2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
44 #include "transaction.h"
45 #include "btrfs_inode.h"
47 #include "print-tree.h"
49 #include "ordered-data.h"
52 #include "compression.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
57 struct btrfs_iget_args
{
59 struct btrfs_root
*root
;
62 static const struct inode_operations btrfs_dir_inode_operations
;
63 static const struct inode_operations btrfs_symlink_inode_operations
;
64 static const struct inode_operations btrfs_dir_ro_inode_operations
;
65 static const struct inode_operations btrfs_special_inode_operations
;
66 static const struct inode_operations btrfs_file_inode_operations
;
67 static const struct address_space_operations btrfs_aops
;
68 static const struct address_space_operations btrfs_symlink_aops
;
69 static const struct file_operations btrfs_dir_file_operations
;
70 static struct extent_io_ops btrfs_extent_io_ops
;
72 static struct kmem_cache
*btrfs_inode_cachep
;
73 struct kmem_cache
*btrfs_trans_handle_cachep
;
74 struct kmem_cache
*btrfs_transaction_cachep
;
75 struct kmem_cache
*btrfs_path_cachep
;
76 struct kmem_cache
*btrfs_free_space_cachep
;
79 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
80 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
81 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
82 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
83 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
84 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
85 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
86 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
89 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
90 static int btrfs_truncate(struct inode
*inode
);
91 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
92 static noinline
int cow_file_range(struct inode
*inode
,
93 struct page
*locked_page
,
94 u64 start
, u64 end
, int *page_started
,
95 unsigned long *nr_written
, int unlock
);
97 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
98 struct inode
*inode
, struct inode
*dir
,
99 const struct qstr
*qstr
)
103 err
= btrfs_init_acl(trans
, inode
, dir
);
105 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
114 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
115 struct btrfs_root
*root
, struct inode
*inode
,
116 u64 start
, size_t size
, size_t compressed_size
,
118 struct page
**compressed_pages
)
120 struct btrfs_key key
;
121 struct btrfs_path
*path
;
122 struct extent_buffer
*leaf
;
123 struct page
*page
= NULL
;
126 struct btrfs_file_extent_item
*ei
;
129 size_t cur_size
= size
;
131 unsigned long offset
;
133 if (compressed_size
&& compressed_pages
)
134 cur_size
= compressed_size
;
136 path
= btrfs_alloc_path();
140 path
->leave_spinning
= 1;
142 key
.objectid
= btrfs_ino(inode
);
144 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
145 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
147 inode_add_bytes(inode
, size
);
148 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
155 leaf
= path
->nodes
[0];
156 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_file_extent_item
);
158 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
159 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
160 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
161 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
162 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
163 ptr
= btrfs_file_extent_inline_start(ei
);
165 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
168 while (compressed_size
> 0) {
169 cpage
= compressed_pages
[i
];
170 cur_size
= min_t(unsigned long, compressed_size
,
173 kaddr
= kmap_atomic(cpage
, KM_USER0
);
174 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
175 kunmap_atomic(kaddr
, KM_USER0
);
179 compressed_size
-= cur_size
;
181 btrfs_set_file_extent_compression(leaf
, ei
,
184 page
= find_get_page(inode
->i_mapping
,
185 start
>> PAGE_CACHE_SHIFT
);
186 btrfs_set_file_extent_compression(leaf
, ei
, 0);
187 kaddr
= kmap_atomic(page
, KM_USER0
);
188 offset
= start
& (PAGE_CACHE_SIZE
- 1);
189 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
190 kunmap_atomic(kaddr
, KM_USER0
);
191 page_cache_release(page
);
193 btrfs_mark_buffer_dirty(leaf
);
194 btrfs_free_path(path
);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
206 btrfs_update_inode(trans
, root
, inode
);
210 btrfs_free_path(path
);
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
221 struct btrfs_root
*root
,
222 struct inode
*inode
, u64 start
, u64 end
,
223 size_t compressed_size
, int compress_type
,
224 struct page
**compressed_pages
)
226 u64 isize
= i_size_read(inode
);
227 u64 actual_end
= min(end
+ 1, isize
);
228 u64 inline_len
= actual_end
- start
;
229 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
230 ~((u64
)root
->sectorsize
- 1);
232 u64 data_len
= inline_len
;
236 data_len
= compressed_size
;
239 actual_end
>= PAGE_CACHE_SIZE
||
240 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
242 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
244 data_len
> root
->fs_info
->max_inline
) {
248 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
252 if (isize
> actual_end
)
253 inline_len
= min_t(u64
, isize
, actual_end
);
254 ret
= insert_inline_extent(trans
, root
, inode
, start
,
255 inline_len
, compressed_size
,
256 compress_type
, compressed_pages
);
258 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
259 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
263 struct async_extent
{
268 unsigned long nr_pages
;
270 struct list_head list
;
275 struct btrfs_root
*root
;
276 struct page
*locked_page
;
279 struct list_head extents
;
280 struct btrfs_work work
;
283 static noinline
int add_async_extent(struct async_cow
*cow
,
284 u64 start
, u64 ram_size
,
287 unsigned long nr_pages
,
290 struct async_extent
*async_extent
;
292 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
293 BUG_ON(!async_extent
);
294 async_extent
->start
= start
;
295 async_extent
->ram_size
= ram_size
;
296 async_extent
->compressed_size
= compressed_size
;
297 async_extent
->pages
= pages
;
298 async_extent
->nr_pages
= nr_pages
;
299 async_extent
->compress_type
= compress_type
;
300 list_add_tail(&async_extent
->list
, &cow
->extents
);
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline
int compress_file_range(struct inode
*inode
,
321 struct page
*locked_page
,
323 struct async_cow
*async_cow
,
326 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
327 struct btrfs_trans_handle
*trans
;
329 u64 blocksize
= root
->sectorsize
;
331 u64 isize
= i_size_read(inode
);
333 struct page
**pages
= NULL
;
334 unsigned long nr_pages
;
335 unsigned long nr_pages_ret
= 0;
336 unsigned long total_compressed
= 0;
337 unsigned long total_in
= 0;
338 unsigned long max_compressed
= 128 * 1024;
339 unsigned long max_uncompressed
= 128 * 1024;
342 int compress_type
= root
->fs_info
->compress_type
;
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end
<= BTRFS_I(inode
)->disk_i_size
&& (end
- start
+ 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL
, inode
);
348 actual_end
= min_t(u64
, isize
, end
+ 1);
351 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
352 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
364 if (actual_end
<= start
)
365 goto cleanup_and_bail_uncompressed
;
367 total_compressed
= actual_end
- start
;
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
379 total_compressed
= min(total_compressed
, max_uncompressed
);
380 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
381 num_bytes
= max(blocksize
, num_bytes
);
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
390 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
391 (btrfs_test_opt(root
, COMPRESS
) ||
392 (BTRFS_I(inode
)->force_compress
) ||
393 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
395 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
398 if (BTRFS_I(inode
)->force_compress
)
399 compress_type
= BTRFS_I(inode
)->force_compress
;
401 ret
= btrfs_compress_pages(compress_type
,
402 inode
->i_mapping
, start
,
403 total_compressed
, pages
,
404 nr_pages
, &nr_pages_ret
,
410 unsigned long offset
= total_compressed
&
411 (PAGE_CACHE_SIZE
- 1);
412 struct page
*page
= pages
[nr_pages_ret
- 1];
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
419 kaddr
= kmap_atomic(page
, KM_USER0
);
420 memset(kaddr
+ offset
, 0,
421 PAGE_CACHE_SIZE
- offset
);
422 kunmap_atomic(kaddr
, KM_USER0
);
428 trans
= btrfs_join_transaction(root
);
429 BUG_ON(IS_ERR(trans
));
430 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
432 /* lets try to make an inline extent */
433 if (ret
|| total_in
< (actual_end
- start
)) {
434 /* we didn't compress the entire range, try
435 * to make an uncompressed inline extent.
437 ret
= cow_file_range_inline(trans
, root
, inode
,
438 start
, end
, 0, 0, NULL
);
440 /* try making a compressed inline extent */
441 ret
= cow_file_range_inline(trans
, root
, inode
,
444 compress_type
, pages
);
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
452 extent_clear_unlock_delalloc(inode
,
453 &BTRFS_I(inode
)->io_tree
,
455 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
456 EXTENT_CLEAR_DELALLOC
|
457 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
459 btrfs_end_transaction(trans
, root
);
462 btrfs_end_transaction(trans
, root
);
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
471 total_compressed
= (total_compressed
+ blocksize
- 1) &
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
478 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
479 ~(PAGE_CACHE_SIZE
- 1);
480 if (total_compressed
>= total_in
) {
483 num_bytes
= total_in
;
486 if (!will_compress
&& pages
) {
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
491 for (i
= 0; i
< nr_pages_ret
; i
++) {
492 WARN_ON(pages
[i
]->mapping
);
493 page_cache_release(pages
[i
]);
497 total_compressed
= 0;
500 /* flag the file so we don't compress in the future */
501 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
502 !(BTRFS_I(inode
)->force_compress
)) {
503 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
513 add_async_extent(async_cow
, start
, num_bytes
,
514 total_compressed
, pages
, nr_pages_ret
,
517 if (start
+ num_bytes
< end
) {
524 cleanup_and_bail_uncompressed
:
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
532 if (page_offset(locked_page
) >= start
&&
533 page_offset(locked_page
) <= end
) {
534 __set_page_dirty_nobuffers(locked_page
);
535 /* unlocked later on in the async handlers */
537 add_async_extent(async_cow
, start
, end
- start
+ 1,
538 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
546 for (i
= 0; i
< nr_pages_ret
; i
++) {
547 WARN_ON(pages
[i
]->mapping
);
548 page_cache_release(pages
[i
]);
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
561 static noinline
int submit_compressed_extents(struct inode
*inode
,
562 struct async_cow
*async_cow
)
564 struct async_extent
*async_extent
;
566 struct btrfs_trans_handle
*trans
;
567 struct btrfs_key ins
;
568 struct extent_map
*em
;
569 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
570 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
571 struct extent_io_tree
*io_tree
;
574 if (list_empty(&async_cow
->extents
))
578 while (!list_empty(&async_cow
->extents
)) {
579 async_extent
= list_entry(async_cow
->extents
.next
,
580 struct async_extent
, list
);
581 list_del(&async_extent
->list
);
583 io_tree
= &BTRFS_I(inode
)->io_tree
;
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent
->pages
) {
588 int page_started
= 0;
589 unsigned long nr_written
= 0;
591 lock_extent(io_tree
, async_extent
->start
,
592 async_extent
->start
+
593 async_extent
->ram_size
- 1, GFP_NOFS
);
595 /* allocate blocks */
596 ret
= cow_file_range(inode
, async_cow
->locked_page
,
598 async_extent
->start
+
599 async_extent
->ram_size
- 1,
600 &page_started
, &nr_written
, 0);
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
608 if (!page_started
&& !ret
)
609 extent_write_locked_range(io_tree
,
610 inode
, async_extent
->start
,
611 async_extent
->start
+
612 async_extent
->ram_size
- 1,
620 lock_extent(io_tree
, async_extent
->start
,
621 async_extent
->start
+ async_extent
->ram_size
- 1,
624 trans
= btrfs_join_transaction(root
);
625 BUG_ON(IS_ERR(trans
));
626 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
627 ret
= btrfs_reserve_extent(trans
, root
,
628 async_extent
->compressed_size
,
629 async_extent
->compressed_size
,
632 btrfs_end_transaction(trans
, root
);
636 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
637 WARN_ON(async_extent
->pages
[i
]->mapping
);
638 page_cache_release(async_extent
->pages
[i
]);
640 kfree(async_extent
->pages
);
641 async_extent
->nr_pages
= 0;
642 async_extent
->pages
= NULL
;
643 unlock_extent(io_tree
, async_extent
->start
,
644 async_extent
->start
+
645 async_extent
->ram_size
- 1, GFP_NOFS
);
650 * here we're doing allocation and writeback of the
653 btrfs_drop_extent_cache(inode
, async_extent
->start
,
654 async_extent
->start
+
655 async_extent
->ram_size
- 1, 0);
657 em
= alloc_extent_map();
659 em
->start
= async_extent
->start
;
660 em
->len
= async_extent
->ram_size
;
661 em
->orig_start
= em
->start
;
663 em
->block_start
= ins
.objectid
;
664 em
->block_len
= ins
.offset
;
665 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
666 em
->compress_type
= async_extent
->compress_type
;
667 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
668 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
671 write_lock(&em_tree
->lock
);
672 ret
= add_extent_mapping(em_tree
, em
);
673 write_unlock(&em_tree
->lock
);
674 if (ret
!= -EEXIST
) {
678 btrfs_drop_extent_cache(inode
, async_extent
->start
,
679 async_extent
->start
+
680 async_extent
->ram_size
- 1, 0);
683 ret
= btrfs_add_ordered_extent_compress(inode
,
686 async_extent
->ram_size
,
688 BTRFS_ORDERED_COMPRESSED
,
689 async_extent
->compress_type
);
693 * clear dirty, set writeback and unlock the pages.
695 extent_clear_unlock_delalloc(inode
,
696 &BTRFS_I(inode
)->io_tree
,
698 async_extent
->start
+
699 async_extent
->ram_size
- 1,
700 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
701 EXTENT_CLEAR_UNLOCK
|
702 EXTENT_CLEAR_DELALLOC
|
703 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
705 ret
= btrfs_submit_compressed_write(inode
,
707 async_extent
->ram_size
,
709 ins
.offset
, async_extent
->pages
,
710 async_extent
->nr_pages
);
713 alloc_hint
= ins
.objectid
+ ins
.offset
;
721 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
724 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
725 struct extent_map
*em
;
728 read_lock(&em_tree
->lock
);
729 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
736 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
738 em
= search_extent_mapping(em_tree
, 0, 0);
739 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
740 alloc_hint
= em
->block_start
;
744 alloc_hint
= em
->block_start
;
748 read_unlock(&em_tree
->lock
);
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
766 static noinline
int cow_file_range(struct inode
*inode
,
767 struct page
*locked_page
,
768 u64 start
, u64 end
, int *page_started
,
769 unsigned long *nr_written
,
772 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
773 struct btrfs_trans_handle
*trans
;
776 unsigned long ram_size
;
779 u64 blocksize
= root
->sectorsize
;
780 struct btrfs_key ins
;
781 struct extent_map
*em
;
782 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
785 BUG_ON(btrfs_is_free_space_inode(root
, inode
));
786 trans
= btrfs_join_transaction(root
);
787 BUG_ON(IS_ERR(trans
));
788 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
790 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
791 num_bytes
= max(blocksize
, num_bytes
);
792 disk_num_bytes
= num_bytes
;
795 /* if this is a small write inside eof, kick off defrag */
796 if (end
<= BTRFS_I(inode
)->disk_i_size
&& num_bytes
< 64 * 1024)
797 btrfs_add_inode_defrag(trans
, inode
);
800 /* lets try to make an inline extent */
801 ret
= cow_file_range_inline(trans
, root
, inode
,
802 start
, end
, 0, 0, NULL
);
804 extent_clear_unlock_delalloc(inode
,
805 &BTRFS_I(inode
)->io_tree
,
807 EXTENT_CLEAR_UNLOCK_PAGE
|
808 EXTENT_CLEAR_UNLOCK
|
809 EXTENT_CLEAR_DELALLOC
|
811 EXTENT_SET_WRITEBACK
|
812 EXTENT_END_WRITEBACK
);
814 *nr_written
= *nr_written
+
815 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
822 BUG_ON(disk_num_bytes
>
823 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
825 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
826 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
828 while (disk_num_bytes
> 0) {
831 cur_alloc_size
= disk_num_bytes
;
832 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
833 root
->sectorsize
, 0, alloc_hint
,
837 em
= alloc_extent_map();
840 em
->orig_start
= em
->start
;
841 ram_size
= ins
.offset
;
842 em
->len
= ins
.offset
;
844 em
->block_start
= ins
.objectid
;
845 em
->block_len
= ins
.offset
;
846 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
847 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
850 write_lock(&em_tree
->lock
);
851 ret
= add_extent_mapping(em_tree
, em
);
852 write_unlock(&em_tree
->lock
);
853 if (ret
!= -EEXIST
) {
857 btrfs_drop_extent_cache(inode
, start
,
858 start
+ ram_size
- 1, 0);
861 cur_alloc_size
= ins
.offset
;
862 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
863 ram_size
, cur_alloc_size
, 0);
866 if (root
->root_key
.objectid
==
867 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
868 ret
= btrfs_reloc_clone_csums(inode
, start
,
873 if (disk_num_bytes
< cur_alloc_size
)
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
883 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
884 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
887 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
888 start
, start
+ ram_size
- 1,
890 disk_num_bytes
-= cur_alloc_size
;
891 num_bytes
-= cur_alloc_size
;
892 alloc_hint
= ins
.objectid
+ ins
.offset
;
893 start
+= cur_alloc_size
;
897 btrfs_end_transaction(trans
, root
);
903 * work queue call back to started compression on a file and pages
905 static noinline
void async_cow_start(struct btrfs_work
*work
)
907 struct async_cow
*async_cow
;
909 async_cow
= container_of(work
, struct async_cow
, work
);
911 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
912 async_cow
->start
, async_cow
->end
, async_cow
,
915 async_cow
->inode
= NULL
;
919 * work queue call back to submit previously compressed pages
921 static noinline
void async_cow_submit(struct btrfs_work
*work
)
923 struct async_cow
*async_cow
;
924 struct btrfs_root
*root
;
925 unsigned long nr_pages
;
927 async_cow
= container_of(work
, struct async_cow
, work
);
929 root
= async_cow
->root
;
930 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
933 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
935 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
937 waitqueue_active(&root
->fs_info
->async_submit_wait
))
938 wake_up(&root
->fs_info
->async_submit_wait
);
940 if (async_cow
->inode
)
941 submit_compressed_extents(async_cow
->inode
, async_cow
);
944 static noinline
void async_cow_free(struct btrfs_work
*work
)
946 struct async_cow
*async_cow
;
947 async_cow
= container_of(work
, struct async_cow
, work
);
951 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
952 u64 start
, u64 end
, int *page_started
,
953 unsigned long *nr_written
)
955 struct async_cow
*async_cow
;
956 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
957 unsigned long nr_pages
;
959 int limit
= 10 * 1024 * 1042;
961 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
962 1, 0, NULL
, GFP_NOFS
);
963 while (start
< end
) {
964 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
966 async_cow
->inode
= inode
;
967 async_cow
->root
= root
;
968 async_cow
->locked_page
= locked_page
;
969 async_cow
->start
= start
;
971 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
974 cur_end
= min(end
, start
+ 512 * 1024 - 1);
976 async_cow
->end
= cur_end
;
977 INIT_LIST_HEAD(&async_cow
->extents
);
979 async_cow
->work
.func
= async_cow_start
;
980 async_cow
->work
.ordered_func
= async_cow_submit
;
981 async_cow
->work
.ordered_free
= async_cow_free
;
982 async_cow
->work
.flags
= 0;
984 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
986 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
988 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
991 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
992 wait_event(root
->fs_info
->async_submit_wait
,
993 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
997 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
998 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
999 wait_event(root
->fs_info
->async_submit_wait
,
1000 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1004 *nr_written
+= nr_pages
;
1005 start
= cur_end
+ 1;
1011 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1012 u64 bytenr
, u64 num_bytes
)
1015 struct btrfs_ordered_sum
*sums
;
1018 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1019 bytenr
+ num_bytes
- 1, &list
, 0);
1020 if (ret
== 0 && list_empty(&list
))
1023 while (!list_empty(&list
)) {
1024 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1025 list_del(&sums
->list
);
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1035 * If no cow copies or snapshots exist, we write directly to the existing
1038 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1039 struct page
*locked_page
,
1040 u64 start
, u64 end
, int *page_started
, int force
,
1041 unsigned long *nr_written
)
1043 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1044 struct btrfs_trans_handle
*trans
;
1045 struct extent_buffer
*leaf
;
1046 struct btrfs_path
*path
;
1047 struct btrfs_file_extent_item
*fi
;
1048 struct btrfs_key found_key
;
1061 u64 ino
= btrfs_ino(inode
);
1063 path
= btrfs_alloc_path();
1067 nolock
= btrfs_is_free_space_inode(root
, inode
);
1070 trans
= btrfs_join_transaction_nolock(root
);
1072 trans
= btrfs_join_transaction(root
);
1074 BUG_ON(IS_ERR(trans
));
1075 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1077 cow_start
= (u64
)-1;
1080 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1083 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1084 leaf
= path
->nodes
[0];
1085 btrfs_item_key_to_cpu(leaf
, &found_key
,
1086 path
->slots
[0] - 1);
1087 if (found_key
.objectid
== ino
&&
1088 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1093 leaf
= path
->nodes
[0];
1094 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1095 ret
= btrfs_next_leaf(root
, path
);
1100 leaf
= path
->nodes
[0];
1106 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1108 if (found_key
.objectid
> ino
||
1109 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1110 found_key
.offset
> end
)
1113 if (found_key
.offset
> cur_offset
) {
1114 extent_end
= found_key
.offset
;
1119 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1120 struct btrfs_file_extent_item
);
1121 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1123 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1124 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1125 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1126 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1127 extent_end
= found_key
.offset
+
1128 btrfs_file_extent_num_bytes(leaf
, fi
);
1129 if (extent_end
<= start
) {
1133 if (disk_bytenr
== 0)
1135 if (btrfs_file_extent_compression(leaf
, fi
) ||
1136 btrfs_file_extent_encryption(leaf
, fi
) ||
1137 btrfs_file_extent_other_encoding(leaf
, fi
))
1139 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1141 if (btrfs_extent_readonly(root
, disk_bytenr
))
1143 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1145 extent_offset
, disk_bytenr
))
1147 disk_bytenr
+= extent_offset
;
1148 disk_bytenr
+= cur_offset
- found_key
.offset
;
1149 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1151 * force cow if csum exists in the range.
