
936 rx_local
->local_psr_full
&= ~0xFFF;
937 rx_local
->local_psr_full
^= 0x1000;
940 writel(rx_local
->local_psr_full
,
941 &adapter
->regs
->rxdma
.psr_full_offset
);
949 if (ring_index
> 1 ||
951 buff_index
> rx_local
->fbr0_num_entries
- 1) ||
953 buff_index
> rx_local
->fbr1_num_entries
- 1))
955 if (ring_index
!= 1 || buff_index
> rx_local
->fbr1_num_entries
- 1)
958 /* Illegal buffer or ring index cannot be used by S/W*/
959 dev_err(&adapter
->pdev
->dev
,
960 "NICRxPkts PSR Entry %d indicates "
961 "length of %d and/or bad bi(%d)\n",
962 rx_local
->local_psr_full
& 0xFFF,
967 /* Get and fill the RFD. */
968 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
971 element
= rx_local
->recv_list
.next
;
972 rfd
= (struct rfd
*) list_entry(element
, struct rfd
, list_node
);
975 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
979 list_del(&rfd
->list_node
);
980 rx_local
->num_ready_recv
--;
982 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
984 rfd
->bufferindex
= buff_index
;
985 rfd
->ringindex
= ring_index
;
987 /* In V1 silicon, there is a bug which screws up filtering of
988 * runt packets. Therefore runt packet filtering is disabled
989 * in the MAC and the packets are dropped here. They are
992 if (len
< (NIC_MIN_PACKET_SIZE
+ 4)) {
993 adapter
->stats
.rx_other_errs
++;
998 /* Determine if this is a multicast packet coming in */
999 if ((word0
& ALCATEL_MULTICAST_PKT
) &&
1000 !(word0
& ALCATEL_BROADCAST_PKT
)) {
1001 /* Promiscuous mode and Multicast mode are
1002 * not mutually exclusive as was first
1003 * thought. I guess Promiscuous is just
1004 * considered a super-set of the other
1005 * filters. Generally filter is 0x2b when in
1008 if ((adapter
->packet_filter
&
1009 ET131X_PACKET_TYPE_MULTICAST
)
1010 && !(adapter
->packet_filter
&
1011 ET131X_PACKET_TYPE_PROMISCUOUS
)
1012 && !(adapter
->packet_filter
&
1013 ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
1014 buf
= rx_local
->fbr
[ring_index
]->
1017 /* Loop through our list to see if the
1018 * destination address of this packet
1019 * matches one in our list.
1021 for (i
= 0; i
< adapter
->multicast_addr_count
;
1024 adapter
->multicast_list
[i
][0]
1026 adapter
->multicast_list
[i
][1]
1028 adapter
->multicast_list
[i
][2]
1030 adapter
->multicast_list
[i
][3]
1032 adapter
->multicast_list
[i
][4]
1034 adapter
->multicast_list
[i
][5]) {
1039 /* If our index is equal to the number
1040 * of Multicast address we have, then
1041 * this means we did not find this
1042 * packet's matching address in our
1043 * list. Set the len to zero,
1044 * so we free our RFD when we return
1045 * from this function.
1047 if (i
== adapter
->multicast_addr_count
)
1052 adapter
->stats
.multicast_pkts_rcvd
++;
1053 } else if (word0
& ALCATEL_BROADCAST_PKT
)
1054 adapter
->stats
.broadcast_pkts_rcvd
++;
1056 /* Not sure what this counter measures in
1057 * promiscuous mode. Perhaps we should check
1058 * the MAC address to see if it is directed
1059 * to us in promiscuous mode.
1061 adapter
->stats
.unicast_pkts_rcvd
++;
1065 struct sk_buff
*skb
= NULL
;
1067 /*rfd->len = len - 4; */
1070 skb
= dev_alloc_skb(rfd
->len
+ 2);
1072 dev_err(&adapter
->pdev
->dev
,
1073 "Couldn't alloc an SKB for Rx\n");
1077 adapter
->net_stats
.rx_bytes
+= rfd
->len
;
1079 memcpy(skb_put(skb
, rfd
->len
),
1080 rx_local
->fbr
[ring_index
]->virt
[buff_index
],
1083 skb
->dev
= adapter
->netdev
;
1084 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
1085 skb
->ip_summed
= CHECKSUM_NONE
;
1092 nic_return_rfd(adapter
, rfd
);
1097 * et131x_reset_recv - Reset the receive list
1098 * @adapter: pointer to our adapter
1100 * Assumption, Rcv spinlock has been acquired.
1102 void et131x_reset_recv(struct et131x_adapter
*adapter
)
1104 WARN_ON(list_empty(&adapter
->rx_ring
.recv_list
));
1108 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
1109 * @adapter: pointer to our adapter
1111 * Assumption, Rcv spinlock has been acquired.
1113 void et131x_handle_recv_interrupt(struct et131x_adapter
*adapter
)
1115 struct rfd
*rfd
= NULL
;
1119 /* Process up to available RFD's */
1120 while (count
< NUM_PACKETS_HANDLED
) {
1121 if (list_empty(&adapter
->rx_ring
.recv_list
)) {
1122 WARN_ON(adapter
->rx_ring
.num_ready_recv
!= 0);
1127 rfd
= nic_rx_pkts(adapter
);
1132 /* Do not receive any packets until a filter has been set.
1133 * Do not receive any packets until we have link.
1134 * If length is zero, return the RFD in order to advance the
1137 if (!adapter
->packet_filter
||
1138 !netif_carrier_ok(adapter
->netdev
) ||
1142 /* Increment the number of packets we received */
1143 adapter
->net_stats
.rx_packets
++;
1145 /* Set the status on the packet, either resources or success */
1146 if (adapter
->rx_ring
.num_ready_recv
< RFD_LOW_WATER_MARK
) {
1147 dev_warn(&adapter
->pdev
->dev
,
1148 "RFD's are running out\n");
1153 if (count
== NUM_PACKETS_HANDLED
|| !done
) {
1154 adapter
->rx_ring
.unfinished_receives
= true;
1155 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
1156 &adapter
->regs
->global
.watchdog_timer
);
1158 /* Watchdog timer will disable itself if appropriate. */
1159 adapter
->rx_ring
.unfinished_receives
= false;