1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
67 /* 1=Reverse Auto-Negotiation */
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY 0x5
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
93 /* 1=Enable SERDES Electrical Idle */
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
99 * A table for the GG82563 cable length where the range is defined
100 * with a lower bound at "index" and the upper bound at
103 static const u16 e1000_gg82563_cable_length_table
[] = {
104 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106 ARRAY_SIZE(e1000_gg82563_cable_length_table)
108 static s32
e1000_setup_copper_link_80003es2lan(struct e1000_hw
*hw
);
109 static s32
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw
*hw
);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw
*hw
);
113 static s32
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw
*hw
);
114 static s32
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw
*hw
, u16 duplex
);
115 static s32
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw
*hw
);
116 static s32
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw
*hw
, u32 offset
,
118 static s32
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw
*hw
, u32 offset
,
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw
*hw
);
123 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124 * @hw: pointer to the HW structure
126 static s32
e1000_init_phy_params_80003es2lan(struct e1000_hw
*hw
)
128 struct e1000_phy_info
*phy
= &hw
->phy
;
131 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
132 phy
->type
= e1000_phy_none
;
135 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
136 phy
->ops
.power_down
= e1000_power_down_phy_copper_80003es2lan
;
140 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
141 phy
->reset_delay_us
= 100;
142 phy
->type
= e1000_phy_gg82563
;
144 /* This can only be done after all function pointers are setup. */
145 ret_val
= e1000e_get_phy_id(hw
);
148 if (phy
->id
!= GG82563_E_PHY_ID
)
149 return -E1000_ERR_PHY
;
155 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156 * @hw: pointer to the HW structure
158 static s32
e1000_init_nvm_params_80003es2lan(struct e1000_hw
*hw
)
160 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
161 u32 eecd
= er32(EECD
);
164 nvm
->opcode_bits
= 8;
166 switch (nvm
->override
) {
167 case e1000_nvm_override_spi_large
:
169 nvm
->address_bits
= 16;
171 case e1000_nvm_override_spi_small
:
173 nvm
->address_bits
= 8;
176 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
177 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
181 nvm
->type
= e1000_nvm_eeprom_spi
;
183 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
184 E1000_EECD_SIZE_EX_SHIFT
);
187 * Added to a constant, "size" becomes the left-shift value
188 * for setting word_size.
190 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
192 /* EEPROM access above 16k is unsupported */
195 nvm
->word_size
= 1 << size
;
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202 * @hw: pointer to the HW structure
204 static s32
e1000_init_mac_params_80003es2lan(struct e1000_adapter
*adapter
)
206 struct e1000_hw
*hw
= &adapter
->hw
;
207 struct e1000_mac_info
*mac
= &hw
->mac
;
208 struct e1000_mac_operations
*func
= &mac
->ops
;
211 switch (adapter
->pdev
->device
) {
212 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT
:
213 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
216 hw
->phy
.media_type
= e1000_media_type_copper
;
220 /* Set mta register count */
221 mac
->mta_reg_count
= 128;
222 /* Set rar entry count */
223 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
225 mac
->has_fwsm
= true;
226 /* ARC supported; valid only if manageability features are enabled. */
227 mac
->arc_subsystem_valid
=
228 (er32(FWSM
) & E1000_FWSM_MODE_MASK
)
230 /* Adaptive IFS not supported */
231 mac
->adaptive_ifs
= false;
234 switch (hw
->phy
.media_type
) {
235 case e1000_media_type_copper
:
236 func
->setup_physical_interface
= e1000_setup_copper_link_80003es2lan
;
237 func
->check_for_link
= e1000e_check_for_copper_link
;
239 case e1000_media_type_fiber
:
240 func
->setup_physical_interface
= e1000e_setup_fiber_serdes_link
;
241 func
->check_for_link
= e1000e_check_for_fiber_link
;
243 case e1000_media_type_internal_serdes
:
244 func
->setup_physical_interface
= e1000e_setup_fiber_serdes_link
;
245 func
->check_for_link
= e1000e_check_for_serdes_link
;
248 return -E1000_ERR_CONFIG
;
252 /* set lan id for port to determine which phy lock to use */
253 hw
->mac
.ops
.set_lan_id(hw
);
258 static s32
e1000_get_variants_80003es2lan(struct e1000_adapter
*adapter
)
260 struct e1000_hw
*hw
= &adapter
->hw
;
263 rc
= e1000_init_mac_params_80003es2lan(adapter
);
267 rc
= e1000_init_nvm_params_80003es2lan(hw
);
271 rc
= e1000_init_phy_params_80003es2lan(hw
);
279 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
280 * @hw: pointer to the HW structure
282 * A wrapper to acquire access rights to the correct PHY.
