1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
145 #define I82579_EMI_ADDR 0x10
146 #define I82579_EMI_DATA 0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP 0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW 0x0400
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status
{
176 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
177 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
178 u16 dael
:1; /* bit 2 Direct Access error Log */
179 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
180 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
181 u16 reserved1
:2; /* bit 13:6 Reserved */
182 u16 reserved2
:6; /* bit 13:6 Reserved */
183 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
184 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl
{
192 struct ich8_hsflctl
{
193 u16 flcgo
:1; /* 0 Flash Cycle Go */
194 u16 flcycle
:2; /* 2:1 Flash Cycle */
195 u16 reserved
:5; /* 7:3 Reserved */
196 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
197 u16 flockdn
:6; /* 15:10 Reserved */
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc
{
205 u32 grra
:8; /* 0:7 GbE region Read Access */
206 u32 grwa
:8; /* 8:15 GbE region Write Access */
207 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
208 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range
{
216 u32 base
:13; /* 0:12 Protected Range Base */
217 u32 reserved1
:2; /* 13:14 Reserved */
218 u32 rpe
:1; /* 15 Read Protection Enable */
219 u32 limit
:13; /* 16:28 Protected Range Limit */
220 u32 reserved2
:2; /* 29:30 Reserved */
221 u32 wpe
:1; /* 31 Write Protection Enable */
226 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
229 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
230 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
231 u32 offset
, u8 byte
);
232 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
234 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
236 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
238 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
239 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
240 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
241 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
242 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
243 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
244 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
245 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
246 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
247 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
248 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
249 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
252 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
253 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
256 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
259 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
261 return readw(hw
->flash_address
+ reg
);
264 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
266 return readl(hw
->flash_address
+ reg
);
269 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
271 writew(val
, hw
->flash_address
+ reg
);
274 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
276 writel(val
, hw
->flash_address
+ reg
);
279 #define er16flash(reg) __er16flash(hw, (reg))
280 #define er32flash(reg) __er32flash(hw, (reg))
281 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw
*hw
)
289 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
290 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
294 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
299 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
300 * @hw: pointer to the HW structure
302 * Initialize family-specific PHY parameters and function pointers.
304 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
306 struct e1000_phy_info
*phy
= &hw
->phy
;
311 phy
->reset_delay_us
= 100;
313 phy
->ops
.set_page
= e1000_set_page_igp
;
314 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
315 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
316 phy
->ops
.read_reg_page
= e1000_read_phy_reg_page_hv
;
317 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
318 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
319 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
320 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
321 phy
->ops
.write_reg_page
= e1000_write_phy_reg_page_hv
;
322 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
323 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
324 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
327 * The MAC-PHY interconnect may still be in SMBus mode
328 * after Sx->S0. If the manageability engine (ME) is
329 * disabled, then toggle the LANPHYPC Value bit to force
330 * the interconnect to PCIe mode.
333 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) && !e1000_check_reset_block(hw
)) {
334 e1000_toggle_lanphypc_value_ich8lan(hw
);
338 * Gate automatic PHY configuration by hardware on
341 if (hw
->mac
.type
== e1000_pch2lan
)
342 e1000_gate_hw_phy_config_ich8lan(hw
, true);
346 * Reset the PHY before any access to it. Doing so, ensures that
347 * the PHY is in a known good state before we read/write PHY registers.
348 * The generic reset is sufficient here, because we haven't determined
351 ret_val
= e1000e_phy_hw_reset_generic(hw
);
355 /* Ungate automatic PHY configuration on non-managed 82579 */
356 if ((hw
->mac
.type
== e1000_pch2lan
) &&
357 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
358 usleep_range(10000, 20000);
359 e1000_gate_hw_phy_config_ich8lan(hw
, false);
362 phy
->id
= e1000_phy_unknown
;
363 switch (hw
->mac
.type
) {
365 ret_val
= e1000e_get_phy_id(hw
);
368 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
373 * In case the PHY needs to be in mdio slow mode,
374 * set slow mode and try to get the PHY id again.
376 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
379 ret_val
= e1000e_get_phy_id(hw
);
384 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
387 case e1000_phy_82577
:
388 case e1000_phy_82579
:
389 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
390 phy
->ops
.force_speed_duplex
=
391 e1000_phy_force_speed_duplex_82577
;
392 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
393 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
394 phy
->ops
.commit
= e1000e_phy_sw_reset
;
396 case e1000_phy_82578
:
397 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
398 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
399 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
400 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
403 ret_val
= -E1000_ERR_PHY
;
412 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413 * @hw: pointer to the HW structure
415 * Initialize family-specific PHY parameters and function pointers.
417 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
419 struct e1000_phy_info
*phy
= &hw
->phy
;
424 phy
->reset_delay_us
= 100;
426 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
427 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
430 * We may need to do this twice - once for IGP and if that fails,
431 * we'll set BM func pointers and try again
433 ret_val
= e1000e_determine_phy_address(hw
);
435 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
436 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
437 ret_val
= e1000e_determine_phy_address(hw
);
439 e_dbg("Cannot determine PHY addr. Erroring out\n");
445 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
447 usleep_range(1000, 2000);
448 ret_val
= e1000e_get_phy_id(hw
);
455 case IGP03E1000_E_PHY_ID
:
456 phy
->type
= e1000_phy_igp_3
;
457 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
458 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
459 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
460 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
461 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
462 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
465 case IFE_PLUS_E_PHY_ID
:
467 phy
->type
= e1000_phy_ife
;
468 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
469 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
470 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
471 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
473 case BME1000_E_PHY_ID
:
474 phy
->type
= e1000_phy_bm
;
475 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
476 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
477 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
478 phy
->ops
.commit
= e1000e_phy_sw_reset
;
479 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
480 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
481 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
484 return -E1000_ERR_PHY
;
492 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493 * @hw: pointer to the HW structure
495 * Initialize family-specific NVM parameters and function
498 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
500 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
501 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
502 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
505 /* Can't read flash registers if the register set isn't mapped. */
506 if (!hw
->flash_address
) {
507 e_dbg("ERROR: Flash registers not mapped\n");
508 return -E1000_ERR_CONFIG
;
511 nvm
->type
= e1000_nvm_flash_sw
;
513 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
516 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 * Add 1 to sector_end_addr since this sector is included in
520 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
521 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
523 /* flash_base_addr is byte-aligned */
524 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
527 * find total size of the NVM, then cut in half since the total
528 * size represents two separate NVM banks.
530 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
531 << FLASH_SECTOR_ADDR_SHIFT
;
532 nvm
->flash_bank_size
/= 2;
533 /* Adjust to word count */
534 nvm
->flash_bank_size
/= sizeof(u16
);
536 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
538 /* Clear shadow ram */
539 for (i
= 0; i
< nvm
->word_size
; i
++) {
540 dev_spec
->shadow_ram
[i
].modified
= false;
541 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
548 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549 * @hw: pointer to the HW structure
551 * Initialize family-specific MAC parameters and function
554 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
556 struct e1000_hw
*hw
= &adapter
->hw
;
557 struct e1000_mac_info
*mac
= &hw
->mac
;
559 /* Set media type function pointer */
560 hw
->phy
.media_type
= e1000_media_type_copper
;
562 /* Set mta register count */
563 mac
->mta_reg_count
= 32;
564 /* Set rar entry count */
565 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
566 if (mac
->type
== e1000_ich8lan
)
567 mac
->rar_entry_count
--;
569 mac
->has_fwsm
= true;
570 /* ARC subsystem not supported */
571 mac
->arc_subsystem_valid
= false;
572 /* Adaptive IFS supported */
573 mac
->adaptive_ifs
= true;
580 /* check management mode */
581 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
583 mac
->ops
.id_led_init
= e1000e_id_led_init
;
585 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
587 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
589 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
590 /* turn on/off LED */
591 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
592 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
596 /* check management mode */
597 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
599 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
601 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
603 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
604 /* turn on/off LED */
605 mac
->ops
.led_on
= e1000_led_on_pchlan
;
606 mac
->ops
.led_off
= e1000_led_off_pchlan
;
612 /* Enable PCS Lock-loss workaround for ICH8 */
613 if (mac
->type
== e1000_ich8lan
)
614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
616 /* Gate automatic PHY configuration by hardware on managed 82579 */
617 if ((mac
->type
== e1000_pch2lan
) &&
618 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
619 e1000_gate_hw_phy_config_ich8lan(hw
, true);
625 * e1000_set_eee_pchlan - Enable/disable EEE support
626 * @hw: pointer to the HW structure
628 * Enable/disable EEE based on setting in dev_spec structure. The bits in
629 * the LPI Control register will remain set only if/when link is up.
631 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
636 if (hw
->phy
.type
!= e1000_phy_82579
)
639 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
643 if (hw
->dev_spec
.ich8lan
.eee_disable
)
644 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
646 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
648 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
654 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655 * @hw: pointer to the HW structure
657 * Checks to see of the link status of the hardware has changed. If a
658 * change in link status has been detected, then we read the PHY registers
659 * to get the current speed/duplex if link exists.
661 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
663 struct e1000_mac_info
*mac
= &hw
->mac
;
669 * We only want to go out to the PHY registers to see if Auto-Neg
670 * has completed and/or if our link status has changed. The
671 * get_link_status flag is set upon receiving a Link Status
672 * Change or Rx Sequence Error interrupt.
