staging: brcm80211: removed unneeded call to brcms_b_tx_fifo_suspended
[zen-stable.git] / drivers / staging / et131x / et1310_rx.c
blob600a8f10da86458046371888617e61376d3c067e
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
13 * et1310_rx.c - Routines used to perform data reception
15 *------------------------------------------------------------------------------
17 * SOFTWARE LICENSE
19 * This software is provided subject to the following terms and conditions,
20 * which you should read carefully before using the software. Using this
21 * software indicates your acceptance of these terms and conditions. If you do
22 * not agree with these terms and conditions, do not use the software.
24 * Copyright © 2005 Agere Systems Inc.
25 * All rights reserved.
27 * Redistribution and use in source or binary forms, with or without
28 * modifications, are permitted provided that the following conditions are met:
30 * . Redistributions of source code must retain the above copyright notice, this
31 * list of conditions and the following Disclaimer as comments in the code as
32 * well as in the documentation and/or other materials provided with the
33 * distribution.
35 * . Redistributions in binary form must reproduce the above copyright notice,
36 * this list of conditions and the following Disclaimer in the documentation
37 * and/or other materials provided with the distribution.
39 * . Neither the name of Agere Systems Inc. nor the names of the contributors
40 * may be used to endorse or promote products derived from this software
41 * without specific prior written permission.
43 * Disclaimer
45 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
46 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
48 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
49 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
50 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
51 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
52 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
53 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
55 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
56 * DAMAGE.
60 #include "et131x_version.h"
61 #include "et131x_defs.h"
63 #include <linux/pci.h>
64 #include <linux/init.h>
65 #include <linux/module.h>
66 #include <linux/types.h>
67 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/ptrace.h>
71 #include <linux/slab.h>
72 #include <linux/ctype.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/interrupt.h>
76 #include <linux/in.h>
77 #include <linux/delay.h>
78 #include <linux/io.h>
79 #include <linux/bitops.h>
80 #include <asm/system.h>
82 #include <linux/netdevice.h>
83 #include <linux/etherdevice.h>
84 #include <linux/skbuff.h>
85 #include <linux/if_arp.h>
86 #include <linux/ioport.h>
87 #include <linux/phy.h>
89 #include "et1310_phy.h"
90 #include "et131x_adapter.h"
91 #include "et1310_rx.h"
92 #include "et131x.h"
94 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
96 u32 tmp_free_buff_ring = *free_buff_ring;
97 tmp_free_buff_ring++;
98 /* This works for all cases where limit < 1024. The 1023 case
99 works because 1023++ is 1024 which means the if condition is not
100 taken but the carry of the bit into the wrap bit toggles the wrap
101 value correctly */
102 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
103 tmp_free_buff_ring &= ~ET_DMA10_MASK;
104 tmp_free_buff_ring ^= ET_DMA10_WRAP;
106 /* For the 1023 case */
107 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
108 *free_buff_ring = tmp_free_buff_ring;
109 return tmp_free_buff_ring;
113 * et131x_rx_dma_memory_alloc
114 * @adapter: pointer to our private adapter structure
116 * Returns 0 on success and errno on failure (as defined in errno.h)
118 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
119 * and the Packet Status Ring.
121 int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
123 u32 i, j;
124 u32 bufsize;
125 u32 pktstat_ringsize, fbr_chunksize;
126 struct rx_ring *rx_ring;
128 /* Setup some convenience pointers */
129 rx_ring = &adapter->rx_ring;
131 /* Alloc memory for the lookup table */
132 #ifdef USE_FBR0
133 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
134 #endif
135 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
137 /* The first thing we will do is configure the sizes of the buffer
138 * rings. These will change based on jumbo packet support. Larger
139 * jumbo packets increases the size of each entry in FBR0, and the
140 * number of entries in FBR0, while at the same time decreasing the
141 * number of entries in FBR1.
143 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
144 * entries are huge in order to accommodate a "jumbo" frame, then it
145 * will have less entries. Conversely, FBR1 will now be relied upon
146 * to carry more "normal" frames, thus it's entry size also increases
147 * and the number of entries goes up too (since it now carries
148 * "small" + "regular" packets.
150 * In this scheme, we try to maintain 512 entries between the two
151 * rings. Also, FBR1 remains a constant size - when it's size doubles
152 * the number of entries halves. FBR0 increases in size, however.