1152 * this ensure that csum for a given extent are
1153 * either valid or do not exist.
1155 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1158 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1159 extent_end
= found_key
.offset
+
1160 btrfs_file_extent_inline_len(leaf
, fi
);
1161 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1166 if (extent_end
<= start
) {
1171 if (cow_start
== (u64
)-1)
1172 cow_start
= cur_offset
;
1173 cur_offset
= extent_end
;
1174 if (cur_offset
> end
)
1180 btrfs_release_path(path
);
1181 if (cow_start
!= (u64
)-1) {
1182 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1183 found_key
.offset
- 1, page_started
,
1186 cow_start
= (u64
)-1;
1189 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1190 struct extent_map
*em
;
1191 struct extent_map_tree
*em_tree
;
1192 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1193 em
= alloc_extent_map();
1195 em
->start
= cur_offset
;
1196 em
->orig_start
= em
->start
;
1197 em
->len
= num_bytes
;
1198 em
->block_len
= num_bytes
;
1199 em
->block_start
= disk_bytenr
;
1200 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1201 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1203 write_lock(&em_tree
->lock
);
1204 ret
= add_extent_mapping(em_tree
, em
);
1205 write_unlock(&em_tree
->lock
);
1206 if (ret
!= -EEXIST
) {
1207 free_extent_map(em
);
1210 btrfs_drop_extent_cache(inode
, em
->start
,
1211 em
->start
+ em
->len
- 1, 0);
1213 type
= BTRFS_ORDERED_PREALLOC
;
1215 type
= BTRFS_ORDERED_NOCOW
;
1218 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1219 num_bytes
, num_bytes
, type
);
1222 if (root
->root_key
.objectid
==
1223 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1224 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1229 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1230 cur_offset
, cur_offset
+ num_bytes
- 1,
1231 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1232 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1233 EXTENT_SET_PRIVATE2
);
1234 cur_offset
= extent_end
;
1235 if (cur_offset
> end
)
1238 btrfs_release_path(path
);
1240 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1241 cow_start
= cur_offset
;
1242 if (cow_start
!= (u64
)-1) {
1243 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1244 page_started
, nr_written
, 1);
1249 ret
= btrfs_end_transaction_nolock(trans
, root
);
1252 ret
= btrfs_end_transaction(trans
, root
);
1255 btrfs_free_path(path
);
1260 * extent_io.c call back to do delayed allocation processing
1262 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1263 u64 start
, u64 end
, int *page_started
,
1264 unsigned long *nr_written
)
1267 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1269 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1270 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1271 page_started
, 1, nr_written
);
1272 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1273 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1274 page_started
, 0, nr_written
);
1275 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1276 !(BTRFS_I(inode
)->force_compress
) &&
1277 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1278 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1279 page_started
, nr_written
, 1);
1281 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1282 page_started
, nr_written
);
1286 static void btrfs_split_extent_hook(struct inode
*inode
,
1287 struct extent_state
*orig
, u64 split
)
1289 /* not delalloc, ignore it */
1290 if (!(orig
->state
& EXTENT_DELALLOC
))
1293 spin_lock(&BTRFS_I(inode
)->lock
);
1294 BTRFS_I(inode
)->outstanding_extents
++;
1295 spin_unlock(&BTRFS_I(inode
)->lock
);
1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300 * extents so we can keep track of new extents that are just merged onto old
1301 * extents, such as when we are doing sequential writes, so we can properly
1302 * account for the metadata space we'll need.
1304 static void btrfs_merge_extent_hook(struct inode
*inode
,
1305 struct extent_state
*new,
1306 struct extent_state
*other
)
1308 /* not delalloc, ignore it */
1309 if (!(other
->state
& EXTENT_DELALLOC
))
1312 spin_lock(&BTRFS_I(inode
)->lock
);
1313 BTRFS_I(inode
)->outstanding_extents
--;
1314 spin_unlock(&BTRFS_I(inode
)->lock
);
1318 * extent_io.c set_bit_hook, used to track delayed allocation
1319 * bytes in this file, and to maintain the list of inodes that
1320 * have pending delalloc work to be done.
1322 static void btrfs_set_bit_hook(struct inode
*inode
,
1323 struct extent_state
*state
, int *bits
)
1327 * set_bit and clear bit hooks normally require _irqsave/restore
1328 * but in this case, we are only testing for the DELALLOC
1329 * bit, which is only set or cleared with irqs on
1331 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1332 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1333 u64 len
= state
->end
+ 1 - state
->start
;
1334 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1336 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1337 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1339 spin_lock(&BTRFS_I(inode
)->lock
);
1340 BTRFS_I(inode
)->outstanding_extents
++;
1341 spin_unlock(&BTRFS_I(inode
)->lock
);
1344 spin_lock(&root
->fs_info
->delalloc_lock
);
1345 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1346 root
->fs_info
->delalloc_bytes
+= len
;
1347 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1348 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1349 &root
->fs_info
->delalloc_inodes
);
1351 spin_unlock(&root
->fs_info
->delalloc_lock
);
1356 * extent_io.c clear_bit_hook, see set_bit_hook for why
1358 static void btrfs_clear_bit_hook(struct inode
*inode
,
1359 struct extent_state
*state
, int *bits
)
1362 * set_bit and clear bit hooks normally require _irqsave/restore
1363 * but in this case, we are only testing for the DELALLOC
1364 * bit, which is only set or cleared with irqs on
1366 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1367 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1368 u64 len
= state
->end
+ 1 - state
->start
;
1369 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1371 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1372 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1373 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1374 spin_lock(&BTRFS_I(inode
)->lock
);
1375 BTRFS_I(inode
)->outstanding_extents
--;
1376 spin_unlock(&BTRFS_I(inode
)->lock
);
1379 if (*bits
& EXTENT_DO_ACCOUNTING
)
1380 btrfs_delalloc_release_metadata(inode
, len
);
1382 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1384 btrfs_free_reserved_data_space(inode
, len
);
1386 spin_lock(&root
->fs_info
->delalloc_lock
);
1387 root
->fs_info
->delalloc_bytes
-= len
;
1388 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1390 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1391 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1392 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1394 spin_unlock(&root
->fs_info
->delalloc_lock
);
1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400 * we don't create bios that span stripes or chunks
1402 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1403 size_t size
, struct bio
*bio
,
1404 unsigned long bio_flags
)
1406 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1407 struct btrfs_mapping_tree
*map_tree
;
1408 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1413 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1416 length
= bio
->bi_size
;
1417 map_tree
= &root
->fs_info
->mapping_tree
;
1418 map_length
= length
;
1419 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1420 &map_length
, NULL
, 0);
1422 if (map_length
< length
+ size
)
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1435 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1436 struct bio
*bio
, int mirror_num
,
1437 unsigned long bio_flags
,
1440 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1443 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1449 * in order to insert checksums into the metadata in large chunks,
1450 * we wait until bio submission time. All the pages in the bio are
1451 * checksummed and sums are attached onto the ordered extent record.
1453 * At IO completion time the cums attached on the ordered extent record
1454 * are inserted into the btree
1456 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1457 int mirror_num
, unsigned long bio_flags
,
1460 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1461 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1465 * extent_io.c submission hook. This does the right thing for csum calculation
1466 * on write, or reading the csums from the tree before a read
1468 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1469 int mirror_num
, unsigned long bio_flags
,
1472 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1476 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1478 if (btrfs_is_free_space_inode(root
, inode
))
1479 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1481 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1484 if (!(rw
& REQ_WRITE
)) {
1485 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1486 return btrfs_submit_compressed_read(inode
, bio
,
1487 mirror_num
, bio_flags
);
1488 } else if (!skip_sum
) {
1489 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1494 } else if (!skip_sum
) {
1495 /* csum items have already been cloned */
1496 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1498 /* we're doing a write, do the async checksumming */
1499 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1500 inode
, rw
, bio
, mirror_num
,
1501 bio_flags
, bio_offset
,
1502 __btrfs_submit_bio_start
,
1503 __btrfs_submit_bio_done
);
1507 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1511 * given a list of ordered sums record them in the inode. This happens
1512 * at IO completion time based on sums calculated at bio submission time.
1514 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1515 struct inode
*inode
, u64 file_offset
,
1516 struct list_head
*list
)
1518 struct btrfs_ordered_sum
*sum
;
1520 list_for_each_entry(sum
, list
, list
) {
1521 btrfs_csum_file_blocks(trans
,
1522 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1527 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1528 struct extent_state
**cached_state
)
1530 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1532 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1533 cached_state
, GFP_NOFS
);
1536 /* see btrfs_writepage_start_hook for details on why this is required */
1537 struct btrfs_writepage_fixup
{
1539 struct btrfs_work work
;
1542 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1544 struct btrfs_writepage_fixup
*fixup
;
1545 struct btrfs_ordered_extent
*ordered
;
1546 struct extent_state
*cached_state
= NULL
;
1548 struct inode
*inode
;
1552 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1556 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1557 ClearPageChecked(page
);
1561 inode
= page
->mapping
->host
;
1562 page_start
= page_offset(page
);
1563 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1565 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1566 &cached_state
, GFP_NOFS
);
1568 /* already ordered? We're done */
1569 if (PagePrivate2(page
))
1572 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1574 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1575 page_end
, &cached_state
, GFP_NOFS
);
1577 btrfs_start_ordered_extent(inode
, ordered
, 1);
1582 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1583 ClearPageChecked(page
);
1585 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1586 &cached_state
, GFP_NOFS
);
1589 page_cache_release(page
);
1594 * There are a few paths in the higher layers of the kernel that directly
1595 * set the page dirty bit without asking the filesystem if it is a
1596 * good idea. This causes problems because we want to make sure COW
1597 * properly happens and the data=ordered rules are followed.
1599 * In our case any range that doesn't have the ORDERED bit set
1600 * hasn't been properly setup for IO. We kick off an async process
1601 * to fix it up. The async helper will wait for ordered extents, set
1602 * the delalloc bit and make it safe to write the page.
1604 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1606 struct inode
*inode
= page
->mapping
->host
;
1607 struct btrfs_writepage_fixup
*fixup
;
1608 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1610 /* this page is properly in the ordered list */
1611 if (TestClearPagePrivate2(page
))
1614 if (PageChecked(page
))
1617 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1621 SetPageChecked(page
);
1622 page_cache_get(page
);
1623 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1625 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1629 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1630 struct inode
*inode
, u64 file_pos
,
1631 u64 disk_bytenr
, u64 disk_num_bytes
,
1632 u64 num_bytes
, u64 ram_bytes
,
1633 u8 compression
, u8 encryption
,
1634 u16 other_encoding
, int extent_type
)
1636 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1637 struct btrfs_file_extent_item
*fi
;
1638 struct btrfs_path
*path
;
1639 struct extent_buffer
*leaf
;
1640 struct btrfs_key ins
;
1644 path
= btrfs_alloc_path();
1648 path
->leave_spinning
= 1;
1651 * we may be replacing one extent in the tree with another.
1652 * The new extent is pinned in the extent map, and we don't want
1653 * to drop it from the cache until it is completely in the btree.
1655 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 * the caller is expected to unpin it and allow it to be merged
1659 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1663 ins
.objectid
= btrfs_ino(inode
);
1664 ins
.offset
= file_pos
;
1665 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1666 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1668 leaf
= path
->nodes
[0];
1669 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1670 struct btrfs_file_extent_item
);
1671 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1672 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1673 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1674 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1675 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1676 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1677 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1678 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1679 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1680 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1682 btrfs_unlock_up_safe(path
, 1);
1683 btrfs_set_lock_blocking(leaf
);
1685 btrfs_mark_buffer_dirty(leaf
);
1687 inode_add_bytes(inode
, num_bytes
);
1689 ins
.objectid
= disk_bytenr
;
1690 ins
.offset
= disk_num_bytes
;
1691 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1692 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1693 root
->root_key
.objectid
,
1694 btrfs_ino(inode
), file_pos
, &ins
);
1696 btrfs_free_path(path
);
1702 * helper function for btrfs_finish_ordered_io, this
1703 * just reads in some of the csum leaves to prime them into ram
1704 * before we start the transaction. It limits the amount of btree
1705 * reads required while inside the transaction.
1707 /* as ordered data IO finishes, this gets called so we can finish
1708 * an ordered extent if the range of bytes in the file it covers are
1711 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1713 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1714 struct btrfs_trans_handle
*trans
= NULL
;
1715 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1716 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1717 struct extent_state
*cached_state
= NULL
;
1718 int compress_type
= 0;
1722 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1726 BUG_ON(!ordered_extent
);
1728 nolock
= btrfs_is_free_space_inode(root
, inode
);
1730 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1731 BUG_ON(!list_empty(&ordered_extent
->list
));
1732 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1735 trans
= btrfs_join_transaction_nolock(root
);
1737 trans
= btrfs_join_transaction(root
);
1738 BUG_ON(IS_ERR(trans
));
1739 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1740 ret
= btrfs_update_inode(trans
, root
, inode
);
1746 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1747 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1748 0, &cached_state
, GFP_NOFS
);
1751 trans
= btrfs_join_transaction_nolock(root
);
1753 trans
= btrfs_join_transaction(root
);
1754 BUG_ON(IS_ERR(trans
));
1755 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1757 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1758 compress_type
= ordered_extent
->compress_type
;
1759 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1760 BUG_ON(compress_type
);
1761 ret
= btrfs_mark_extent_written(trans
, inode
,
1762 ordered_extent
->file_offset
,
1763 ordered_extent
->file_offset
+
1764 ordered_extent
->len
);
1767 BUG_ON(root
== root
->fs_info
->tree_root
);
1768 ret
= insert_reserved_file_extent(trans
, inode
,
1769 ordered_extent
->file_offset
,
1770 ordered_extent
->start
,
1771 ordered_extent
->disk_len
,
1772 ordered_extent
->len
,
1773 ordered_extent
->len
,
1774 compress_type
, 0, 0,
1775 BTRFS_FILE_EXTENT_REG
);
1776 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1777 ordered_extent
->file_offset
,
1778 ordered_extent
->len
);
1781 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1782 ordered_extent
->file_offset
+
1783 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1785 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1786 &ordered_extent
->list
);
1788 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1790 ret
= btrfs_update_inode(trans
, root
, inode
);
1797 btrfs_end_transaction_nolock(trans
, root
);
1799 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1801 btrfs_end_transaction(trans
, root
);
1805 btrfs_put_ordered_extent(ordered_extent
);
1806 /* once for the tree */
1807 btrfs_put_ordered_extent(ordered_extent
);
1812 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1813 struct extent_state
*state
, int uptodate
)
1815 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1817 ClearPagePrivate2(page
);
1818 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1829 struct io_failure_record
{
1834 unsigned long bio_flags
;
1838 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1839 struct page
*page
, u64 start
, u64 end
,
1840 struct extent_state
*state
)
1842 struct io_failure_record
*failrec
= NULL
;
1844 struct extent_map
*em
;
1845 struct inode
*inode
= page
->mapping
->host
;
1846 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1847 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1854 ret
= get_state_private(failure_tree
, start
, &private);
1856 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1859 failrec
->start
= start
;
1860 failrec
->len
= end
- start
+ 1;
1861 failrec
->last_mirror
= 0;
1862 failrec
->bio_flags
= 0;
1864 read_lock(&em_tree
->lock
);
1865 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1866 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1867 free_extent_map(em
);
1870 read_unlock(&em_tree
->lock
);
1872 if (IS_ERR_OR_NULL(em
)) {
1876 logical
= start
- em
->start
;
1877 logical
= em
->block_start
+ logical
;
1878 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1879 logical
= em
->block_start
;
1880 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1881 extent_set_compress_type(&failrec
->bio_flags
,
1884 failrec
->logical
= logical
;
1885 free_extent_map(em
);
1886 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1887 EXTENT_DIRTY
, GFP_NOFS
);
1888 set_state_private(failure_tree
, start
,
1889 (u64
)(unsigned long)failrec
);
1891 failrec
= (struct io_failure_record
*)(unsigned long)private;
1893 num_copies
= btrfs_num_copies(
1894 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1895 failrec
->logical
, failrec
->len
);
1896 failrec
->last_mirror
++;
1898 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1899 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1902 if (state
&& state
->start
!= failrec
->start
)
1904 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1906 if (!state
|| failrec
->last_mirror
> num_copies
) {
1907 set_state_private(failure_tree
, failrec
->start
, 0);
1908 clear_extent_bits(failure_tree
, failrec
->start
,
1909 failrec
->start
+ failrec
->len
- 1,
1910 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1914 bio
= bio_alloc(GFP_NOFS
, 1);
1915 bio
->bi_private
= state
;
1916 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1917 bio
->bi_sector
= failrec
->logical
>> 9;
1918 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1921 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1922 if (failed_bio
->bi_rw
& REQ_WRITE
)
1927 ret
= BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1928 failrec
->last_mirror
,
1929 failrec
->bio_flags
, 0);
1934 * each time an IO finishes, we do a fast check in the IO failure tree
1935 * to see if we need to process or clean up an io_failure_record
1937 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1940 u64 private_failure
;
1941 struct io_failure_record
*failure
;
1945 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1946 (u64
)-1, 1, EXTENT_DIRTY
, 0)) {
1947 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1948 start
, &private_failure
);
1950 failure
= (struct io_failure_record
*)(unsigned long)
1952 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1954 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1956 failure
->start
+ failure
->len
- 1,
1957 EXTENT_DIRTY
| EXTENT_LOCKED
,
1966 * when reads are done, we need to check csums to verify the data is correct
1967 * if there's a match, we allow the bio to finish. If not, we go through
1968 * the io_failure_record routines to find good copies
1970 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1971 struct extent_state
*state
)
1973 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1974 struct inode
*inode
= page
->mapping
->host
;
1975 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1977 u64
private = ~(u32
)0;
1979 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1982 if (PageChecked(page
)) {
1983 ClearPageChecked(page
);
1987 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1990 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1991 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1992 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1997 if (state
&& state
->start
== start
) {
1998 private = state
->private;
2001 ret
= get_state_private(io_tree
, start
, &private);
2003 kaddr
= kmap_atomic(page
, KM_USER0
);
2007 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
2008 btrfs_csum_final(csum
, (char *)&csum
);
2009 if (csum
!= private)
2012 kunmap_atomic(kaddr
, KM_USER0
);
2014 /* if the io failure tree for this inode is non-empty,
2015 * check to see if we've recovered from a failed IO
2017 btrfs_clean_io_failures(inode
, start
);
2021 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
2023 (unsigned long long)btrfs_ino(page
->mapping
->host
),
2024 (unsigned long long)start
, csum
,
2025 (unsigned long long)private);
2026 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2027 flush_dcache_page(page
);
2028 kunmap_atomic(kaddr
, KM_USER0
);
2034 struct delayed_iput
{
2035 struct list_head list
;
2036 struct inode
*inode
;
2039 void btrfs_add_delayed_iput(struct inode
*inode
)
2041 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2042 struct delayed_iput
*delayed
;
2044 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2047 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2048 delayed
->inode
= inode
;
2050 spin_lock(&fs_info
->delayed_iput_lock
);
2051 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2052 spin_unlock(&fs_info
->delayed_iput_lock
);
2055 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2058 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2059 struct delayed_iput
*delayed
;
2062 spin_lock(&fs_info
->delayed_iput_lock
);
2063 empty
= list_empty(&fs_info
->delayed_iputs
);
2064 spin_unlock(&fs_info
->delayed_iput_lock
);
2068 down_read(&root
->fs_info
->cleanup_work_sem
);
2069 spin_lock(&fs_info
->delayed_iput_lock
);
2070 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2071 spin_unlock(&fs_info
->delayed_iput_lock
);
2073 while (!list_empty(&list
)) {
2074 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2075 list_del(&delayed
->list
);
2076 iput(delayed
->inode
);
2079 up_read(&root
->fs_info
->cleanup_work_sem
);
2083 * calculate extra metadata reservation when snapshotting a subvolume
2084 * contains orphan files.
