Staging: hv: mousevsc: Cleanup and properly implement reportdesc_callback()
[zen-stable.git] / drivers / input / touchscreen / ads7846.c
blobd507b9b678063031e988ef907308801ff0aa8df1
1 /*
2 * ADS7846 based touchscreen and sensor driver
4 * Copyright (c) 2005 David Brownell
5 * Copyright (c) 2006 Nokia Corporation
6 * Various changes: Imre Deak <imre.deak@nokia.com>
8 * Using code from:
9 * - corgi_ts.c
10 * Copyright (C) 2004-2005 Richard Purdie
11 * - omap_ts.[hc], ads7846.h, ts_osk.c
12 * Copyright (C) 2002 MontaVista Software
13 * Copyright (C) 2004 Texas Instruments
14 * Copyright (C) 2005 Dirk Behme
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
37 * This code has been heavily tested on a Nokia 770, and lightly
38 * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39 * TSC2046 is just newer ads7846 silicon.
40 * Support for ads7843 tested on Atmel at91sam926x-EK.
41 * Support for ads7845 has only been stubbed in.
42 * Support for Analog Devices AD7873 and AD7843 tested.
44 * IRQ handling needs a workaround because of a shortcoming in handling
45 * edge triggered IRQs on some platforms like the OMAP1/2. These
46 * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47 * have to maintain our own SW IRQ disabled status. This should be
48 * removed as soon as the affected platform's IRQ handling is fixed.
50 * App note sbaa036 talks in more detail about accurate sampling...
51 * that ought to help in situations like LCDs inducing noise (which
52 * can also be helped by using synch signals) and more generally.
53 * This driver tries to utilize the measures described in the app
54 * note. The strength of filtering can be set in the board-* specific
55 * files.
58 #define TS_POLL_DELAY 1 /* ms delay before the first sample */
59 #define TS_POLL_PERIOD 5 /* ms delay between samples */
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
64 struct ts_event {
66 * For portability, we can't read 12 bit values using SPI (which
67 * would make the controller deliver them as native byte order u16
68 * with msbs zeroed). Instead, we read them as two 8-bit values,
69 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
71 u16 x;
72 u16 y;
73 u16 z1, z2;
74 bool ignore;
75 u8 x_buf[3];
76 u8 y_buf[3];
80 * We allocate this separately to avoid cache line sharing issues when
81 * driver is used with DMA-based SPI controllers (like atmel_spi) on
82 * systems where main memory is not DMA-coherent (most non-x86 boards).
84 struct ads7846_packet {
85 u8 read_x, read_y, read_z1, read_z2, pwrdown;
86 u16 dummy; /* for the pwrdown read */
87 struct ts_event tc;
88 /* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 u8 read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
92 struct ads7846 {
93 struct input_dev *input;
94 char phys[32];
95 char name[32];
97 struct spi_device *spi;
98 struct regulator *reg;
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 struct attribute_group *attr_group;
102 struct device *hwmon;
103 #endif
105 u16 model;
106 u16 vref_mv;
107 u16 vref_delay_usecs;
108 u16 x_plate_ohms;
109 u16 pressure_max;
111 bool swap_xy;
112 bool use_internal;
114 struct ads7846_packet *packet;
116 struct spi_transfer xfer[18];
117 struct spi_message msg[5];
118 int msg_count;
119 wait_queue_head_t wait;
121 bool pendown;
123 int read_cnt;
124 int read_rep;
125 int last_read;
127 u16 debounce_max;
128 u16 debounce_tol;
129 u16 debounce_rep;
131 u16 penirq_recheck_delay_usecs;
133 struct mutex lock;
134 bool stopped; /* P: lock */
135 bool disabled; /* P: lock */
136 bool suspended; /* P: lock */
138 int (*filter)(void *data, int data_idx, int *val);
139 void *filter_data;
140 void (*filter_cleanup)(void *data);
141 int (*get_pendown_state)(void);
142 int gpio_pendown;
144 void (*wait_for_sync)(void);
147 /* leave chip selected when we're done, for quicker re-select? */
148 #if 0
149 #define CS_CHANGE(xfer) ((xfer).cs_change = 1)
150 #else
151 #define CS_CHANGE(xfer) ((xfer).cs_change = 0)
152 #endif
154 /*--------------------------------------------------------------------------*/
156 /* The ADS7846 has touchscreen and other sensors.
157 * Earlier ads784x chips are somewhat compatible.