155 if (adapter->registry_jumbo_packet < 2048) {
156 #ifdef USE_FBR0
157 rx_ring->fbr0_buffsize = 256;
158 rx_ring->fbr0_num_entries = 512;
159 #endif
160 rx_ring->fbr1_buffsize = 2048;
161 rx_ring->fbr1_num_entries = 512;
162 } else if (adapter->registry_jumbo_packet < 4096) {
163 #ifdef USE_FBR0
164 rx_ring->fbr0_buffsize = 512;
165 rx_ring->fbr0_num_entries = 1024;
166 #endif
167 rx_ring->fbr1_buffsize = 4096;
168 rx_ring->fbr1_num_entries = 512;
169 } else {
170 #ifdef USE_FBR0
171 rx_ring->fbr0_buffsize = 1024;
172 rx_ring->fbr0_num_entries = 768;
173 #endif
174 rx_ring->fbr1_buffsize = 16384;
175 rx_ring->fbr1_num_entries = 128;
178 #ifdef USE_FBR0
179 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr0_num_entries +
180 adapter->rx_ring.fbr1_num_entries;
181 #else
182 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr1_num_entries;
183 #endif
185 /* Allocate an area of memory for Free Buffer Ring 1 */
186 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr1_num_entries) + 0xfff;
187 rx_ring->fbr1_ring_virtaddr = pci_alloc_consistent(adapter->pdev,
188 bufsize,
189 &rx_ring->fbr1_ring_physaddr);
190 if (!rx_ring->fbr1_ring_virtaddr) {
191 dev_err(&adapter->pdev->dev,
192 "Cannot alloc memory for Free Buffer Ring 1\n");
193 return -ENOMEM;
196 /* Save physical address
198 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
199 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
200 * are ever returned, make sure the high part is retrieved here
201 * before storing the adjusted address.
203 rx_ring->fbr1_real_physaddr = rx_ring->fbr1_ring_physaddr;
205 /* Align Free Buffer Ring 1 on a 4K boundary */
206 et131x_align_allocated_memory(adapter,
207 &rx_ring->fbr1_real_physaddr,
208 &rx_ring->fbr1_offset, 0x0FFF);
210 rx_ring->fbr1_ring_virtaddr =
211 (void *)((u8 *) rx_ring->fbr1_ring_virtaddr +
212 rx_ring->fbr1_offset);
214 #ifdef USE_FBR0
215 /* Allocate an area of memory for Free Buffer Ring 0 */
216 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr0_num_entries) + 0xfff;
217 rx_ring->fbr0_ring_virtaddr = pci_alloc_consistent(adapter->pdev,
218 bufsize,
219 &rx_ring->fbr0_ring_physaddr);
220 if (!rx_ring->fbr0_ring_virtaddr) {
221 dev_err(&adapter->pdev->dev,
222 "Cannot alloc memory for Free Buffer Ring 0\n");
223 return -ENOMEM;
226 /* Save physical address
228 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
229 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
230 * are ever returned, make sure the high part is retrieved here before
231 * storing the adjusted address.
233 rx_ring->fbr0_real_physaddr = rx_ring->fbr0_ring_physaddr;
235 /* Align Free Buffer Ring 0 on a 4K boundary */
236 et131x_align_allocated_memory(adapter,
237 &rx_ring->fbr0_real_physaddr,
238 &rx_ring->fbr0_offset, 0x0FFF);
240 rx_ring->fbr0_ring_virtaddr =
241 (void *)((u8 *) rx_ring->fbr0_ring_virtaddr +
242 rx_ring->fbr0_offset);
243 #endif
244 for (i = 0; i < (rx_ring->fbr1_num_entries / FBR_CHUNKS); i++) {
245 u64 fbr1_offset;
246 u64 fbr1_tmp_physaddr;
247 u32 fbr1_align;
249 /* This code allocates an area of memory big enough for N
250 * free buffers + (buffer_size - 1) so that the buffers can
251 * be aligned on 4k boundaries. If each buffer were aligned
252 * to a buffer_size boundary, the effect would be to double
253 * the size of FBR0. By allocating N buffers at once, we
254 * reduce this overhead.