284 static s32
e1000_acquire_phy_80003es2lan(struct e1000_hw
*hw
)
288 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
289 return e1000_acquire_swfw_sync_80003es2lan(hw
, mask
);
293 * e1000_release_phy_80003es2lan - Release rights to access PHY
294 * @hw: pointer to the HW structure
296 * A wrapper to release access rights to the correct PHY.
298 static void e1000_release_phy_80003es2lan(struct e1000_hw
*hw
)
302 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
303 e1000_release_swfw_sync_80003es2lan(hw
, mask
);
307 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
308 * @hw: pointer to the HW structure
310 * Acquire the semaphore to access the Kumeran interface.
313 static s32
e1000_acquire_mac_csr_80003es2lan(struct e1000_hw
*hw
)
317 mask
= E1000_SWFW_CSR_SM
;
319 return e1000_acquire_swfw_sync_80003es2lan(hw
, mask
);
323 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
324 * @hw: pointer to the HW structure
326 * Release the semaphore used to access the Kumeran interface
328 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw
*hw
)
332 mask
= E1000_SWFW_CSR_SM
;
334 e1000_release_swfw_sync_80003es2lan(hw
, mask
);
338 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
339 * @hw: pointer to the HW structure
341 * Acquire the semaphore to access the EEPROM.
343 static s32
e1000_acquire_nvm_80003es2lan(struct e1000_hw
*hw
)
347 ret_val
= e1000_acquire_swfw_sync_80003es2lan(hw
, E1000_SWFW_EEP_SM
);
351 ret_val
= e1000e_acquire_nvm(hw
);
354 e1000_release_swfw_sync_80003es2lan(hw
, E1000_SWFW_EEP_SM
);
360 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
361 * @hw: pointer to the HW structure
363 * Release the semaphore used to access the EEPROM.
365 static void e1000_release_nvm_80003es2lan(struct e1000_hw
*hw
)
367 e1000e_release_nvm(hw
);
368 e1000_release_swfw_sync_80003es2lan(hw
, E1000_SWFW_EEP_SM
);
372 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
373 * @hw: pointer to the HW structure
374 * @mask: specifies which semaphore to acquire
376 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
377 * will also specify which port we're acquiring the lock for.
379 static s32
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
)
383 u32 fwmask
= mask
<< 16;
387 while (i
< timeout
) {
388 if (e1000e_get_hw_semaphore(hw
))
389 return -E1000_ERR_SWFW_SYNC
;
391 swfw_sync
= er32(SW_FW_SYNC
);
392 if (!(swfw_sync
& (fwmask
| swmask
)))
396 * Firmware currently using resource (fwmask)
397 * or other software thread using resource (swmask)
399 e1000e_put_hw_semaphore(hw
);
405 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
406 return -E1000_ERR_SWFW_SYNC
;
410 ew32(SW_FW_SYNC
, swfw_sync
);
412 e1000e_put_hw_semaphore(hw
);
418 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
419 * @hw: pointer to the HW structure
420 * @mask: specifies which semaphore to acquire
422 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
423 * will also specify which port we're releasing the lock for.
425 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
)
429 while (e1000e_get_hw_semaphore(hw
) != 0)
432 swfw_sync
= er32(SW_FW_SYNC
);
434 ew32(SW_FW_SYNC
, swfw_sync
);
436 e1000e_put_hw_semaphore(hw
);
440 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
441 * @hw: pointer to the HW structure
442 * @offset: offset of the register to read
443 * @data: pointer to the data returned from the operation
445 * Read the GG82563 PHY register.