159 #define ADS_START (1 << 7)
160 #define ADS_A2A1A0_d_y (1 << 4) /* differential */
161 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
162 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
163 #define ADS_A2A1A0_d_x (5 << 4) /* differential */
164 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
165 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
166 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
167 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
168 #define ADS_8_BIT (1 << 3)
169 #define ADS_12_BIT (0 << 3)
170 #define ADS_SER (1 << 2) /* non-differential */
171 #define ADS_DFR (0 << 2) /* differential */
172 #define ADS_PD10_PDOWN (0 << 0) /* low power mode + penirq */
173 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
174 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
175 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
177 #define MAX_12BIT ((1<<12)-1)
179 /* leave ADC powered up (disables penirq) between differential samples */
180 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
181 | ADS_12_BIT | ADS_DFR | \
182 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
184 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
185 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
186 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
188 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
189 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
191 /* single-ended samples need to first power up reference voltage;
192 * we leave both ADC and VREF powered
194 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
195 | ADS_12_BIT | ADS_SER)
197 #define REF_ON (READ_12BIT_DFR(x, 1, 1))
198 #define REF_OFF (READ_12BIT_DFR(y, 0, 0))
200 /* Must be called with ts->lock held */
201 static void ads7846_stop(struct ads7846 *ts)
203 if (!ts->disabled && !ts->suspended) {
204 /* Signal IRQ thread to stop polling and disable the handler. */
205 ts->stopped = true;
206 mb();
207 wake_up(&ts->wait);
208 disable_irq(ts->spi->irq);
212 /* Must be called with ts->lock held */
213 static void ads7846_restart(struct ads7846 *ts)
215 if (!ts->disabled && !ts->suspended) {
216 /* Tell IRQ thread that it may poll the device. */
217 ts->stopped = false;
218 mb();
219 enable_irq(ts->spi->irq);
223 /* Must be called with ts->lock held */
224 static void __ads7846_disable(struct ads7846 *ts)
226 ads7846_stop(ts);
227 regulator_disable(ts->reg);
230 * We know the chip's in low power mode since we always
231 * leave it that way after every request
235 /* Must be called with ts->lock held */
236 static void __ads7846_enable(struct ads7846 *ts)
238 regulator_enable(ts->reg);
239 ads7846_restart(ts);
242 static void ads7846_disable(struct ads7846 *ts)
244 mutex_lock(&ts->lock);
246 if (!ts->disabled) {
248 if (!ts->suspended)
249 __ads7846_disable(ts);
251 ts->disabled = true;
254 mutex_unlock(&ts->lock);
257 static void ads7846_enable(struct ads7846 *ts)
259 mutex_lock(&ts->lock);
261 if (ts->disabled) {
263 ts->disabled = false;
265 if (!ts->suspended)
266 __ads7846_enable(ts);
269 mutex_unlock(&ts->lock);
272 /*--------------------------------------------------------------------------*/
275 * Non-touchscreen sensors only use single-ended conversions.
276 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
277 * ads7846 lets that pin be unconnected, to use internal vREF.
280 struct ser_req {
281 u8 ref_on;
282 u8 command;
283 u8 ref_off;
284 u16 scratch;
285 struct spi_message msg;
286 struct spi_transfer xfer[6];
288 * DMA (thus cache coherency maintenance) requires the
289 * transfer buffers to live in their own cache lines.
291 __be16 sample ____cacheline_aligned;
294 struct ads7845_ser_req {
295 u8 command[3];
296 struct spi_message msg;
297 struct spi_transfer xfer[2];
299 * DMA (thus cache coherency maintenance) requires the
300 * transfer buffers to live in their own cache lines.
302 u8 sample[3] ____cacheline_aligned;
305 static int ads7846_read12_ser(struct device *dev, unsigned command)
307 struct spi_device *spi = to_spi_device(dev);
308 struct ads7846 *ts = dev_get_drvdata(dev);
309 struct ser_req *req;
310 int status;
312 req = kzalloc(sizeof *req, GFP_KERNEL);
313 if (!req)
314 return -ENOMEM;
316 spi_message_init(&req->msg);
318 /* maybe turn on internal vREF, and let it settle */
319 if (ts->use_internal) {
320 req->ref_on = REF_ON;
321 req->xfer[0].tx_buf = &req->ref_on;
322 req->xfer[0].len = 1;
323 spi_message_add_tail(&req->xfer[0], &req->msg);
325 req->xfer[1].rx_buf = &req->scratch;
326 req->xfer[1].len = 2;
328 /* for 1uF, settle for 800 usec; no cap, 100 usec. */
329 req->xfer[1].delay_usecs = ts->vref_delay_usecs;
330 spi_message_add_tail(&req->xfer[1], &req->msg);
332 /* Enable reference voltage */
333 command |= ADS_PD10_REF_ON;
336 /* Enable ADC in every case */
337 command |= ADS_PD10_ADC_ON;
339 /* take sample */
340 req->command = (u8) command;
341 req->xfer[2].tx_buf = &req->command;
342 req->xfer[2].len = 1;