2086 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2087 struct btrfs_pending_snapshot
*pending
,
2088 u64
*bytes_to_reserve
)
2090 struct btrfs_root
*root
;
2091 struct btrfs_block_rsv
*block_rsv
;
2095 root
= pending
->root
;
2096 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2099 block_rsv
= root
->orphan_block_rsv
;
2101 /* orphan block reservation for the snapshot */
2102 num_bytes
= block_rsv
->size
;
2105 * after the snapshot is created, COWing tree blocks may use more
2106 * space than it frees. So we should make sure there is enough
2109 index
= trans
->transid
& 0x1;
2110 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2111 num_bytes
+= block_rsv
->size
-
2112 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2115 *bytes_to_reserve
+= num_bytes
;
2118 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2119 struct btrfs_pending_snapshot
*pending
)
2121 struct btrfs_root
*root
= pending
->root
;
2122 struct btrfs_root
*snap
= pending
->snap
;
2123 struct btrfs_block_rsv
*block_rsv
;
2128 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2131 /* refill source subvolume's orphan block reservation */
2132 block_rsv
= root
->orphan_block_rsv
;
2133 index
= trans
->transid
& 0x1;
2134 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2135 num_bytes
= block_rsv
->size
-
2136 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2137 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2138 root
->orphan_block_rsv
,
2143 /* setup orphan block reservation for the snapshot */
2144 block_rsv
= btrfs_alloc_block_rsv(snap
);
2147 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2148 snap
->orphan_block_rsv
= block_rsv
;
2150 num_bytes
= root
->orphan_block_rsv
->size
;
2151 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2152 block_rsv
, num_bytes
);
2156 /* insert orphan item for the snapshot */
2157 WARN_ON(!root
->orphan_item_inserted
);
2158 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2159 snap
->root_key
.objectid
);
2161 snap
->orphan_item_inserted
= 1;
2165 enum btrfs_orphan_cleanup_state
{
2166 ORPHAN_CLEANUP_STARTED
= 1,
2167 ORPHAN_CLEANUP_DONE
= 2,
2171 * This is called in transaction commmit time. If there are no orphan
2172 * files in the subvolume, it removes orphan item and frees block_rsv
2175 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2176 struct btrfs_root
*root
)
2180 if (!list_empty(&root
->orphan_list
) ||
2181 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2184 if (root
->orphan_item_inserted
&&
2185 btrfs_root_refs(&root
->root_item
) > 0) {
2186 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2187 root
->root_key
.objectid
);
2189 root
->orphan_item_inserted
= 0;
2192 if (root
->orphan_block_rsv
) {
2193 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2194 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2195 root
->orphan_block_rsv
= NULL
;
2200 * This creates an orphan entry for the given inode in case something goes
2201 * wrong in the middle of an unlink/truncate.
2203 * NOTE: caller of this function should reserve 5 units of metadata for
2206 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2208 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2209 struct btrfs_block_rsv
*block_rsv
= NULL
;
2214 if (!root
->orphan_block_rsv
) {
2215 block_rsv
= btrfs_alloc_block_rsv(root
);
2220 spin_lock(&root
->orphan_lock
);
2221 if (!root
->orphan_block_rsv
) {
2222 root
->orphan_block_rsv
= block_rsv
;
2223 } else if (block_rsv
) {
2224 btrfs_free_block_rsv(root
, block_rsv
);
2228 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2229 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2232 * For proper ENOSPC handling, we should do orphan
2233 * cleanup when mounting. But this introduces backward
2234 * compatibility issue.
2236 if (!xchg(&root
->orphan_item_inserted
, 1))
2244 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2245 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2248 spin_unlock(&root
->orphan_lock
);
2251 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2253 /* grab metadata reservation from transaction handle */
2255 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2259 /* insert an orphan item to track this unlinked/truncated file */
2261 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2265 /* insert an orphan item to track subvolume contains orphan files */
2267 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2268 root
->root_key
.objectid
);
2275 * We have done the truncate/delete so we can go ahead and remove the orphan
2276 * item for this particular inode.
2278 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2280 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2281 int delete_item
= 0;
2282 int release_rsv
= 0;
2285 spin_lock(&root
->orphan_lock
);
2286 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2287 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2291 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2292 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2295 spin_unlock(&root
->orphan_lock
);
2297 if (trans
&& delete_item
) {
2298 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2303 btrfs_orphan_release_metadata(inode
);
2309 * this cleans up any orphans that may be left on the list from the last use
2312 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2314 struct btrfs_path
*path
;
2315 struct extent_buffer
*leaf
;
2316 struct btrfs_key key
, found_key
;
2317 struct btrfs_trans_handle
*trans
;
2318 struct inode
*inode
;
2319 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2321 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2324 path
= btrfs_alloc_path();
2331 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2332 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2333 key
.offset
= (u64
)-1;
2336 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2341 * if ret == 0 means we found what we were searching for, which
2342 * is weird, but possible, so only screw with path if we didn't
2343 * find the key and see if we have stuff that matches
2347 if (path
->slots
[0] == 0)
2352 /* pull out the item */
2353 leaf
= path
->nodes
[0];
2354 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2356 /* make sure the item matches what we want */
2357 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2359 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2362 /* release the path since we're done with it */
2363 btrfs_release_path(path
);
2366 * this is where we are basically btrfs_lookup, without the
2367 * crossing root thing. we store the inode number in the
2368 * offset of the orphan item.
2370 found_key
.objectid
= found_key
.offset
;
2371 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2372 found_key
.offset
= 0;
2373 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2374 if (IS_ERR(inode
)) {
2375 ret
= PTR_ERR(inode
);
2380 * add this inode to the orphan list so btrfs_orphan_del does
2381 * the proper thing when we hit it
2383 spin_lock(&root
->orphan_lock
);
2384 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2385 spin_unlock(&root
->orphan_lock
);
2388 * if this is a bad inode, means we actually succeeded in
2389 * removing the inode, but not the orphan record, which means
2390 * we need to manually delete the orphan since iput will just
2391 * do a destroy_inode
2393 if (is_bad_inode(inode
)) {
2394 trans
= btrfs_start_transaction(root
, 0);
2395 if (IS_ERR(trans
)) {
2396 ret
= PTR_ERR(trans
);
2399 btrfs_orphan_del(trans
, inode
);
2400 btrfs_end_transaction(trans
, root
);
2405 /* if we have links, this was a truncate, lets do that */
2406 if (inode
->i_nlink
) {
2407 if (!S_ISREG(inode
->i_mode
)) {
2413 ret
= btrfs_truncate(inode
);
2418 /* this will do delete_inode and everything for us */
2423 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2425 if (root
->orphan_block_rsv
)
2426 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2429 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2430 trans
= btrfs_join_transaction(root
);
2432 btrfs_end_transaction(trans
, root
);
2436 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2438 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2442 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2443 btrfs_free_path(path
);
2448 * very simple check to peek ahead in the leaf looking for xattrs. If we
2449 * don't find any xattrs, we know there can't be any acls.
2451 * slot is the slot the inode is in, objectid is the objectid of the inode
2453 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2454 int slot
, u64 objectid
)
2456 u32 nritems
= btrfs_header_nritems(leaf
);
2457 struct btrfs_key found_key
;
2461 while (slot
< nritems
) {
2462 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2464 /* we found a different objectid, there must not be acls */
2465 if (found_key
.objectid
!= objectid
)
2468 /* we found an xattr, assume we've got an acl */
2469 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2473 * we found a key greater than an xattr key, there can't
2474 * be any acls later on
2476 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2483 * it goes inode, inode backrefs, xattrs, extents,
2484 * so if there are a ton of hard links to an inode there can
2485 * be a lot of backrefs. Don't waste time searching too hard,
2486 * this is just an optimization
2491 /* we hit the end of the leaf before we found an xattr or
2492 * something larger than an xattr. We have to assume the inode
2499 * read an inode from the btree into the in-memory inode
2501 static void btrfs_read_locked_inode(struct inode
*inode
)
2503 struct btrfs_path
*path
;
2504 struct extent_buffer
*leaf
;
2505 struct btrfs_inode_item
*inode_item
;
2506 struct btrfs_timespec
*tspec
;
2507 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2508 struct btrfs_key location
;
2512 bool filled
= false;
2514 ret
= btrfs_fill_inode(inode
, &rdev
);
2518 path
= btrfs_alloc_path();
2522 path
->leave_spinning
= 1;
2523 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2525 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2529 leaf
= path
->nodes
[0];
2534 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2535 struct btrfs_inode_item
);
2536 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2537 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2538 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2539 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2540 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2542 tspec
= btrfs_inode_atime(inode_item
);
2543 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2544 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2546 tspec
= btrfs_inode_mtime(inode_item
);
2547 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2548 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2550 tspec
= btrfs_inode_ctime(inode_item
);
2551 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2552 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2554 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2555 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2556 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2557 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2559 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2561 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2562 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2565 * try to precache a NULL acl entry for files that don't have
2566 * any xattrs or acls
2568 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2571 cache_no_acl(inode
);
2573 btrfs_free_path(path
);
2575 switch (inode
->i_mode
& S_IFMT
) {
2577 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2578 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2579 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2580 inode
->i_fop
= &btrfs_file_operations
;
2581 inode
->i_op
= &btrfs_file_inode_operations
;
2584 inode
->i_fop
= &btrfs_dir_file_operations
;
2585 if (root
== root
->fs_info
->tree_root
)
2586 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2588 inode
->i_op
= &btrfs_dir_inode_operations
;
2591 inode
->i_op
= &btrfs_symlink_inode_operations
;
2592 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2593 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2596 inode
->i_op
= &btrfs_special_inode_operations
;
2597 init_special_inode(inode
, inode
->i_mode
, rdev
);
2601 btrfs_update_iflags(inode
);
2605 btrfs_free_path(path
);
2606 make_bad_inode(inode
);
2610 * given a leaf and an inode, copy the inode fields into the leaf
2612 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2613 struct extent_buffer
*leaf
,
2614 struct btrfs_inode_item
*item
,
2615 struct inode
*inode
)
2617 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2618 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2619 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2620 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2621 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2623 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2624 inode
->i_atime
.tv_sec
);
2625 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2626 inode
->i_atime
.tv_nsec
);
2628 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2629 inode
->i_mtime
.tv_sec
);
2630 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2631 inode
->i_mtime
.tv_nsec
);
2633 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2634 inode
->i_ctime
.tv_sec
);
2635 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2636 inode
->i_ctime
.tv_nsec
);
2638 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2639 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2640 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2641 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2642 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2643 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2644 btrfs_set_inode_block_group(leaf
, item
, 0);
2648 * copy everything in the in-memory inode into the btree.
2650 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2651 struct btrfs_root
*root
, struct inode
*inode
)
2653 struct btrfs_inode_item
*inode_item
;
2654 struct btrfs_path
*path
;
2655 struct extent_buffer
*leaf
;
2659 * If the inode is a free space inode, we can deadlock during commit
2660 * if we put it into the delayed code.
2662 * The data relocation inode should also be directly updated
2665 if (!btrfs_is_free_space_inode(root
, inode
)
2666 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2667 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2669 btrfs_set_inode_last_trans(trans
, inode
);
2673 path
= btrfs_alloc_path();
2677 path
->leave_spinning
= 1;
2678 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2686 btrfs_unlock_up_safe(path
, 1);
2687 leaf
= path
->nodes
[0];
2688 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2689 struct btrfs_inode_item
);
2691 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2692 btrfs_mark_buffer_dirty(leaf
);
2693 btrfs_set_inode_last_trans(trans
, inode
);
2696 btrfs_free_path(path
);
2701 * unlink helper that gets used here in inode.c and in the tree logging
2702 * recovery code. It remove a link in a directory with a given name, and
2703 * also drops the back refs in the inode to the directory
2705 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2706 struct btrfs_root
*root
,
2707 struct inode
*dir
, struct inode
*inode
,
2708 const char *name
, int name_len
)
2710 struct btrfs_path
*path
;
2712 struct extent_buffer
*leaf
;
2713 struct btrfs_dir_item
*di
;
2714 struct btrfs_key key
;
2716 u64 ino
= btrfs_ino(inode
);
2717 u64 dir_ino
= btrfs_ino(dir
);
2719 path
= btrfs_alloc_path();
2725 path
->leave_spinning
= 1;
2726 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2727 name
, name_len
, -1);
2736 leaf
= path
->nodes
[0];
2737 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2738 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2741 btrfs_release_path(path
);
2743 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2746 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2747 "inode %llu parent %llu\n", name_len
, name
,
2748 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2752 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2756 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2758 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2760 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2765 btrfs_free_path(path
);
2769 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2770 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2771 btrfs_update_inode(trans
, root
, dir
);
2776 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2777 struct btrfs_root
*root
,
2778 struct inode
*dir
, struct inode
*inode
,
2779 const char *name
, int name_len
)
2782 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2784 btrfs_drop_nlink(inode
);
2785 ret
= btrfs_update_inode(trans
, root
, inode
);
2791 /* helper to check if there is any shared block in the path */
2792 static int check_path_shared(struct btrfs_root
*root
,
2793 struct btrfs_path
*path
)
2795 struct extent_buffer
*eb
;
2799 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2802 if (!path
->nodes
[level
])
2804 eb
= path
->nodes
[level
];
2805 if (!btrfs_block_can_be_shared(root
, eb
))
2807 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2816 * helper to start transaction for unlink and rmdir.
2818 * unlink and rmdir are special in btrfs, they do not always free space.
2819 * so in enospc case, we should make sure they will free space before
2820 * allowing them to use the global metadata reservation.