447 static s32
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw
*hw
,
448 u32 offset
, u16
*data
)
454 ret_val
= e1000_acquire_phy_80003es2lan(hw
);
458 /* Select Configuration Page */
459 if ((offset
& MAX_PHY_REG_ADDRESS
) < GG82563_MIN_ALT_REG
) {
460 page_select
= GG82563_PHY_PAGE_SELECT
;
463 * Use Alternative Page Select register to access
464 * registers 30 and 31
466 page_select
= GG82563_PHY_PAGE_SELECT_ALT
;
469 temp
= (u16
)((u16
)offset
>> GG82563_PAGE_SHIFT
);
470 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
, temp
);
472 e1000_release_phy_80003es2lan(hw
);
476 if (hw
->dev_spec
.e80003es2lan
.mdic_wa_enable
== true) {
478 * The "ready" bit in the MDIC register may be incorrectly set
479 * before the device has completed the "Page Select" MDI
480 * transaction. So we wait 200us after each MDI command...
484 /* ...and verify the command was successful. */
485 ret_val
= e1000e_read_phy_reg_mdic(hw
, page_select
, &temp
);
487 if (((u16
)offset
>> GG82563_PAGE_SHIFT
) != temp
) {
488 ret_val
= -E1000_ERR_PHY
;
489 e1000_release_phy_80003es2lan(hw
);
495 ret_val
= e1000e_read_phy_reg_mdic(hw
,
496 MAX_PHY_REG_ADDRESS
& offset
,
501 ret_val
= e1000e_read_phy_reg_mdic(hw
,
502 MAX_PHY_REG_ADDRESS
& offset
,
506 e1000_release_phy_80003es2lan(hw
);
512 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
513 * @hw: pointer to the HW structure
514 * @offset: offset of the register to read
515 * @data: value to write to the register
517 * Write to the GG82563 PHY register.
519 static s32
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw
*hw
,
520 u32 offset
, u16 data
)
526 ret_val
= e1000_acquire_phy_80003es2lan(hw
);
530 /* Select Configuration Page */
531 if ((offset
& MAX_PHY_REG_ADDRESS
) < GG82563_MIN_ALT_REG
) {
532 page_select
= GG82563_PHY_PAGE_SELECT
;
535 * Use Alternative Page Select register to access
536 * registers 30 and 31
538 page_select
= GG82563_PHY_PAGE_SELECT_ALT
;
541 temp
= (u16
)((u16
)offset
>> GG82563_PAGE_SHIFT
);
542 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
, temp
);
544 e1000_release_phy_80003es2lan(hw
);
548 if (hw
->dev_spec
.e80003es2lan
.mdic_wa_enable
== true) {
550 * The "ready" bit in the MDIC register may be incorrectly set
551 * before the device has completed the "Page Select" MDI
552 * transaction. So we wait 200us after each MDI command...
556 /* ...and verify the command was successful. */
557 ret_val
= e1000e_read_phy_reg_mdic(hw
, page_select
, &temp
);
559 if (((u16
)offset
>> GG82563_PAGE_SHIFT
) != temp
) {
560 e1000_release_phy_80003es2lan(hw
);
561 return -E1000_ERR_PHY
;
566 ret_val
= e1000e_write_phy_reg_mdic(hw
,
567 MAX_PHY_REG_ADDRESS
& offset
,
572 ret_val
= e1000e_write_phy_reg_mdic(hw
,
573 MAX_PHY_REG_ADDRESS
& offset
,
577 e1000_release_phy_80003es2lan(hw
);
583 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
584 * @hw: pointer to the HW structure
585 * @offset: offset of the register to read
586 * @words: number of words to write
587 * @data: buffer of data to write to the NVM
589 * Write "words" of data to the ESB2 NVM.
591 static s32
e1000_write_nvm_80003es2lan(struct e1000_hw
*hw
, u16 offset
,
592 u16 words
, u16
*data
)
594 return e1000e_write_nvm_spi(hw
, offset
, words
, data
);
598 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
599 * @hw: pointer to the HW structure
601 * Wait a specific amount of time for manageability processes to complete.
602 * This is a function pointer entry point called by the phy module.
604 static s32
e1000_get_cfg_done_80003es2lan(struct e1000_hw
*hw
)
606 s32 timeout
= PHY_CFG_TIMEOUT
;
607 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
609 if (hw
->bus
.func
== 1)
610 mask
= E1000_NVM_CFG_DONE_PORT_1
;
613 if (er32(EEMNGCTL
) & mask
)
615 usleep_range(1000, 2000);
619 e_dbg("MNG configuration cycle has not completed.\n");
620 return -E1000_ERR_RESET
;
627 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
628 * @hw: pointer to the HW structure
630 * Force the speed and duplex settings onto the PHY. This is a
631 * function pointer entry point called by the phy module.