343 spi_message_add_tail(&req->xfer[2], &req->msg);
345 req->xfer[3].rx_buf = &req->sample;
346 req->xfer[3].len = 2;
347 spi_message_add_tail(&req->xfer[3], &req->msg);
349 /* REVISIT: take a few more samples, and compare ... */
351 /* converter in low power mode & enable PENIRQ */
352 req->ref_off = PWRDOWN;
353 req->xfer[4].tx_buf = &req->ref_off;
354 req->xfer[4].len = 1;
355 spi_message_add_tail(&req->xfer[4], &req->msg);
357 req->xfer[5].rx_buf = &req->scratch;
358 req->xfer[5].len = 2;
359 CS_CHANGE(req->xfer[5]);
360 spi_message_add_tail(&req->xfer[5], &req->msg);
362 mutex_lock(&ts->lock);
363 ads7846_stop(ts);
364 status = spi_sync(spi, &req->msg);
365 ads7846_restart(ts);
366 mutex_unlock(&ts->lock);
368 if (status == 0) {
369 /* on-wire is a must-ignore bit, a BE12 value, then padding */
370 status = be16_to_cpu(req->sample);
371 status = status >> 3;
372 status &= 0x0fff;
375 kfree(req);
376 return status;
379 static int ads7845_read12_ser(struct device *dev, unsigned command)
381 struct spi_device *spi = to_spi_device(dev);
382 struct ads7846 *ts = dev_get_drvdata(dev);
383 struct ads7845_ser_req *req;
384 int status;
386 req = kzalloc(sizeof *req, GFP_KERNEL);
387 if (!req)
388 return -ENOMEM;
390 spi_message_init(&req->msg);
392 req->command[0] = (u8) command;
393 req->xfer[0].tx_buf = req->command;
394 req->xfer[0].rx_buf = req->sample;
395 req->xfer[0].len = 3;
396 spi_message_add_tail(&req->xfer[0], &req->msg);
398 mutex_lock(&ts->lock);
399 ads7846_stop(ts);
400 status = spi_sync(spi, &req->msg);
401 ads7846_restart(ts);
402 mutex_unlock(&ts->lock);
404 if (status == 0) {
405 /* BE12 value, then padding */
406 status = be16_to_cpu(*((u16 *)&req->sample[1]));
407 status = status >> 3;
408 status &= 0x0fff;
411 kfree(req);
412 return status;
415 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
417 #define SHOW(name, var, adjust) static ssize_t \
418 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
420 struct ads7846 *ts = dev_get_drvdata(dev); \
421 ssize_t v = ads7846_read12_ser(dev, \
422 READ_12BIT_SER(var)); \
423 if (v < 0) \
424 return v; \
425 return sprintf(buf, "%u\n", adjust(ts, v)); \
427 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
430 /* Sysfs conventions report temperatures in millidegrees Celsius.
431 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
432 * accuracy scheme without calibration data. For now we won't try either;
433 * userspace sees raw sensor values, and must scale/calibrate appropriately.
435 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
437 return v;
440 SHOW(temp0, temp0, null_adjust) /* temp1_input */
441 SHOW(temp1, temp1, null_adjust) /* temp2_input */
444 /* sysfs conventions report voltages in millivolts. We can convert voltages
445 * if we know vREF. userspace may need to scale vAUX to match the board's
446 * external resistors; we assume that vBATT only uses the internal ones.
448 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
450 unsigned retval = v;
452 /* external resistors may scale vAUX into 0..vREF */
453 retval *= ts->vref_mv;
454 retval = retval >> 12;
456 return retval;
459 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
461 unsigned retval = vaux_adjust(ts, v);
463 /* ads7846 has a resistor ladder to scale this signal down */
464 if (ts->model == 7846)
465 retval *= 4;
467 return retval;
470 SHOW(in0_input, vaux, vaux_adjust)
471 SHOW(in1_input, vbatt, vbatt_adjust)
473 static struct attribute *ads7846_attributes[] = {
474 &dev_attr_temp0.attr,
475 &dev_attr_temp1.attr,
476 &dev_attr_in0_input.attr,
477 &dev_attr_in1_input.attr,
478 NULL,
481 static struct attribute_group ads7846_attr_group = {
482 .attrs = ads7846_attributes,
485 static struct attribute *ads7843_attributes[] = {
486 &dev_attr_in0_input.attr,
487 &dev_attr_in1_input.attr,
488 NULL,
491 static struct attribute_group ads7843_attr_group = {
492 .attrs = ads7843_attributes,
495 static struct attribute *ads7845_attributes[] = {
496 &dev_attr_in0_input.attr,
497 NULL,
500 static struct attribute_group ads7845_attr_group = {
501 .attrs = ads7845_attributes,
504 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
506 struct device *hwmon;
507 int err;
509 /* hwmon sensors need a reference voltage */
510 switch (ts->model) {
511 case 7846:
512 if (!ts->vref_mv) {
513 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
514 ts->vref_mv = 2500;
515 ts->use_internal = true;
517 break;
518 case 7845:
519 case 7843:
520 if (!ts->vref_mv) {
521 dev_warn(&spi->dev,
522 "external vREF for ADS%d not specified\n",
523 ts->model);
524 return 0;
526 break;
529 /* different chips have different sensor groups */
530 switch (ts->model) {
531 case 7846:
532 ts->attr_group = &ads7846_attr_group;
533 break;
534 case 7845:
535 ts->attr_group = &ads7845_attr_group;
536 break;
537 case 7843:
538 ts->attr_group = &ads7843_attr_group;
539 break;
540 default:
541 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
542 return 0;
545 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