256 if (rx_ring->fbr1_buffsize > 4096)
257 fbr1_align = 4096;
258 else
259 fbr1_align = rx_ring->fbr1_buffsize;
261 fbr_chunksize =
262 (FBR_CHUNKS * rx_ring->fbr1_buffsize) + fbr1_align - 1;
263 rx_ring->fbr1_mem_virtaddrs[i] =
264 pci_alloc_consistent(adapter->pdev, fbr_chunksize,
265 &rx_ring->fbr1_mem_physaddrs[i]);
267 if (!rx_ring->fbr1_mem_virtaddrs[i]) {
268 dev_err(&adapter->pdev->dev,
269 "Could not alloc memory\n");
270 return -ENOMEM;
273 /* See NOTE in "Save Physical Address" comment above */
274 fbr1_tmp_physaddr = rx_ring->fbr1_mem_physaddrs[i];
276 et131x_align_allocated_memory(adapter,
277 &fbr1_tmp_physaddr,
278 &fbr1_offset, (fbr1_align - 1));
280 for (j = 0; j < FBR_CHUNKS; j++) {
281 u32 index = (i * FBR_CHUNKS) + j;
283 /* Save the Virtual address of this index for quick
284 * access later
286 rx_ring->fbr[1]->virt[index] =
287 (u8 *) rx_ring->fbr1_mem_virtaddrs[i] +
288 (j * rx_ring->fbr1_buffsize) + fbr1_offset;
290 /* now store the physical address in the descriptor
291 * so the device can access it
293 rx_ring->fbr[1]->bus_high[index] =
294 (u32) (fbr1_tmp_physaddr >> 32);
295 rx_ring->fbr[1]->bus_low[index] =
296 (u32) fbr1_tmp_physaddr;
298 fbr1_tmp_physaddr += rx_ring->fbr1_buffsize;
300 rx_ring->fbr[1]->buffer1[index] =
301 rx_ring->fbr[1]->virt[index];
302 rx_ring->fbr[1]->buffer2[index] =
303 rx_ring->fbr[1]->virt[index] - 4;
307 #ifdef USE_FBR0
308 /* Same for FBR0 (if in use) */
309 for (i = 0; i < (rx_ring->fbr0_num_entries / FBR_CHUNKS); i++) {
310 u64 fbr0_offset;
311 u64 fbr0_tmp_physaddr;
313 fbr_chunksize =
314 ((FBR_CHUNKS + 1) * rx_ring->fbr0_buffsize) - 1;
315 rx_ring->fbr0_mem_virtaddrs[i] =
316 pci_alloc_consistent(adapter->pdev, fbr_chunksize,
317 &rx_ring->fbr0_mem_physaddrs[i]);
319 if (!rx_ring->fbr0_mem_virtaddrs[i]) {
320 dev_err(&adapter->pdev->dev,
321 "Could not alloc memory\n");
322 return -ENOMEM;
325 /* See NOTE in "Save Physical Address" comment above */
326 fbr0_tmp_physaddr = rx_ring->fbr0_mem_physaddrs[i];
328 et131x_align_allocated_memory(adapter,
329 &fbr0_tmp_physaddr,
330 &fbr0_offset,
331 rx_ring->fbr0_buffsize - 1);
333 for (j = 0; j < FBR_CHUNKS; j++) {
334 u32 index = (i * FBR_CHUNKS) + j;
336 rx_ring->fbr[0]->virt[index] =
337 (u8 *) rx_ring->fbr0_mem_virtaddrs[i] +
338 (j * rx_ring->fbr0_buffsize) + fbr0_offset;
340 rx_ring->fbr[0]->bus_high[index] =
341 (u32) (fbr0_tmp_physaddr >> 32);
342 rx_ring->fbr[0]->bus_low[index] =
343 (u32) fbr0_tmp_physaddr;
345 fbr0_tmp_physaddr += rx_ring->fbr0_buffsize;
347 rx_ring->fbr[0]->buffer1[index] =
348 rx_ring->fbr[0]->virt[index];
349 rx_ring->fbr[0]->buffer2[index] =
350 rx_ring->fbr[0]->virt[index] - 4;
353 #endif
355 /* Allocate an area of memory for FIFO of Packet Status ring entries */
356 pktstat_ringsize =
357 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
359 rx_ring->ps_ring_virtaddr = pci_alloc_consistent(adapter->pdev,
360 pktstat_ringsize,
361 &rx_ring->ps_ring_physaddr);
363 if (!rx_ring->ps_ring_virtaddr) {
364 dev_err(&adapter->pdev->dev,
365 "Cannot alloc memory for Packet Status Ring\n");
366 return -ENOMEM;
368 printk(KERN_INFO "Packet Status Ring %lx\n",
369 (unsigned long) rx_ring->ps_ring_physaddr);
372 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
373 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
374 * are ever returned, make sure the high part is retrieved here before
375 * storing the adjusted address.
378 /* Allocate an area of memory for writeback of status information */
379 rx_ring->rx_status_block = pci_alloc_consistent(adapter->pdev,
380 sizeof(struct rx_status_block),
381 &rx_ring->rx_status_bus);
382 if (!rx_ring->rx_status_block) {
383 dev_err(&adapter->pdev->dev,
384 "Cannot alloc memory for Status Block\n");
385 return -ENOMEM;
387 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
388 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
390 /* Recv
391 * pci_pool_create initializes a lookaside list. After successful
392 * creation, nonpaged fixed-size blocks can be allocated from and
393 * freed to the lookaside list.
394 * RFDs will be allocated from this pool.
