Staging: hv: mousevsc: Cleanup and properly implement reportdesc_callback()
[zen-stable.git] / drivers / net / chelsio / pm3393.c
blob40c7b93ababc3d39d09e6f0ef9ba8e61af241955
1 /*****************************************************************************
2 * *
3 * File: pm3393.c *
4 * $Revision: 1.16 $ *
5 * $Date: 2005/05/14 00:59:32 $ *
6 * Description: *
7 * PMC/SIERRA (pm3393) MAC-PHY functionality. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
40 #include "common.h"
41 #include "regs.h"
42 #include "gmac.h"
43 #include "elmer0.h"
44 #include "suni1x10gexp_regs.h"
46 #include <linux/crc32.h>
47 #include <linux/slab.h>
49 #define OFFSET(REG_ADDR) ((REG_ADDR) << 2)
51 /* Max frame size PM3393 can handle. Includes Ethernet header and CRC. */
52 #define MAX_FRAME_SIZE 9600
54 #define IPG 12
55 #define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \
56 SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \
57 SUNI1x10GEXP_BITMSK_TXXG_PADEN)
58 #define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \
59 SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP)
61 /* Update statistics every 15 minutes */
62 #define STATS_TICK_SECS (15 * 60)
64 enum { /* RMON registers */
65 RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW,
66 RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW,
67 RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW,
68 RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW,
69 RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW,
70 RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW,
71 RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW,
72 RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW,
73 RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW,
74 RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW,
75 RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW,
76 RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW,
77 RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW,
78 RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW,
79 RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW,
81 TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW,
82 TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW,
83 TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW,
84 TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW,
85 TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW,
86 TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW,
87 TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW,
88 TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW,
89 TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW
92 struct _cmac_instance {
93 u8 enabled;
94 u8 fc;
95 u8 mac_addr[6];
98 static int pmread(struct cmac *cmac, u32 reg, u32 * data32)
100 t1_tpi_read(cmac->adapter, OFFSET(reg), data32);
101 return 0;
104 static int pmwrite(struct cmac *cmac, u32 reg, u32 data32)
106 t1_tpi_write(cmac->adapter, OFFSET(reg), data32);
107 return 0;
110 /* Port reset. */
111 static int pm3393_reset(struct cmac *cmac)
113 return 0;
117 * Enable interrupts for the PM3393
119 * 1. Enable PM3393 BLOCK interrupts.
120 * 2. Enable PM3393 Master Interrupt bit(INTE)
121 * 3. Enable ELMER's PM3393 bit.
122 * 4. Enable Terminator external interrupt.
124 static int pm3393_interrupt_enable(struct cmac *cmac)
126 u32 pl_intr;
128 /* PM3393 - Enabling all hardware block interrupts.
130 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff);
131 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff);
132 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff);
133 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff);
135 /* Don't interrupt on statistics overflow, we are polling */
136 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
137 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
138 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
139 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
141 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff);
142 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff);
143 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff);
144 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff);
145 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff);
146 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff);
147 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff);
148 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff);
149 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff);
151 /* PM3393 - Global interrupt enable
153 /* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */
154 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE,
155 0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ );
157 /* TERMINATOR - PL_INTERUPTS_EXT */
158 pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE);
159 pl_intr |= F_PL_INTR_EXT;
160 writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE);
161 return 0;
164 static int pm3393_interrupt_disable(struct cmac *cmac)
166 u32 elmer;
168 /* PM3393 - Enabling HW interrupt blocks. */
169 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0);
170 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0);
171 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0);
172 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0);
173 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
174 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
175 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
176 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
177 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0);
178 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0);
179 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0);
180 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0);
181 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0);
182 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0);
183 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0);
184 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0);
185 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0);
187 /* PM3393 - Global interrupt enable */
188 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0);
190 /* ELMER - External chip interrupts. */
191 t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer);
192 elmer &= ~ELMER0_GP_BIT1;
193 t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer);
195 /* TERMINATOR - PL_INTERUPTS_EXT */
196 /* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP
197 * COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level.