674 if (!mac
->get_link_status
) {
680 * First we want to see if the MII Status Register reports
681 * link. If so, then we want to get the current speed/duplex
684 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
688 if (hw
->mac
.type
== e1000_pchlan
) {
689 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
695 goto out
; /* No link detected */
697 mac
->get_link_status
= false;
699 switch (hw
->mac
.type
) {
701 ret_val
= e1000_k1_workaround_lv(hw
);
706 if (hw
->phy
.type
== e1000_phy_82578
) {
707 ret_val
= e1000_link_stall_workaround_hv(hw
);
713 * Workaround for PCHx parts in half-duplex:
714 * Set the number of preambles removed from the packet
715 * when it is passed from the PHY to the MAC to prevent
716 * the MAC from misinterpreting the packet type.
718 e1e_rphy(hw
, HV_KMRN_FIFO_CTRLSTA
, &phy_reg
);
719 phy_reg
&= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK
;
721 if ((er32(STATUS
) & E1000_STATUS_FD
) != E1000_STATUS_FD
)
722 phy_reg
|= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT
);
724 e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, phy_reg
);
731 * Check if there was DownShift, must be checked
732 * immediately after link-up
734 e1000e_check_downshift(hw
);
736 /* Enable/Disable EEE after link up */
737 ret_val
= e1000_set_eee_pchlan(hw
);
742 * If we are forcing speed/duplex, then we simply return since
743 * we have already determined whether we have link or not.
746 ret_val
= -E1000_ERR_CONFIG
;
751 * Auto-Neg is enabled. Auto Speed Detection takes care
752 * of MAC speed/duplex configuration. So we only need to
753 * configure Collision Distance in the MAC.
755 e1000e_config_collision_dist(hw
);
758 * Configure Flow Control now that Auto-Neg has completed.
759 * First, we need to restore the desired flow control
760 * settings because we may have had to re-autoneg with a
761 * different link partner.
763 ret_val
= e1000e_config_fc_after_link_up(hw
);
765 e_dbg("Error configuring flow control\n");
771 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
773 struct e1000_hw
*hw
= &adapter
->hw
;
776 rc
= e1000_init_mac_params_ich8lan(adapter
);
780 rc
= e1000_init_nvm_params_ich8lan(hw
);
784 switch (hw
->mac
.type
) {
788 rc
= e1000_init_phy_params_ich8lan(hw
);
792 rc
= e1000_init_phy_params_pchlan(hw
);
801 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
804 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
805 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
806 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
807 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
808 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
810 hw
->mac
.ops
.blink_led
= NULL
;
813 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
814 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
815 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
817 /* Enable workaround for 82579 w/ ME enabled */
818 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
819 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
820 adapter
->flags2
|= FLAG2_PCIM2PCI_ARBITER_WA
;
822 /* Disable EEE by default until IEEE802.3az spec is finalized */
823 if (adapter
->flags2
& FLAG2_HAS_EEE
)
824 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
829 static DEFINE_MUTEX(nvm_mutex
);
832 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833 * @hw: pointer to the HW structure
835 * Acquires the mutex for performing NVM operations.
837 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
839 mutex_lock(&nvm_mutex
);
845 * e1000_release_nvm_ich8lan - Release NVM mutex
846 * @hw: pointer to the HW structure
848 * Releases the mutex used while performing NVM operations.
850 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
852 mutex_unlock(&nvm_mutex
);
855 static DEFINE_MUTEX(swflag_mutex
);
858 * e1000_acquire_swflag_ich8lan - Acquire software control flag
859 * @hw: pointer to the HW structure
861 * Acquires the software control flag for performing PHY and select
864 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
866 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
869 mutex_lock(&swflag_mutex
);
872 extcnf_ctrl
= er32(EXTCNF_CTRL
);
873 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
881 e_dbg("SW/FW/HW has locked the resource for too long.\n");
882 ret_val
= -E1000_ERR_CONFIG
;
886 timeout
= SW_FLAG_TIMEOUT
;
888 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
889 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
892 extcnf_ctrl
= er32(EXTCNF_CTRL
);
893 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
901 e_dbg("Failed to acquire the semaphore.\n");
902 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
903 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
904 ret_val
= -E1000_ERR_CONFIG
;
910 mutex_unlock(&swflag_mutex
);
916 * e1000_release_swflag_ich8lan - Release software control flag
917 * @hw: pointer to the HW structure
919 * Releases the software control flag for performing PHY and select
922 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
926 extcnf_ctrl
= er32(EXTCNF_CTRL
);
928 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
) {
929 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
930 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
932 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
935 mutex_unlock(&swflag_mutex
);
939 * e1000_check_mng_mode_ich8lan - Checks management mode
940 * @hw: pointer to the HW structure
942 * This checks if the adapter has any manageability enabled.
943 * This is a function pointer entry point only called by read/write
944 * routines for the PHY and NVM parts.
946 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
951 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
952 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
953 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
957 * e1000_check_mng_mode_pchlan - Checks management mode
958 * @hw: pointer to the HW structure
960 * This checks if the adapter has iAMT enabled.
961 * This is a function pointer entry point only called by read/write
962 * routines for the PHY and NVM parts.
964 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
969 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
970 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
974 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
975 * @hw: pointer to the HW structure
977 * Checks if firmware is blocking the reset of the PHY.
978 * This is a function pointer entry point only called by
981 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
987 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
991 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
992 * @hw: pointer to the HW structure
994 * Assumes semaphore already acquired.
997 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
1000 u32 strap
= er32(STRAP
);
1003 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
1005 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
1009 phy_data
&= ~HV_SMB_ADDR_MASK
;
1010 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
1011 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
1012 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
1019 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1020 * @hw: pointer to the HW structure
1022 * SW should configure the LCD from the NVM extended configuration region
1023 * as a workaround for certain parts.
1025 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
1027 struct e1000_phy_info
*phy
= &hw
->phy
;
1028 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
1030 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
1033 * Initialize the PHY from the NVM on ICH platforms. This
1034 * is needed due to an issue where the NVM configuration is
1035 * not properly autoloaded after power transitions.
1036 * Therefore, after each PHY reset, we will load the
1037 * configuration data out of the NVM manually.
1039 switch (hw
->mac
.type
) {
1041 if (phy
->type
!= e1000_phy_igp_3
)
1044 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
1045 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
1046 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
1052 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
1058 ret_val
= hw
->phy
.ops
.acquire(hw
);
1062 data
= er32(FEXTNVM
);
1063 if (!(data
& sw_cfg_mask
))
1067 * Make sure HW does not configure LCD from PHY
1068 * extended configuration before SW configuration
1070 data
= er32(EXTCNF_CTRL
);
1071 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1072 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
1076 cnf_size
= er32(EXTCNF_SIZE
);
1077 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
1078 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
1082 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
1083 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
1085 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
1086 (hw
->mac
.type
== e1000_pchlan
)) ||
1087 (hw
->mac
.type
== e1000_pch2lan
)) {
1089 * HW configures the SMBus address and LEDs when the
1090 * OEM and LCD Write Enable bits are set in the NVM.
1091 * When both NVM bits are cleared, SW will configure
1094 ret_val
= e1000_write_smbus_addr(hw
);
1098 data
= er32(LEDCTL
);
1099 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1105 /* Configure LCD from extended configuration region. */
1107 /* cnf_base_addr is in DWORD */
1108 word_addr
= (u16
)(cnf_base_addr
<< 1);
1110 for (i
= 0; i
< cnf_size
; i
++) {
1111 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1116 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1121 /* Save off the PHY page for future writes. */
1122 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1123 phy_page
= reg_data
;
1127 reg_addr
&= PHY_REG_MASK
;
1128 reg_addr
|= phy_page
;
1130 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1137 hw
->phy
.ops
.release(hw
);
1142 * e1000_k1_gig_workaround_hv - K1 Si workaround
1143 * @hw: pointer to the HW structure
1144 * @link: link up bool flag
1146 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1147 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1148 * If link is down, the function will restore the default K1 setting located
1151 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1155 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1157 if (hw
->mac
.type
!= e1000_pchlan
)
1160 /* Wrap the whole flow with the sw flag */
1161 ret_val
= hw
->phy
.ops
.acquire(hw
);
1165 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1167 if (hw
->phy
.type
== e1000_phy_82578
) {
1168 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1173 status_reg
&= BM_CS_STATUS_LINK_UP
|
1174 BM_CS_STATUS_RESOLVED
|
1175 BM_CS_STATUS_SPEED_MASK
;
1177 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1178 BM_CS_STATUS_RESOLVED
|
1179 BM_CS_STATUS_SPEED_1000
))
1183 if (hw
->phy
.type
== e1000_phy_82577
) {
1184 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1189 status_reg
&= HV_M_STATUS_LINK_UP
|
1190 HV_M_STATUS_AUTONEG_COMPLETE
|
1191 HV_M_STATUS_SPEED_MASK
;
1193 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1194 HV_M_STATUS_AUTONEG_COMPLETE
|
1195 HV_M_STATUS_SPEED_1000
))
1199 /* Link stall fix for link up */
1200 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1206 /* Link stall fix for link down */
1207 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1213 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1216 hw
->phy
.ops
.release(hw
);
1222 * e1000_configure_k1_ich8lan - Configure K1 power state
1223 * @hw: pointer to the HW structure
1224 * @enable: K1 state to configure
1226 * Configure the K1 power state based on the provided parameter.