396 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
397 sizeof(struct rfd),
399 SLAB_CACHE_DMA |
400 SLAB_HWCACHE_ALIGN,
401 NULL);
403 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
405 /* The RFDs are going to be put on lists later on, so initialize the
406 * lists now.
408 INIT_LIST_HEAD(&rx_ring->recv_list);
409 return 0;
413 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
414 * @adapter: pointer to our private adapter structure
416 void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
418 u32 index;
419 u32 bufsize;
420 u32 pktstat_ringsize;
421 struct rfd *rfd;
422 struct rx_ring *rx_ring;
424 /* Setup some convenience pointers */
425 rx_ring = &adapter->rx_ring;
427 /* Free RFDs and associated packet descriptors */
428 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
430 while (!list_empty(&rx_ring->recv_list)) {
431 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
432 struct rfd, list_node);
434 list_del(&rfd->list_node);
435 rfd->skb = NULL;
436 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
439 /* Free Free Buffer Ring 1 */
440 if (rx_ring->fbr1_ring_virtaddr) {
441 /* First the packet memory */
442 for (index = 0; index <
443 (rx_ring->fbr1_num_entries / FBR_CHUNKS); index++) {
444 if (rx_ring->fbr1_mem_virtaddrs[index]) {
445 u32 fbr1_align;
447 if (rx_ring->fbr1_buffsize > 4096)
448 fbr1_align = 4096;
449 else
450 fbr1_align = rx_ring->fbr1_buffsize;
452 bufsize =
453 (rx_ring->fbr1_buffsize * FBR_CHUNKS) +
454 fbr1_align - 1;
456 pci_free_consistent(adapter->pdev,
457 bufsize,
458 rx_ring->fbr1_mem_virtaddrs[index],
459 rx_ring->fbr1_mem_physaddrs[index]);
461 rx_ring->fbr1_mem_virtaddrs[index] = NULL;
465 /* Now the FIFO itself */
466 rx_ring->fbr1_ring_virtaddr = (void *)((u8 *)
467 rx_ring->fbr1_ring_virtaddr - rx_ring->fbr1_offset);
469 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr1_num_entries)
470 + 0xfff;
472 pci_free_consistent(adapter->pdev, bufsize,
473 rx_ring->fbr1_ring_virtaddr,
474 rx_ring->fbr1_ring_physaddr);
476 rx_ring->fbr1_ring_virtaddr = NULL;
479 #ifdef USE_FBR0
480 /* Now the same for Free Buffer Ring 0 */
481 if (rx_ring->fbr0_ring_virtaddr) {
482 /* First the packet memory */
483 for (index = 0; index <
484 (rx_ring->fbr0_num_entries / FBR_CHUNKS); index++) {
485 if (rx_ring->fbr0_mem_virtaddrs[index]) {
486 bufsize =
487 (rx_ring->fbr0_buffsize *
488 (FBR_CHUNKS + 1)) - 1;
490 pci_free_consistent(adapter->pdev,
491 bufsize,
492 rx_ring->fbr0_mem_virtaddrs[index],
493 rx_ring->fbr0_mem_physaddrs[index]);
495 rx_ring->fbr0_mem_virtaddrs[index] = NULL;
499 /* Now the FIFO itself */
500 rx_ring->fbr0_ring_virtaddr = (void *)((u8 *)
501 rx_ring->fbr0_ring_virtaddr - rx_ring->fbr0_offset);
503 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr0_num_entries)
504 + 0xfff;
506 pci_free_consistent(adapter->pdev,
507 bufsize,
508 rx_ring->fbr0_ring_virtaddr,
509 rx_ring->fbr0_ring_physaddr);
511 rx_ring->fbr0_ring_virtaddr = NULL;
513 #endif
515 /* Free Packet Status Ring */
516 if (rx_ring->ps_ring_virtaddr) {
517 pktstat_ringsize =
518 sizeof(struct pkt_stat_desc) *
519 adapter->rx_ring.psr_num_entries;
521 pci_free_consistent(adapter->pdev, pktstat_ringsize,
522 rx_ring->ps_ring_virtaddr,
523 rx_ring->ps_ring_physaddr);
525 rx_ring->ps_ring_virtaddr = NULL;
528 /* Free area of memory for the writeback of status information */
529 if (rx_ring->rx_status_block) {
530 pci_free_consistent(adapter->pdev,
531 sizeof(struct rx_status_block),
532 rx_ring->rx_status_block, rx_ring->rx_status_bus);
533 rx_ring->rx_status_block = NULL;
536 /* Free receive buffer pool */
538 /* Free receive packet pool */
540 /* Destroy the lookaside (RFD) pool */
541 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
542 kmem_cache_destroy(rx_ring->recv_lookaside);
543 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
546 /* Free the FBR Lookup Table */
547 #ifdef USE_FBR0
548 kfree(rx_ring->fbr[0]);
549 #endif
551 kfree(rx_ring->fbr[1]);
553 /* Reset Counters */
554 rx_ring->num_ready_recv = 0;
558 * et131x_init_recv - Initialize receive data structures.