633 static s32
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw
*hw
)
640 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
641 * forced whenever speed and duplex are forced.
643 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
647 phy_data
&= ~GG82563_PSCR_CROSSOVER_MODE_AUTO
;
648 ret_val
= e1e_wphy(hw
, GG82563_PHY_SPEC_CTRL
, phy_data
);
652 e_dbg("GG82563 PSCR: %X\n", phy_data
);
654 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
658 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
660 /* Reset the phy to commit changes. */
661 phy_data
|= MII_CR_RESET
;
663 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
669 if (hw
->phy
.autoneg_wait_to_complete
) {
670 e_dbg("Waiting for forced speed/duplex link "
671 "on GG82563 phy.\n");
673 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
680 * We didn't get link.
681 * Reset the DSP and cross our fingers.
683 ret_val
= e1000e_phy_reset_dsp(hw
);
689 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
695 ret_val
= e1e_rphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
, &phy_data
);
700 * Resetting the phy means we need to verify the TX_CLK corresponds
701 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
703 phy_data
&= ~GG82563_MSCR_TX_CLK_MASK
;
704 if (hw
->mac
.forced_speed_duplex
& E1000_ALL_10_SPEED
)
705 phy_data
|= GG82563_MSCR_TX_CLK_10MBPS_2_5
;
707 phy_data
|= GG82563_MSCR_TX_CLK_100MBPS_25
;
710 * In addition, we must re-enable CRS on Tx for both half and full
713 phy_data
|= GG82563_MSCR_ASSERT_CRS_ON_TX
;
714 ret_val
= e1e_wphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
, phy_data
);
720 * e1000_get_cable_length_80003es2lan - Set approximate cable length
721 * @hw: pointer to the HW structure
723 * Find the approximate cable length as measured by the GG82563 PHY.
724 * This is a function pointer entry point called by the phy module.
726 static s32
e1000_get_cable_length_80003es2lan(struct e1000_hw
*hw
)
728 struct e1000_phy_info
*phy
= &hw
->phy
;
732 ret_val
= e1e_rphy(hw
, GG82563_PHY_DSP_DISTANCE
, &phy_data
);
736 index
= phy_data
& GG82563_DSPD_CABLE_LENGTH
;
738 if (index
>= GG82563_CABLE_LENGTH_TABLE_SIZE
- 5) {
739 ret_val
= -E1000_ERR_PHY
;
743 phy
->min_cable_length
= e1000_gg82563_cable_length_table
[index
];
744 phy
->max_cable_length
= e1000_gg82563_cable_length_table
[index
+ 5];
746 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
753 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
754 * @hw: pointer to the HW structure
755 * @speed: pointer to speed buffer
756 * @duplex: pointer to duplex buffer
758 * Retrieve the current speed and duplex configuration.
760 static s32
e1000_get_link_up_info_80003es2lan(struct e1000_hw
*hw
, u16
*speed
,
765 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
766 ret_val
= e1000e_get_speed_and_duplex_copper(hw
,
769 hw
->phy
.ops
.cfg_on_link_up(hw
);
771 ret_val
= e1000e_get_speed_and_duplex_fiber_serdes(hw
,
780 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
781 * @hw: pointer to the HW structure
783 * Perform a global reset to the ESB2 controller.
785 static s32
e1000_reset_hw_80003es2lan(struct e1000_hw
*hw
)
791 * Prevent the PCI-E bus from sticking if there is no TLP connection
792 * on the last TLP read/write transaction when MAC is reset.