1227 * Assumes semaphore already acquired.
1229 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1231 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1239 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1240 E1000_KMRNCTRLSTA_K1_CONFIG
,
1246 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1248 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1250 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1251 E1000_KMRNCTRLSTA_K1_CONFIG
,
1257 ctrl_ext
= er32(CTRL_EXT
);
1258 ctrl_reg
= er32(CTRL
);
1260 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1261 reg
|= E1000_CTRL_FRCSPD
;
1264 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1267 ew32(CTRL
, ctrl_reg
);
1268 ew32(CTRL_EXT
, ctrl_ext
);
1277 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1278 * @hw: pointer to the HW structure
1279 * @d0_state: boolean if entering d0 or d3 device state
1281 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1282 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1283 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1285 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1291 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1294 ret_val
= hw
->phy
.ops
.acquire(hw
);
1298 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1299 mac_reg
= er32(EXTCNF_CTRL
);
1300 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1304 mac_reg
= er32(FEXTNVM
);
1305 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1308 mac_reg
= er32(PHY_CTRL
);
1310 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1314 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1317 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1318 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1320 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1321 oem_reg
|= HV_OEM_BITS_LPLU
;
1323 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1324 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1326 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1327 oem_reg
|= HV_OEM_BITS_LPLU
;
1329 /* Restart auto-neg to activate the bits */
1330 if (!e1000_check_reset_block(hw
))
1331 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1332 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1335 hw
->phy
.ops
.release(hw
);
1342 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1343 * @hw: pointer to the HW structure
1345 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1350 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1354 data
|= HV_KMRN_MDIO_SLOW
;
1356 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1362 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1363 * done after every PHY reset.
1365 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1370 if (hw
->mac
.type
!= e1000_pchlan
)
1373 /* Set MDIO slow mode before any other MDIO access */
1374 if (hw
->phy
.type
== e1000_phy_82577
) {
1375 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1380 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1381 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1382 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1383 /* Disable generation of early preamble */
1384 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1388 /* Preamble tuning for SSC */
1389 ret_val
= e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, 0xA204);
1394 if (hw
->phy
.type
== e1000_phy_82578
) {
1396 * Return registers to default by doing a soft reset then
1397 * writing 0x3140 to the control register.
1399 if (hw
->phy
.revision
< 2) {
1400 e1000e_phy_sw_reset(hw
);
1401 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1406 ret_val
= hw
->phy
.ops
.acquire(hw
);
1411 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1412 hw
->phy
.ops
.release(hw
);
1417 * Configure the K1 Si workaround during phy reset assuming there is
1418 * link so that it disables K1 if link is in 1Gbps.
1420 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1424 /* Workaround for link disconnects on a busy hub in half duplex */
1425 ret_val
= hw
->phy
.ops
.acquire(hw
);
1428 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_PORT_GEN_CFG
, &phy_data
);
1431 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, BM_PORT_GEN_CFG
,
1434 hw
->phy
.ops
.release(hw
);
1440 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1441 * @hw: pointer to the HW structure
1443 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1449 ret_val
= hw
->phy
.ops
.acquire(hw
);
1452 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
1456 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1457 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1458 mac_reg
= er32(RAL(i
));
1459 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_L(i
),
1460 (u16
)(mac_reg
& 0xFFFF));
1461 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_M(i
),
1462 (u16
)((mac_reg
>> 16) & 0xFFFF));
1464 mac_reg
= er32(RAH(i
));
1465 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_H(i
),
1466 (u16
)(mac_reg
& 0xFFFF));
1467 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_CTRL(i
),
1468 (u16
)((mac_reg
& E1000_RAH_AV
)
1472 e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
1475 hw
->phy
.ops
.release(hw
);
1479 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1481 * @hw: pointer to the HW structure
1482 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1484 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1491 if (hw
->mac
.type
!= e1000_pch2lan
)
1494 /* disable Rx path while enabling/disabling workaround */
1495 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1496 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1502 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1503 * SHRAL/H) and initial CRC values to the MAC
1505 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1506 u8 mac_addr
[ETH_ALEN
] = {0};
1507 u32 addr_high
, addr_low
;
1509 addr_high
= er32(RAH(i
));
1510 if (!(addr_high
& E1000_RAH_AV
))
1512 addr_low
= er32(RAL(i
));
1513 mac_addr
[0] = (addr_low
& 0xFF);
1514 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1515 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1516 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1517 mac_addr
[4] = (addr_high
& 0xFF);
1518 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1520 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
1523 /* Write Rx addresses to the PHY */
1524 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1526 /* Enable jumbo frame workaround in the MAC */
1527 mac_reg
= er32(FFLT_DBG
);
1528 mac_reg
&= ~(1 << 14);
1529 mac_reg
|= (7 << 15);
1530 ew32(FFLT_DBG
, mac_reg
);
1532 mac_reg
= er32(RCTL
);
1533 mac_reg
|= E1000_RCTL_SECRC
;
1534 ew32(RCTL
, mac_reg
);
1536 ret_val
= e1000e_read_kmrn_reg(hw
,
1537 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1541 ret_val
= e1000e_write_kmrn_reg(hw
,
1542 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1546 ret_val
= e1000e_read_kmrn_reg(hw
,
1547 E1000_KMRNCTRLSTA_HD_CTRL
,
1551 data
&= ~(0xF << 8);
1553 ret_val
= e1000e_write_kmrn_reg(hw
,
1554 E1000_KMRNCTRLSTA_HD_CTRL
,
1559 /* Enable jumbo frame workaround in the PHY */
1560 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1561 data
&= ~(0x7F << 5);
1562 data
|= (0x37 << 5);
1563 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1566 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1568 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1571 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1572 data
&= ~(0x3FF << 2);
1573 data
|= (0x1A << 2);
1574 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1577 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xFE00);
1580 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1581 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1585 /* Write MAC register values back to h/w defaults */
1586 mac_reg
= er32(FFLT_DBG
);
1587 mac_reg
&= ~(0xF << 14);
1588 ew32(FFLT_DBG
, mac_reg
);
1590 mac_reg
= er32(RCTL
);
1591 mac_reg
&= ~E1000_RCTL_SECRC
;
1592 ew32(RCTL
, mac_reg
);
1594 ret_val
= e1000e_read_kmrn_reg(hw
,
1595 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1599 ret_val
= e1000e_write_kmrn_reg(hw
,
1600 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1604 ret_val
= e1000e_read_kmrn_reg(hw
,
1605 E1000_KMRNCTRLSTA_HD_CTRL
,
1609 data
&= ~(0xF << 8);
1611 ret_val
= e1000e_write_kmrn_reg(hw
,
1612 E1000_KMRNCTRLSTA_HD_CTRL
,
1617 /* Write PHY register values back to h/w defaults */
1618 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1619 data
&= ~(0x7F << 5);
1620 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1623 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1625 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1628 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1629 data
&= ~(0x3FF << 2);
1631 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1634 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1637 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1638 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1643 /* re-enable Rx path after enabling/disabling workaround */
1644 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1651 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1652 * done after every PHY reset.
1654 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1658 if (hw
->mac
.type
!= e1000_pch2lan
)
1661 /* Set MDIO slow mode before any other MDIO access */
1662 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1669 * e1000_k1_gig_workaround_lv - K1 Si workaround
1670 * @hw: pointer to the HW structure
1672 * Workaround to set the K1 beacon duration for 82579 parts
1674 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
1681 if (hw
->mac
.type
!= e1000_pch2lan
)
1684 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1685 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
1689 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
1690 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
1691 mac_reg
= er32(FEXTNVM4
);
1692 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1694 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
1698 if (status_reg
& HV_M_STATUS_SPEED_1000
) {
1699 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1700 phy_reg
&= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT
;
1702 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
1703 phy_reg
|= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT
;
1705 ew32(FEXTNVM4
, mac_reg
);
1706 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
1714 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1715 * @hw: pointer to the HW structure
1716 * @gate: boolean set to true to gate, false to ungate
1718 * Gate/ungate the automatic PHY configuration via hardware; perform
1719 * the configuration via software instead.
1721 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
1725 if (hw
->mac
.type
!= e1000_pch2lan
)
1728 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1731 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1733 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1735 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1740 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1741 * @hw: pointer to the HW structure
1743 * Check the appropriate indication the MAC has finished configuring the
1744 * PHY after a software reset.
1746 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1748 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1750 /* Wait for basic configuration completes before proceeding */
1752 data
= er32(STATUS
);
1753 data
&= E1000_STATUS_LAN_INIT_DONE
;
1755 } while ((!data
) && --loop
);
1758 * If basic configuration is incomplete before the above loop
1759 * count reaches 0, loading the configuration from NVM will
1760 * leave the PHY in a bad state possibly resulting in no link.