559 * @adapter: pointer to our private adapter structure
561 * Returns 0 on success and errno on failure (as defined in errno.h)
563 int et131x_init_recv(struct et131x_adapter *adapter)
565 int status = -ENOMEM;
566 struct rfd *rfd = NULL;
567 u32 rfdct;
568 u32 numrfd = 0;
569 struct rx_ring *rx_ring;
571 /* Setup some convenience pointers */
572 rx_ring = &adapter->rx_ring;
574 /* Setup each RFD */
575 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
576 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
577 GFP_ATOMIC | GFP_DMA);
579 if (!rfd) {
580 dev_err(&adapter->pdev->dev,
581 "Couldn't alloc RFD out of kmem_cache\n");
582 status = -ENOMEM;
583 continue;
586 rfd->skb = NULL;
588 /* Add this RFD to the recv_list */
589 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
591 /* Increment both the available RFD's, and the total RFD's. */
592 rx_ring->num_ready_recv++;
593 numrfd++;
596 if (numrfd > NIC_MIN_NUM_RFD)
597 status = 0;
599 rx_ring->num_rfd = numrfd;
601 if (status != 0) {
602 kmem_cache_free(rx_ring->recv_lookaside, rfd);
603 dev_err(&adapter->pdev->dev,
604 "Allocation problems in et131x_init_recv\n");
606 return status;
610 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
611 * @adapter: pointer to our adapter structure
613 void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
615 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
616 struct rx_ring *rx_local = &adapter->rx_ring;
617 struct fbr_desc *fbr_entry;
618 u32 entry;
619 u32 psr_num_des;
620 unsigned long flags;
622 /* Halt RXDMA to perform the reconfigure. */
623 et131x_rx_dma_disable(adapter);
625 /* Load the completion writeback physical address
627 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
628 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
629 * are ever returned, make sure the high part is retrieved here
630 * before storing the adjusted address.
632 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
633 &rx_dma->dma_wb_base_hi);
634 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
636 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
638 /* Set the address and parameters of the packet status ring into the
639 * 1310's registers
641 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
642 &rx_dma->psr_base_hi);
643 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
644 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
645 writel(0, &rx_dma->psr_full_offset);
647 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
648 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
649 &rx_dma->psr_min_des);
651 spin_lock_irqsave(&adapter->rcv_lock, flags);
653 /* These local variables track the PSR in the adapter structure */
654 rx_local->local_psr_full = 0;
656 /* Now's the best time to initialize FBR1 contents */
657 fbr_entry = (struct fbr_desc *) rx_local->fbr1_ring_virtaddr;
658 for (entry = 0; entry < rx_local->fbr1_num_entries; entry++) {
659 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
660 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
661 fbr_entry->word2 = entry;
662 fbr_entry++;
665 /* Set the address and parameters of Free buffer ring 1 (and 0 if
666 * required) into the 1310's registers
668 writel((u32) (rx_local->fbr1_real_physaddr >> 32),
669 &rx_dma->fbr1_base_hi);
670 writel((u32) rx_local->fbr1_real_physaddr, &rx_dma->fbr1_base_lo);
671 writel(rx_local->fbr1_num_entries - 1, &rx_dma->fbr1_num_des);
672 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
674 /* This variable tracks the free buffer ring 1 full position, so it
675 * has to match the above.
677 rx_local->local_fbr1_full = ET_DMA10_WRAP;
678 writel(
679 ((rx_local->fbr1_num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
680 &rx_dma->fbr1_min_des);
682 #ifdef USE_FBR0
683 /* Now's the best time to initialize FBR0 contents */
684 fbr_entry = (struct fbr_desc *) rx_local->fbr0_ring_virtaddr;
685 for (entry = 0; entry < rx_local->fbr0_num_entries; entry++) {
686 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
687 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
688 fbr_entry->word2 = entry;
689 fbr_entry++;
692 writel((u32) (rx_local->fbr0_real_physaddr >> 32),
693 &rx_dma->fbr0_base_hi);
694 writel((u32) rx_local->fbr0_real_physaddr, &rx_dma->fbr0_base_lo);
695 writel(rx_local->fbr0_num_entries - 1, &rx_dma->fbr0_num_des);
696 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
698 /* This variable tracks the free buffer ring 0 full position, so it
699 * has to match the above.