794 ret_val
= e1000e_disable_pcie_master(hw
);
796 e_dbg("PCI-E Master disable polling has failed.\n");
798 e_dbg("Masking off all interrupts\n");
799 ew32(IMC
, 0xffffffff);
802 ew32(TCTL
, E1000_TCTL_PSP
);
805 usleep_range(10000, 20000);
809 ret_val
= e1000_acquire_phy_80003es2lan(hw
);
810 e_dbg("Issuing a global reset to MAC\n");
811 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
812 e1000_release_phy_80003es2lan(hw
);
814 ret_val
= e1000e_get_auto_rd_done(hw
);
816 /* We don't want to continue accessing MAC registers. */
819 /* Clear any pending interrupt events. */
820 ew32(IMC
, 0xffffffff);
823 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
829 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
830 * @hw: pointer to the HW structure
832 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
834 static s32
e1000_init_hw_80003es2lan(struct e1000_hw
*hw
)
836 struct e1000_mac_info
*mac
= &hw
->mac
;
842 e1000_initialize_hw_bits_80003es2lan(hw
);
844 /* Initialize identification LED */
845 ret_val
= e1000e_id_led_init(hw
);
847 e_dbg("Error initializing identification LED\n");
848 /* This is not fatal and we should not stop init due to this */
850 /* Disabling VLAN filtering */
851 e_dbg("Initializing the IEEE VLAN\n");
852 mac
->ops
.clear_vfta(hw
);
854 /* Setup the receive address. */
855 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
857 /* Zero out the Multicast HASH table */
858 e_dbg("Zeroing the MTA\n");
859 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
860 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
862 /* Setup link and flow control */
863 ret_val
= e1000e_setup_link(hw
);
865 /* Disable IBIST slave mode (far-end loopback) */
866 e1000_read_kmrn_reg_80003es2lan(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
868 kum_reg_data
|= E1000_KMRNCTRLSTA_IBIST_DISABLE
;
869 e1000_write_kmrn_reg_80003es2lan(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
872 /* Set the transmit descriptor write-back policy */
873 reg_data
= er32(TXDCTL(0));
874 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
875 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
;
876 ew32(TXDCTL(0), reg_data
);
878 /* ...for both queues. */
879 reg_data
= er32(TXDCTL(1));
880 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
881 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
;
882 ew32(TXDCTL(1), reg_data
);
884 /* Enable retransmit on late collisions */
885 reg_data
= er32(TCTL
);
886 reg_data
|= E1000_TCTL_RTLC
;
887 ew32(TCTL
, reg_data
);
889 /* Configure Gigabit Carry Extend Padding */
890 reg_data
= er32(TCTL_EXT
);
891 reg_data
&= ~E1000_TCTL_EXT_GCEX_MASK
;
892 reg_data
|= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN
;
893 ew32(TCTL_EXT
, reg_data
);
895 /* Configure Transmit Inter-Packet Gap */
896 reg_data
= er32(TIPG
);
897 reg_data
&= ~E1000_TIPG_IPGT_MASK
;
898 reg_data
|= DEFAULT_TIPG_IPGT_1000_80003ES2LAN
;
899 ew32(TIPG
, reg_data
);
901 reg_data
= E1000_READ_REG_ARRAY(hw
, E1000_FFLT
, 0x0001);
902 reg_data
&= ~0x00100000;
903 E1000_WRITE_REG_ARRAY(hw
, E1000_FFLT
, 0x0001, reg_data
);
905 /* default to true to enable the MDIC W/A */
906 hw
->dev_spec
.e80003es2lan
.mdic_wa_enable
= true;
908 ret_val
= e1000_read_kmrn_reg_80003es2lan(hw
,
909 E1000_KMRNCTRLSTA_OFFSET
>>
910 E1000_KMRNCTRLSTA_OFFSET_SHIFT
,
913 if ((i
& E1000_KMRNCTRLSTA_OPMODE_MASK
) ==
914 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO
)
915 hw
->dev_spec
.e80003es2lan
.mdic_wa_enable
= false;
919 * Clear all of the statistics registers (clear on read). It is
920 * important that we do this after we have tried to establish link
921 * because the symbol error count will increment wildly if there
924 e1000_clear_hw_cntrs_80003es2lan(hw
);
930 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
931 * @hw: pointer to the HW structure
933 * Initializes required hardware-dependent bits needed for normal operation.