1763 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1765 /* Clear the Init Done bit for the next init event */
1766 data
= er32(STATUS
);
1767 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1772 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1773 * @hw: pointer to the HW structure
1775 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1780 if (e1000_check_reset_block(hw
))
1783 /* Allow time for h/w to get to quiescent state after reset */
1784 usleep_range(10000, 20000);
1786 /* Perform any necessary post-reset workarounds */
1787 switch (hw
->mac
.type
) {
1789 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1794 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1802 /* Clear the host wakeup bit after lcd reset */
1803 if (hw
->mac
.type
>= e1000_pchlan
) {
1804 e1e_rphy(hw
, BM_PORT_GEN_CFG
, ®
);
1805 reg
&= ~BM_WUC_HOST_WU_BIT
;
1806 e1e_wphy(hw
, BM_PORT_GEN_CFG
, reg
);
1809 /* Configure the LCD with the extended configuration region in NVM */
1810 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1814 /* Configure the LCD with the OEM bits in NVM */
1815 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1817 if (hw
->mac
.type
== e1000_pch2lan
) {
1818 /* Ungate automatic PHY configuration on non-managed 82579 */
1819 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
1820 usleep_range(10000, 20000);
1821 e1000_gate_hw_phy_config_ich8lan(hw
, false);
1824 /* Set EEE LPI Update Timer to 200usec */
1825 ret_val
= hw
->phy
.ops
.acquire(hw
);
1828 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_ADDR
,
1829 I82579_LPI_UPDATE_TIMER
);
1832 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_DATA
,
1835 hw
->phy
.ops
.release(hw
);
1843 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1844 * @hw: pointer to the HW structure
1847 * This is a function pointer entry point called by drivers
1848 * or other shared routines.
1850 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1854 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1855 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1856 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1857 e1000_gate_hw_phy_config_ich8lan(hw
, true);
1859 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1863 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1870 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1871 * @hw: pointer to the HW structure
1872 * @active: true to enable LPLU, false to disable
1874 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1875 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1876 * the phy speed. This function will manually set the LPLU bit and restart
1877 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1878 * since it configures the same bit.
1880 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1885 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1890 oem_reg
|= HV_OEM_BITS_LPLU
;
1892 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1894 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1895 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1902 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1903 * @hw: pointer to the HW structure
1904 * @active: true to enable LPLU, false to disable
1906 * Sets the LPLU D0 state according to the active flag. When
1907 * activating LPLU this function also disables smart speed
1908 * and vice versa. LPLU will not be activated unless the
1909 * device autonegotiation advertisement meets standards of
1910 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1911 * This is a function pointer entry point only called by
1912 * PHY setup routines.
1914 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1916 struct e1000_phy_info
*phy
= &hw
->phy
;
1921 if (phy
->type
== e1000_phy_ife
)
1924 phy_ctrl
= er32(PHY_CTRL
);
1927 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1928 ew32(PHY_CTRL
, phy_ctrl
);
1930 if (phy
->type
!= e1000_phy_igp_3
)
1934 * Call gig speed drop workaround on LPLU before accessing
1937 if (hw
->mac
.type
== e1000_ich8lan
)
1938 e1000e_gig_downshift_workaround_ich8lan(hw
);
1940 /* When LPLU is enabled, we should disable SmartSpeed */
1941 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1942 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1943 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1947 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1948 ew32(PHY_CTRL
, phy_ctrl
);
1950 if (phy
->type
!= e1000_phy_igp_3
)
1954 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1955 * during Dx states where the power conservation is most
1956 * important. During driver activity we should enable
1957 * SmartSpeed, so performance is maintained.
1959 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1960 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1965 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1966 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1970 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1971 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1976 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1977 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1988 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1989 * @hw: pointer to the HW structure
1990 * @active: true to enable LPLU, false to disable
1992 * Sets the LPLU D3 state according to the active flag. When
1993 * activating LPLU this function also disables smart speed
1994 * and vice versa. LPLU will not be activated unless the
1995 * device autonegotiation advertisement meets standards of
1996 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1997 * This is a function pointer entry point only called by
1998 * PHY setup routines.
2000 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
2002 struct e1000_phy_info
*phy
= &hw
->phy
;
2007 phy_ctrl
= er32(PHY_CTRL
);
2010 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
2011 ew32(PHY_CTRL
, phy_ctrl
);
2013 if (phy
->type
!= e1000_phy_igp_3
)
2017 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2018 * during Dx states where the power conservation is most
2019 * important. During driver activity we should enable
2020 * SmartSpeed, so performance is maintained.
2022 if (phy
->smart_speed
== e1000_smart_speed_on
) {
2023 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2028 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
2029 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2033 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
2034 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2039 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2040 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2045 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
2046 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
2047 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
2048 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
2049 ew32(PHY_CTRL
, phy_ctrl
);
2051 if (phy
->type
!= e1000_phy_igp_3
)
2055 * Call gig speed drop workaround on LPLU before accessing
2058 if (hw
->mac
.type
== e1000_ich8lan
)
2059 e1000e_gig_downshift_workaround_ich8lan(hw
);
2061 /* When LPLU is enabled, we should disable SmartSpeed */
2062 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
2066 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2067 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
2074 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2075 * @hw: pointer to the HW structure
2076 * @bank: pointer to the variable that returns the active bank
2078 * Reads signature byte from the NVM using the flash access registers.
2079 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2081 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
2084 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2085 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
2086 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
2090 switch (hw
->mac
.type
) {
2094 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
2095 E1000_EECD_SEC1VAL_VALID_MASK
) {
2096 if (eecd
& E1000_EECD_SEC1VAL
)
2103 e_dbg("Unable to determine valid NVM bank via EEC - "
2104 "reading flash signature\n");
2107 /* set bank to 0 in case flash read fails */
2111 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
2115 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2116 E1000_ICH_NVM_SIG_VALUE
) {
2122 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
2127 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2128 E1000_ICH_NVM_SIG_VALUE
) {
2133 e_dbg("ERROR: No valid NVM bank present\n");
2134 return -E1000_ERR_NVM
;
2141 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2142 * @hw: pointer to the HW structure
2143 * @offset: The offset (in bytes) of the word(s) to read.
2144 * @words: Size of data to read in words
2145 * @data: Pointer to the word(s) to read at offset.
2147 * Reads a word(s) from the NVM using the flash access registers.
2149 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2152 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2153 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2159 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2161 e_dbg("nvm parameter(s) out of bounds\n");
2162 ret_val
= -E1000_ERR_NVM
;
2166 nvm
->ops
.acquire(hw
);
2168 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2170 e_dbg("Could not detect valid bank, assuming bank 0\n");
2174 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
2175 act_offset
+= offset
;
2178 for (i
= 0; i
< words
; i
++) {
2179 if (dev_spec
->shadow_ram
[offset
+i
].modified
) {
2180 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2182 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2191 nvm
->ops
.release(hw
);
2195 e_dbg("NVM read error: %d\n", ret_val
);
2201 * e1000_flash_cycle_init_ich8lan - Initialize flash
2202 * @hw: pointer to the HW structure
2204 * This function does initial flash setup so that a new read/write/erase cycle
2207 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2209 union ich8_hws_flash_status hsfsts
;
2210 s32 ret_val
= -E1000_ERR_NVM
;
2212 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2214 /* Check if the flash descriptor is valid */
2215 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2216 e_dbg("Flash descriptor invalid. "
2217 "SW Sequencing must be used.\n");
2218 return -E1000_ERR_NVM
;
2221 /* Clear FCERR and DAEL in hw status by writing 1 */
2222 hsfsts
.hsf_status
.flcerr
= 1;
2223 hsfsts
.hsf_status
.dael
= 1;
2225 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2228 * Either we should have a hardware SPI cycle in progress
2229 * bit to check against, in order to start a new cycle or
2230 * FDONE bit should be changed in the hardware so that it
2231 * is 1 after hardware reset, which can then be used as an
2232 * indication whether a cycle is in progress or has been
2236 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2238 * There is no cycle running at present,
2239 * so we can start a cycle.
2240 * Begin by setting Flash Cycle Done.
2242 hsfsts
.hsf_status
.flcdone
= 1;
2243 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2249 * Otherwise poll for sometime so the current
2250 * cycle has a chance to end before giving up.
2252 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2253 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2254 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2262 * Successful in waiting for previous cycle to timeout,
2263 * now set the Flash Cycle Done.
2265 hsfsts
.hsf_status
.flcdone
= 1;
2266 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2268 e_dbg("Flash controller busy, cannot get access\n");
2276 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277 * @hw: pointer to the HW structure
2278 * @timeout: maximum time to wait for completion
2280 * This function starts a flash cycle and waits for its completion.
2282 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2284 union ich8_hws_flash_ctrl hsflctl
;
2285 union ich8_hws_flash_status hsfsts
;
2286 s32 ret_val
= -E1000_ERR_NVM
;
2289 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2290 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2291 hsflctl
.hsf_ctrl
.flcgo
= 1;
2292 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2294 /* wait till FDONE bit is set to 1 */
2296 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2297 if (hsfsts
.hsf_status
.flcdone
== 1)
2300 } while (i
++ < timeout
);
2302 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2309 * e1000_read_flash_word_ich8lan - Read word from flash
2310 * @hw: pointer to the HW structure
2311 * @offset: offset to data location
2312 * @data: pointer to the location for storing the data
2314 * Reads the flash word at offset into data. Offset is converted
2315 * to bytes before read.
2317 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2320 /* Must convert offset into bytes. */
2323 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2327 * e1000_read_flash_byte_ich8lan - Read byte from flash
2328 * @hw: pointer to the HW structure
2329 * @offset: The offset of the byte to read.
2330 * @data: Pointer to a byte to store the value read.