2822 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2823 struct dentry
*dentry
)
2825 struct btrfs_trans_handle
*trans
;
2826 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2827 struct btrfs_path
*path
;
2828 struct btrfs_inode_ref
*ref
;
2829 struct btrfs_dir_item
*di
;
2830 struct inode
*inode
= dentry
->d_inode
;
2835 u64 ino
= btrfs_ino(inode
);
2836 u64 dir_ino
= btrfs_ino(dir
);
2838 trans
= btrfs_start_transaction(root
, 10);
2839 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2842 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2843 return ERR_PTR(-ENOSPC
);
2845 /* check if there is someone else holds reference */
2846 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2847 return ERR_PTR(-ENOSPC
);
2849 if (atomic_read(&inode
->i_count
) > 2)
2850 return ERR_PTR(-ENOSPC
);
2852 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2853 return ERR_PTR(-ENOSPC
);
2855 path
= btrfs_alloc_path();
2857 root
->fs_info
->enospc_unlink
= 0;
2858 return ERR_PTR(-ENOMEM
);
2861 trans
= btrfs_start_transaction(root
, 0);
2862 if (IS_ERR(trans
)) {
2863 btrfs_free_path(path
);
2864 root
->fs_info
->enospc_unlink
= 0;
2868 path
->skip_locking
= 1;
2869 path
->search_commit_root
= 1;
2871 ret
= btrfs_lookup_inode(trans
, root
, path
,
2872 &BTRFS_I(dir
)->location
, 0);
2878 if (check_path_shared(root
, path
))
2883 btrfs_release_path(path
);
2885 ret
= btrfs_lookup_inode(trans
, root
, path
,
2886 &BTRFS_I(inode
)->location
, 0);
2892 if (check_path_shared(root
, path
))
2897 btrfs_release_path(path
);
2899 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2900 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2907 if (check_path_shared(root
, path
))
2909 btrfs_release_path(path
);
2917 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2918 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2924 if (check_path_shared(root
, path
))
2930 btrfs_release_path(path
);
2932 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2933 dentry
->d_name
.name
, dentry
->d_name
.len
,
2940 if (check_path_shared(root
, path
))
2942 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2943 btrfs_release_path(path
);
2946 * This is a commit root search, if we can lookup inode item and other
2947 * relative items in the commit root, it means the transaction of
2948 * dir/file creation has been committed, and the dir index item that we
2949 * delay to insert has also been inserted into the commit root. So
2950 * we needn't worry about the delayed insertion of the dir index item
2953 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
2954 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2959 BUG_ON(ret
== -ENOENT
);
2960 if (check_path_shared(root
, path
))
2965 btrfs_free_path(path
);
2967 btrfs_end_transaction(trans
, root
);
2968 root
->fs_info
->enospc_unlink
= 0;
2969 return ERR_PTR(err
);
2972 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2976 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2977 struct btrfs_root
*root
)
2979 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2980 BUG_ON(!root
->fs_info
->enospc_unlink
);
2981 root
->fs_info
->enospc_unlink
= 0;
2983 btrfs_end_transaction_throttle(trans
, root
);
2986 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2988 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2989 struct btrfs_trans_handle
*trans
;
2990 struct inode
*inode
= dentry
->d_inode
;
2992 unsigned long nr
= 0;
2994 trans
= __unlink_start_trans(dir
, dentry
);
2996 return PTR_ERR(trans
);
2998 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3000 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3001 dentry
->d_name
.name
, dentry
->d_name
.len
);
3005 if (inode
->i_nlink
== 0) {
3006 ret
= btrfs_orphan_add(trans
, inode
);
3012 nr
= trans
->blocks_used
;
3013 __unlink_end_trans(trans
, root
);
3014 btrfs_btree_balance_dirty(root
, nr
);
3018 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3019 struct btrfs_root
*root
,
3020 struct inode
*dir
, u64 objectid
,
3021 const char *name
, int name_len
)
3023 struct btrfs_path
*path
;
3024 struct extent_buffer
*leaf
;
3025 struct btrfs_dir_item
*di
;
3026 struct btrfs_key key
;
3029 u64 dir_ino
= btrfs_ino(dir
);
3031 path
= btrfs_alloc_path();
3035 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3036 name
, name_len
, -1);
3037 BUG_ON(IS_ERR_OR_NULL(di
));
3039 leaf
= path
->nodes
[0];
3040 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3041 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3042 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3044 btrfs_release_path(path
);
3046 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3047 objectid
, root
->root_key
.objectid
,
3048 dir_ino
, &index
, name
, name_len
);
3050 BUG_ON(ret
!= -ENOENT
);
3051 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3053 BUG_ON(IS_ERR_OR_NULL(di
));
3055 leaf
= path
->nodes
[0];
3056 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3057 btrfs_release_path(path
);
3060 btrfs_release_path(path
);
3062 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3065 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3066 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3067 ret
= btrfs_update_inode(trans
, root
, dir
);
3070 btrfs_free_path(path
);
3074 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3076 struct inode
*inode
= dentry
->d_inode
;
3078 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3079 struct btrfs_trans_handle
*trans
;
3080 unsigned long nr
= 0;
3082 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
3083 btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3086 trans
= __unlink_start_trans(dir
, dentry
);
3088 return PTR_ERR(trans
);
3090 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3091 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3092 BTRFS_I(inode
)->location
.objectid
,
3093 dentry
->d_name
.name
,
3094 dentry
->d_name
.len
);
3098 err
= btrfs_orphan_add(trans
, inode
);
3102 /* now the directory is empty */
3103 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3104 dentry
->d_name
.name
, dentry
->d_name
.len
);
3106 btrfs_i_size_write(inode
, 0);
3108 nr
= trans
->blocks_used
;
3109 __unlink_end_trans(trans
, root
);
3110 btrfs_btree_balance_dirty(root
, nr
);
3116 * this can truncate away extent items, csum items and directory items.
3117 * It starts at a high offset and removes keys until it can't find
3118 * any higher than new_size
3120 * csum items that cross the new i_size are truncated to the new size
3123 * min_type is the minimum key type to truncate down to. If set to 0, this
3124 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3126 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3127 struct btrfs_root
*root
,
3128 struct inode
*inode
,
3129 u64 new_size
, u32 min_type
)
3131 struct btrfs_path
*path
;
3132 struct extent_buffer
*leaf
;
3133 struct btrfs_file_extent_item
*fi
;
3134 struct btrfs_key key
;
3135 struct btrfs_key found_key
;
3136 u64 extent_start
= 0;
3137 u64 extent_num_bytes
= 0;
3138 u64 extent_offset
= 0;
3140 u64 mask
= root
->sectorsize
- 1;
3141 u32 found_type
= (u8
)-1;
3144 int pending_del_nr
= 0;
3145 int pending_del_slot
= 0;
3146 int extent_type
= -1;
3150 u64 ino
= btrfs_ino(inode
);
3152 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3154 path
= btrfs_alloc_path();
3159 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3160 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3163 * This function is also used to drop the items in the log tree before
3164 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3165 * it is used to drop the loged items. So we shouldn't kill the delayed
3168 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3169 btrfs_kill_delayed_inode_items(inode
);
3172 key
.offset
= (u64
)-1;
3176 path
->leave_spinning
= 1;
3177 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3184 /* there are no items in the tree for us to truncate, we're
3187 if (path
->slots
[0] == 0)
3194 leaf
= path
->nodes
[0];
3195 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3196 found_type
= btrfs_key_type(&found_key
);
3199 if (found_key
.objectid
!= ino
)
3202 if (found_type
< min_type
)
3205 item_end
= found_key
.offset
;
3206 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3207 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3208 struct btrfs_file_extent_item
);
3209 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3210 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3211 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3212 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3214 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3216 btrfs_file_extent_num_bytes(leaf
, fi
);
3217 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3218 item_end
+= btrfs_file_extent_inline_len(leaf
,
3223 if (found_type
> min_type
) {
3226 if (item_end
< new_size
)
3228 if (found_key
.offset
>= new_size
)
3234 /* FIXME, shrink the extent if the ref count is only 1 */
3235 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3238 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3240 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3241 if (!del_item
&& !encoding
) {
3242 u64 orig_num_bytes
=
3243 btrfs_file_extent_num_bytes(leaf
, fi
);
3244 extent_num_bytes
= new_size
-
3245 found_key
.offset
+ root
->sectorsize
- 1;
3246 extent_num_bytes
= extent_num_bytes
&
3247 ~((u64
)root
->sectorsize
- 1);
3248 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3250 num_dec
= (orig_num_bytes
-
3252 if (root
->ref_cows
&& extent_start
!= 0)
3253 inode_sub_bytes(inode
, num_dec
);
3254 btrfs_mark_buffer_dirty(leaf
);
3257 btrfs_file_extent_disk_num_bytes(leaf
,
3259 extent_offset
= found_key
.offset
-
3260 btrfs_file_extent_offset(leaf
, fi
);
3262 /* FIXME blocksize != 4096 */
3263 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3264 if (extent_start
!= 0) {
3267 inode_sub_bytes(inode
, num_dec
);
3270 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3272 * we can't truncate inline items that have had
3276 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3277 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3278 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3279 u32 size
= new_size
- found_key
.offset
;
3281 if (root
->ref_cows
) {
3282 inode_sub_bytes(inode
, item_end
+ 1 -
3286 btrfs_file_extent_calc_inline_size(size
);
3287 ret
= btrfs_truncate_item(trans
, root
, path
,
3289 } else if (root
->ref_cows
) {
3290 inode_sub_bytes(inode
, item_end
+ 1 -
3296 if (!pending_del_nr
) {
3297 /* no pending yet, add ourselves */
3298 pending_del_slot
= path
->slots
[0];
3300 } else if (pending_del_nr
&&
3301 path
->slots
[0] + 1 == pending_del_slot
) {
3302 /* hop on the pending chunk */
3304 pending_del_slot
= path
->slots
[0];
3311 if (found_extent
&& (root
->ref_cows
||
3312 root
== root
->fs_info
->tree_root
)) {
3313 btrfs_set_path_blocking(path
);
3314 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3315 extent_num_bytes
, 0,
3316 btrfs_header_owner(leaf
),
3317 ino
, extent_offset
);
3321 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3324 if (path
->slots
[0] == 0 ||
3325 path
->slots
[0] != pending_del_slot
) {
3326 if (root
->ref_cows
&&
3327 BTRFS_I(inode
)->location
.objectid
!=
3328 BTRFS_FREE_INO_OBJECTID
) {
3332 if (pending_del_nr
) {
3333 ret
= btrfs_del_items(trans
, root
, path
,
3339 btrfs_release_path(path
);
3346 if (pending_del_nr
) {
3347 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3351 btrfs_free_path(path
);
3356 * taken from block_truncate_page, but does cow as it zeros out
3357 * any bytes left in the last page in the file.
3359 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3361 struct inode
*inode
= mapping
->host
;
3362 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3363 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3364 struct btrfs_ordered_extent
*ordered
;
3365 struct extent_state
*cached_state
= NULL
;
3367 u32 blocksize
= root
->sectorsize
;
3368 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3369 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3375 if ((offset
& (blocksize
- 1)) == 0)
3377 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3383 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
3385 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3389 page_start
= page_offset(page
);
3390 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3392 if (!PageUptodate(page
)) {
3393 ret
= btrfs_readpage(NULL
, page
);
3395 if (page
->mapping
!= mapping
) {
3397 page_cache_release(page
);
3400 if (!PageUptodate(page
)) {
3405 wait_on_page_writeback(page
);
3407 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3409 set_page_extent_mapped(page
);
3411 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3413 unlock_extent_cached(io_tree
, page_start
, page_end
,
3414 &cached_state
, GFP_NOFS
);
3416 page_cache_release(page
);
3417 btrfs_start_ordered_extent(inode
, ordered
, 1);
3418 btrfs_put_ordered_extent(ordered
);
3422 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3423 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3424 0, 0, &cached_state
, GFP_NOFS
);
3426 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3429 unlock_extent_cached(io_tree
, page_start
, page_end
,
3430 &cached_state
, GFP_NOFS
);
3435 if (offset
!= PAGE_CACHE_SIZE
) {
3437 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3438 flush_dcache_page(page
);
3441 ClearPageChecked(page
);
3442 set_page_dirty(page
);
3443 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3448 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3450 page_cache_release(page
);
3456 * This function puts in dummy file extents for the area we're creating a hole
3457 * for. So if we are truncating this file to a larger size we need to insert
3458 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3459 * the range between oldsize and size
3461 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3463 struct btrfs_trans_handle
*trans
;
3464 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3465 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3466 struct extent_map
*em
= NULL
;
3467 struct extent_state
*cached_state
= NULL
;
3468 u64 mask
= root
->sectorsize
- 1;
3469 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3470 u64 block_end
= (size
+ mask
) & ~mask
;
3476 if (size
<= hole_start
)
3480 struct btrfs_ordered_extent
*ordered
;
3481 btrfs_wait_ordered_range(inode
, hole_start
,
3482 block_end
- hole_start
);
3483 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3484 &cached_state
, GFP_NOFS
);
3485 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3488 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3489 &cached_state
, GFP_NOFS
);
3490 btrfs_put_ordered_extent(ordered
);
3493 cur_offset
= hole_start
;
3495 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3496 block_end
- cur_offset
, 0);
3497 BUG_ON(IS_ERR_OR_NULL(em
));
3498 last_byte
= min(extent_map_end(em
), block_end
);
3499 last_byte
= (last_byte
+ mask
) & ~mask
;
3500 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3502 hole_size
= last_byte
- cur_offset
;
3504 trans
= btrfs_start_transaction(root
, 2);
3505 if (IS_ERR(trans
)) {
3506 err
= PTR_ERR(trans
);
3510 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3511 cur_offset
+ hole_size
,
3516 err
= btrfs_insert_file_extent(trans
, root
,
3517 btrfs_ino(inode
), cur_offset
, 0,
3518 0, hole_size
, 0, hole_size
,
3523 btrfs_drop_extent_cache(inode
, hole_start
,
3526 btrfs_end_transaction(trans
, root
);
3528 free_extent_map(em
);
3530 cur_offset
= last_byte
;
3531 if (cur_offset
>= block_end
)
3535 free_extent_map(em
);
3536 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3541 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3543 loff_t oldsize
= i_size_read(inode
);
3546 if (newsize
== oldsize
)
3549 if (newsize
> oldsize
) {
3550 i_size_write(inode
, newsize
);
3551 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3552 truncate_pagecache(inode
, oldsize
, newsize
);
3553 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3555 btrfs_setsize(inode
, oldsize
);
3559 mark_inode_dirty(inode
);
3563 * We're truncating a file that used to have good data down to
3564 * zero. Make sure it gets into the ordered flush list so that
3565 * any new writes get down to disk quickly.
3568 BTRFS_I(inode
)->ordered_data_close
= 1;
3570 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3571 truncate_setsize(inode
, newsize
);
3572 ret
= btrfs_truncate(inode
);
3578 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3580 struct inode
*inode
= dentry
->d_inode
;
3581 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3584 if (btrfs_root_readonly(root
))
3587 err
= inode_change_ok(inode
, attr
);
3591 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3592 err
= btrfs_setsize(inode
, attr
->ia_size
);
3597 if (attr
->ia_valid
) {
3598 setattr_copy(inode
, attr
);
3599 mark_inode_dirty(inode
);
3601 if (attr
->ia_valid
& ATTR_MODE
)
3602 err
= btrfs_acl_chmod(inode
);
3608 void btrfs_evict_inode(struct inode
*inode
)
3610 struct btrfs_trans_handle
*trans
;
3611 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3615 trace_btrfs_inode_evict(inode
);
3617 truncate_inode_pages(&inode
->i_data
, 0);
3618 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3619 btrfs_is_free_space_inode(root
, inode
)))
3622 if (is_bad_inode(inode
)) {
3623 btrfs_orphan_del(NULL
, inode
);
3626 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3627 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3629 if (root
->fs_info
->log_root_recovering
) {
3630 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3634 if (inode
->i_nlink
> 0) {
3635 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3639 btrfs_i_size_write(inode
, 0);
3642 trans
= btrfs_join_transaction(root
);
3643 BUG_ON(IS_ERR(trans
));
3644 trans
->block_rsv
= root
->orphan_block_rsv
;
3646 ret
= btrfs_block_rsv_check(trans
, root
,
3647 root
->orphan_block_rsv
, 0, 5);
3649 BUG_ON(ret
!= -EAGAIN
);
3650 ret
= btrfs_commit_transaction(trans
, root
);
3655 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3659 nr
= trans
->blocks_used
;
3660 btrfs_end_transaction(trans
, root
);
3662 btrfs_btree_balance_dirty(root
, nr
);
3667 ret
= btrfs_orphan_del(trans
, inode
);
3671 if (!(root
== root
->fs_info
->tree_root
||
3672 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3673 btrfs_return_ino(root
, btrfs_ino(inode
));
3675 nr
= trans
->blocks_used
;
3676 btrfs_end_transaction(trans
, root
);
3677 btrfs_btree_balance_dirty(root
, nr
);
3679 end_writeback(inode
);
3684 * this returns the key found in the dir entry in the location pointer.
3685 * If no dir entries were found, location->objectid is 0.
3687 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3688 struct btrfs_key
*location
)
3690 const char *name
= dentry
->d_name
.name
;
3691 int namelen
= dentry
->d_name
.len
;
3692 struct btrfs_dir_item
*di
;
3693 struct btrfs_path
*path
;
3694 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3697 path
= btrfs_alloc_path();
3701 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3706 if (IS_ERR_OR_NULL(di
))
3709 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3711 btrfs_free_path(path
);
3714 location
->objectid
= 0;
3719 * when we hit a tree root in a directory, the btrfs part of the inode
3720 * needs to be changed to reflect the root directory of the tree root. This
3721 * is kind of like crossing a mount point.
3723 static int fixup_tree_root_location(struct btrfs_root
*root
,
3725 struct dentry
*dentry
,
3726 struct btrfs_key
*location
,
3727 struct btrfs_root
**sub_root
)
3729 struct btrfs_path
*path
;
3730 struct btrfs_root
*new_root
;
3731 struct btrfs_root_ref
*ref
;
3732 struct extent_buffer
*leaf
;
3736 path
= btrfs_alloc_path();
3743 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3744 BTRFS_I(dir
)->root
->root_key
.objectid
,
3745 location
->objectid
);
3752 leaf
= path
->nodes
[0];
3753 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3754 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3755 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3758 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3759 (unsigned long)(ref
+ 1),
3760 dentry
->d_name
.len
);
3764 btrfs_release_path(path
);
3766 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3767 if (IS_ERR(new_root
)) {
3768 err
= PTR_ERR(new_root
);
3772 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3777 *sub_root
= new_root
;
3778 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3779 location
->type
= BTRFS_INODE_ITEM_KEY
;
3780 location
->offset
= 0;
3783 btrfs_free_path(path
);
3787 static void inode_tree_add(struct inode
*inode
)
3789 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3790 struct btrfs_inode
*entry
;
3792 struct rb_node
*parent
;
3793 u64 ino
= btrfs_ino(inode
);
3795 p
= &root
->inode_tree
.rb_node
;
3798 if (inode_unhashed(inode
))
3801 spin_lock(&root
->inode_lock
);
3804 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3806 if (ino
< btrfs_ino(&entry
->vfs_inode
))
3807 p
= &parent
->rb_left
;
3808 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
3809 p
= &parent
->rb_right
;
3811 WARN_ON(!(entry
->vfs_inode
.i_state
&
3812 (I_WILL_FREE
| I_FREEING
)));
3813 rb_erase(parent
, &root
->inode_tree
);
3814 RB_CLEAR_NODE(parent
);
3815 spin_unlock(&root
->inode_lock
);
3819 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3820 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3821 spin_unlock(&root
->inode_lock
);
3824 static void inode_tree_del(struct inode
*inode
)
3826 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3829 spin_lock(&root
->inode_lock
);
3830 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3831 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3832 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3833 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3835 spin_unlock(&root
->inode_lock
);
3838 * Free space cache has inodes in the tree root, but the tree root has a
3839 * root_refs of 0, so this could end up dropping the tree root as a
3840 * snapshot, so we need the extra !root->fs_info->tree_root check to
3841 * make sure we don't drop it.