546 if (err)
547 return err;
549 hwmon = hwmon_device_register(&spi->dev);
550 if (IS_ERR(hwmon)) {
551 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
552 return PTR_ERR(hwmon);
555 ts->hwmon = hwmon;
556 return 0;
559 static void ads784x_hwmon_unregister(struct spi_device *spi,
560 struct ads7846 *ts)
562 if (ts->hwmon) {
563 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
564 hwmon_device_unregister(ts->hwmon);
568 #else
569 static inline int ads784x_hwmon_register(struct spi_device *spi,
570 struct ads7846 *ts)
572 return 0;
575 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
576 struct ads7846 *ts)
579 #endif
581 static ssize_t ads7846_pen_down_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
584 struct ads7846 *ts = dev_get_drvdata(dev);
586 return sprintf(buf, "%u\n", ts->pendown);
589 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
591 static ssize_t ads7846_disable_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct ads7846 *ts = dev_get_drvdata(dev);
596 return sprintf(buf, "%u\n", ts->disabled);
599 static ssize_t ads7846_disable_store(struct device *dev,
600 struct device_attribute *attr,
601 const char *buf, size_t count)
603 struct ads7846 *ts = dev_get_drvdata(dev);
604 unsigned long i;
606 if (strict_strtoul(buf, 10, &i))
607 return -EINVAL;
609 if (i)
610 ads7846_disable(ts);
611 else
612 ads7846_enable(ts);
614 return count;
617 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
619 static struct attribute *ads784x_attributes[] = {
620 &dev_attr_pen_down.attr,
621 &dev_attr_disable.attr,
622 NULL,
625 static struct attribute_group ads784x_attr_group = {
626 .attrs = ads784x_attributes,
629 /*--------------------------------------------------------------------------*/
631 static int get_pendown_state(struct ads7846 *ts)
633 if (ts->get_pendown_state)
634 return ts->get_pendown_state();
636 return !gpio_get_value(ts->gpio_pendown);
639 static void null_wait_for_sync(void)
643 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
645 struct ads7846 *ts = ads;
647 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
648 /* Start over collecting consistent readings. */
649 ts->read_rep = 0;
651 * Repeat it, if this was the first read or the read
652 * wasn't consistent enough.
654 if (ts->read_cnt < ts->debounce_max) {
655 ts->last_read = *val;
656 ts->read_cnt++;
657 return ADS7846_FILTER_REPEAT;
658 } else {
660 * Maximum number of debouncing reached and still
661 * not enough number of consistent readings. Abort
662 * the whole sample, repeat it in the next sampling
663 * period.
665 ts->read_cnt = 0;
666 return ADS7846_FILTER_IGNORE;
668 } else {
669 if (++ts->read_rep > ts->debounce_rep) {
671 * Got a good reading for this coordinate,
672 * go for the next one.
674 ts->read_cnt = 0;
675 ts->read_rep = 0;
676 return ADS7846_FILTER_OK;
677 } else {
678 /* Read more values that are consistent. */
679 ts->read_cnt++;
680 return ADS7846_FILTER_REPEAT;
685 static int ads7846_no_filter(void *ads, int data_idx, int *val)
687 return ADS7846_FILTER_OK;
690 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
692 struct spi_transfer *t =
693 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
695 if (ts->model == 7845) {
696 return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
697 } else {
699 * adjust: on-wire is a must-ignore bit, a BE12 value, then
700 * padding; built from two 8 bit values written msb-first.
702 return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
706 static void ads7846_update_value(struct spi_message *m, int val)
708 struct spi_transfer *t =
709 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
711 *(u16 *)t->rx_buf = val;
714 static void ads7846_read_state(struct ads7846 *ts)
716 struct ads7846_packet *packet = ts->packet;
717 struct spi_message *m;
718 int msg_idx = 0;
719 int val;
720 int action;
721 int error;
723 while (msg_idx < ts->msg_count) {
725 ts->wait_for_sync();
727 m = &ts->msg[msg_idx];
728 error = spi_sync(ts->spi, m);
729 if (error) {
730 dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
731 packet->tc.ignore = true;
732 return;
736 * Last message is power down request, no need to convert
737 * or filter the value.
739 if (msg_idx < ts->msg_count - 1) {
741 val = ads7846_get_value(ts, m);
743 action = ts->filter(ts->filter_data, msg_idx, &val);
744 switch (action) {
745 case ADS7846_FILTER_REPEAT:
746 continue;
748 case ADS7846_FILTER_IGNORE:
749 packet->tc.ignore = true;
750 msg_idx = ts->msg_count - 1;
751 continue;
753 case ADS7846_FILTER_OK:
754 ads7846_update_value(m, val);
755 packet->tc.ignore = false;
756 msg_idx++;
757 break;
759 default:
760 BUG();
762 } else {
763 msg_idx++;
768 static void ads7846_report_state(struct ads7846 *ts)
770 struct ads7846_packet *packet = ts->packet;
771 unsigned int Rt;
772 u16 x, y, z1, z2;
775 * ads7846_get_value() does in-place conversion (including byte swap)
776 * from on-the-wire format as part of debouncing to get stable
777 * readings.