2332 * Reads a single byte from the NVM using the flash access registers.
2334 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2340 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2350 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2351 * @hw: pointer to the HW structure
2352 * @offset: The offset (in bytes) of the byte or word to read.
2353 * @size: Size of data to read, 1=byte 2=word
2354 * @data: Pointer to the word to store the value read.
2356 * Reads a byte or word from the NVM using the flash access registers.
2358 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2361 union ich8_hws_flash_status hsfsts
;
2362 union ich8_hws_flash_ctrl hsflctl
;
2363 u32 flash_linear_addr
;
2365 s32 ret_val
= -E1000_ERR_NVM
;
2368 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2369 return -E1000_ERR_NVM
;
2371 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2372 hw
->nvm
.flash_base_addr
;
2377 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2381 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2382 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2383 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2384 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2385 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2387 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2389 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2390 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2393 * Check if FCERR is set to 1, if set to 1, clear it
2394 * and try the whole sequence a few more times, else
2395 * read in (shift in) the Flash Data0, the order is
2396 * least significant byte first msb to lsb
2399 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2401 *data
= (u8
)(flash_data
& 0x000000FF);
2403 *data
= (u16
)(flash_data
& 0x0000FFFF);
2407 * If we've gotten here, then things are probably
2408 * completely hosed, but if the error condition is
2409 * detected, it won't hurt to give it another try...
2410 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2412 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2413 if (hsfsts
.hsf_status
.flcerr
== 1) {
2414 /* Repeat for some time before giving up. */
2416 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2417 e_dbg("Timeout error - flash cycle "
2418 "did not complete.\n");
2422 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2428 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2429 * @hw: pointer to the HW structure
2430 * @offset: The offset (in bytes) of the word(s) to write.
2431 * @words: Size of data to write in words
2432 * @data: Pointer to the word(s) to write at offset.
2434 * Writes a byte or word to the NVM using the flash access registers.
2436 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2439 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2440 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2443 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2445 e_dbg("nvm parameter(s) out of bounds\n");
2446 return -E1000_ERR_NVM
;
2449 nvm
->ops
.acquire(hw
);
2451 for (i
= 0; i
< words
; i
++) {
2452 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2453 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2456 nvm
->ops
.release(hw
);
2462 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2463 * @hw: pointer to the HW structure
2465 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2466 * which writes the checksum to the shadow ram. The changes in the shadow
2467 * ram are then committed to the EEPROM by processing each bank at a time
2468 * checking for the modified bit and writing only the pending changes.
2469 * After a successful commit, the shadow ram is cleared and is ready for
2472 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2474 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2475 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2476 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2480 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2484 if (nvm
->type
!= e1000_nvm_flash_sw
)
2487 nvm
->ops
.acquire(hw
);
2490 * We're writing to the opposite bank so if we're on bank 1,
2491 * write to bank 0 etc. We also need to erase the segment that
2492 * is going to be written
2494 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2496 e_dbg("Could not detect valid bank, assuming bank 0\n");
2501 new_bank_offset
= nvm
->flash_bank_size
;
2502 old_bank_offset
= 0;
2503 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2507 old_bank_offset
= nvm
->flash_bank_size
;
2508 new_bank_offset
= 0;
2509 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2514 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2516 * Determine whether to write the value stored
2517 * in the other NVM bank or a modified value stored
2520 if (dev_spec
->shadow_ram
[i
].modified
) {
2521 data
= dev_spec
->shadow_ram
[i
].value
;
2523 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2531 * If the word is 0x13, then make sure the signature bits
2532 * (15:14) are 11b until the commit has completed.
2533 * This will allow us to write 10b which indicates the
2534 * signature is valid. We want to do this after the write
2535 * has completed so that we don't mark the segment valid
2536 * while the write is still in progress
2538 if (i
== E1000_ICH_NVM_SIG_WORD
)
2539 data
|= E1000_ICH_NVM_SIG_MASK
;
2541 /* Convert offset to bytes. */
2542 act_offset
= (i
+ new_bank_offset
) << 1;
2545 /* Write the bytes to the new bank. */
2546 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2553 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2561 * Don't bother writing the segment valid bits if sector
2562 * programming failed.
2565 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2566 e_dbg("Flash commit failed.\n");
2571 * Finally validate the new segment by setting bit 15:14
2572 * to 10b in word 0x13 , this can be done without an
2573 * erase as well since these bits are 11 to start with
2574 * and we need to change bit 14 to 0b
2576 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2577 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2582 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2589 * And invalidate the previously valid segment by setting
2590 * its signature word (0x13) high_byte to 0b. This can be
2591 * done without an erase because flash erase sets all bits
2592 * to 1's. We can write 1's to 0's without an erase
2594 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2595 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2599 /* Great! Everything worked, we can now clear the cached entries. */
2600 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2601 dev_spec
->shadow_ram
[i
].modified
= false;
2602 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2606 nvm
->ops
.release(hw
);
2609 * Reload the EEPROM, or else modifications will not appear
2610 * until after the next adapter reset.
2613 e1000e_reload_nvm(hw
);
2614 usleep_range(10000, 20000);
2619 e_dbg("NVM update error: %d\n", ret_val
);
2625 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2626 * @hw: pointer to the HW structure
2628 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2629 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2630 * calculated, in which case we need to calculate the checksum and set bit 6.
2632 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2638 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2639 * needs to be fixed. This bit is an indication that the NVM
2640 * was prepared by OEM software and did not calculate the
2641 * checksum...a likely scenario.
2643 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2647 if ((data
& 0x40) == 0) {
2649 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2652 ret_val
= e1000e_update_nvm_checksum(hw
);
2657 return e1000e_validate_nvm_checksum_generic(hw
);
2661 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2662 * @hw: pointer to the HW structure
2664 * To prevent malicious write/erase of the NVM, set it to be read-only
2665 * so that the hardware ignores all write/erase cycles of the NVM via
2666 * the flash control registers. The shadow-ram copy of the NVM will
2667 * still be updated, however any updates to this copy will not stick
2668 * across driver reloads.
2670 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2672 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2673 union ich8_flash_protected_range pr0
;
2674 union ich8_hws_flash_status hsfsts
;
2677 nvm
->ops
.acquire(hw
);
2679 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2681 /* Write-protect GbE Sector of NVM */
2682 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2683 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2684 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2685 pr0
.range
.wpe
= true;
2686 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2689 * Lock down a subset of GbE Flash Control Registers, e.g.
2690 * PR0 to prevent the write-protection from being lifted.
2691 * Once FLOCKDN is set, the registers protected by it cannot
2692 * be written until FLOCKDN is cleared by a hardware reset.
2694 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2695 hsfsts
.hsf_status
.flockdn
= true;
2696 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2698 nvm
->ops
.release(hw
);
2702 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2703 * @hw: pointer to the HW structure
2704 * @offset: The offset (in bytes) of the byte/word to read.
2705 * @size: Size of data to read, 1=byte 2=word
2706 * @data: The byte(s) to write to the NVM.
2708 * Writes one/two bytes to the NVM using the flash access registers.
2710 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2713 union ich8_hws_flash_status hsfsts
;
2714 union ich8_hws_flash_ctrl hsflctl
;
2715 u32 flash_linear_addr
;
2720 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2721 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2722 return -E1000_ERR_NVM
;
2724 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2725 hw
->nvm
.flash_base_addr
;
2730 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2734 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2735 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2736 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2737 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2738 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2740 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2743 flash_data
= (u32
)data
& 0x00FF;
2745 flash_data
= (u32
)data
;
2747 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2750 * check if FCERR is set to 1 , if set to 1, clear it
2751 * and try the whole sequence a few more times else done
2753 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2754 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2759 * If we're here, then things are most likely
2760 * completely hosed, but if the error condition
2761 * is detected, it won't hurt to give it another
2762 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2764 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2765 if (hsfsts
.hsf_status
.flcerr
== 1)
2766 /* Repeat for some time before giving up. */
2768 if (hsfsts
.hsf_status
.flcdone
== 0) {
2769 e_dbg("Timeout error - flash cycle "
2770 "did not complete.");
2773 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2779 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2780 * @hw: pointer to the HW structure
2781 * @offset: The index of the byte to read.
2782 * @data: The byte to write to the NVM.
2784 * Writes a single byte to the NVM using the flash access registers.
2786 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2789 u16 word
= (u16
)data
;
2791 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2795 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2796 * @hw: pointer to the HW structure
2797 * @offset: The offset of the byte to write.
2798 * @byte: The byte to write to the NVM.
2800 * Writes a single byte to the NVM using the flash access registers.
2801 * Goes through a retry algorithm before giving up.
2803 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2804 u32 offset
, u8 byte
)
2807 u16 program_retries
;
2809 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2813 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2814 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2816 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2820 if (program_retries
== 100)
2821 return -E1000_ERR_NVM
;
2827 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2828 * @hw: pointer to the HW structure
2829 * @bank: 0 for first bank, 1 for second bank, etc.
2831 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2832 * bank N is 4096 * N + flash_reg_addr.