3843 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3844 root
!= root
->fs_info
->tree_root
) {
3845 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3846 spin_lock(&root
->inode_lock
);
3847 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3848 spin_unlock(&root
->inode_lock
);
3850 btrfs_add_dead_root(root
);
3854 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3856 struct rb_node
*node
;
3857 struct rb_node
*prev
;
3858 struct btrfs_inode
*entry
;
3859 struct inode
*inode
;
3862 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3864 spin_lock(&root
->inode_lock
);
3866 node
= root
->inode_tree
.rb_node
;
3870 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3872 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
3873 node
= node
->rb_left
;
3874 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
3875 node
= node
->rb_right
;
3881 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3882 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
3886 prev
= rb_next(prev
);
3890 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3891 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
3892 inode
= igrab(&entry
->vfs_inode
);
3894 spin_unlock(&root
->inode_lock
);
3895 if (atomic_read(&inode
->i_count
) > 1)
3896 d_prune_aliases(inode
);
3898 * btrfs_drop_inode will have it removed from
3899 * the inode cache when its usage count
3904 spin_lock(&root
->inode_lock
);
3908 if (cond_resched_lock(&root
->inode_lock
))
3911 node
= rb_next(node
);
3913 spin_unlock(&root
->inode_lock
);
3917 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3919 struct btrfs_iget_args
*args
= p
;
3920 inode
->i_ino
= args
->ino
;
3921 BTRFS_I(inode
)->root
= args
->root
;
3922 btrfs_set_inode_space_info(args
->root
, inode
);
3926 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3928 struct btrfs_iget_args
*args
= opaque
;
3929 return args
->ino
== btrfs_ino(inode
) &&
3930 args
->root
== BTRFS_I(inode
)->root
;
3933 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3935 struct btrfs_root
*root
)
3937 struct inode
*inode
;
3938 struct btrfs_iget_args args
;
3939 args
.ino
= objectid
;
3942 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3943 btrfs_init_locked_inode
,
3948 /* Get an inode object given its location and corresponding root.
3949 * Returns in *is_new if the inode was read from disk
3951 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3952 struct btrfs_root
*root
, int *new)
3954 struct inode
*inode
;
3957 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3959 return ERR_PTR(-ENOMEM
);
3961 if (inode
->i_state
& I_NEW
) {
3962 BTRFS_I(inode
)->root
= root
;
3963 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3964 btrfs_read_locked_inode(inode
);
3965 if (!is_bad_inode(inode
)) {
3966 inode_tree_add(inode
);
3967 unlock_new_inode(inode
);
3977 inode
= ERR_PTR(-ESTALE
);
3983 static struct inode
*new_simple_dir(struct super_block
*s
,
3984 struct btrfs_key
*key
,
3985 struct btrfs_root
*root
)
3987 struct inode
*inode
= new_inode(s
);
3990 return ERR_PTR(-ENOMEM
);
3992 BTRFS_I(inode
)->root
= root
;
3993 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3994 BTRFS_I(inode
)->dummy_inode
= 1;
3996 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3997 inode
->i_op
= &simple_dir_inode_operations
;
3998 inode
->i_fop
= &simple_dir_operations
;
3999 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4000 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4005 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4007 struct inode
*inode
;
4008 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4009 struct btrfs_root
*sub_root
= root
;
4010 struct btrfs_key location
;
4014 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4015 return ERR_PTR(-ENAMETOOLONG
);
4017 if (unlikely(d_need_lookup(dentry
))) {
4018 memcpy(&location
, dentry
->d_fsdata
, sizeof(struct btrfs_key
));
4019 kfree(dentry
->d_fsdata
);
4020 dentry
->d_fsdata
= NULL
;
4021 d_clear_need_lookup(dentry
);
4023 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4027 return ERR_PTR(ret
);
4029 if (location
.objectid
== 0)
4032 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4033 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4037 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4039 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4040 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4041 &location
, &sub_root
);
4044 inode
= ERR_PTR(ret
);
4046 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4048 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4050 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4052 if (!IS_ERR(inode
) && root
!= sub_root
) {
4053 down_read(&root
->fs_info
->cleanup_work_sem
);
4054 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4055 ret
= btrfs_orphan_cleanup(sub_root
);
4056 up_read(&root
->fs_info
->cleanup_work_sem
);
4058 inode
= ERR_PTR(ret
);
4064 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4066 struct btrfs_root
*root
;
4068 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4069 dentry
= dentry
->d_parent
;
4071 if (dentry
->d_inode
) {
4072 root
= BTRFS_I(dentry
->d_inode
)->root
;
4073 if (btrfs_root_refs(&root
->root_item
) == 0)
4079 static void btrfs_dentry_release(struct dentry
*dentry
)
4081 if (dentry
->d_fsdata
)
4082 kfree(dentry
->d_fsdata
);
4085 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4086 struct nameidata
*nd
)
4088 return d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4091 unsigned char btrfs_filetype_table
[] = {
4092 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4095 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4098 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4099 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4100 struct btrfs_item
*item
;
4101 struct btrfs_dir_item
*di
;
4102 struct btrfs_key key
;
4103 struct btrfs_key found_key
;
4104 struct btrfs_path
*path
;
4105 struct list_head ins_list
;
4106 struct list_head del_list
;
4109 struct extent_buffer
*leaf
;
4111 unsigned char d_type
;
4116 int key_type
= BTRFS_DIR_INDEX_KEY
;
4120 int is_curr
= 0; /* filp->f_pos points to the current index? */
4122 /* FIXME, use a real flag for deciding about the key type */
4123 if (root
->fs_info
->tree_root
== root
)
4124 key_type
= BTRFS_DIR_ITEM_KEY
;
4126 /* special case for "." */
4127 if (filp
->f_pos
== 0) {
4128 over
= filldir(dirent
, ".", 1, 1, btrfs_ino(inode
), DT_DIR
);
4133 /* special case for .., just use the back ref */
4134 if (filp
->f_pos
== 1) {
4135 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4136 over
= filldir(dirent
, "..", 2,
4142 path
= btrfs_alloc_path();
4148 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4149 INIT_LIST_HEAD(&ins_list
);
4150 INIT_LIST_HEAD(&del_list
);
4151 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4154 btrfs_set_key_type(&key
, key_type
);
4155 key
.offset
= filp
->f_pos
;
4156 key
.objectid
= btrfs_ino(inode
);
4158 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4163 leaf
= path
->nodes
[0];
4164 slot
= path
->slots
[0];
4165 if (slot
>= btrfs_header_nritems(leaf
)) {
4166 ret
= btrfs_next_leaf(root
, path
);
4174 item
= btrfs_item_nr(leaf
, slot
);
4175 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4177 if (found_key
.objectid
!= key
.objectid
)
4179 if (btrfs_key_type(&found_key
) != key_type
)
4181 if (found_key
.offset
< filp
->f_pos
)
4183 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4184 btrfs_should_delete_dir_index(&del_list
,
4188 filp
->f_pos
= found_key
.offset
;
4191 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4193 di_total
= btrfs_item_size(leaf
, item
);
4195 while (di_cur
< di_total
) {
4196 struct btrfs_key location
;
4199 if (verify_dir_item(root
, leaf
, di
))
4202 name_len
= btrfs_dir_name_len(leaf
, di
);
4203 if (name_len
<= sizeof(tmp_name
)) {
4204 name_ptr
= tmp_name
;
4206 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4212 read_extent_buffer(leaf
, name_ptr
,
4213 (unsigned long)(di
+ 1), name_len
);
4215 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4216 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4220 q
.hash
= full_name_hash(q
.name
, q
.len
);
4221 tmp
= d_lookup(filp
->f_dentry
, &q
);
4223 struct btrfs_key
*newkey
;
4225 newkey
= kzalloc(sizeof(struct btrfs_key
),
4229 tmp
= d_alloc(filp
->f_dentry
, &q
);
4235 memcpy(newkey
, &location
,
4236 sizeof(struct btrfs_key
));
4237 tmp
->d_fsdata
= newkey
;
4238 tmp
->d_flags
|= DCACHE_NEED_LOOKUP
;
4245 /* is this a reference to our own snapshot? If so
4248 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4249 location
.objectid
== root
->root_key
.objectid
) {
4253 over
= filldir(dirent
, name_ptr
, name_len
,
4254 found_key
.offset
, location
.objectid
,
4258 if (name_ptr
!= tmp_name
)
4263 di_len
= btrfs_dir_name_len(leaf
, di
) +
4264 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4266 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4272 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4275 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4281 /* Reached end of directory/root. Bump pos past the last item. */
4282 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4284 * 32-bit glibc will use getdents64, but then strtol -
4285 * so the last number we can serve is this.
4287 filp
->f_pos
= 0x7fffffff;
4293 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4294 btrfs_put_delayed_items(&ins_list
, &del_list
);
4295 btrfs_free_path(path
);
4299 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4301 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4302 struct btrfs_trans_handle
*trans
;
4304 bool nolock
= false;
4306 if (BTRFS_I(inode
)->dummy_inode
)
4309 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(root
, inode
))
4312 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4314 trans
= btrfs_join_transaction_nolock(root
);
4316 trans
= btrfs_join_transaction(root
);
4318 return PTR_ERR(trans
);
4320 ret
= btrfs_end_transaction_nolock(trans
, root
);
4322 ret
= btrfs_commit_transaction(trans
, root
);
4328 * This is somewhat expensive, updating the tree every time the
4329 * inode changes. But, it is most likely to find the inode in cache.
4330 * FIXME, needs more benchmarking...there are no reasons other than performance
4331 * to keep or drop this code.
4333 void btrfs_dirty_inode(struct inode
*inode
, int flags
)
4335 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4336 struct btrfs_trans_handle
*trans
;
4339 if (BTRFS_I(inode
)->dummy_inode
)
4342 trans
= btrfs_join_transaction(root
);
4343 BUG_ON(IS_ERR(trans
));
4345 ret
= btrfs_update_inode(trans
, root
, inode
);
4346 if (ret
&& ret
== -ENOSPC
) {
4347 /* whoops, lets try again with the full transaction */
4348 btrfs_end_transaction(trans
, root
);
4349 trans
= btrfs_start_transaction(root
, 1);
4350 if (IS_ERR(trans
)) {
4351 printk_ratelimited(KERN_ERR
"btrfs: fail to "
4352 "dirty inode %llu error %ld\n",
4353 (unsigned long long)btrfs_ino(inode
),
4358 ret
= btrfs_update_inode(trans
, root
, inode
);
4360 printk_ratelimited(KERN_ERR
"btrfs: fail to "
4361 "dirty inode %llu error %d\n",
4362 (unsigned long long)btrfs_ino(inode
),
4366 btrfs_end_transaction(trans
, root
);
4367 if (BTRFS_I(inode
)->delayed_node
)
4368 btrfs_balance_delayed_items(root
);
4372 * find the highest existing sequence number in a directory
4373 * and then set the in-memory index_cnt variable to reflect
4374 * free sequence numbers
4376 static int btrfs_set_inode_index_count(struct inode
*inode
)
4378 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4379 struct btrfs_key key
, found_key
;
4380 struct btrfs_path
*path
;
4381 struct extent_buffer
*leaf
;
4384 key
.objectid
= btrfs_ino(inode
);
4385 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4386 key
.offset
= (u64
)-1;
4388 path
= btrfs_alloc_path();
4392 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4395 /* FIXME: we should be able to handle this */
4401 * MAGIC NUMBER EXPLANATION:
4402 * since we search a directory based on f_pos we have to start at 2
4403 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4404 * else has to start at 2
4406 if (path
->slots
[0] == 0) {
4407 BTRFS_I(inode
)->index_cnt
= 2;
4413 leaf
= path
->nodes
[0];
4414 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4416 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4417 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4418 BTRFS_I(inode
)->index_cnt
= 2;
4422 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4424 btrfs_free_path(path
);
4429 * helper to find a free sequence number in a given directory. This current
4430 * code is very simple, later versions will do smarter things in the btree
4432 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4436 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4437 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4439 ret
= btrfs_set_inode_index_count(dir
);
4445 *index
= BTRFS_I(dir
)->index_cnt
;
4446 BTRFS_I(dir
)->index_cnt
++;
4451 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4452 struct btrfs_root
*root
,
4454 const char *name
, int name_len
,
4455 u64 ref_objectid
, u64 objectid
, int mode
,
4458 struct inode
*inode
;
4459 struct btrfs_inode_item
*inode_item
;
4460 struct btrfs_key
*location
;
4461 struct btrfs_path
*path
;
4462 struct btrfs_inode_ref
*ref
;
4463 struct btrfs_key key
[2];
4469 path
= btrfs_alloc_path();
4471 return ERR_PTR(-ENOMEM
);
4473 inode
= new_inode(root
->fs_info
->sb
);
4475 btrfs_free_path(path
);
4476 return ERR_PTR(-ENOMEM
);
4480 * we have to initialize this early, so we can reclaim the inode
4481 * number if we fail afterwards in this function.
4483 inode
->i_ino
= objectid
;
4486 trace_btrfs_inode_request(dir
);
4488 ret
= btrfs_set_inode_index(dir
, index
);
4490 btrfs_free_path(path
);
4492 return ERR_PTR(ret
);
4496 * index_cnt is ignored for everything but a dir,
4497 * btrfs_get_inode_index_count has an explanation for the magic
4500 BTRFS_I(inode
)->index_cnt
= 2;
4501 BTRFS_I(inode
)->root
= root
;
4502 BTRFS_I(inode
)->generation
= trans
->transid
;
4503 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4504 btrfs_set_inode_space_info(root
, inode
);
4511 key
[0].objectid
= objectid
;
4512 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4515 key
[1].objectid
= objectid
;
4516 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4517 key
[1].offset
= ref_objectid
;
4519 sizes
[0] = sizeof(struct btrfs_inode_item
);
4520 sizes
[1] = name_len
+ sizeof(*ref
);
4522 path
->leave_spinning
= 1;
4523 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4527 inode_init_owner(inode
, dir
, mode
);
4528 inode_set_bytes(inode
, 0);
4529 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4530 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4531 struct btrfs_inode_item
);
4532 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4534 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4535 struct btrfs_inode_ref
);
4536 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4537 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4538 ptr
= (unsigned long)(ref
+ 1);
4539 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4541 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4542 btrfs_free_path(path
);
4544 location
= &BTRFS_I(inode
)->location
;
4545 location
->objectid
= objectid
;
4546 location
->offset
= 0;
4547 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4549 btrfs_inherit_iflags(inode
, dir
);
4551 if (S_ISREG(mode
)) {
4552 if (btrfs_test_opt(root
, NODATASUM
))
4553 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4554 if (btrfs_test_opt(root
, NODATACOW
) ||
4555 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4556 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4559 insert_inode_hash(inode
);
4560 inode_tree_add(inode
);
4562 trace_btrfs_inode_new(inode
);
4563 btrfs_set_inode_last_trans(trans
, inode
);
4568 BTRFS_I(dir
)->index_cnt
--;
4569 btrfs_free_path(path
);
4571 return ERR_PTR(ret
);
4574 static inline u8
btrfs_inode_type(struct inode
*inode
)
4576 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4580 * utility function to add 'inode' into 'parent_inode' with
4581 * a give name and a given sequence number.
4582 * if 'add_backref' is true, also insert a backref from the
4583 * inode to the parent directory.
4585 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4586 struct inode
*parent_inode
, struct inode
*inode
,
4587 const char *name
, int name_len
, int add_backref
, u64 index
)
4590 struct btrfs_key key
;
4591 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4592 u64 ino
= btrfs_ino(inode
);
4593 u64 parent_ino
= btrfs_ino(parent_inode
);
4595 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4596 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4599 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4603 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4604 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4605 key
.objectid
, root
->root_key
.objectid
,
4606 parent_ino
, index
, name
, name_len
);
4607 } else if (add_backref
) {
4608 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4613 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4615 btrfs_inode_type(inode
), index
);
4618 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4620 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4621 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4626 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4627 struct inode
*dir
, struct dentry
*dentry
,
4628 struct inode
*inode
, int backref
, u64 index
)
4630 int err
= btrfs_add_link(trans
, dir
, inode
,
4631 dentry
->d_name
.name
, dentry
->d_name
.len
,
4634 d_instantiate(dentry
, inode
);
4642 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4643 int mode
, dev_t rdev
)
4645 struct btrfs_trans_handle
*trans
;
4646 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4647 struct inode
*inode
= NULL
;
4651 unsigned long nr
= 0;
4654 if (!new_valid_dev(rdev
))
4658 * 2 for inode item and ref
4660 * 1 for xattr if selinux is on
4662 trans
= btrfs_start_transaction(root
, 5);
4664 return PTR_ERR(trans
);
4666 err
= btrfs_find_free_ino(root
, &objectid
);
4670 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4671 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4673 if (IS_ERR(inode
)) {
4674 err
= PTR_ERR(inode
);
4678 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4684 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4688 inode
->i_op
= &btrfs_special_inode_operations
;
4689 init_special_inode(inode
, inode
->i_mode
, rdev
);
4690 btrfs_update_inode(trans
, root
, inode
);
4693 nr
= trans
->blocks_used
;
4694 btrfs_end_transaction_throttle(trans
, root
);
4695 btrfs_btree_balance_dirty(root
, nr
);
4697 inode_dec_link_count(inode
);
4703 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4704 int mode
, struct nameidata
*nd
)
4706 struct btrfs_trans_handle
*trans
;
4707 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4708 struct inode
*inode
= NULL
;
4711 unsigned long nr
= 0;
4716 * 2 for inode item and ref
4718 * 1 for xattr if selinux is on
4720 trans
= btrfs_start_transaction(root
, 5);
4722 return PTR_ERR(trans
);
4724 err
= btrfs_find_free_ino(root
, &objectid
);
4728 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4729 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4731 if (IS_ERR(inode
)) {
4732 err
= PTR_ERR(inode
);
4736 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4742 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4746 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4747 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4748 inode
->i_fop
= &btrfs_file_operations
;
4749 inode
->i_op
= &btrfs_file_inode_operations
;
4750 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4753 nr
= trans
->blocks_used
;
4754 btrfs_end_transaction_throttle(trans
, root
);
4756 inode_dec_link_count(inode
);
4759 btrfs_btree_balance_dirty(root
, nr
);
4763 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4764 struct dentry
*dentry
)
4766 struct btrfs_trans_handle
*trans
;
4767 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4768 struct inode
*inode
= old_dentry
->d_inode
;
4770 unsigned long nr
= 0;
4774 /* do not allow sys_link's with other subvols of the same device */
4775 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4778 if (inode
->i_nlink
== ~0U)
4781 err
= btrfs_set_inode_index(dir
, &index
);
4786 * 2 items for inode and inode ref
4787 * 2 items for dir items
4788 * 1 item for parent inode
4790 trans
= btrfs_start_transaction(root
, 5);
4791 if (IS_ERR(trans
)) {
4792 err
= PTR_ERR(trans
);
4796 btrfs_inc_nlink(inode
);
4797 inode
->i_ctime
= CURRENT_TIME
;
4800 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4805 struct dentry
*parent
= dentry
->d_parent
;
4806 err
= btrfs_update_inode(trans
, root
, inode
);
4808 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4811 nr
= trans
->blocks_used
;
4812 btrfs_end_transaction_throttle(trans
, root
);
4815 inode_dec_link_count(inode
);
4818 btrfs_btree_balance_dirty(root
, nr
);
4822 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4824 struct inode
*inode
= NULL
;
4825 struct btrfs_trans_handle
*trans
;
4826 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4828 int drop_on_err
= 0;
4831 unsigned long nr
= 1;
4834 * 2 items for inode and ref
4835 * 2 items for dir items
4836 * 1 for xattr if selinux is on
4838 trans
= btrfs_start_transaction(root
, 5);
4840 return PTR_ERR(trans
);
4842 err
= btrfs_find_free_ino(root
, &objectid
);
4846 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4847 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4848 S_IFDIR
| mode
, &index
);
4849 if (IS_ERR(inode
)) {
4850 err
= PTR_ERR(inode
);
4856 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4860 inode
->i_op
= &btrfs_dir_inode_operations
;
4861 inode
->i_fop
= &btrfs_dir_file_operations
;
4863 btrfs_i_size_write(inode
, 0);
4864 err
= btrfs_update_inode(trans
, root
, inode
);
4868 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4869 dentry
->d_name
.len
, 0, index
);
4873 d_instantiate(dentry
, inode
);
4877 nr
= trans
->blocks_used
;
4878 btrfs_end_transaction_throttle(trans
, root
);
4881 btrfs_btree_balance_dirty(root
, nr
);
4885 /* helper for btfs_get_extent. Given an existing extent in the tree,
4886 * and an extent that you want to insert, deal with overlap and insert
4887 * the new extent into the tree.