701 rx_local->local_fbr0_full = ET_DMA10_WRAP;
702 writel(
703 ((rx_local->fbr0_num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
704 &rx_dma->fbr0_min_des);
705 #endif
707 /* Program the number of packets we will receive before generating an
708 * interrupt.
709 * For version B silicon, this value gets updated once autoneg is
710 *complete.
712 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
714 /* The "time_done" is not working correctly to coalesce interrupts
715 * after a given time period, but rather is giving us an interrupt
716 * regardless of whether we have received packets.
717 * This value gets updated once autoneg is complete.
719 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
721 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
725 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
726 * @adapter: pointer to our adapter structure
728 void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
730 struct phy_device *phydev = adapter->phydev;
732 if (!phydev)
733 return;
735 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
736 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
738 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
739 writel(0, &adapter->regs->rxdma.max_pkt_time);
740 writel(1, &adapter->regs->rxdma.num_pkt_done);
745 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
746 * @adapter: pointer to our adapter
747 * @rfd: pointer to the RFD
749 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
751 struct rx_ring *rx_local = &adapter->rx_ring;
752 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
753 u16 buff_index = rfd->bufferindex;
754 u8 ring_index = rfd->ringindex;
755 unsigned long flags;
757 /* We don't use any of the OOB data besides status. Otherwise, we
758 * need to clean up OOB data
760 if (
761 #ifdef USE_FBR0
762 (ring_index == 0 && buff_index < rx_local->fbr0_num_entries) ||
763 #endif
764 (ring_index == 1 && buff_index < rx_local->fbr1_num_entries)) {
765 spin_lock_irqsave(&adapter->fbr_lock, flags);
767 if (ring_index == 1) {
768 struct fbr_desc *next =
769 (struct fbr_desc *) (rx_local->fbr1_ring_virtaddr) +
770 INDEX10(rx_local->local_fbr1_full);
772 /* Handle the Free Buffer Ring advancement here. Write
773 * the PA / Buffer Index for the returned buffer into
774 * the oldest (next to be freed)FBR entry
776 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
777 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
778 next->word2 = buff_index;
780 writel(bump_free_buff_ring(&rx_local->local_fbr1_full,
781 rx_local->fbr1_num_entries - 1),
782 &rx_dma->fbr1_full_offset);
784 #ifdef USE_FBR0
785 else {
786 struct fbr_desc *next = (struct fbr_desc *)
787 rx_local->fbr0_ring_virtaddr +
788 INDEX10(rx_local->local_fbr0_full);
790 /* Handle the Free Buffer Ring advancement here. Write
791 * the PA / Buffer Index for the returned buffer into
792 * the oldest (next to be freed) FBR entry
794 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
795 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
796 next->word2 = buff_index;
798 writel(bump_free_buff_ring(&rx_local->local_fbr0_full,
799 rx_local->fbr0_num_entries - 1),
800 &rx_dma->fbr0_full_offset);
802 #endif
803 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
804 } else {
805 dev_err(&adapter->pdev->dev,
806 "%s illegal Buffer Index returned\n", __func__);
809 /* The processing on this RFD is done, so put it back on the tail of
810 * our list
812 spin_lock_irqsave(&adapter->rcv_lock, flags);
813 list_add_tail(&rfd->list_node, &rx_local->recv_list);
814 rx_local->num_ready_recv++;
815 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
817 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
821 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
822 * @adapter: pointer to our adapter structure
824 void et131x_rx_dma_disable(struct et131x_adapter *adapter)
826 u32 csr;
827 /* Setup the receive dma configuration register */
828 writel(0x00002001, &adapter->regs->rxdma.csr);
829 csr = readl(&adapter->regs->rxdma.csr);
830 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
831 udelay(5);
832 csr = readl(&adapter->regs->rxdma.csr);
833 if ((csr & 0x00020000) == 0)
834 dev_err(&adapter->pdev->dev,
835 "RX Dma failed to enter halt state. CSR 0x%08x\n",
836 csr);
841 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
842 * @adapter: pointer to our adapter structure
844 void et131x_rx_dma_enable(struct et131x_adapter *adapter)
846 /* Setup the receive dma configuration register for normal operation */
847 u32 csr = 0x2000; /* FBR1 enable */
849 if (adapter->rx_ring.fbr1_buffsize == 4096)
850 csr |= 0x0800;
851 else if (adapter->rx_ring.fbr1_buffsize == 8192)
852 csr |= 0x1000;
853 else if (adapter->rx_ring.fbr1_buffsize == 16384)
854 csr |= 0x1800;
855 #ifdef USE_FBR0
856 csr |= 0x0400; /* FBR0 enable */
857 if (adapter->rx_ring.fbr0_buffsize == 256)
858 csr |= 0x0100;
859 else if (adapter->rx_ring.fbr0_buffsize == 512)
860 csr |= 0x0200;
861 else if (adapter->rx_ring.fbr0_buffsize == 1024)
862 csr |= 0x0300;
863 #endif
864 writel(csr, &adapter->regs->rxdma.csr);
866 csr = readl(&adapter->regs->rxdma.csr);
867 if ((csr & 0x00020000) != 0) {
868 udelay(5);
869 csr = readl(&adapter->regs->rxdma.csr);
870 if ((csr & 0x00020000) != 0) {
871 dev_err(&adapter->pdev->dev,
872 "RX Dma failed to exit halt state. CSR 0x%08x\n",
873 csr);
879 * nic_rx_pkts - Checks the hardware for available packets
880 * @adapter: pointer to our adapter
882 * Returns rfd, a pointer to our MPRFD.