200 return 0;
203 static int pm3393_interrupt_clear(struct cmac *cmac)
205 u32 elmer;
206 u32 pl_intr;
207 u32 val32;
209 /* PM3393 - Clearing HW interrupt blocks. Note, this assumes
210 * bit WCIMODE=0 for a clear-on-read.
212 pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32);
213 pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32);
214 pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32);
215 pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32);
216 pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32);
217 pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32);
218 pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32);
219 pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32);
220 pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32);
221 pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32);
222 pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32);
223 pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION,
224 &val32);
225 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32);
226 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32);
228 /* PM3393 - Global interrupt status
230 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32);
232 /* ELMER - External chip interrupts.
234 t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer);
235 elmer |= ELMER0_GP_BIT1;
236 t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer);
238 /* TERMINATOR - PL_INTERUPTS_EXT
240 pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE);
241 pl_intr |= F_PL_INTR_EXT;
242 writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE);
244 return 0;
247 /* Interrupt handler */
248 static int pm3393_interrupt_handler(struct cmac *cmac)
250 u32 master_intr_status;
252 /* Read the master interrupt status register. */
253 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS,
254 &master_intr_status);
255 if (netif_msg_intr(cmac->adapter))
256 dev_dbg(&cmac->adapter->pdev->dev, "PM3393 intr cause 0x%x\n",
257 master_intr_status);
259 /* TBD XXX Lets just clear everything for now */
260 pm3393_interrupt_clear(cmac);
262 return 0;
265 static int pm3393_enable(struct cmac *cmac, int which)
267 if (which & MAC_DIRECTION_RX)
268 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1,
269 (RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN));
271 if (which & MAC_DIRECTION_TX) {
272 u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0;
274 if (cmac->instance->fc & PAUSE_RX)
275 val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX;
276 if (cmac->instance->fc & PAUSE_TX)
277 val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX;
278 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val);
281 cmac->instance->enabled |= which;
282 return 0;
285 static int pm3393_enable_port(struct cmac *cmac, int which)
287 /* Clear port statistics */
288 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
289 SUNI1x10GEXP_BITMSK_MSTAT_CLEAR);
290 udelay(2);
291 memset(&cmac->stats, 0, sizeof(struct cmac_statistics));
293 pm3393_enable(cmac, which);
296 * XXX This should be done by the PHY and preferably not at all.
297 * The PHY doesn't give us link status indication on its own so have
298 * the link management code query it instead.
300 t1_link_changed(cmac->adapter, 0);
301 return 0;
304 static int pm3393_disable(struct cmac *cmac, int which)
306 if (which & MAC_DIRECTION_RX)
307 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL);
308 if (which & MAC_DIRECTION_TX)
309 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL);
312 * The disable is graceful. Give the PM3393 time. Can't wait very
313 * long here, we may be holding locks.