4889 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4890 struct extent_map
*existing
,
4891 struct extent_map
*em
,
4892 u64 map_start
, u64 map_len
)
4896 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4897 start_diff
= map_start
- em
->start
;
4898 em
->start
= map_start
;
4900 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4901 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4902 em
->block_start
+= start_diff
;
4903 em
->block_len
-= start_diff
;
4905 return add_extent_mapping(em_tree
, em
);
4908 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4909 struct inode
*inode
, struct page
*page
,
4910 size_t pg_offset
, u64 extent_offset
,
4911 struct btrfs_file_extent_item
*item
)
4914 struct extent_buffer
*leaf
= path
->nodes
[0];
4917 unsigned long inline_size
;
4921 WARN_ON(pg_offset
!= 0);
4922 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4923 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4924 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4925 btrfs_item_nr(leaf
, path
->slots
[0]));
4926 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4929 ptr
= btrfs_file_extent_inline_start(item
);
4931 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4933 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4934 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4935 extent_offset
, inline_size
, max_size
);
4937 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4938 unsigned long copy_size
= min_t(u64
,
4939 PAGE_CACHE_SIZE
- pg_offset
,
4940 max_size
- extent_offset
);
4941 memset(kaddr
+ pg_offset
, 0, copy_size
);
4942 kunmap_atomic(kaddr
, KM_USER0
);
4949 * a bit scary, this does extent mapping from logical file offset to the disk.
4950 * the ugly parts come from merging extents from the disk with the in-ram
4951 * representation. This gets more complex because of the data=ordered code,
4952 * where the in-ram extents might be locked pending data=ordered completion.
4954 * This also copies inline extents directly into the page.
4957 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4958 size_t pg_offset
, u64 start
, u64 len
,
4964 u64 extent_start
= 0;
4966 u64 objectid
= btrfs_ino(inode
);
4968 struct btrfs_path
*path
= NULL
;
4969 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4970 struct btrfs_file_extent_item
*item
;
4971 struct extent_buffer
*leaf
;
4972 struct btrfs_key found_key
;
4973 struct extent_map
*em
= NULL
;
4974 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4975 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4976 struct btrfs_trans_handle
*trans
= NULL
;
4980 read_lock(&em_tree
->lock
);
4981 em
= lookup_extent_mapping(em_tree
, start
, len
);
4983 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4984 read_unlock(&em_tree
->lock
);
4987 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4988 free_extent_map(em
);
4989 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4990 free_extent_map(em
);
4994 em
= alloc_extent_map();
4999 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5000 em
->start
= EXTENT_MAP_HOLE
;
5001 em
->orig_start
= EXTENT_MAP_HOLE
;
5003 em
->block_len
= (u64
)-1;
5006 path
= btrfs_alloc_path();
5012 * Chances are we'll be called again, so go ahead and do
5018 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5019 objectid
, start
, trans
!= NULL
);
5026 if (path
->slots
[0] == 0)
5031 leaf
= path
->nodes
[0];
5032 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5033 struct btrfs_file_extent_item
);
5034 /* are we inside the extent that was found? */
5035 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5036 found_type
= btrfs_key_type(&found_key
);
5037 if (found_key
.objectid
!= objectid
||
5038 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5042 found_type
= btrfs_file_extent_type(leaf
, item
);
5043 extent_start
= found_key
.offset
;
5044 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5045 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5046 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5047 extent_end
= extent_start
+
5048 btrfs_file_extent_num_bytes(leaf
, item
);
5049 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5051 size
= btrfs_file_extent_inline_len(leaf
, item
);
5052 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5053 ~((u64
)root
->sectorsize
- 1);
5056 if (start
>= extent_end
) {
5058 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5059 ret
= btrfs_next_leaf(root
, path
);
5066 leaf
= path
->nodes
[0];
5068 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5069 if (found_key
.objectid
!= objectid
||
5070 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5072 if (start
+ len
<= found_key
.offset
)
5075 em
->len
= found_key
.offset
- start
;
5079 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5080 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5081 em
->start
= extent_start
;
5082 em
->len
= extent_end
- extent_start
;
5083 em
->orig_start
= extent_start
-
5084 btrfs_file_extent_offset(leaf
, item
);
5085 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5087 em
->block_start
= EXTENT_MAP_HOLE
;
5090 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5091 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5092 em
->compress_type
= compress_type
;
5093 em
->block_start
= bytenr
;
5094 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5097 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5098 em
->block_start
= bytenr
;
5099 em
->block_len
= em
->len
;
5100 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5101 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5104 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5108 size_t extent_offset
;
5111 em
->block_start
= EXTENT_MAP_INLINE
;
5112 if (!page
|| create
) {
5113 em
->start
= extent_start
;
5114 em
->len
= extent_end
- extent_start
;
5118 size
= btrfs_file_extent_inline_len(leaf
, item
);
5119 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5120 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5121 size
- extent_offset
);
5122 em
->start
= extent_start
+ extent_offset
;
5123 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5124 ~((u64
)root
->sectorsize
- 1);
5125 em
->orig_start
= EXTENT_MAP_INLINE
;
5126 if (compress_type
) {
5127 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5128 em
->compress_type
= compress_type
;
5130 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5131 if (create
== 0 && !PageUptodate(page
)) {
5132 if (btrfs_file_extent_compression(leaf
, item
) !=
5133 BTRFS_COMPRESS_NONE
) {
5134 ret
= uncompress_inline(path
, inode
, page
,
5136 extent_offset
, item
);
5140 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5142 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5143 memset(map
+ pg_offset
+ copy_size
, 0,
5144 PAGE_CACHE_SIZE
- pg_offset
-
5149 flush_dcache_page(page
);
5150 } else if (create
&& PageUptodate(page
)) {
5154 free_extent_map(em
);
5157 btrfs_release_path(path
);
5158 trans
= btrfs_join_transaction(root
);
5161 return ERR_CAST(trans
);
5165 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5168 btrfs_mark_buffer_dirty(leaf
);
5170 set_extent_uptodate(io_tree
, em
->start
,
5171 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5174 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5181 em
->block_start
= EXTENT_MAP_HOLE
;
5182 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5184 btrfs_release_path(path
);
5185 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5186 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5187 "[%llu %llu]\n", (unsigned long long)em
->start
,
5188 (unsigned long long)em
->len
,
5189 (unsigned long long)start
,
5190 (unsigned long long)len
);
5196 write_lock(&em_tree
->lock
);
5197 ret
= add_extent_mapping(em_tree
, em
);
5198 /* it is possible that someone inserted the extent into the tree
5199 * while we had the lock dropped. It is also possible that
5200 * an overlapping map exists in the tree
5202 if (ret
== -EEXIST
) {
5203 struct extent_map
*existing
;
5207 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5208 if (existing
&& (existing
->start
> start
||
5209 existing
->start
+ existing
->len
<= start
)) {
5210 free_extent_map(existing
);
5214 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5217 err
= merge_extent_mapping(em_tree
, existing
,
5220 free_extent_map(existing
);
5222 free_extent_map(em
);
5227 free_extent_map(em
);
5231 free_extent_map(em
);
5236 write_unlock(&em_tree
->lock
);
5239 trace_btrfs_get_extent(root
, em
);
5242 btrfs_free_path(path
);
5244 ret
= btrfs_end_transaction(trans
, root
);
5249 free_extent_map(em
);
5250 return ERR_PTR(err
);
5255 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5256 size_t pg_offset
, u64 start
, u64 len
,
5259 struct extent_map
*em
;
5260 struct extent_map
*hole_em
= NULL
;
5261 u64 range_start
= start
;
5267 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5272 * if our em maps to a hole, there might
5273 * actually be delalloc bytes behind it
5275 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5281 /* check to see if we've wrapped (len == -1 or similar) */
5290 /* ok, we didn't find anything, lets look for delalloc */
5291 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5292 end
, len
, EXTENT_DELALLOC
, 1);
5293 found_end
= range_start
+ found
;
5294 if (found_end
< range_start
)
5295 found_end
= (u64
)-1;
5298 * we didn't find anything useful, return
5299 * the original results from get_extent()
5301 if (range_start
> end
|| found_end
<= start
) {
5307 /* adjust the range_start to make sure it doesn't
5308 * go backwards from the start they passed in
5310 range_start
= max(start
,range_start
);
5311 found
= found_end
- range_start
;
5314 u64 hole_start
= start
;
5317 em
= alloc_extent_map();
5323 * when btrfs_get_extent can't find anything it
5324 * returns one huge hole
5326 * make sure what it found really fits our range, and
5327 * adjust to make sure it is based on the start from
5331 u64 calc_end
= extent_map_end(hole_em
);
5333 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5334 free_extent_map(hole_em
);
5337 hole_start
= max(hole_em
->start
, start
);
5338 hole_len
= calc_end
- hole_start
;
5342 if (hole_em
&& range_start
> hole_start
) {
5343 /* our hole starts before our delalloc, so we
5344 * have to return just the parts of the hole
5345 * that go until the delalloc starts
5347 em
->len
= min(hole_len
,
5348 range_start
- hole_start
);
5349 em
->start
= hole_start
;
5350 em
->orig_start
= hole_start
;
5352 * don't adjust block start at all,
5353 * it is fixed at EXTENT_MAP_HOLE
5355 em
->block_start
= hole_em
->block_start
;
5356 em
->block_len
= hole_len
;
5358 em
->start
= range_start
;
5360 em
->orig_start
= range_start
;
5361 em
->block_start
= EXTENT_MAP_DELALLOC
;
5362 em
->block_len
= found
;
5364 } else if (hole_em
) {
5369 free_extent_map(hole_em
);
5371 free_extent_map(em
);
5372 return ERR_PTR(err
);
5377 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5378 struct extent_map
*em
,
5381 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5382 struct btrfs_trans_handle
*trans
;
5383 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5384 struct btrfs_key ins
;
5387 bool insert
= false;
5390 * Ok if the extent map we looked up is a hole and is for the exact
5391 * range we want, there is no reason to allocate a new one, however if
5392 * it is not right then we need to free this one and drop the cache for
5395 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5397 free_extent_map(em
);
5400 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5403 trans
= btrfs_join_transaction(root
);
5405 return ERR_CAST(trans
);
5407 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5408 btrfs_add_inode_defrag(trans
, inode
);
5410 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5412 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5413 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5414 alloc_hint
, (u64
)-1, &ins
, 1);
5421 em
= alloc_extent_map();
5423 em
= ERR_PTR(-ENOMEM
);
5429 em
->orig_start
= em
->start
;
5430 em
->len
= ins
.offset
;
5432 em
->block_start
= ins
.objectid
;
5433 em
->block_len
= ins
.offset
;
5434 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5437 * We need to do this because if we're using the original em we searched
5438 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5441 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5444 write_lock(&em_tree
->lock
);
5445 ret
= add_extent_mapping(em_tree
, em
);
5446 write_unlock(&em_tree
->lock
);
5449 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5452 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5453 ins
.offset
, ins
.offset
, 0);
5455 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5459 btrfs_end_transaction(trans
, root
);
5464 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5465 * block must be cow'd
5467 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5468 struct inode
*inode
, u64 offset
, u64 len
)
5470 struct btrfs_path
*path
;
5472 struct extent_buffer
*leaf
;
5473 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5474 struct btrfs_file_extent_item
*fi
;
5475 struct btrfs_key key
;
5483 path
= btrfs_alloc_path();
5487 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5492 slot
= path
->slots
[0];
5495 /* can't find the item, must cow */
5502 leaf
= path
->nodes
[0];
5503 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5504 if (key
.objectid
!= btrfs_ino(inode
) ||
5505 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5506 /* not our file or wrong item type, must cow */
5510 if (key
.offset
> offset
) {
5511 /* Wrong offset, must cow */
5515 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5516 found_type
= btrfs_file_extent_type(leaf
, fi
);
5517 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5518 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5519 /* not a regular extent, must cow */
5522 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5523 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5525 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5526 if (extent_end
< offset
+ len
) {
5527 /* extent doesn't include our full range, must cow */
5531 if (btrfs_extent_readonly(root
, disk_bytenr
))
5535 * look for other files referencing this extent, if we
5536 * find any we must cow
5538 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5539 key
.offset
- backref_offset
, disk_bytenr
))
5543 * adjust disk_bytenr and num_bytes to cover just the bytes
5544 * in this extent we are about to write. If there
5545 * are any csums in that range we have to cow in order
5546 * to keep the csums correct
5548 disk_bytenr
+= backref_offset
;
5549 disk_bytenr
+= offset
- key
.offset
;
5550 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5551 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5554 * all of the above have passed, it is safe to overwrite this extent
5559 btrfs_free_path(path
);
5563 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5564 struct buffer_head
*bh_result
, int create
)
5566 struct extent_map
*em
;
5567 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5568 u64 start
= iblock
<< inode
->i_blkbits
;
5569 u64 len
= bh_result
->b_size
;
5570 struct btrfs_trans_handle
*trans
;
5572 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5577 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5578 * io. INLINE is special, and we could probably kludge it in here, but
5579 * it's still buffered so for safety lets just fall back to the generic
5582 * For COMPRESSED we _have_ to read the entire extent in so we can
5583 * decompress it, so there will be buffering required no matter what we
5584 * do, so go ahead and fallback to buffered.
5586 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5587 * to buffered IO. Don't blame me, this is the price we pay for using
5590 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5591 em
->block_start
== EXTENT_MAP_INLINE
) {
5592 free_extent_map(em
);
5596 /* Just a good old fashioned hole, return */
5597 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5598 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5599 free_extent_map(em
);
5600 /* DIO will do one hole at a time, so just unlock a sector */
5601 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5602 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5607 * We don't allocate a new extent in the following cases
5609 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5611 * 2) The extent is marked as PREALLOC. We're good to go here and can
5612 * just use the extent.
5616 len
= em
->len
- (start
- em
->start
);
5620 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5621 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5622 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5627 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5628 type
= BTRFS_ORDERED_PREALLOC
;
5630 type
= BTRFS_ORDERED_NOCOW
;
5631 len
= min(len
, em
->len
- (start
- em
->start
));
5632 block_start
= em
->block_start
+ (start
- em
->start
);
5635 * we're not going to log anything, but we do need
5636 * to make sure the current transaction stays open
5637 * while we look for nocow cross refs
5639 trans
= btrfs_join_transaction(root
);
5643 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5644 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5645 block_start
, len
, len
, type
);
5646 btrfs_end_transaction(trans
, root
);
5648 free_extent_map(em
);
5653 btrfs_end_transaction(trans
, root
);
5657 * this will cow the extent, reset the len in case we changed
5660 len
= bh_result
->b_size
;
5661 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5664 len
= min(len
, em
->len
- (start
- em
->start
));
5666 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5667 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5670 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5672 bh_result
->b_size
= len
;
5673 bh_result
->b_bdev
= em
->bdev
;
5674 set_buffer_mapped(bh_result
);
5675 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5676 set_buffer_new(bh_result
);
5678 free_extent_map(em
);
5683 struct btrfs_dio_private
{
5684 struct inode
*inode
;
5691 /* number of bios pending for this dio */
5692 atomic_t pending_bios
;
5697 struct bio
*orig_bio
;
5700 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5702 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5703 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5704 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5705 struct inode
*inode
= dip
->inode
;
5706 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5708 u32
*private = dip
->csums
;
5710 start
= dip
->logical_offset
;
5712 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5713 struct page
*page
= bvec
->bv_page
;
5716 unsigned long flags
;
5718 local_irq_save(flags
);
5719 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5720 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5721 csum
, bvec
->bv_len
);
5722 btrfs_csum_final(csum
, (char *)&csum
);
5723 kunmap_atomic(kaddr
, KM_IRQ0
);
5724 local_irq_restore(flags
);
5726 flush_dcache_page(bvec
->bv_page
);
5727 if (csum
!= *private) {
5728 printk(KERN_ERR
"btrfs csum failed ino %llu off"
5729 " %llu csum %u private %u\n",
5730 (unsigned long long)btrfs_ino(inode
),
5731 (unsigned long long)start
,
5737 start
+= bvec
->bv_len
;
5740 } while (bvec
<= bvec_end
);
5742 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5743 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5744 bio
->bi_private
= dip
->private;
5749 /* If we had a csum failure make sure to clear the uptodate flag */
5751 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5752 dio_end_io(bio
, err
);
5755 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5757 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5758 struct inode
*inode
= dip
->inode
;
5759 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5760 struct btrfs_trans_handle
*trans
;
5761 struct btrfs_ordered_extent
*ordered
= NULL
;
5762 struct extent_state
*cached_state
= NULL
;
5763 u64 ordered_offset
= dip
->logical_offset
;
5764 u64 ordered_bytes
= dip
->bytes
;
5770 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5778 trans
= btrfs_join_transaction(root
);
5779 if (IS_ERR(trans
)) {
5783 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5785 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5786 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5788 ret
= btrfs_update_inode(trans
, root
, inode
);
5793 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5794 ordered
->file_offset
+ ordered
->len
- 1, 0,
5795 &cached_state
, GFP_NOFS
);
5797 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5798 ret
= btrfs_mark_extent_written(trans
, inode
,
5799 ordered
->file_offset
,
5800 ordered
->file_offset
+
5807 ret
= insert_reserved_file_extent(trans
, inode
,
5808 ordered
->file_offset
,
5814 BTRFS_FILE_EXTENT_REG
);
5815 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5816 ordered
->file_offset
, ordered
->len
);
5824 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5825 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5827 btrfs_update_inode(trans
, root
, inode
);
5830 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5831 ordered
->file_offset
+ ordered
->len
- 1,
5832 &cached_state
, GFP_NOFS
);
5834 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5835 btrfs_end_transaction(trans
, root
);
5836 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5837 btrfs_put_ordered_extent(ordered
);
5838 btrfs_put_ordered_extent(ordered
);
5842 * our bio might span multiple ordered extents. If we haven't
5843 * completed the accounting for the whole dio, go back and try again
5845 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5846 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5851 bio
->bi_private
= dip
->private;
5856 /* If we had an error make sure to clear the uptodate flag */
5858 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5859 dio_end_io(bio
, err
);
5862 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5863 struct bio
*bio
, int mirror_num
,
5864 unsigned long bio_flags
, u64 offset
)
5867 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5868 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5873 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5875 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5878 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
5879 "sector %#Lx len %u err no %d\n",
5880 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
5881 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5885 * before atomic variable goto zero, we must make sure
5886 * dip->errors is perceived to be set.