2834 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2836 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2837 union ich8_hws_flash_status hsfsts
;
2838 union ich8_hws_flash_ctrl hsflctl
;
2839 u32 flash_linear_addr
;
2840 /* bank size is in 16bit words - adjust to bytes */
2841 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2844 s32 j
, iteration
, sector_size
;
2846 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2849 * Determine HW Sector size: Read BERASE bits of hw flash status
2851 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2852 * consecutive sectors. The start index for the nth Hw sector
2853 * can be calculated as = bank * 4096 + n * 256
2854 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2855 * The start index for the nth Hw sector can be calculated
2857 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2858 * (ich9 only, otherwise error condition)
2859 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2861 switch (hsfsts
.hsf_status
.berasesz
) {
2863 /* Hw sector size 256 */
2864 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2865 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2868 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2872 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2876 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2880 return -E1000_ERR_NVM
;
2883 /* Start with the base address, then add the sector offset. */
2884 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2885 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2887 for (j
= 0; j
< iteration
; j
++) {
2890 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2895 * Write a value 11 (block Erase) in Flash
2896 * Cycle field in hw flash control
2898 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2899 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2900 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2903 * Write the last 24 bits of an index within the
2904 * block into Flash Linear address field in Flash
2907 flash_linear_addr
+= (j
* sector_size
);
2908 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2910 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2911 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2916 * Check if FCERR is set to 1. If 1,
2917 * clear it and try the whole sequence
2918 * a few more times else Done
2920 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2921 if (hsfsts
.hsf_status
.flcerr
== 1)
2922 /* repeat for some time before giving up */
2924 else if (hsfsts
.hsf_status
.flcdone
== 0)
2926 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2933 * e1000_valid_led_default_ich8lan - Set the default LED settings
2934 * @hw: pointer to the HW structure
2935 * @data: Pointer to the LED settings
2937 * Reads the LED default settings from the NVM to data. If the NVM LED
2938 * settings is all 0's or F's, set the LED default to a valid LED default
2941 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2945 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2947 e_dbg("NVM Read Error\n");
2951 if (*data
== ID_LED_RESERVED_0000
||
2952 *data
== ID_LED_RESERVED_FFFF
)
2953 *data
= ID_LED_DEFAULT_ICH8LAN
;
2959 * e1000_id_led_init_pchlan - store LED configurations
2960 * @hw: pointer to the HW structure
2962 * PCH does not control LEDs via the LEDCTL register, rather it uses
2963 * the PHY LED configuration register.
2965 * PCH also does not have an "always on" or "always off" mode which
2966 * complicates the ID feature. Instead of using the "on" mode to indicate
2967 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2968 * use "link_up" mode. The LEDs will still ID on request if there is no
2969 * link based on logic in e1000_led_[on|off]_pchlan().
2971 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2973 struct e1000_mac_info
*mac
= &hw
->mac
;
2975 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2976 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2977 u16 data
, i
, temp
, shift
;
2979 /* Get default ID LED modes */
2980 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2984 mac
->ledctl_default
= er32(LEDCTL
);
2985 mac
->ledctl_mode1
= mac
->ledctl_default
;
2986 mac
->ledctl_mode2
= mac
->ledctl_default
;
2988 for (i
= 0; i
< 4; i
++) {
2989 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2992 case ID_LED_ON1_DEF2
:
2993 case ID_LED_ON1_ON2
:
2994 case ID_LED_ON1_OFF2
:
2995 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2996 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2998 case ID_LED_OFF1_DEF2
:
2999 case ID_LED_OFF1_ON2
:
3000 case ID_LED_OFF1_OFF2
:
3001 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3002 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
3009 case ID_LED_DEF1_ON2
:
3010 case ID_LED_ON1_ON2
:
3011 case ID_LED_OFF1_ON2
:
3012 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3013 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
3015 case ID_LED_DEF1_OFF2
:
3016 case ID_LED_ON1_OFF2
:
3017 case ID_LED_OFF1_OFF2
:
3018 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3019 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
3032 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3033 * @hw: pointer to the HW structure
3035 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3036 * register, so the the bus width is hard coded.
3038 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
3040 struct e1000_bus_info
*bus
= &hw
->bus
;
3043 ret_val
= e1000e_get_bus_info_pcie(hw
);
3046 * ICH devices are "PCI Express"-ish. They have
3047 * a configuration space, but do not contain
3048 * PCI Express Capability registers, so bus width
3049 * must be hardcoded.
3051 if (bus
->width
== e1000_bus_width_unknown
)
3052 bus
->width
= e1000_bus_width_pcie_x1
;
3058 * e1000_reset_hw_ich8lan - Reset the hardware
3059 * @hw: pointer to the HW structure
3061 * Does a full reset of the hardware which includes a reset of the PHY and
3064 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
3066 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3072 * Prevent the PCI-E bus from sticking if there is no TLP connection
3073 * on the last TLP read/write transaction when MAC is reset.
3075 ret_val
= e1000e_disable_pcie_master(hw
);
3077 e_dbg("PCI-E Master disable polling has failed.\n");
3079 e_dbg("Masking off all interrupts\n");
3080 ew32(IMC
, 0xffffffff);
3083 * Disable the Transmit and Receive units. Then delay to allow
3084 * any pending transactions to complete before we hit the MAC
3085 * with the global reset.
3088 ew32(TCTL
, E1000_TCTL_PSP
);
3091 usleep_range(10000, 20000);
3093 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3094 if (hw
->mac
.type
== e1000_ich8lan
) {
3095 /* Set Tx and Rx buffer allocation to 8k apiece. */
3096 ew32(PBA
, E1000_PBA_8K
);
3097 /* Set Packet Buffer Size to 16k. */
3098 ew32(PBS
, E1000_PBS_16K
);
3101 if (hw
->mac
.type
== e1000_pchlan
) {
3102 /* Save the NVM K1 bit setting*/
3103 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
3107 if (reg
& E1000_NVM_K1_ENABLE
)
3108 dev_spec
->nvm_k1_enabled
= true;
3110 dev_spec
->nvm_k1_enabled
= false;
3115 if (!e1000_check_reset_block(hw
)) {
3117 * Full-chip reset requires MAC and PHY reset at the same
3118 * time to make sure the interface between MAC and the
3119 * external PHY is reset.
3121 ctrl
|= E1000_CTRL_PHY_RST
;
3124 * Gate automatic PHY configuration by hardware on
3127 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3128 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3129 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3131 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
3132 e_dbg("Issuing a global reset to ich8lan\n");
3133 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
3134 /* cannot issue a flush here because it hangs the hardware */
3138 mutex_unlock(&swflag_mutex
);
3140 if (ctrl
& E1000_CTRL_PHY_RST
) {
3141 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
3145 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
3151 * For PCH, this write will make sure that any noise
3152 * will be detected as a CRC error and be dropped rather than show up
3153 * as a bad packet to the DMA engine.
3155 if (hw
->mac
.type
== e1000_pchlan
)
3156 ew32(CRC_OFFSET
, 0x65656565);
3158 ew32(IMC
, 0xffffffff);
3161 kab
= er32(KABGTXD
);
3162 kab
|= E1000_KABGTXD_BGSQLBIAS
;
3170 * e1000_init_hw_ich8lan - Initialize the hardware
3171 * @hw: pointer to the HW structure
3173 * Prepares the hardware for transmit and receive by doing the following:
3174 * - initialize hardware bits
3175 * - initialize LED identification
3176 * - setup receive address registers
3177 * - setup flow control
3178 * - setup transmit descriptors
3179 * - clear statistics
3181 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
3183 struct e1000_mac_info
*mac
= &hw
->mac
;
3184 u32 ctrl_ext
, txdctl
, snoop
;
3188 e1000_initialize_hw_bits_ich8lan(hw
);
3190 /* Initialize identification LED */
3191 ret_val
= mac
->ops
.id_led_init(hw
);
3193 e_dbg("Error initializing identification LED\n");
3194 /* This is not fatal and we should not stop init due to this */
3196 /* Setup the receive address. */
3197 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3199 /* Zero out the Multicast HASH table */
3200 e_dbg("Zeroing the MTA\n");
3201 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3202 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3205 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3206 * the ME. Disable wakeup by clearing the host wakeup bit.
3207 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3209 if (hw
->phy
.type
== e1000_phy_82578
) {
3210 e1e_rphy(hw
, BM_PORT_GEN_CFG
, &i
);
3211 i
&= ~BM_WUC_HOST_WU_BIT
;
3212 e1e_wphy(hw
, BM_PORT_GEN_CFG
, i
);
3213 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3218 /* Setup link and flow control */
3219 ret_val
= e1000_setup_link_ich8lan(hw
);
3221 /* Set the transmit descriptor write-back policy for both queues */
3222 txdctl
= er32(TXDCTL(0));
3223 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3224 E1000_TXDCTL_FULL_TX_DESC_WB
;
3225 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3226 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3227 ew32(TXDCTL(0), txdctl
);
3228 txdctl
= er32(TXDCTL(1));
3229 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3230 E1000_TXDCTL_FULL_TX_DESC_WB
;
3231 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3232 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3233 ew32(TXDCTL(1), txdctl
);
3236 * ICH8 has opposite polarity of no_snoop bits.
3237 * By default, we should use snoop behavior.