779 if (ts->model == 7845) {
780 x = *(u16 *)packet->tc.x_buf;
781 y = *(u16 *)packet->tc.y_buf;
782 z1 = 0;
783 z2 = 0;
784 } else {
785 x = packet->tc.x;
786 y = packet->tc.y;
787 z1 = packet->tc.z1;
788 z2 = packet->tc.z2;
791 /* range filtering */
792 if (x == MAX_12BIT)
793 x = 0;
795 if (ts->model == 7843) {
796 Rt = ts->pressure_max / 2;
797 } else if (ts->model == 7845) {
798 if (get_pendown_state(ts))
799 Rt = ts->pressure_max / 2;
800 else
801 Rt = 0;
802 dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
803 } else if (likely(x && z1)) {
804 /* compute touch pressure resistance using equation #2 */
805 Rt = z2;
806 Rt -= z1;
807 Rt *= x;
808 Rt *= ts->x_plate_ohms;
809 Rt /= z1;
810 Rt = (Rt + 2047) >> 12;
811 } else {
812 Rt = 0;
816 * Sample found inconsistent by debouncing or pressure is beyond
817 * the maximum. Don't report it to user space, repeat at least
818 * once more the measurement
820 if (packet->tc.ignore || Rt > ts->pressure_max) {
821 dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
822 packet->tc.ignore, Rt);
823 return;
827 * Maybe check the pendown state before reporting. This discards
828 * false readings when the pen is lifted.
830 if (ts->penirq_recheck_delay_usecs) {
831 udelay(ts->penirq_recheck_delay_usecs);
832 if (!get_pendown_state(ts))
833 Rt = 0;
837 * NOTE: We can't rely on the pressure to determine the pen down
838 * state, even this controller has a pressure sensor. The pressure
839 * value can fluctuate for quite a while after lifting the pen and
840 * in some cases may not even settle at the expected value.
842 * The only safe way to check for the pen up condition is in the
843 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
845 if (Rt) {
846 struct input_dev *input = ts->input;
848 if (ts->swap_xy)
849 swap(x, y);
851 if (!ts->pendown) {
852 input_report_key(input, BTN_TOUCH, 1);
853 ts->pendown = true;
854 dev_vdbg(&ts->spi->dev, "DOWN\n");
857 input_report_abs(input, ABS_X, x);
858 input_report_abs(input, ABS_Y, y);
859 input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
861 input_sync(input);
862 dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
866 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
868 struct ads7846 *ts = handle;
870 return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
874 static irqreturn_t ads7846_irq(int irq, void *handle)
876 struct ads7846 *ts = handle;
878 /* Start with a small delay before checking pendown state */
879 msleep(TS_POLL_DELAY);
881 while (!ts->stopped && get_pendown_state(ts)) {
883 /* pen is down, continue with the measurement */
884 ads7846_read_state(ts);
886 if (!ts->stopped)
887 ads7846_report_state(ts);
889 wait_event_timeout(ts->wait, ts->stopped,
890 msecs_to_jiffies(TS_POLL_PERIOD));
893 if (ts->pendown) {
894 struct input_dev *input = ts->input;
896 input_report_key(input, BTN_TOUCH, 0);
897 input_report_abs(input, ABS_PRESSURE, 0);
898 input_sync(input);
900 ts->pendown = false;
901 dev_vdbg(&ts->spi->dev, "UP\n");
904 return IRQ_HANDLED;
907 #ifdef CONFIG_PM_SLEEP
908 static int ads7846_suspend(struct device *dev)
910 struct ads7846 *ts = dev_get_drvdata(dev);
912 mutex_lock(&ts->lock);
914 if (!ts->suspended) {
916 if (!ts->disabled)
917 __ads7846_disable(ts);
919 if (device_may_wakeup(&ts->spi->dev))
920 enable_irq_wake(ts->spi->irq);
922 ts->suspended = true;
925 mutex_unlock(&ts->lock);
927 return 0;
930 static int ads7846_resume(struct device *dev)
932 struct ads7846 *ts = dev_get_drvdata(dev);
934 mutex_lock(&ts->lock);
936 if (ts->suspended) {
938 ts->suspended = false;
940 if (device_may_wakeup(&ts->spi->dev))
941 disable_irq_wake(ts->spi->irq);
943 if (!ts->disabled)
944 __ads7846_enable(ts);
947 mutex_unlock(&ts->lock);
949 return 0;
951 #endif
953 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
955 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
957 struct ads7846_platform_data *pdata = spi->dev.platform_data;
958 int err;
961 * REVISIT when the irq can be triggered active-low, or if for some
962 * reason the touchscreen isn't hooked up, we don't need to access
963 * the pendown state.