935 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw
*hw
)
939 /* Transmit Descriptor Control 0 */
940 reg
= er32(TXDCTL(0));
942 ew32(TXDCTL(0), reg
);
944 /* Transmit Descriptor Control 1 */
945 reg
= er32(TXDCTL(1));
947 ew32(TXDCTL(1), reg
);
949 /* Transmit Arbitration Control 0 */
951 reg
&= ~(0xF << 27); /* 30:27 */
952 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
956 /* Transmit Arbitration Control 1 */
958 if (er32(TCTL
) & E1000_TCTL_MULR
)
966 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
967 * @hw: pointer to the HW structure
969 * Setup some GG82563 PHY registers for obtaining link
971 static s32
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw
*hw
)
973 struct e1000_phy_info
*phy
= &hw
->phy
;
978 ret_val
= e1e_rphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
, &data
);
982 data
|= GG82563_MSCR_ASSERT_CRS_ON_TX
;
983 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
984 data
|= GG82563_MSCR_TX_CLK_1000MBPS_25
;
986 ret_val
= e1e_wphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
, data
);
992 * MDI/MDI-X = 0 (default)
993 * 0 - Auto for all speeds
996 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
998 ret_val
= e1e_rphy(hw
, GG82563_PHY_SPEC_CTRL
, &data
);
1002 data
&= ~GG82563_PSCR_CROSSOVER_MODE_MASK
;
1004 switch (phy
->mdix
) {
1006 data
|= GG82563_PSCR_CROSSOVER_MODE_MDI
;
1009 data
|= GG82563_PSCR_CROSSOVER_MODE_MDIX
;
1013 data
|= GG82563_PSCR_CROSSOVER_MODE_AUTO
;
1019 * disable_polarity_correction = 0 (default)
1020 * Automatic Correction for Reversed Cable Polarity
1024 data
&= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE
;
1025 if (phy
->disable_polarity_correction
)
1026 data
|= GG82563_PSCR_POLARITY_REVERSAL_DISABLE
;
1028 ret_val
= e1e_wphy(hw
, GG82563_PHY_SPEC_CTRL
, data
);
1032 /* SW Reset the PHY so all changes take effect */
1033 ret_val
= e1000e_commit_phy(hw
);
1035 e_dbg("Error Resetting the PHY\n");
1039 /* Bypass Rx and Tx FIFO's */
1040 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
,
1041 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL
,
1042 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS
|
1043 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS
);
1047 ret_val
= e1000_read_kmrn_reg_80003es2lan(hw
,
1048 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE
,
1052 data
|= E1000_KMRNCTRLSTA_OPMODE_E_IDLE
;
1053 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
,
1054 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE
,
1059 ret_val
= e1e_rphy(hw
, GG82563_PHY_SPEC_CTRL_2
, &data
);
1063 data
&= ~GG82563_PSCR2_REVERSE_AUTO_NEG
;
1064 ret_val
= e1e_wphy(hw
, GG82563_PHY_SPEC_CTRL_2
, data
);
1068 ctrl_ext
= er32(CTRL_EXT
);
1069 ctrl_ext
&= ~(E1000_CTRL_EXT_LINK_MODE_MASK
);
1070 ew32(CTRL_EXT
, ctrl_ext
);
1072 ret_val
= e1e_rphy(hw
, GG82563_PHY_PWR_MGMT_CTRL
, &data
);
1077 * Do not init these registers when the HW is in IAMT mode, since the
1078 * firmware will have already initialized them. We only initialize
1079 * them if the HW is not in IAMT mode.
1081 if (!e1000e_check_mng_mode(hw
)) {
1082 /* Enable Electrical Idle on the PHY */
1083 data
|= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE
;
1084 ret_val
= e1e_wphy(hw
, GG82563_PHY_PWR_MGMT_CTRL
, data
);
1088 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, &data
);
1092 data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
1093 ret_val
= e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, data
);
1099 * Workaround: Disable padding in Kumeran interface in the MAC
1100 * and in the PHY to avoid CRC errors.
1102 ret_val
= e1e_rphy(hw
, GG82563_PHY_INBAND_CTRL
, &data
);
1106 data
|= GG82563_ICR_DIS_PADDING
;
1107 ret_val
= e1e_wphy(hw
, GG82563_PHY_INBAND_CTRL
, data
);
1115 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1116 * @hw: pointer to the HW structure
1118 * Essentially a wrapper for setting up all things "copper" related.
1119 * This is a function pointer entry point called by the mac module.