884 * Checks the hardware for available packets, using completion ring
885 * If packets are available, it gets an RFD from the recv_list, attaches
886 * the packet to it, puts the RFD in the RecvPendList, and also returns
887 * the pointer to the RFD.
889 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
891 struct rx_ring *rx_local = &adapter->rx_ring;
892 struct rx_status_block *status;
893 struct pkt_stat_desc *psr;
894 struct rfd *rfd;
895 u32 i;
896 u8 *buf;
897 unsigned long flags;
898 struct list_head *element;
899 u8 ring_index;
900 u16 buff_index;
901 u32 len;
902 u32 word0;
903 u32 word1;
905 /* RX Status block is written by the DMA engine prior to every
906 * interrupt. It contains the next to be used entry in the Packet
907 * Status Ring, and also the two Free Buffer rings.
909 status = rx_local->rx_status_block;
910 word1 = status->word1 >> 16; /* Get the useful bits */
912 /* Check the PSR and wrap bits do not match */
913 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
914 /* Looks like this ring is not updated yet */
915 return NULL;
917 /* The packet status ring indicates that data is available. */
918 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
919 (rx_local->local_psr_full & 0xFFF);
921 /* Grab any information that is required once the PSR is
922 * advanced, since we can no longer rely on the memory being
923 * accurate
925 len = psr->word1 & 0xFFFF;
926 ring_index = (psr->word1 >> 26) & 0x03;
927 buff_index = (psr->word1 >> 16) & 0x3FF;
928 word0 = psr->word0;
930 /* Indicate that we have used this PSR entry. */
931 /* FIXME wrap 12 */
932 add_12bit(&rx_local->local_psr_full, 1);
933 if (
934 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
935 /* Clear psr full and toggle the wrap bit */
936 rx_local->local_psr_full &= ~0xFFF;
937 rx_local->local_psr_full ^= 0x1000;
940 writel(rx_local->local_psr_full,
941 &adapter->regs->rxdma.psr_full_offset);
943 #ifndef USE_FBR0
944 if (ring_index != 1)
945 return NULL;
946 #endif
948 #ifdef USE_FBR0
949 if (ring_index > 1 ||
950 (ring_index == 0 &&
951 buff_index > rx_local->fbr0_num_entries - 1) ||
952 (ring_index == 1 &&
953 buff_index > rx_local->fbr1_num_entries - 1))
954 #else
955 if (ring_index != 1 || buff_index > rx_local->fbr1_num_entries - 1)
956 #endif
958 /* Illegal buffer or ring index cannot be used by S/W*/
959 dev_err(&adapter->pdev->dev,
960 "NICRxPkts PSR Entry %d indicates "
961 "length of %d and/or bad bi(%d)\n",
962 rx_local->local_psr_full & 0xFFF,
963 len, buff_index);
964 return NULL;
967 /* Get and fill the RFD. */
968 spin_lock_irqsave(&adapter->rcv_lock, flags);
970 rfd = NULL;
971 element = rx_local->recv_list.next;
972 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
974 if (rfd == NULL) {
975 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
976 return NULL;
979 list_del(&rfd->list_node);
980 rx_local->num_ready_recv--;
982 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
984 rfd->bufferindex = buff_index;
985 rfd->ringindex = ring_index;
987 /* In V1 silicon, there is a bug which screws up filtering of
988 * runt packets. Therefore runt packet filtering is disabled
989 * in the MAC and the packets are dropped here. They are
990 * also counted here.
992 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
993 adapter->stats.rx_other_errs++;
994 len = 0;
997 if (len) {
998 /* Determine if this is a multicast packet coming in */
999 if ((word0 & ALCATEL_MULTICAST_PKT) &&
1000 !(word0 & ALCATEL_BROADCAST_PKT)) {
1001 /* Promiscuous mode and Multicast mode are
1002 * not mutually exclusive as was first
1003 * thought. I guess Promiscuous is just
1004 * considered a super-set of the other
1005 * filters. Generally filter is 0x2b when in
1006 * promiscuous mode.