3239 if (mac
->type
== e1000_ich8lan
)
3240 snoop
= PCIE_ICH8_SNOOP_ALL
;
3242 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3243 e1000e_set_pcie_no_snoop(hw
, snoop
);
3245 ctrl_ext
= er32(CTRL_EXT
);
3246 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3247 ew32(CTRL_EXT
, ctrl_ext
);
3250 * Clear all of the statistics registers (clear on read). It is
3251 * important that we do this after we have tried to establish link
3252 * because the symbol error count will increment wildly if there
3255 e1000_clear_hw_cntrs_ich8lan(hw
);
3260 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3261 * @hw: pointer to the HW structure
3263 * Sets/Clears required hardware bits necessary for correctly setting up the
3264 * hardware for transmit and receive.
3266 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3270 /* Extended Device Control */
3271 reg
= er32(CTRL_EXT
);
3273 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3274 if (hw
->mac
.type
>= e1000_pchlan
)
3275 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3276 ew32(CTRL_EXT
, reg
);
3278 /* Transmit Descriptor Control 0 */
3279 reg
= er32(TXDCTL(0));
3281 ew32(TXDCTL(0), reg
);
3283 /* Transmit Descriptor Control 1 */
3284 reg
= er32(TXDCTL(1));
3286 ew32(TXDCTL(1), reg
);
3288 /* Transmit Arbitration Control 0 */
3289 reg
= er32(TARC(0));
3290 if (hw
->mac
.type
== e1000_ich8lan
)
3291 reg
|= (1 << 28) | (1 << 29);
3292 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3295 /* Transmit Arbitration Control 1 */
3296 reg
= er32(TARC(1));
3297 if (er32(TCTL
) & E1000_TCTL_MULR
)
3301 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3305 if (hw
->mac
.type
== e1000_ich8lan
) {
3312 * work-around descriptor data corruption issue during nfs v2 udp
3313 * traffic, just disable the nfs filtering capability
3316 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3321 * e1000_setup_link_ich8lan - Setup flow control and link settings
3322 * @hw: pointer to the HW structure
3324 * Determines which flow control settings to use, then configures flow
3325 * control. Calls the appropriate media-specific link configuration
3326 * function. Assuming the adapter has a valid link partner, a valid link
3327 * should be established. Assumes the hardware has previously been reset
3328 * and the transmitter and receiver are not enabled.
3330 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3334 if (e1000_check_reset_block(hw
))
3338 * ICH parts do not have a word in the NVM to determine
3339 * the default flow control setting, so we explicitly
3342 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3343 /* Workaround h/w hang when Tx flow control enabled */
3344 if (hw
->mac
.type
== e1000_pchlan
)
3345 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3347 hw
->fc
.requested_mode
= e1000_fc_full
;
3351 * Save off the requested flow control mode for use later. Depending
3352 * on the link partner's capabilities, we may or may not use this mode.
3354 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3356 e_dbg("After fix-ups FlowControl is now = %x\n",
3357 hw
->fc
.current_mode
);
3359 /* Continue to configure the copper link. */
3360 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3364 ew32(FCTTV
, hw
->fc
.pause_time
);
3365 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3366 (hw
->phy
.type
== e1000_phy_82579
) ||
3367 (hw
->phy
.type
== e1000_phy_82577
)) {
3368 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3370 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3376 return e1000e_set_fc_watermarks(hw
);
3380 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3381 * @hw: pointer to the HW structure
3383 * Configures the kumeran interface to the PHY to wait the appropriate time
3384 * when polling the PHY, then call the generic setup_copper_link to finish
3385 * configuring the copper link.
3387 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3394 ctrl
|= E1000_CTRL_SLU
;
3395 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3399 * Set the mac to wait the maximum time between each iteration
3400 * and increase the max iterations when polling the phy;
3401 * this fixes erroneous timeouts at 10Mbps.
3403 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3406 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3411 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3416 switch (hw
->phy
.type
) {
3417 case e1000_phy_igp_3
:
3418 ret_val
= e1000e_copper_link_setup_igp(hw
);
3423 case e1000_phy_82578
:
3424 ret_val
= e1000e_copper_link_setup_m88(hw
);
3428 case e1000_phy_82577
:
3429 case e1000_phy_82579
:
3430 ret_val
= e1000_copper_link_setup_82577(hw
);
3435 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
3439 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3441 switch (hw
->phy
.mdix
) {
3443 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3446 reg_data
|= IFE_PMC_FORCE_MDIX
;
3450 reg_data
|= IFE_PMC_AUTO_MDIX
;
3453 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
3460 return e1000e_setup_copper_link(hw
);
3464 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3465 * @hw: pointer to the HW structure
3466 * @speed: pointer to store current link speed
3467 * @duplex: pointer to store the current link duplex
3469 * Calls the generic get_speed_and_duplex to retrieve the current link
3470 * information and then calls the Kumeran lock loss workaround for links at
3473 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3478 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3482 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3483 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3484 (*speed
== SPEED_1000
)) {
3485 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3492 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3493 * @hw: pointer to the HW structure
3495 * Work-around for 82566 Kumeran PCS lock loss:
3496 * On link status change (i.e. PCI reset, speed change) and link is up and
3498 * 0) if workaround is optionally disabled do nothing
3499 * 1) wait 1ms for Kumeran link to come up
3500 * 2) check Kumeran Diagnostic register PCS lock loss bit
3501 * 3) if not set the link is locked (all is good), otherwise...
3503 * 5) repeat up to 10 times
3504 * Note: this is only called for IGP3 copper when speed is 1gb.
3506 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3508 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3514 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3518 * Make sure link is up before proceeding. If not just return.
3519 * Attempting this while link is negotiating fouled up link
3522 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3526 for (i
= 0; i
< 10; i
++) {
3527 /* read once to clear */
3528 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3531 /* and again to get new status */
3532 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3536 /* check for PCS lock */
3537 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3540 /* Issue PHY reset */
3541 e1000_phy_hw_reset(hw
);
3544 /* Disable GigE link negotiation */
3545 phy_ctrl
= er32(PHY_CTRL
);
3546 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3547 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3548 ew32(PHY_CTRL
, phy_ctrl
);
3551 * Call gig speed drop workaround on Gig disable before accessing
3554 e1000e_gig_downshift_workaround_ich8lan(hw
);
3556 /* unable to acquire PCS lock */
3557 return -E1000_ERR_PHY
;
3561 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3562 * @hw: pointer to the HW structure
3563 * @state: boolean value used to set the current Kumeran workaround state
3565 * If ICH8, set the current Kumeran workaround state (enabled - true
3566 * /disabled - false).
3568 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3571 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3573 if (hw
->mac
.type
!= e1000_ich8lan
) {
3574 e_dbg("Workaround applies to ICH8 only.\n");
3578 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3582 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3583 * @hw: pointer to the HW structure
3585 * Workaround for 82566 power-down on D3 entry:
3586 * 1) disable gigabit link
3587 * 2) write VR power-down enable
3589 * Continue if successful, else issue LCD reset and repeat
3591 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3597 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3600 /* Try the workaround twice (if needed) */
3603 reg
= er32(PHY_CTRL
);
3604 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3605 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3606 ew32(PHY_CTRL
, reg
);
3609 * Call gig speed drop workaround on Gig disable before
3610 * accessing any PHY registers
3612 if (hw
->mac
.type
== e1000_ich8lan
)
3613 e1000e_gig_downshift_workaround_ich8lan(hw
);
3615 /* Write VR power-down enable */
3616 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3617 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3618 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3620 /* Read it back and test */
3621 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3622 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3623 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3626 /* Issue PHY reset and repeat at most one more time */
3628 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3634 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3635 * @hw: pointer to the HW structure
3637 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3638 * LPLU, Gig disable, MDIC PHY reset):
3639 * 1) Set Kumeran Near-end loopback
3640 * 2) Clear Kumeran Near-end loopback
3641 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3643 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3648 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3649 (hw
->phy
.type
!= e1000_phy_igp_3
))
3652 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3656 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3657 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3661 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3662 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3667 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3668 * @hw: pointer to the HW structure
3670 * During S0 to Sx transition, it is possible the link remains at gig
3671 * instead of negotiating to a lower speed. Before going to Sx, set
3672 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3673 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3674 * (LED, GbE disable and LPLU configurations) also needs to be written.
3676 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
3681 phy_ctrl
= er32(PHY_CTRL
);
3682 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3683 ew32(PHY_CTRL
, phy_ctrl
);
3685 if (hw
->mac
.type
>= e1000_pchlan
) {
3686 e1000_oem_bits_config_ich8lan(hw
, false);
3687 ret_val
= hw
->phy
.ops
.acquire(hw
);
3690 e1000_write_smbus_addr(hw
);
3691 hw
->phy
.ops
.release(hw
);
3696 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3697 * @hw: pointer to the HW structure
3699 * During Sx to S0 transitions on non-managed devices or managed devices
3700 * on which PHY resets are not blocked, if the PHY registers cannot be
3701 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3704 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
3708 if (hw
->mac
.type
!= e1000_pch2lan
)
3712 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) || !e1000_check_reset_block(hw
)) {
3713 u16 phy_id1
, phy_id2
;
3716 ret_val
= hw
->phy
.ops
.acquire(hw
);
3718 e_dbg("Failed to acquire PHY semaphore in resume\n");
3722 /* Test access to the PHY registers by reading the ID regs */
3723 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID1
, &phy_id1
);
3726 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID2
, &phy_id2
);
3730 if (hw
->phy
.id
== ((u32
)(phy_id1
<< 16) |
3731 (u32
)(phy_id2
& PHY_REVISION_MASK
)))
3734 e1000_toggle_lanphypc_value_ich8lan(hw
);
3736 hw
->phy
.ops
.release(hw
);
3738 e1000_phy_hw_reset(hw
);
3744 hw
->phy
.ops
.release(hw
);
3750 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3751 * @hw: pointer to the HW structure
3753 * Return the LED back to the default configuration.