315 udelay(20);
317 cmac->instance->enabled &= ~which;
318 return 0;
321 static int pm3393_loopback_enable(struct cmac *cmac)
323 return 0;
326 static int pm3393_loopback_disable(struct cmac *cmac)
328 return 0;
331 static int pm3393_set_mtu(struct cmac *cmac, int mtu)
333 int enabled = cmac->instance->enabled;
335 /* MAX_FRAME_SIZE includes header + FCS, mtu doesn't */
336 mtu += 14 + 4;
337 if (mtu > MAX_FRAME_SIZE)
338 return -EINVAL;
340 /* Disable Rx/Tx MAC before configuring it. */
341 if (enabled)
342 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
344 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu);
345 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu);
347 if (enabled)
348 pm3393_enable(cmac, enabled);
349 return 0;
352 static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm)
354 int enabled = cmac->instance->enabled & MAC_DIRECTION_RX;
355 u32 rx_mode;
357 /* Disable MAC RX before reconfiguring it */
358 if (enabled)
359 pm3393_disable(cmac, MAC_DIRECTION_RX);
361 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode);
362 rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE |
363 SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN);
364 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2,
365 (u16)rx_mode);
367 if (t1_rx_mode_promisc(rm)) {
368 /* Promiscuous mode. */
369 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE;
371 if (t1_rx_mode_allmulti(rm)) {
372 /* Accept all multicast. */
373 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff);
374 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff);
375 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff);
376 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff);
377 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
378 } else if (t1_rx_mode_mc_cnt(rm)) {
379 /* Accept one or more multicast(s). */
380 struct netdev_hw_addr *ha;
381 int bit;
382 u16 mc_filter[4] = { 0, };
384 netdev_for_each_mc_addr(ha, t1_get_netdev(rm)) {
385 /* bit[23:28] */
386 bit = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x3f;
387 mc_filter[bit >> 4] |= 1 << (bit & 0xf);
389 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]);
390 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]);
391 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]);
392 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]);
393 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
396 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode);
398 if (enabled)
399 pm3393_enable(cmac, MAC_DIRECTION_RX);
401 return 0;
404 static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed,
405 int *duplex, int *fc)
407 if (speed)
408 *speed = SPEED_10000;
409 if (duplex)
410 *duplex = DUPLEX_FULL;
411 if (fc)
412 *fc = cmac->instance->fc;
413 return 0;
416 static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex,
417 int fc)
419 if (speed >= 0 && speed != SPEED_10000)
420 return -1;
421 if (duplex >= 0 && duplex != DUPLEX_FULL)
422 return -1;
423 if (fc & ~(PAUSE_TX | PAUSE_RX))
424 return -1;
426 if (fc != cmac->instance->fc) {
427 cmac->instance->fc = (u8) fc;
428 if (cmac->instance->enabled & MAC_DIRECTION_TX)
429 pm3393_enable(cmac, MAC_DIRECTION_TX);
431 return 0;
434 #define RMON_UPDATE(mac, name, stat_name) \
436 t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \
437 t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \
438 t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \
439 (mac)->stats.stat_name = (u64)(val0 & 0xffff) | \
440 ((u64)(val1 & 0xffff) << 16) | \
441 ((u64)(val2 & 0xff) << 32) | \
442 ((mac)->stats.stat_name & \
443 0xffffff0000000000ULL); \
444 if (ro & \
445 (1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \
446 (mac)->stats.stat_name += 1ULL << 40; \
449 static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac,
450 int flag)
452 u64 ro;
453 u32 val0, val1, val2, val3;
455 /* Snap the counters */
456 pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
457 SUNI1x10GEXP_BITMSK_MSTAT_SNAP);
459 /* Counter rollover, clear on read */
460 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0);
461 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1);
462 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2);
463 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3);
464 ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) |
465 (((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48);
467 /* Rx stats */
468 RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK);
469 RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK);
470 RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK);
471 RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK);
472 RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames);
473 RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors);
474 RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors,
475 RxInternalMACRcvError);
476 RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors);
477 RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors);
478 RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors);
479 RMON_UPDATE(mac, RxJabbers, RxJabberErrors);
480 RMON_UPDATE(mac, RxFragments, RxRuntErrors);
481 RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors);
482 RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK);
483 RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK);
485 /* Tx stats */
486 RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK);
487 RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError,
488 TxInternalMACXmitError);
489 RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors);
490 RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK);
491 RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK);
492 RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK);
493 RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames);
494 RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK);
495 RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK);
497 return &mac->stats;
500 static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6])
502 memcpy(mac_addr, cmac->instance->mac_addr, 6);
503 return 0;
506 static int pm3393_macaddress_set(struct cmac *cmac, u8 ma[6])
508 u32 val, lo, mid, hi, enabled = cmac->instance->enabled;
511 * MAC addr: 00:07:43:00:13:09
513 * ma[5] = 0x09
514 * ma[4] = 0x13
515 * ma[3] = 0x00
516 * ma[2] = 0x43
517 * ma[1] = 0x07
518 * ma[0] = 0x00
520 * The PM3393 requires byte swapping and reverse order entry
521 * when programming MAC addresses:
523 * low_bits[15:0] = ma[1]:ma[0]
524 * mid_bits[31:16] = ma[3]:ma[2]
525 * high_bits[47:32] = ma[5]:ma[4]
528 /* Store local copy */
529 memcpy(cmac->instance->mac_addr, ma, 6);
531 lo = ((u32) ma[1] << 8) | (u32) ma[0];
532 mid = ((u32) ma[3] << 8) | (u32) ma[2];
533 hi = ((u32) ma[5] << 8) | (u32) ma[4];
535 /* Disable Rx/Tx MAC before configuring it. */
536 if (enabled)
537 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
539 /* Set RXXG Station Address */
540 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo);
541 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid);
542 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi);
544 /* Set TXXG Station Address */
545 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo);
546 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid);
547 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi);
549 /* Setup Exact Match Filter 1 with our MAC address
551 * Must disable exact match filter before configuring it.
553 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val);
554 val &= 0xff0f;
555 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
557 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo);
558 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid);
559 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi);
561 val |= 0x0090;
562 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
564 if (enabled)
565 pm3393_enable(cmac, enabled);
566 return 0;
569 static void pm3393_destroy(struct cmac *cmac)
571 kfree(cmac);
574 static struct cmac_ops pm3393_ops = {
575 .destroy = pm3393_destroy,
576 .reset = pm3393_reset,
577 .interrupt_enable = pm3393_interrupt_enable,
578 .interrupt_disable = pm3393_interrupt_disable,
579 .interrupt_clear = pm3393_interrupt_clear,
580 .interrupt_handler = pm3393_interrupt_handler,
581 .enable = pm3393_enable_port,
582 .disable = pm3393_disable,
583 .loopback_enable = pm3393_loopback_enable,
584 .loopback_disable = pm3393_loopback_disable,
585 .set_mtu = pm3393_set_mtu,
586 .set_rx_mode = pm3393_set_rx_mode,
587 .get_speed_duplex_fc = pm3393_get_speed_duplex_fc,
588 .set_speed_duplex_fc = pm3393_set_speed_duplex_fc,
589 .statistics_update = pm3393_update_statistics,
590 .macaddress_get = pm3393_macaddress_get,
591 .macaddress_set = pm3393_macaddress_set
594 static struct cmac *pm3393_mac_create(adapter_t *adapter, int index)
596 struct cmac *cmac;
598 cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL);
599 if (!cmac)
600 return NULL;
602 cmac->ops = &pm3393_ops;
603 cmac->instance = (cmac_instance *) (cmac + 1);
604 cmac->adapter = adapter;
605 cmac->instance->fc = PAUSE_TX | PAUSE_RX;
607 t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000);
608 t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000);
609 t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800);
610 t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */
611 t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800);
612 t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800);
613 t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800);
614 t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800);
615 t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800);
616 t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800);
617 t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800);
618 t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800);
619 t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800);
620 t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800);
621 t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800);
622 t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800);
623 t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800);
624 t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800);
625 t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800);
626 t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800);
627 t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00);
628 t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */
630 t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */
631 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */
632 t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */
633 t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */
634 t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */
635 t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */
636 t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */
637 t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */
638 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */
639 t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */
640 t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */
641 t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */
642 t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */
644 t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */
645 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */
646 t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */
647 t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */
648 t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */
649 t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */
650 t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */
651 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */
652 t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */
653 t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */
654 t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */
656 t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */
657 t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */
658 t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */
659 t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */
660 t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */
661 t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */
663 t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */
664 t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */
666 t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */
667 t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */
669 t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */
670 /* For T1 use timer based Mac flow control. */
671 t1_tpi_write(adapter, OFFSET(0x304d), 0x8000);
672 t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */
673 t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */
674 t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */
676 /* Setup Exact Match Filter 0 to allow broadcast packets.