966 if (pdata->get_pendown_state) {
967 ts->get_pendown_state = pdata->get_pendown_state;
968 } else if (gpio_is_valid(pdata->gpio_pendown)) {
970 err = gpio_request_one(pdata->gpio_pendown, GPIOF_IN,
971 "ads7846_pendown");
972 if (err) {
973 dev_err(&spi->dev,
974 "failed to request/setup pendown GPIO%d: %d\n",
975 pdata->gpio_pendown, err);
976 return err;
979 ts->gpio_pendown = pdata->gpio_pendown;
981 } else {
982 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
983 return -EINVAL;
986 return 0;
990 * Set up the transfers to read touchscreen state; this assumes we
991 * use formula #2 for pressure, not #3.
993 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
994 const struct ads7846_platform_data *pdata)
996 struct spi_message *m = &ts->msg[0];
997 struct spi_transfer *x = ts->xfer;
998 struct ads7846_packet *packet = ts->packet;
999 int vref = pdata->keep_vref_on;
1001 if (ts->model == 7873) {
1003 * The AD7873 is almost identical to the ADS7846
1004 * keep VREF off during differential/ratiometric
1005 * conversion modes.
1007 ts->model = 7846;
1008 vref = 0;
1011 ts->msg_count = 1;
1012 spi_message_init(m);
1013 m->context = ts;
1015 if (ts->model == 7845) {
1016 packet->read_y_cmd[0] = READ_Y(vref);
1017 packet->read_y_cmd[1] = 0;
1018 packet->read_y_cmd[2] = 0;
1019 x->tx_buf = &packet->read_y_cmd[0];
1020 x->rx_buf = &packet->tc.y_buf[0];
1021 x->len = 3;
1022 spi_message_add_tail(x, m);
1023 } else {
1024 /* y- still on; turn on only y+ (and ADC) */
1025 packet->read_y = READ_Y(vref);
1026 x->tx_buf = &packet->read_y;
1027 x->len = 1;
1028 spi_message_add_tail(x, m);
1030 x++;
1031 x->rx_buf = &packet->tc.y;
1032 x->len = 2;
1033 spi_message_add_tail(x, m);
1037 * The first sample after switching drivers can be low quality;
1038 * optionally discard it, using a second one after the signals
1039 * have had enough time to stabilize.
1041 if (pdata->settle_delay_usecs) {
1042 x->delay_usecs = pdata->settle_delay_usecs;
1044 x++;
1045 x->tx_buf = &packet->read_y;
1046 x->len = 1;
1047 spi_message_add_tail(x, m);
1049 x++;
1050 x->rx_buf = &packet->tc.y;
1051 x->len = 2;
1052 spi_message_add_tail(x, m);
1055 ts->msg_count++;
1056 m++;
1057 spi_message_init(m);
1058 m->context = ts;
1060 if (ts->model == 7845) {
1061 x++;
1062 packet->read_x_cmd[0] = READ_X(vref);
1063 packet->read_x_cmd[1] = 0;
1064 packet->read_x_cmd[2] = 0;
1065 x->tx_buf = &packet->read_x_cmd[0];
1066 x->rx_buf = &packet->tc.x_buf[0];
1067 x->len = 3;
1068 spi_message_add_tail(x, m);
1069 } else {
1070 /* turn y- off, x+ on, then leave in lowpower */
1071 x++;
1072 packet->read_x = READ_X(vref);
1073 x->tx_buf = &packet->read_x;
1074 x->len = 1;
1075 spi_message_add_tail(x, m);
1077 x++;
1078 x->rx_buf = &packet->tc.x;
1079 x->len = 2;
1080 spi_message_add_tail(x, m);
1083 /* ... maybe discard first sample ... */
1084 if (pdata->settle_delay_usecs) {
1085 x->delay_usecs = pdata->settle_delay_usecs;
1087 x++;
1088 x->tx_buf = &packet->read_x;
1089 x->len = 1;
1090 spi_message_add_tail(x, m);
1092 x++;
1093 x->rx_buf = &packet->tc.x;
1094 x->len = 2;
1095 spi_message_add_tail(x, m);
1098 /* turn y+ off, x- on; we'll use formula #2 */
1099 if (ts->model == 7846) {
1100 ts->msg_count++;
1101 m++;
1102 spi_message_init(m);
1103 m->context = ts;
1105 x++;
1106 packet->read_z1 = READ_Z1(vref);
1107 x->tx_buf = &packet->read_z1;
1108 x->len = 1;
1109 spi_message_add_tail(x, m);
1111 x++;
1112 x->rx_buf = &packet->tc.z1;
1113 x->len = 2;
1114 spi_message_add_tail(x, m);
1116 /* ... maybe discard first sample ... */
1117 if (pdata->settle_delay_usecs) {
1118 x->delay_usecs = pdata->settle_delay_usecs;
1120 x++;
1121 x->tx_buf = &packet->read_z1;
1122 x->len = 1;
1123 spi_message_add_tail(x, m);
1125 x++;
1126 x->rx_buf = &packet->tc.z1;
1127 x->len = 2;
1128 spi_message_add_tail(x, m);
1131 ts->msg_count++;
1132 m++;
1133 spi_message_init(m);
1134 m->context = ts;
1136 x++;
1137 packet->read_z2 = READ_Z2(vref);