5888 smp_mb__before_atomic_dec();
5891 /* if there are more bios still pending for this dio, just exit */
5892 if (!atomic_dec_and_test(&dip
->pending_bios
))
5896 bio_io_error(dip
->orig_bio
);
5898 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5899 bio_endio(dip
->orig_bio
, 0);
5905 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5906 u64 first_sector
, gfp_t gfp_flags
)
5908 int nr_vecs
= bio_get_nr_vecs(bdev
);
5909 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5912 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5913 int rw
, u64 file_offset
, int skip_sum
,
5914 u32
*csums
, int async_submit
)
5916 int write
= rw
& REQ_WRITE
;
5917 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5921 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5928 if (write
&& async_submit
) {
5929 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5930 inode
, rw
, bio
, 0, 0,
5932 __btrfs_submit_bio_start_direct_io
,
5933 __btrfs_submit_bio_done
);
5937 * If we aren't doing async submit, calculate the csum of the
5940 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
5943 } else if (!skip_sum
) {
5944 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5945 file_offset
, csums
);
5951 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
5957 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5960 struct inode
*inode
= dip
->inode
;
5961 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5962 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5964 struct bio
*orig_bio
= dip
->orig_bio
;
5965 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5966 u64 start_sector
= orig_bio
->bi_sector
;
5967 u64 file_offset
= dip
->logical_offset
;
5971 u32
*csums
= dip
->csums
;
5973 int async_submit
= 0;
5974 int write
= rw
& REQ_WRITE
;
5976 map_length
= orig_bio
->bi_size
;
5977 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5978 &map_length
, NULL
, 0);
5984 if (map_length
>= orig_bio
->bi_size
) {
5990 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5993 bio
->bi_private
= dip
;
5994 bio
->bi_end_io
= btrfs_end_dio_bio
;
5995 atomic_inc(&dip
->pending_bios
);
5997 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5998 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5999 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6000 bvec
->bv_offset
) < bvec
->bv_len
)) {
6002 * inc the count before we submit the bio so
6003 * we know the end IO handler won't happen before
6004 * we inc the count. Otherwise, the dip might get freed
6005 * before we're done setting it up
6007 atomic_inc(&dip
->pending_bios
);
6008 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6009 file_offset
, skip_sum
,
6010 csums
, async_submit
);
6013 atomic_dec(&dip
->pending_bios
);
6017 /* Write's use the ordered csums */
6018 if (!write
&& !skip_sum
)
6019 csums
= csums
+ nr_pages
;
6020 start_sector
+= submit_len
>> 9;
6021 file_offset
+= submit_len
;
6026 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6027 start_sector
, GFP_NOFS
);
6030 bio
->bi_private
= dip
;
6031 bio
->bi_end_io
= btrfs_end_dio_bio
;
6033 map_length
= orig_bio
->bi_size
;
6034 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6035 &map_length
, NULL
, 0);
6041 submit_len
+= bvec
->bv_len
;
6048 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6049 csums
, async_submit
);
6057 * before atomic variable goto zero, we must
6058 * make sure dip->errors is perceived to be set.
6060 smp_mb__before_atomic_dec();
6061 if (atomic_dec_and_test(&dip
->pending_bios
))
6062 bio_io_error(dip
->orig_bio
);
6064 /* bio_end_io() will handle error, so we needn't return it */
6068 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6071 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6072 struct btrfs_dio_private
*dip
;
6073 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6075 int write
= rw
& REQ_WRITE
;
6078 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6080 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6087 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6088 if (!write
&& !skip_sum
) {
6089 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6097 dip
->private = bio
->bi_private
;
6099 dip
->logical_offset
= file_offset
;
6103 dip
->bytes
+= bvec
->bv_len
;
6105 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6107 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6108 bio
->bi_private
= dip
;
6110 dip
->orig_bio
= bio
;
6111 atomic_set(&dip
->pending_bios
, 0);
6114 bio
->bi_end_io
= btrfs_endio_direct_write
;
6116 bio
->bi_end_io
= btrfs_endio_direct_read
;
6118 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6123 * If this is a write, we need to clean up the reserved space and kill
6124 * the ordered extent.
6127 struct btrfs_ordered_extent
*ordered
;
6128 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6129 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6130 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6131 btrfs_free_reserved_extent(root
, ordered
->start
,
6133 btrfs_put_ordered_extent(ordered
);
6134 btrfs_put_ordered_extent(ordered
);
6136 bio_endio(bio
, ret
);
6139 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6140 const struct iovec
*iov
, loff_t offset
,
6141 unsigned long nr_segs
)
6147 unsigned blocksize_mask
= root
->sectorsize
- 1;
6148 ssize_t retval
= -EINVAL
;
6149 loff_t end
= offset
;
6151 if (offset
& blocksize_mask
)
6154 /* Check the memory alignment. Blocks cannot straddle pages */
6155 for (seg
= 0; seg
< nr_segs
; seg
++) {
6156 addr
= (unsigned long)iov
[seg
].iov_base
;
6157 size
= iov
[seg
].iov_len
;
6159 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6162 /* If this is a write we don't need to check anymore */
6167 * Check to make sure we don't have duplicate iov_base's in this
6168 * iovec, if so return EINVAL, otherwise we'll get csum errors
6169 * when reading back.
6171 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6172 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6180 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6181 const struct iovec
*iov
, loff_t offset
,
6182 unsigned long nr_segs
)
6184 struct file
*file
= iocb
->ki_filp
;
6185 struct inode
*inode
= file
->f_mapping
->host
;
6186 struct btrfs_ordered_extent
*ordered
;
6187 struct extent_state
*cached_state
= NULL
;
6188 u64 lockstart
, lockend
;
6190 int writing
= rw
& WRITE
;
6192 size_t count
= iov_length(iov
, nr_segs
);
6194 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6200 lockend
= offset
+ count
- 1;
6203 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6209 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6210 0, &cached_state
, GFP_NOFS
);
6212 * We're concerned with the entire range that we're going to be
6213 * doing DIO to, so we need to make sure theres no ordered
6214 * extents in this range.
6216 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6217 lockend
- lockstart
+ 1);
6220 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6221 &cached_state
, GFP_NOFS
);
6222 btrfs_start_ordered_extent(inode
, ordered
, 1);
6223 btrfs_put_ordered_extent(ordered
);
6228 * we don't use btrfs_set_extent_delalloc because we don't want
6229 * the dirty or uptodate bits
6232 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6233 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6234 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6237 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6238 lockend
, EXTENT_LOCKED
| write_bits
,
6239 1, 0, &cached_state
, GFP_NOFS
);
6244 free_extent_state(cached_state
);
6245 cached_state
= NULL
;
6247 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6248 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6249 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6250 btrfs_submit_direct
, 0);
6252 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6253 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6254 offset
+ iov_length(iov
, nr_segs
) - 1,
6255 EXTENT_LOCKED
| write_bits
, 1, 0,
6256 &cached_state
, GFP_NOFS
);
6257 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6259 * We're falling back to buffered, unlock the section we didn't
6262 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6263 offset
+ iov_length(iov
, nr_segs
) - 1,
6264 EXTENT_LOCKED
| write_bits
, 1, 0,
6265 &cached_state
, GFP_NOFS
);
6268 free_extent_state(cached_state
);
6272 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6273 __u64 start
, __u64 len
)
6275 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6278 int btrfs_readpage(struct file
*file
, struct page
*page
)
6280 struct extent_io_tree
*tree
;
6281 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6282 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6285 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6287 struct extent_io_tree
*tree
;
6290 if (current
->flags
& PF_MEMALLOC
) {
6291 redirty_page_for_writepage(wbc
, page
);
6295 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6296 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6299 int btrfs_writepages(struct address_space
*mapping
,
6300 struct writeback_control
*wbc
)
6302 struct extent_io_tree
*tree
;
6304 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6305 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6309 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6310 struct list_head
*pages
, unsigned nr_pages
)
6312 struct extent_io_tree
*tree
;
6313 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6314 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6317 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6319 struct extent_io_tree
*tree
;
6320 struct extent_map_tree
*map
;
6323 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6324 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6325 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6327 ClearPagePrivate(page
);
6328 set_page_private(page
, 0);
6329 page_cache_release(page
);
6334 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6336 if (PageWriteback(page
) || PageDirty(page
))
6338 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6341 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6343 struct extent_io_tree
*tree
;
6344 struct btrfs_ordered_extent
*ordered
;
6345 struct extent_state
*cached_state
= NULL
;
6346 u64 page_start
= page_offset(page
);
6347 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6351 * we have the page locked, so new writeback can't start,
6352 * and the dirty bit won't be cleared while we are here.
6354 * Wait for IO on this page so that we can safely clear
6355 * the PagePrivate2 bit and do ordered accounting
6357 wait_on_page_writeback(page
);
6359 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6361 btrfs_releasepage(page
, GFP_NOFS
);
6364 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6366 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6370 * IO on this page will never be started, so we need
6371 * to account for any ordered extents now
6373 clear_extent_bit(tree
, page_start
, page_end
,
6374 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6375 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6376 &cached_state
, GFP_NOFS
);
6378 * whoever cleared the private bit is responsible
6379 * for the finish_ordered_io
6381 if (TestClearPagePrivate2(page
)) {
6382 btrfs_finish_ordered_io(page
->mapping
->host
,
6383 page_start
, page_end
);
6385 btrfs_put_ordered_extent(ordered
);
6386 cached_state
= NULL
;
6387 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6390 clear_extent_bit(tree
, page_start
, page_end
,
6391 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6392 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6393 __btrfs_releasepage(page
, GFP_NOFS
);
6395 ClearPageChecked(page
);
6396 if (PagePrivate(page
)) {
6397 ClearPagePrivate(page
);
6398 set_page_private(page
, 0);
6399 page_cache_release(page
);
6404 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6405 * called from a page fault handler when a page is first dirtied. Hence we must
6406 * be careful to check for EOF conditions here. We set the page up correctly
6407 * for a written page which means we get ENOSPC checking when writing into
6408 * holes and correct delalloc and unwritten extent mapping on filesystems that
6409 * support these features.
6411 * We are not allowed to take the i_mutex here so we have to play games to
6412 * protect against truncate races as the page could now be beyond EOF. Because
6413 * vmtruncate() writes the inode size before removing pages, once we have the
6414 * page lock we can determine safely if the page is beyond EOF. If it is not
6415 * beyond EOF, then the page is guaranteed safe against truncation until we
6418 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6420 struct page
*page
= vmf
->page
;
6421 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6422 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6423 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6424 struct btrfs_ordered_extent
*ordered
;
6425 struct extent_state
*cached_state
= NULL
;
6427 unsigned long zero_start
;
6433 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6437 else /* -ENOSPC, -EIO, etc */
6438 ret
= VM_FAULT_SIGBUS
;
6442 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6445 size
= i_size_read(inode
);
6446 page_start
= page_offset(page
);
6447 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6449 if ((page
->mapping
!= inode
->i_mapping
) ||
6450 (page_start
>= size
)) {
6451 /* page got truncated out from underneath us */
6454 wait_on_page_writeback(page
);
6456 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6458 set_page_extent_mapped(page
);
6461 * we can't set the delalloc bits if there are pending ordered
6462 * extents. Drop our locks and wait for them to finish
6464 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6466 unlock_extent_cached(io_tree
, page_start
, page_end
,
6467 &cached_state
, GFP_NOFS
);
6469 btrfs_start_ordered_extent(inode
, ordered
, 1);
6470 btrfs_put_ordered_extent(ordered
);
6475 * XXX - page_mkwrite gets called every time the page is dirtied, even
6476 * if it was already dirty, so for space accounting reasons we need to
6477 * clear any delalloc bits for the range we are fixing to save. There
6478 * is probably a better way to do this, but for now keep consistent with
6479 * prepare_pages in the normal write path.
6481 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6482 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6483 0, 0, &cached_state
, GFP_NOFS
);
6485 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6488 unlock_extent_cached(io_tree
, page_start
, page_end
,
6489 &cached_state
, GFP_NOFS
);
6490 ret
= VM_FAULT_SIGBUS
;
6495 /* page is wholly or partially inside EOF */
6496 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6497 zero_start
= size
& ~PAGE_CACHE_MASK
;
6499 zero_start
= PAGE_CACHE_SIZE
;
6501 if (zero_start
!= PAGE_CACHE_SIZE
) {
6503 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6504 flush_dcache_page(page
);
6507 ClearPageChecked(page
);
6508 set_page_dirty(page
);
6509 SetPageUptodate(page
);
6511 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6512 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6514 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6518 return VM_FAULT_LOCKED
;
6520 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6525 static int btrfs_truncate(struct inode
*inode
)
6527 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6528 struct btrfs_block_rsv
*rsv
;
6531 struct btrfs_trans_handle
*trans
;
6533 u64 mask
= root
->sectorsize
- 1;
6535 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6539 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6540 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6543 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6544 * 3 things going on here
6546 * 1) We need to reserve space for our orphan item and the space to
6547 * delete our orphan item. Lord knows we don't want to have a dangling
6548 * orphan item because we didn't reserve space to remove it.
6550 * 2) We need to reserve space to update our inode.
6552 * 3) We need to have something to cache all the space that is going to
6553 * be free'd up by the truncate operation, but also have some slack
6554 * space reserved in case it uses space during the truncate (thank you
6555 * very much snapshotting).
6557 * And we need these to all be seperate. The fact is we can use alot of
6558 * space doing the truncate, and we have no earthly idea how much space
6559 * we will use, so we need the truncate reservation to be seperate so it
6560 * doesn't end up using space reserved for updating the inode or
6561 * removing the orphan item. We also need to be able to stop the
6562 * transaction and start a new one, which means we need to be able to
6563 * update the inode several times, and we have no idea of knowing how
6564 * many times that will be, so we can't just reserve 1 item for the
6565 * entirety of the opration, so that has to be done seperately as well.
6566 * Then there is the orphan item, which does indeed need to be held on
6567 * to for the whole operation, and we need nobody to touch this reserved
6568 * space except the orphan code.
6570 * So that leaves us with
6572 * 1) root->orphan_block_rsv - for the orphan deletion.
6573 * 2) rsv - for the truncate reservation, which we will steal from the
6574 * transaction reservation.
6575 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6576 * updating the inode.
6578 rsv
= btrfs_alloc_block_rsv(root
);
6581 btrfs_add_durable_block_rsv(root
->fs_info
, rsv
);
6583 trans
= btrfs_start_transaction(root
, 4);
6584 if (IS_ERR(trans
)) {
6585 err
= PTR_ERR(trans
);
6590 * Reserve space for the truncate process. Truncate should be adding
6591 * space, but if there are snapshots it may end up using space.
6593 ret
= btrfs_truncate_reserve_metadata(trans
, root
, rsv
);
6596 ret
= btrfs_orphan_add(trans
, inode
);
6598 btrfs_end_transaction(trans
, root
);
6602 nr
= trans
->blocks_used
;
6603 btrfs_end_transaction(trans
, root
);
6604 btrfs_btree_balance_dirty(root
, nr
);
6607 * Ok so we've already migrated our bytes over for the truncate, so here
6608 * just reserve the one slot we need for updating the inode.
6610 trans
= btrfs_start_transaction(root
, 1);
6611 if (IS_ERR(trans
)) {
6612 err
= PTR_ERR(trans
);
6615 trans
->block_rsv
= rsv
;
6618 * setattr is responsible for setting the ordered_data_close flag,
6619 * but that is only tested during the last file release. That
6620 * could happen well after the next commit, leaving a great big
6621 * window where new writes may get lost if someone chooses to write
6622 * to this file after truncating to zero
6624 * The inode doesn't have any dirty data here, and so if we commit
6625 * this is a noop. If someone immediately starts writing to the inode
6626 * it is very likely we'll catch some of their writes in this
6627 * transaction, and the commit will find this file on the ordered
6628 * data list with good things to send down.
6630 * This is a best effort solution, there is still a window where
6631 * using truncate to replace the contents of the file will
6632 * end up with a zero length file after a crash.
6634 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6635 btrfs_add_ordered_operation(trans
, root
, inode
);
6639 trans
= btrfs_start_transaction(root
, 3);
6640 if (IS_ERR(trans
)) {
6641 err
= PTR_ERR(trans
);
6645 ret
= btrfs_truncate_reserve_metadata(trans
, root
,
6649 trans
->block_rsv
= rsv
;
6652 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6654 BTRFS_EXTENT_DATA_KEY
);
6655 if (ret
!= -EAGAIN
) {
6660 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6661 ret
= btrfs_update_inode(trans
, root
, inode
);
6667 nr
= trans
->blocks_used
;
6668 btrfs_end_transaction(trans
, root
);
6670 btrfs_btree_balance_dirty(root
, nr
);
6673 if (ret
== 0 && inode
->i_nlink
> 0) {
6674 trans
->block_rsv
= root
->orphan_block_rsv
;
6675 ret
= btrfs_orphan_del(trans
, inode
);
6678 } else if (ret
&& inode
->i_nlink
> 0) {
6680 * Failed to do the truncate, remove us from the in memory
6683 ret
= btrfs_orphan_del(NULL
, inode
);
6686 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6687 ret
= btrfs_update_inode(trans
, root
, inode
);
6691 nr
= trans
->blocks_used
;
6692 ret
= btrfs_end_transaction_throttle(trans
, root
);
6693 btrfs_btree_balance_dirty(root
, nr
);
6696 btrfs_free_block_rsv(root
, rsv
);
6705 * create a new subvolume directory/inode (helper for the ioctl).