678 t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */
679 t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */
680 t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */
681 t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */
682 t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */
684 t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */
685 t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */
686 t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */
688 return cmac;
691 static int pm3393_mac_reset(adapter_t * adapter)
693 u32 val;
694 u32 x;
695 u32 is_pl4_reset_finished;
696 u32 is_pl4_outof_lock;
697 u32 is_xaui_mabc_pll_locked;
698 u32 successful_reset;
699 int i;
701 /* The following steps are required to properly reset
702 * the PM3393. This information is provided in the
703 * PM3393 datasheet (Issue 2: November 2002)
704 * section 13.1 -- Device Reset.
706 * The PM3393 has three types of components that are
707 * individually reset:
709 * DRESETB - Digital circuitry
710 * PL4_ARESETB - PL4 analog circuitry
711 * XAUI_ARESETB - XAUI bus analog circuitry
713 * Steps to reset PM3393 using RSTB pin:
715 * 1. Assert RSTB pin low ( write 0 )
716 * 2. Wait at least 1ms to initiate a complete initialization of device.
717 * 3. Wait until all external clocks and REFSEL are stable.
718 * 4. Wait minimum of 1ms. (after external clocks and REFEL are stable)
719 * 5. De-assert RSTB ( write 1 )
720 * 6. Wait until internal timers to expires after ~14ms.
721 * - Allows analog clock synthesizer(PL4CSU) to stabilize to
722 * selected reference frequency before allowing the digital
723 * portion of the device to operate.
724 * 7. Wait at least 200us for XAUI interface to stabilize.
725 * 8. Verify the PM3393 came out of reset successfully.
726 * Set successful reset flag if everything worked else try again
727 * a few more times.
730 successful_reset = 0;
731 for (i = 0; i < 3 && !successful_reset; i++) {
732 /* 1 */
733 t1_tpi_read(adapter, A_ELMER0_GPO, &val);
734 val &= ~1;
735 t1_tpi_write(adapter, A_ELMER0_GPO, val);
737 /* 2 */
738 msleep(1);
740 /* 3 */
741 msleep(1);
743 /* 4 */
744 msleep(2 /*1 extra ms for safety */ );
746 /* 5 */
747 val |= 1;
748 t1_tpi_write(adapter, A_ELMER0_GPO, val);
750 /* 6 */
751 msleep(15 /*1 extra ms for safety */ );
753 /* 7 */
754 msleep(1);
756 /* 8 */
758 /* Has PL4 analog block come out of reset correctly? */
759 t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val);
760 is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED);
762 /* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence
763 * figure out why? */
765 /* Have all PL4 block clocks locked? */
766 x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL
767 /*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ |
768 SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL |
769 SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL |
770 SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL);
771 is_pl4_outof_lock = (val & x);
773 /* ??? If this fails, might be able to software reset the XAUI part
774 * and try to recover... thus saving us from doing another HW reset */
775 /* Has the XAUI MABC PLL circuitry stablized? */
776 is_xaui_mabc_pll_locked =
777 (val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED);
779 successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock
780 && is_xaui_mabc_pll_locked);
782 if (netif_msg_hw(adapter))
783 dev_dbg(&adapter->pdev->dev,
784 "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, "
785 "is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n",
786 i, is_pl4_reset_finished, val,
787 is_pl4_outof_lock, is_xaui_mabc_pll_locked);
789 return successful_reset ? 0 : 1;
792 const struct gmac t1_pm3393_ops = {
793 .stats_update_period = STATS_TICK_SECS,
794 .create = pm3393_mac_create,
795 .reset = pm3393_mac_reset,