1008 if ((adapter->packet_filter &
1009 ET131X_PACKET_TYPE_MULTICAST)
1010 && !(adapter->packet_filter &
1011 ET131X_PACKET_TYPE_PROMISCUOUS)
1012 && !(adapter->packet_filter &
1013 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1014 buf = rx_local->fbr[ring_index]->
1015 virt[buff_index];
1017 /* Loop through our list to see if the
1018 * destination address of this packet
1019 * matches one in our list.
1021 for (i = 0; i < adapter->multicast_addr_count;
1022 i++) {
1023 if (buf[0] ==
1024 adapter->multicast_list[i][0]
1025 && buf[1] ==
1026 adapter->multicast_list[i][1]
1027 && buf[2] ==
1028 adapter->multicast_list[i][2]
1029 && buf[3] ==
1030 adapter->multicast_list[i][3]
1031 && buf[4] ==
1032 adapter->multicast_list[i][4]
1033 && buf[5] ==
1034 adapter->multicast_list[i][5]) {
1035 break;
1039 /* If our index is equal to the number
1040 * of Multicast address we have, then
1041 * this means we did not find this
1042 * packet's matching address in our
1043 * list. Set the len to zero,
1044 * so we free our RFD when we return
1045 * from this function.
1047 if (i == adapter->multicast_addr_count)
1048 len = 0;
1051 if (len > 0)
1052 adapter->stats.multicast_pkts_rcvd++;
1053 } else if (word0 & ALCATEL_BROADCAST_PKT)
1054 adapter->stats.broadcast_pkts_rcvd++;
1055 else
1056 /* Not sure what this counter measures in
1057 * promiscuous mode. Perhaps we should check
1058 * the MAC address to see if it is directed
1059 * to us in promiscuous mode.
1061 adapter->stats.unicast_pkts_rcvd++;
1064 if (len > 0) {
1065 struct sk_buff *skb = NULL;
1067 /*rfd->len = len - 4; */
1068 rfd->len = len;
1070 skb = dev_alloc_skb(rfd->len + 2);
1071 if (!skb) {
1072 dev_err(&adapter->pdev->dev,
1073 "Couldn't alloc an SKB for Rx\n");
1074 return NULL;
1077 adapter->net_stats.rx_bytes += rfd->len;
1079 memcpy(skb_put(skb, rfd->len),
1080 rx_local->fbr[ring_index]->virt[buff_index],
1081 rfd->len);
1083 skb->dev = adapter->netdev;
1084 skb->protocol = eth_type_trans(skb, adapter->netdev);
1085 skb->ip_summed = CHECKSUM_NONE;
1087 netif_rx(skb);
1088 } else {
1089 rfd->len = 0;
1092 nic_return_rfd(adapter, rfd);
1093 return rfd;
1097 * et131x_reset_recv - Reset the receive list
1098 * @adapter: pointer to our adapter
1100 * Assumption, Rcv spinlock has been acquired.
1102 void et131x_reset_recv(struct et131x_adapter *adapter)
1104 WARN_ON(list_empty(&adapter->rx_ring.recv_list));
1108 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
1109 * @adapter: pointer to our adapter
1111 * Assumption, Rcv spinlock has been acquired.
1113 void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
1115 struct rfd *rfd = NULL;
1116 u32 count = 0;
1117 bool done = true;
1119 /* Process up to available RFD's */
1120 while (count < NUM_PACKETS_HANDLED) {
1121 if (list_empty(&adapter->rx_ring.recv_list)) {
1122 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
1123 done = false;
1124 break;
1127 rfd = nic_rx_pkts(adapter);
1129 if (rfd == NULL)
1130 break;
1132 /* Do not receive any packets until a filter has been set.
1133 * Do not receive any packets until we have link.
1134 * If length is zero, return the RFD in order to advance the
1135 * Free buffer ring.
1137 if (!adapter->packet_filter ||
1138 !netif_carrier_ok(adapter->netdev) ||
1139 rfd->len == 0)
1140 continue;
1142 /* Increment the number of packets we received */
1143 adapter->net_stats.rx_packets++;
1145 /* Set the status on the packet, either resources or success */
1146 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
1147 dev_warn(&adapter->pdev->dev,
1148 "RFD's are running out\n");
1150 count++;
1153 if (count == NUM_PACKETS_HANDLED || !done) {
1154 adapter->rx_ring.unfinished_receives = true;
1155 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
1156 &adapter->regs->global.watchdog_timer);
1157 } else
1158 /* Watchdog timer will disable itself if appropriate. */
1159 adapter->rx_ring.unfinished_receives = false;