1121 static s32
e1000_setup_copper_link_80003es2lan(struct e1000_hw
*hw
)
1128 ctrl
|= E1000_CTRL_SLU
;
1129 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1133 * Set the mac to wait the maximum time between each
1134 * iteration and increase the max iterations when
1135 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1137 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
, GG82563_REG(0x34, 4),
1141 ret_val
= e1000_read_kmrn_reg_80003es2lan(hw
, GG82563_REG(0x34, 9),
1146 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
, GG82563_REG(0x34, 9),
1150 ret_val
= e1000_read_kmrn_reg_80003es2lan(hw
,
1151 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL
,
1155 reg_data
|= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING
;
1156 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
,
1157 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL
,
1162 ret_val
= e1000_copper_link_setup_gg82563_80003es2lan(hw
);
1166 ret_val
= e1000e_setup_copper_link(hw
);
1172 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1173 * @hw: pointer to the HW structure
1174 * @duplex: current duplex setting
1176 * Configure the KMRN interface by applying last minute quirks for
1179 static s32
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw
*hw
)
1185 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1186 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, &speed
,
1191 if (speed
== SPEED_1000
)
1192 ret_val
= e1000_cfg_kmrn_1000_80003es2lan(hw
);
1194 ret_val
= e1000_cfg_kmrn_10_100_80003es2lan(hw
, duplex
);
1201 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1202 * @hw: pointer to the HW structure
1203 * @duplex: current duplex setting
1205 * Configure the KMRN interface by applying last minute quirks for
1208 static s32
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw
*hw
, u16 duplex
)
1213 u16 reg_data
, reg_data2
;
1215 reg_data
= E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT
;
1216 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
,
1217 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL
,
1222 /* Configure Transmit Inter-Packet Gap */
1224 tipg
&= ~E1000_TIPG_IPGT_MASK
;
1225 tipg
|= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN
;
1229 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data
);
1233 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data2
);
1237 } while ((reg_data
!= reg_data2
) && (i
< GG82563_MAX_KMRN_RETRY
));
1239 if (duplex
== HALF_DUPLEX
)
1240 reg_data
|= GG82563_KMCR_PASS_FALSE_CARRIER
;
1242 reg_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
1244 ret_val
= e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, reg_data
);
1250 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1251 * @hw: pointer to the HW structure
1253 * Configure the KMRN interface by applying last minute quirks for
1254 * gigabit operation.
1256 static s32
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw
*hw
)
1259 u16 reg_data
, reg_data2
;
1263 reg_data
= E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT
;
1264 ret_val
= e1000_write_kmrn_reg_80003es2lan(hw
,
1265 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL
,
1270 /* Configure Transmit Inter-Packet Gap */
1272 tipg
&= ~E1000_TIPG_IPGT_MASK
;
1273 tipg
|= DEFAULT_TIPG_IPGT_1000_80003ES2LAN
;
1277 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data
);
1281 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data2
);
1285 } while ((reg_data
!= reg_data2
) && (i
< GG82563_MAX_KMRN_RETRY
));
1287 reg_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
1288 ret_val
= e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, reg_data
);
1294 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1295 * @hw: pointer to the HW structure
1296 * @offset: register offset to be read
1297 * @data: pointer to the read data
1299 * Acquire semaphore, then read the PHY register at offset
1300 * using the kumeran interface. The information retrieved is stored in data.
1301 * Release the semaphore before exiting.
1303 static s32
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw
*hw
, u32 offset
,
1309 ret_val
= e1000_acquire_mac_csr_80003es2lan(hw
);
1313 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
1314 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
1315 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
1320 kmrnctrlsta
= er32(KMRNCTRLSTA
);
1321 *data
= (u16
)kmrnctrlsta
;
1323 e1000_release_mac_csr_80003es2lan(hw
);
1329 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1330 * @hw: pointer to the HW structure
1331 * @offset: register offset to write to
1332 * @data: data to write at register offset
1334 * Acquire semaphore, then write the data to PHY register
1335 * at the offset using the kumeran interface. Release semaphore
1338 static s32
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw
*hw
, u32 offset
,
1344 ret_val
= e1000_acquire_mac_csr_80003es2lan(hw
);
1348 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
1349 E1000_KMRNCTRLSTA_OFFSET
) | data
;
1350 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
1355 e1000_release_mac_csr_80003es2lan(hw
);
1361 * e1000_read_mac_addr_80003es2lan - Read device MAC address
1362 * @hw: pointer to the HW structure
1364 static s32
e1000_read_mac_addr_80003es2lan(struct e1000_hw
*hw
)
1369 * If there's an alternate MAC address place it in RAR0
1370 * so that it will override the Si installed default perm
1373 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1377 ret_val
= e1000_read_mac_addr_generic(hw
);
1384 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1385 * @hw: pointer to the HW structure
1387 * In the case of a PHY power down to save power, or to turn off link during a
1388 * driver unload, or wake on lan is not enabled, remove the link.