1138 x->tx_buf = &packet->read_z2;
1139 x->len = 1;
1140 spi_message_add_tail(x, m);
1142 x++;
1143 x->rx_buf = &packet->tc.z2;
1144 x->len = 2;
1145 spi_message_add_tail(x, m);
1147 /* ... maybe discard first sample ... */
1148 if (pdata->settle_delay_usecs) {
1149 x->delay_usecs = pdata->settle_delay_usecs;
1151 x++;
1152 x->tx_buf = &packet->read_z2;
1153 x->len = 1;
1154 spi_message_add_tail(x, m);
1156 x++;
1157 x->rx_buf = &packet->tc.z2;
1158 x->len = 2;
1159 spi_message_add_tail(x, m);
1163 /* power down */
1164 ts->msg_count++;
1165 m++;
1166 spi_message_init(m);
1167 m->context = ts;
1169 if (ts->model == 7845) {
1170 x++;
1171 packet->pwrdown_cmd[0] = PWRDOWN;
1172 packet->pwrdown_cmd[1] = 0;
1173 packet->pwrdown_cmd[2] = 0;
1174 x->tx_buf = &packet->pwrdown_cmd[0];
1175 x->len = 3;
1176 } else {
1177 x++;
1178 packet->pwrdown = PWRDOWN;
1179 x->tx_buf = &packet->pwrdown;
1180 x->len = 1;
1181 spi_message_add_tail(x, m);
1183 x++;
1184 x->rx_buf = &packet->dummy;
1185 x->len = 2;
1188 CS_CHANGE(*x);
1189 spi_message_add_tail(x, m);
1192 static int __devinit ads7846_probe(struct spi_device *spi)
1194 struct ads7846 *ts;
1195 struct ads7846_packet *packet;
1196 struct input_dev *input_dev;
1197 struct ads7846_platform_data *pdata = spi->dev.platform_data;
1198 unsigned long irq_flags;
1199 int err;
1201 if (!spi->irq) {
1202 dev_dbg(&spi->dev, "no IRQ?\n");
1203 return -ENODEV;
1206 if (!pdata) {
1207 dev_dbg(&spi->dev, "no platform data?\n");
1208 return -ENODEV;
1211 /* don't exceed max specified sample rate */
1212 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1213 dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1214 (spi->max_speed_hz/SAMPLE_BITS)/1000);
1215 return -EINVAL;
1218 /* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1219 * that even if the hardware can do that, the SPI controller driver
1220 * may not. So we stick to very-portable 8 bit words, both RX and TX.
1222 spi->bits_per_word = 8;
1223 spi->mode = SPI_MODE_0;
1224 err = spi_setup(spi);
1225 if (err < 0)
1226 return err;
1228 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1229 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1230 input_dev = input_allocate_device();
1231 if (!ts || !packet || !input_dev) {
1232 err = -ENOMEM;
1233 goto err_free_mem;
1236 dev_set_drvdata(&spi->dev, ts);
1238 ts->packet = packet;
1239 ts->spi = spi;
1240 ts->input = input_dev;
1241 ts->vref_mv = pdata->vref_mv;
1242 ts->swap_xy = pdata->swap_xy;
1244 mutex_init(&ts->lock);
1245 init_waitqueue_head(&ts->wait);
1247 ts->model = pdata->model ? : 7846;
1248 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1249 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1250 ts->pressure_max = pdata->pressure_max ? : ~0;
1252 if (pdata->filter != NULL) {
1253 if (pdata->filter_init != NULL) {
1254 err = pdata->filter_init(pdata, &ts->filter_data);
1255 if (err < 0)
1256 goto err_free_mem;
1258 ts->filter = pdata->filter;
1259 ts->filter_cleanup = pdata->filter_cleanup;
1260 } else if (pdata->debounce_max) {
1261 ts->debounce_max = pdata->debounce_max;
1262 if (ts->debounce_max < 2)
1263 ts->debounce_max = 2;
1264 ts->debounce_tol = pdata->debounce_tol;
1265 ts->debounce_rep = pdata->debounce_rep;
1266 ts->filter = ads7846_debounce_filter;
1267 ts->filter_data = ts;
1268 } else {
1269 ts->filter = ads7846_no_filter;
1272 err = ads7846_setup_pendown(spi, ts);
1273 if (err)
1274 goto err_cleanup_filter;
1276 if (pdata->penirq_recheck_delay_usecs)
1277 ts->penirq_recheck_delay_usecs =
1278 pdata->penirq_recheck_delay_usecs;
1280 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1282 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1283 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1285 input_dev->name = ts->name;
1286 input_dev->phys = ts->phys;
1287 input_dev->dev.parent = &spi->dev;
1289 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1290 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1291 input_set_abs_params(input_dev, ABS_X,