6707 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6708 struct btrfs_root
*new_root
, u64 new_dirid
)
6710 struct inode
*inode
;
6714 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6715 new_dirid
, S_IFDIR
| 0700, &index
);
6717 return PTR_ERR(inode
);
6718 inode
->i_op
= &btrfs_dir_inode_operations
;
6719 inode
->i_fop
= &btrfs_dir_file_operations
;
6722 btrfs_i_size_write(inode
, 0);
6724 err
= btrfs_update_inode(trans
, new_root
, inode
);
6731 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6733 struct btrfs_inode
*ei
;
6734 struct inode
*inode
;
6736 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6741 ei
->space_info
= NULL
;
6745 ei
->last_sub_trans
= 0;
6746 ei
->logged_trans
= 0;
6747 ei
->delalloc_bytes
= 0;
6748 ei
->reserved_bytes
= 0;
6749 ei
->disk_i_size
= 0;
6751 ei
->index_cnt
= (u64
)-1;
6752 ei
->last_unlink_trans
= 0;
6754 spin_lock_init(&ei
->lock
);
6755 ei
->outstanding_extents
= 0;
6756 ei
->reserved_extents
= 0;
6758 ei
->ordered_data_close
= 0;
6759 ei
->orphan_meta_reserved
= 0;
6760 ei
->dummy_inode
= 0;
6762 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6764 ei
->delayed_node
= NULL
;
6766 inode
= &ei
->vfs_inode
;
6767 extent_map_tree_init(&ei
->extent_tree
);
6768 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
6769 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
6770 mutex_init(&ei
->log_mutex
);
6771 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6772 INIT_LIST_HEAD(&ei
->i_orphan
);
6773 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6774 INIT_LIST_HEAD(&ei
->ordered_operations
);
6775 RB_CLEAR_NODE(&ei
->rb_node
);
6780 static void btrfs_i_callback(struct rcu_head
*head
)
6782 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6783 INIT_LIST_HEAD(&inode
->i_dentry
);
6784 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6787 void btrfs_destroy_inode(struct inode
*inode
)
6789 struct btrfs_ordered_extent
*ordered
;
6790 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6792 WARN_ON(!list_empty(&inode
->i_dentry
));
6793 WARN_ON(inode
->i_data
.nrpages
);
6794 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
6795 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6798 * This can happen where we create an inode, but somebody else also
6799 * created the same inode and we need to destroy the one we already
6806 * Make sure we're properly removed from the ordered operation
6810 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6811 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6812 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6813 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6816 spin_lock(&root
->orphan_lock
);
6817 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6818 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
6819 (unsigned long long)btrfs_ino(inode
));
6820 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6822 spin_unlock(&root
->orphan_lock
);
6825 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6829 printk(KERN_ERR
"btrfs found ordered "
6830 "extent %llu %llu on inode cleanup\n",
6831 (unsigned long long)ordered
->file_offset
,
6832 (unsigned long long)ordered
->len
);
6833 btrfs_remove_ordered_extent(inode
, ordered
);
6834 btrfs_put_ordered_extent(ordered
);
6835 btrfs_put_ordered_extent(ordered
);
6838 inode_tree_del(inode
);
6839 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6841 btrfs_remove_delayed_node(inode
);
6842 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6845 int btrfs_drop_inode(struct inode
*inode
)
6847 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6849 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6850 !btrfs_is_free_space_inode(root
, inode
))
6853 return generic_drop_inode(inode
);
6856 static void init_once(void *foo
)
6858 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6860 inode_init_once(&ei
->vfs_inode
);
6863 void btrfs_destroy_cachep(void)
6865 if (btrfs_inode_cachep
)
6866 kmem_cache_destroy(btrfs_inode_cachep
);
6867 if (btrfs_trans_handle_cachep
)
6868 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6869 if (btrfs_transaction_cachep
)
6870 kmem_cache_destroy(btrfs_transaction_cachep
);
6871 if (btrfs_path_cachep
)
6872 kmem_cache_destroy(btrfs_path_cachep
);
6873 if (btrfs_free_space_cachep
)
6874 kmem_cache_destroy(btrfs_free_space_cachep
);
6877 int btrfs_init_cachep(void)
6879 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6880 sizeof(struct btrfs_inode
), 0,
6881 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6882 if (!btrfs_inode_cachep
)
6885 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6886 sizeof(struct btrfs_trans_handle
), 0,
6887 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6888 if (!btrfs_trans_handle_cachep
)
6891 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6892 sizeof(struct btrfs_transaction
), 0,
6893 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6894 if (!btrfs_transaction_cachep
)
6897 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6898 sizeof(struct btrfs_path
), 0,
6899 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6900 if (!btrfs_path_cachep
)
6903 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6904 sizeof(struct btrfs_free_space
), 0,
6905 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6906 if (!btrfs_free_space_cachep
)
6911 btrfs_destroy_cachep();
6915 static int btrfs_getattr(struct vfsmount
*mnt
,
6916 struct dentry
*dentry
, struct kstat
*stat
)
6918 struct inode
*inode
= dentry
->d_inode
;
6919 generic_fillattr(inode
, stat
);
6920 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
6921 stat
->blksize
= PAGE_CACHE_SIZE
;
6922 stat
->blocks
= (inode_get_bytes(inode
) +
6923 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6928 * If a file is moved, it will inherit the cow and compression flags of the new
6931 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6933 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6934 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6936 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6937 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6939 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6941 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6942 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6944 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6947 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6948 struct inode
*new_dir
, struct dentry
*new_dentry
)
6950 struct btrfs_trans_handle
*trans
;
6951 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6952 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6953 struct inode
*new_inode
= new_dentry
->d_inode
;
6954 struct inode
*old_inode
= old_dentry
->d_inode
;
6955 struct timespec ctime
= CURRENT_TIME
;
6959 u64 old_ino
= btrfs_ino(old_inode
);
6961 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6964 /* we only allow rename subvolume link between subvolumes */
6965 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6968 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6969 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
6972 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6973 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6976 * we're using rename to replace one file with another.
6977 * and the replacement file is large. Start IO on it now so
6978 * we don't add too much work to the end of the transaction
6980 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6981 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6982 filemap_flush(old_inode
->i_mapping
);
6984 /* close the racy window with snapshot create/destroy ioctl */
6985 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6986 down_read(&root
->fs_info
->subvol_sem
);
6988 * We want to reserve the absolute worst case amount of items. So if
6989 * both inodes are subvols and we need to unlink them then that would
6990 * require 4 item modifications, but if they are both normal inodes it
6991 * would require 5 item modifications, so we'll assume their normal
6992 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6993 * should cover the worst case number of items we'll modify.
6995 trans
= btrfs_start_transaction(root
, 20);
6996 if (IS_ERR(trans
)) {
6997 ret
= PTR_ERR(trans
);
7002 btrfs_record_root_in_trans(trans
, dest
);
7004 ret
= btrfs_set_inode_index(new_dir
, &index
);
7008 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7009 /* force full log commit if subvolume involved. */
7010 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7012 ret
= btrfs_insert_inode_ref(trans
, dest
,
7013 new_dentry
->d_name
.name
,
7014 new_dentry
->d_name
.len
,
7016 btrfs_ino(new_dir
), index
);
7020 * this is an ugly little race, but the rename is required
7021 * to make sure that if we crash, the inode is either at the
7022 * old name or the new one. pinning the log transaction lets
7023 * us make sure we don't allow a log commit to come in after
7024 * we unlink the name but before we add the new name back in.
7026 btrfs_pin_log_trans(root
);
7029 * make sure the inode gets flushed if it is replacing
7032 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7033 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7035 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7036 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7037 old_inode
->i_ctime
= ctime
;
7039 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7040 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7042 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7043 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7044 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7045 old_dentry
->d_name
.name
,
7046 old_dentry
->d_name
.len
);
7048 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7049 old_dentry
->d_inode
,
7050 old_dentry
->d_name
.name
,
7051 old_dentry
->d_name
.len
);
7053 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7058 new_inode
->i_ctime
= CURRENT_TIME
;
7059 if (unlikely(btrfs_ino(new_inode
) ==
7060 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7061 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7062 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7064 new_dentry
->d_name
.name
,
7065 new_dentry
->d_name
.len
);
7066 BUG_ON(new_inode
->i_nlink
== 0);
7068 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7069 new_dentry
->d_inode
,
7070 new_dentry
->d_name
.name
,
7071 new_dentry
->d_name
.len
);
7074 if (new_inode
->i_nlink
== 0) {
7075 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7080 fixup_inode_flags(new_dir
, old_inode
);
7082 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7083 new_dentry
->d_name
.name
,
7084 new_dentry
->d_name
.len
, 0, index
);
7087 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7088 struct dentry
*parent
= new_dentry
->d_parent
;
7089 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7090 btrfs_end_log_trans(root
);
7093 btrfs_end_transaction_throttle(trans
, root
);
7095 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7096 up_read(&root
->fs_info
->subvol_sem
);
7102 * some fairly slow code that needs optimization. This walks the list
7103 * of all the inodes with pending delalloc and forces them to disk.
7105 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7107 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7108 struct btrfs_inode
*binode
;
7109 struct inode
*inode
;
7111 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7114 spin_lock(&root
->fs_info
->delalloc_lock
);
7115 while (!list_empty(head
)) {
7116 binode
= list_entry(head
->next
, struct btrfs_inode
,
7118 inode
= igrab(&binode
->vfs_inode
);
7120 list_del_init(&binode
->delalloc_inodes
);
7121 spin_unlock(&root
->fs_info
->delalloc_lock
);
7123 filemap_flush(inode
->i_mapping
);
7125 btrfs_add_delayed_iput(inode
);
7130 spin_lock(&root
->fs_info
->delalloc_lock
);
7132 spin_unlock(&root
->fs_info
->delalloc_lock
);
7134 /* the filemap_flush will queue IO into the worker threads, but
7135 * we have to make sure the IO is actually started and that
7136 * ordered extents get created before we return
7138 atomic_inc(&root
->fs_info
->async_submit_draining
);
7139 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7140 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7141 wait_event(root
->fs_info
->async_submit_wait
,
7142 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7143 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7145 atomic_dec(&root
->fs_info
->async_submit_draining
);
7149 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7150 const char *symname
)
7152 struct btrfs_trans_handle
*trans
;
7153 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7154 struct btrfs_path
*path
;
7155 struct btrfs_key key
;
7156 struct inode
*inode
= NULL
;
7164 struct btrfs_file_extent_item
*ei
;
7165 struct extent_buffer
*leaf
;
7166 unsigned long nr
= 0;
7168 name_len
= strlen(symname
) + 1;
7169 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7170 return -ENAMETOOLONG
;
7173 * 2 items for inode item and ref
7174 * 2 items for dir items
7175 * 1 item for xattr if selinux is on
7177 trans
= btrfs_start_transaction(root
, 5);
7179 return PTR_ERR(trans
);
7181 err
= btrfs_find_free_ino(root
, &objectid
);
7185 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7186 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7187 S_IFLNK
|S_IRWXUGO
, &index
);
7188 if (IS_ERR(inode
)) {
7189 err
= PTR_ERR(inode
);
7193 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7199 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7203 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7204 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7205 inode
->i_fop
= &btrfs_file_operations
;
7206 inode
->i_op
= &btrfs_file_inode_operations
;
7207 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7212 path
= btrfs_alloc_path();
7218 key
.objectid
= btrfs_ino(inode
);
7220 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7221 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7222 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7226 btrfs_free_path(path
);
7229 leaf
= path
->nodes
[0];
7230 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7231 struct btrfs_file_extent_item
);
7232 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7233 btrfs_set_file_extent_type(leaf
, ei
,
7234 BTRFS_FILE_EXTENT_INLINE
);
7235 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7236 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7237 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7238 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7240 ptr
= btrfs_file_extent_inline_start(ei
);
7241 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7242 btrfs_mark_buffer_dirty(leaf
);
7243 btrfs_free_path(path
);
7245 inode
->i_op
= &btrfs_symlink_inode_operations
;
7246 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7247 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7248 inode_set_bytes(inode
, name_len
);
7249 btrfs_i_size_write(inode
, name_len
- 1);
7250 err
= btrfs_update_inode(trans
, root
, inode
);
7255 nr
= trans
->blocks_used
;
7256 btrfs_end_transaction_throttle(trans
, root
);
7258 inode_dec_link_count(inode
);
7261 btrfs_btree_balance_dirty(root
, nr
);
7265 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7266 u64 start
, u64 num_bytes
, u64 min_size
,
7267 loff_t actual_len
, u64
*alloc_hint
,
7268 struct btrfs_trans_handle
*trans
)
7270 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7271 struct btrfs_key ins
;
7272 u64 cur_offset
= start
;
7275 bool own_trans
= true;
7279 while (num_bytes
> 0) {
7281 trans
= btrfs_start_transaction(root
, 3);
7282 if (IS_ERR(trans
)) {
7283 ret
= PTR_ERR(trans
);
7288 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7289 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7292 btrfs_end_transaction(trans
, root
);
7296 ret
= insert_reserved_file_extent(trans
, inode
,
7297 cur_offset
, ins
.objectid
,
7298 ins
.offset
, ins
.offset
,
7299 ins
.offset
, 0, 0, 0,
7300 BTRFS_FILE_EXTENT_PREALLOC
);
7302 btrfs_drop_extent_cache(inode
, cur_offset
,
7303 cur_offset
+ ins
.offset
-1, 0);
7305 num_bytes
-= ins
.offset
;
7306 cur_offset
+= ins
.offset
;
7307 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7309 inode
->i_ctime
= CURRENT_TIME
;
7310 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7311 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7312 (actual_len
> inode
->i_size
) &&
7313 (cur_offset
> inode
->i_size
)) {
7314 if (cur_offset
> actual_len
)
7315 i_size
= actual_len
;
7317 i_size
= cur_offset
;
7318 i_size_write(inode
, i_size
);
7319 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7322 ret
= btrfs_update_inode(trans
, root
, inode
);
7326 btrfs_end_transaction(trans
, root
);
7331 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7332 u64 start
, u64 num_bytes
, u64 min_size
,
7333 loff_t actual_len
, u64
*alloc_hint
)
7335 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7336 min_size
, actual_len
, alloc_hint
,
7340 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7341 struct btrfs_trans_handle
*trans
, int mode
,
7342 u64 start
, u64 num_bytes
, u64 min_size
,
7343 loff_t actual_len
, u64
*alloc_hint
)
7345 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7346 min_size
, actual_len
, alloc_hint
, trans
);
7349 static int btrfs_set_page_dirty(struct page
*page
)
7351 return __set_page_dirty_nobuffers(page
);
7354 static int btrfs_permission(struct inode
*inode
, int mask
)
7356 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7357 umode_t mode
= inode
->i_mode
;
7359 if (mask
& MAY_WRITE
&&
7360 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7361 if (btrfs_root_readonly(root
))
7363 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7366 return generic_permission(inode
, mask
);
7369 static const struct inode_operations btrfs_dir_inode_operations
= {
7370 .getattr
= btrfs_getattr
,
7371 .lookup
= btrfs_lookup
,
7372 .create
= btrfs_create
,
7373 .unlink
= btrfs_unlink
,
7375 .mkdir
= btrfs_mkdir
,
7376 .rmdir
= btrfs_rmdir
,
7377 .rename
= btrfs_rename
,
7378 .symlink
= btrfs_symlink
,
7379 .setattr
= btrfs_setattr
,
7380 .mknod
= btrfs_mknod
,
7381 .setxattr
= btrfs_setxattr
,
7382 .getxattr
= btrfs_getxattr
,
7383 .listxattr
= btrfs_listxattr
,
7384 .removexattr
= btrfs_removexattr
,
7385 .permission
= btrfs_permission
,
7386 .get_acl
= btrfs_get_acl
,
7388 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7389 .lookup
= btrfs_lookup
,
7390 .permission
= btrfs_permission
,
7391 .get_acl
= btrfs_get_acl
,
7394 static const struct file_operations btrfs_dir_file_operations
= {
7395 .llseek
= generic_file_llseek
,
7396 .read
= generic_read_dir
,
7397 .readdir
= btrfs_real_readdir
,
7398 .unlocked_ioctl
= btrfs_ioctl
,
7399 #ifdef CONFIG_COMPAT
7400 .compat_ioctl
= btrfs_ioctl
,
7402 .release
= btrfs_release_file
,
7403 .fsync
= btrfs_sync_file
,
7406 static struct extent_io_ops btrfs_extent_io_ops
= {
7407 .fill_delalloc
= run_delalloc_range
,
7408 .submit_bio_hook
= btrfs_submit_bio_hook
,
7409 .merge_bio_hook
= btrfs_merge_bio_hook
,
7410 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7411 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7412 .writepage_start_hook
= btrfs_writepage_start_hook
,
7413 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7414 .set_bit_hook
= btrfs_set_bit_hook
,
7415 .clear_bit_hook
= btrfs_clear_bit_hook
,
7416 .merge_extent_hook
= btrfs_merge_extent_hook
,
7417 .split_extent_hook
= btrfs_split_extent_hook
,
7421 * btrfs doesn't support the bmap operation because swapfiles
7422 * use bmap to make a mapping of extents in the file. They assume
7423 * these extents won't change over the life of the file and they
7424 * use the bmap result to do IO directly to the drive.
7426 * the btrfs bmap call would return logical addresses that aren't
7427 * suitable for IO and they also will change frequently as COW
7428 * operations happen. So, swapfile + btrfs == corruption.
7430 * For now we're avoiding this by dropping bmap.
7432 static const struct address_space_operations btrfs_aops
= {
7433 .readpage
= btrfs_readpage
,
7434 .writepage
= btrfs_writepage
,
7435 .writepages
= btrfs_writepages
,
7436 .readpages
= btrfs_readpages
,
7437 .direct_IO
= btrfs_direct_IO
,
7438 .invalidatepage
= btrfs_invalidatepage
,
7439 .releasepage
= btrfs_releasepage
,
7440 .set_page_dirty
= btrfs_set_page_dirty
,
7441 .error_remove_page
= generic_error_remove_page
,
7444 static const struct address_space_operations btrfs_symlink_aops
= {
7445 .readpage
= btrfs_readpage
,
7446 .writepage
= btrfs_writepage
,
7447 .invalidatepage
= btrfs_invalidatepage
,
7448 .releasepage
= btrfs_releasepage
,
7451 static const struct inode_operations btrfs_file_inode_operations
= {
7452 .getattr
= btrfs_getattr
,
7453 .setattr
= btrfs_setattr
,
7454 .setxattr
= btrfs_setxattr
,
7455 .getxattr
= btrfs_getxattr
,
7456 .listxattr
= btrfs_listxattr
,
7457 .removexattr
= btrfs_removexattr
,
7458 .permission
= btrfs_permission
,
7459 .fiemap
= btrfs_fiemap
,
7460 .get_acl
= btrfs_get_acl
,
7462 static const struct inode_operations btrfs_special_inode_operations
= {
7463 .getattr
= btrfs_getattr
,
7464 .setattr
= btrfs_setattr
,
7465 .permission
= btrfs_permission
,
7466 .setxattr
= btrfs_setxattr
,
7467 .getxattr
= btrfs_getxattr
,
7468 .listxattr
= btrfs_listxattr
,
7469 .removexattr
= btrfs_removexattr
,
7470 .get_acl
= btrfs_get_acl
,
7472 static const struct inode_operations btrfs_symlink_inode_operations
= {
7473 .readlink
= generic_readlink
,
7474 .follow_link
= page_follow_link_light
,
7475 .put_link
= page_put_link
,
7476 .getattr
= btrfs_getattr
,
7477 .permission
= btrfs_permission
,
7478 .setxattr
= btrfs_setxattr
,
7479 .getxattr
= btrfs_getxattr
,
7480 .listxattr
= btrfs_listxattr
,
7481 .removexattr
= btrfs_removexattr
,
7482 .get_acl
= btrfs_get_acl
,
7485 const struct dentry_operations btrfs_dentry_operations
= {
7486 .d_delete
= btrfs_dentry_delete
,
7487 .d_release
= btrfs_dentry_release
,