1390 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw
*hw
)
1392 /* If the management interface is not enabled, then power down */
1393 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
1394 hw
->phy
.ops
.check_reset_block(hw
)))
1395 e1000_power_down_phy_copper(hw
);
1399 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1400 * @hw: pointer to the HW structure
1402 * Clears the hardware counters by reading the counter registers.
1404 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw
*hw
)
1406 e1000e_clear_hw_cntrs_base(hw
);
1444 static struct e1000_mac_operations es2_mac_ops
= {
1445 .read_mac_addr
= e1000_read_mac_addr_80003es2lan
,
1446 .id_led_init
= e1000e_id_led_init
,
1447 .blink_led
= e1000e_blink_led_generic
,
1448 .check_mng_mode
= e1000e_check_mng_mode_generic
,
1449 /* check_for_link dependent on media type */
1450 .cleanup_led
= e1000e_cleanup_led_generic
,
1451 .clear_hw_cntrs
= e1000_clear_hw_cntrs_80003es2lan
,
1452 .get_bus_info
= e1000e_get_bus_info_pcie
,
1453 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1454 .get_link_up_info
= e1000_get_link_up_info_80003es2lan
,
1455 .led_on
= e1000e_led_on_generic
,
1456 .led_off
= e1000e_led_off_generic
,
1457 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1458 .write_vfta
= e1000_write_vfta_generic
,
1459 .clear_vfta
= e1000_clear_vfta_generic
,
1460 .reset_hw
= e1000_reset_hw_80003es2lan
,
1461 .init_hw
= e1000_init_hw_80003es2lan
,
1462 .setup_link
= e1000e_setup_link
,
1463 /* setup_physical_interface dependent on media type */
1464 .setup_led
= e1000e_setup_led_generic
,
1467 static struct e1000_phy_operations es2_phy_ops
= {
1468 .acquire
= e1000_acquire_phy_80003es2lan
,
1469 .check_polarity
= e1000_check_polarity_m88
,
1470 .check_reset_block
= e1000e_check_reset_block_generic
,
1471 .commit
= e1000e_phy_sw_reset
,
1472 .force_speed_duplex
= e1000_phy_force_speed_duplex_80003es2lan
,
1473 .get_cfg_done
= e1000_get_cfg_done_80003es2lan
,
1474 .get_cable_length
= e1000_get_cable_length_80003es2lan
,
1475 .get_info
= e1000e_get_phy_info_m88
,
1476 .read_reg
= e1000_read_phy_reg_gg82563_80003es2lan
,
1477 .release
= e1000_release_phy_80003es2lan
,
1478 .reset
= e1000e_phy_hw_reset_generic
,
1479 .set_d0_lplu_state
= NULL
,
1480 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1481 .write_reg
= e1000_write_phy_reg_gg82563_80003es2lan
,
1482 .cfg_on_link_up
= e1000_cfg_on_link_up_80003es2lan
,
1485 static struct e1000_nvm_operations es2_nvm_ops
= {
1486 .acquire
= e1000_acquire_nvm_80003es2lan
,
1487 .read
= e1000e_read_nvm_eerd
,
1488 .release
= e1000_release_nvm_80003es2lan
,
1489 .update
= e1000e_update_nvm_checksum_generic
,
1490 .valid_led_default
= e1000e_valid_led_default
,
1491 .validate
= e1000e_validate_nvm_checksum_generic
,
1492 .write
= e1000_write_nvm_80003es2lan
,
1495 struct e1000_info e1000_es2_info
= {
1496 .mac
= e1000_80003es2lan
,
1497 .flags
= FLAG_HAS_HW_VLAN_FILTER
1498 | FLAG_HAS_JUMBO_FRAMES
1500 | FLAG_APME_IN_CTRL3
1501 | FLAG_RX_CSUM_ENABLED
1502 | FLAG_HAS_CTRLEXT_ON_LOAD
1503 | FLAG_RX_NEEDS_RESTART
/* errata */
1504 | FLAG_TARC_SET_BIT_ZERO
/* errata */
1505 | FLAG_APME_CHECK_PORT_B
1506 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
1507 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN
,
1508 .flags2
= FLAG2_DMA_BURST
,
1510 .max_hw_frame_size
= DEFAULT_JUMBO
,
1511 .get_variants
= e1000_get_variants_80003es2lan
,
1512 .mac_ops
= &es2_mac_ops
,
1513 .phy_ops
= &es2_phy_ops
,
1514 .nvm_ops
= &es2_nvm_ops
,