1292 pdata->x_min ? : 0,
1293 pdata->x_max ? : MAX_12BIT,
1294 0, 0);
1295 input_set_abs_params(input_dev, ABS_Y,
1296 pdata->y_min ? : 0,
1297 pdata->y_max ? : MAX_12BIT,
1298 0, 0);
1299 input_set_abs_params(input_dev, ABS_PRESSURE,
1300 pdata->pressure_min, pdata->pressure_max, 0, 0);
1302 ads7846_setup_spi_msg(ts, pdata);
1304 ts->reg = regulator_get(&spi->dev, "vcc");
1305 if (IS_ERR(ts->reg)) {
1306 err = PTR_ERR(ts->reg);
1307 dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1308 goto err_free_gpio;
1311 err = regulator_enable(ts->reg);
1312 if (err) {
1313 dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1314 goto err_put_regulator;
1317 irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1318 irq_flags |= IRQF_ONESHOT;
1320 err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1321 irq_flags, spi->dev.driver->name, ts);
1322 if (err && !pdata->irq_flags) {
1323 dev_info(&spi->dev,
1324 "trying pin change workaround on irq %d\n", spi->irq);
1325 irq_flags |= IRQF_TRIGGER_RISING;
1326 err = request_threaded_irq(spi->irq,
1327 ads7846_hard_irq, ads7846_irq,
1328 irq_flags, spi->dev.driver->name, ts);
1331 if (err) {
1332 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1333 goto err_disable_regulator;
1336 err = ads784x_hwmon_register(spi, ts);
1337 if (err)
1338 goto err_free_irq;
1340 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1343 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1344 * the touchscreen, in case it's not connected.
1346 if (ts->model == 7845)
1347 ads7845_read12_ser(&spi->dev, PWRDOWN);
1348 else
1349 (void) ads7846_read12_ser(&spi->dev, READ_12BIT_SER(vaux));
1351 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1352 if (err)
1353 goto err_remove_hwmon;
1355 err = input_register_device(input_dev);
1356 if (err)
1357 goto err_remove_attr_group;
1359 device_init_wakeup(&spi->dev, pdata->wakeup);
1361 return 0;
1363 err_remove_attr_group:
1364 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1365 err_remove_hwmon:
1366 ads784x_hwmon_unregister(spi, ts);
1367 err_free_irq:
1368 free_irq(spi->irq, ts);
1369 err_disable_regulator:
1370 regulator_disable(ts->reg);
1371 err_put_regulator:
1372 regulator_put(ts->reg);
1373 err_free_gpio:
1374 if (!ts->get_pendown_state)
1375 gpio_free(ts->gpio_pendown);
1376 err_cleanup_filter:
1377 if (ts->filter_cleanup)
1378 ts->filter_cleanup(ts->filter_data);
1379 err_free_mem:
1380 input_free_device(input_dev);
1381 kfree(packet);
1382 kfree(ts);
1383 return err;
1386 static int __devexit ads7846_remove(struct spi_device *spi)
1388 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1390 device_init_wakeup(&spi->dev, false);
1392 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1394 ads7846_disable(ts);
1395 free_irq(ts->spi->irq, ts);
1397 input_unregister_device(ts->input);
1399 ads784x_hwmon_unregister(spi, ts);
1401 regulator_disable(ts->reg);
1402 regulator_put(ts->reg);
1404 if (!ts->get_pendown_state) {
1406 * If we are not using specialized pendown method we must
1407 * have been relying on gpio we set up ourselves.
1409 gpio_free(ts->gpio_pendown);
1412 if (ts->filter_cleanup)
1413 ts->filter_cleanup(ts->filter_data);
1415 kfree(ts->packet);
1416 kfree(ts);
1418 dev_dbg(&spi->dev, "unregistered touchscreen\n");
1420 return 0;
1423 static struct spi_driver ads7846_driver = {
1424 .driver = {
1425 .name = "ads7846",
1426 .bus = &spi_bus_type,
1427 .owner = THIS_MODULE,
1428 .pm = &ads7846_pm,
1430 .probe = ads7846_probe,
1431 .remove = __devexit_p(ads7846_remove),
1434 static int __init ads7846_init(void)
1436 return spi_register_driver(&ads7846_driver);
1438 module_init(ads7846_init);
1440 static void __exit ads7846_exit(void)
1442 spi_unregister_driver(&ads7846_driver);
1444 module_exit(ads7846_exit);
1446 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1447 MODULE_LICENSE("GPL");
1448 MODULE_ALIAS("spi:ads7846");