3755 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3757 if (hw
->phy
.type
== e1000_phy_ife
)
3758 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3760 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3765 * e1000_led_on_ich8lan - Turn LEDs on
3766 * @hw: pointer to the HW structure
3770 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3772 if (hw
->phy
.type
== e1000_phy_ife
)
3773 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3774 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3776 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3781 * e1000_led_off_ich8lan - Turn LEDs off
3782 * @hw: pointer to the HW structure
3784 * Turn off the LEDs.
3786 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3788 if (hw
->phy
.type
== e1000_phy_ife
)
3789 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3790 (IFE_PSCL_PROBE_MODE
|
3791 IFE_PSCL_PROBE_LEDS_OFF
));
3793 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3798 * e1000_setup_led_pchlan - Configures SW controllable LED
3799 * @hw: pointer to the HW structure
3801 * This prepares the SW controllable LED for use.
3803 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3805 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
3809 * e1000_cleanup_led_pchlan - Restore the default LED operation
3810 * @hw: pointer to the HW structure
3812 * Return the LED back to the default configuration.
3814 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3816 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
3820 * e1000_led_on_pchlan - Turn LEDs on
3821 * @hw: pointer to the HW structure
3825 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3827 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3831 * If no link, then turn LED on by setting the invert bit
3832 * for each LED that's mode is "link_up" in ledctl_mode2.
3834 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3835 for (i
= 0; i
< 3; i
++) {
3836 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3837 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3838 E1000_LEDCTL_MODE_LINK_UP
)
3840 if (led
& E1000_PHY_LED0_IVRT
)
3841 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3843 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3847 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3851 * e1000_led_off_pchlan - Turn LEDs off
3852 * @hw: pointer to the HW structure
3854 * Turn off the LEDs.
3856 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3858 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3862 * If no link, then turn LED off by clearing the invert bit
3863 * for each LED that's mode is "link_up" in ledctl_mode1.
3865 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3866 for (i
= 0; i
< 3; i
++) {
3867 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3868 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3869 E1000_LEDCTL_MODE_LINK_UP
)
3871 if (led
& E1000_PHY_LED0_IVRT
)
3872 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3874 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3878 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3882 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3883 * @hw: pointer to the HW structure
3885 * Read appropriate register for the config done bit for completion status
3886 * and configure the PHY through s/w for EEPROM-less parts.
3888 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3889 * config done bit, so only an error is logged and continues. If we were
3890 * to return with error, EEPROM-less silicon would not be able to be reset
3893 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3899 e1000e_get_cfg_done(hw
);
3901 /* Wait for indication from h/w that it has completed basic config */
3902 if (hw
->mac
.type
>= e1000_ich10lan
) {
3903 e1000_lan_init_done_ich8lan(hw
);
3905 ret_val
= e1000e_get_auto_rd_done(hw
);
3908 * When auto config read does not complete, do not
3909 * return with an error. This can happen in situations
3910 * where there is no eeprom and prevents getting link.
3912 e_dbg("Auto Read Done did not complete\n");
3917 /* Clear PHY Reset Asserted bit */
3918 status
= er32(STATUS
);
3919 if (status
& E1000_STATUS_PHYRA
)
3920 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3922 e_dbg("PHY Reset Asserted not set - needs delay\n");
3924 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3925 if (hw
->mac
.type
<= e1000_ich9lan
) {
3926 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3927 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3928 e1000e_phy_init_script_igp3(hw
);
3931 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3932 /* Maybe we should do a basic PHY config */
3933 e_dbg("EEPROM not present\n");
3934 ret_val
= -E1000_ERR_CONFIG
;
3942 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3943 * @hw: pointer to the HW structure
3945 * In the case of a PHY power down to save power, or to turn off link during a
3946 * driver unload, or wake on lan is not enabled, remove the link.
3948 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3950 /* If the management interface is not enabled, then power down */
3951 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3952 hw
->phy
.ops
.check_reset_block(hw
)))
3953 e1000_power_down_phy_copper(hw
);
3957 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3958 * @hw: pointer to the HW structure
3960 * Clears hardware counters specific to the silicon family and calls
3961 * clear_hw_cntrs_generic to clear all general purpose counters.
3963 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3968 e1000e_clear_hw_cntrs_base(hw
);
3984 /* Clear PHY statistics registers */
3985 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3986 (hw
->phy
.type
== e1000_phy_82579
) ||
3987 (hw
->phy
.type
== e1000_phy_82577
)) {
3988 ret_val
= hw
->phy
.ops
.acquire(hw
);
3991 ret_val
= hw
->phy
.ops
.set_page(hw
,
3992 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
3995 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
3996 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
3997 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
3998 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
3999 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4000 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4001 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4002 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4003 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4004 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4005 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4006 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4007 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4008 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4010 hw
->phy
.ops
.release(hw
);
4014 static struct e1000_mac_operations ich8_mac_ops
= {
4015 .id_led_init
= e1000e_id_led_init
,
4016 /* check_mng_mode dependent on mac type */
4017 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
4018 /* cleanup_led dependent on mac type */
4019 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
4020 .get_bus_info
= e1000_get_bus_info_ich8lan
,
4021 .set_lan_id
= e1000_set_lan_id_single_port
,
4022 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
4023 /* led_on dependent on mac type */
4024 /* led_off dependent on mac type */
4025 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
4026 .reset_hw
= e1000_reset_hw_ich8lan
,
4027 .init_hw
= e1000_init_hw_ich8lan
,
4028 .setup_link
= e1000_setup_link_ich8lan
,
4029 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
4030 /* id_led_init dependent on mac type */
4033 static struct e1000_phy_operations ich8_phy_ops
= {
4034 .acquire
= e1000_acquire_swflag_ich8lan
,
4035 .check_reset_block
= e1000_check_reset_block_ich8lan
,
4037 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
4038 .get_cable_length
= e1000e_get_cable_length_igp_2
,
4039 .read_reg
= e1000e_read_phy_reg_igp
,
4040 .release
= e1000_release_swflag_ich8lan
,
4041 .reset
= e1000_phy_hw_reset_ich8lan
,
4042 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
4043 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
4044 .write_reg
= e1000e_write_phy_reg_igp
,
4047 static struct e1000_nvm_operations ich8_nvm_ops
= {
4048 .acquire
= e1000_acquire_nvm_ich8lan
,
4049 .read
= e1000_read_nvm_ich8lan
,
4050 .release
= e1000_release_nvm_ich8lan
,
4051 .update
= e1000_update_nvm_checksum_ich8lan
,
4052 .valid_led_default
= e1000_valid_led_default_ich8lan
,
4053 .validate
= e1000_validate_nvm_checksum_ich8lan
,
4054 .write
= e1000_write_nvm_ich8lan
,
4057 struct e1000_info e1000_ich8_info
= {
4058 .mac
= e1000_ich8lan
,
4059 .flags
= FLAG_HAS_WOL
4061 | FLAG_RX_CSUM_ENABLED
4062 | FLAG_HAS_CTRLEXT_ON_LOAD
4067 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
4068 .get_variants
= e1000_get_variants_ich8lan
,
4069 .mac_ops
= &ich8_mac_ops
,
4070 .phy_ops
= &ich8_phy_ops
,
4071 .nvm_ops
= &ich8_nvm_ops
,
4074 struct e1000_info e1000_ich9_info
= {
4075 .mac
= e1000_ich9lan
,
4076 .flags
= FLAG_HAS_JUMBO_FRAMES
4079 | FLAG_RX_CSUM_ENABLED
4080 | FLAG_HAS_CTRLEXT_ON_LOAD
4086 .max_hw_frame_size
= DEFAULT_JUMBO
,
4087 .get_variants
= e1000_get_variants_ich8lan
,
4088 .mac_ops
= &ich8_mac_ops
,
4089 .phy_ops
= &ich8_phy_ops
,
4090 .nvm_ops
= &ich8_nvm_ops
,
4093 struct e1000_info e1000_ich10_info
= {
4094 .mac
= e1000_ich10lan
,
4095 .flags
= FLAG_HAS_JUMBO_FRAMES
4098 | FLAG_RX_CSUM_ENABLED
4099 | FLAG_HAS_CTRLEXT_ON_LOAD
4105 .max_hw_frame_size
= DEFAULT_JUMBO
,
4106 .get_variants
= e1000_get_variants_ich8lan
,
4107 .mac_ops
= &ich8_mac_ops
,
4108 .phy_ops
= &ich8_phy_ops
,
4109 .nvm_ops
= &ich8_nvm_ops
,
4112 struct e1000_info e1000_pch_info
= {
4113 .mac
= e1000_pchlan
,
4114 .flags
= FLAG_IS_ICH
4116 | FLAG_RX_CSUM_ENABLED
4117 | FLAG_HAS_CTRLEXT_ON_LOAD
4120 | FLAG_HAS_JUMBO_FRAMES
4121 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
4123 .flags2
= FLAG2_HAS_PHY_STATS
,
4125 .max_hw_frame_size
= 4096,
4126 .get_variants
= e1000_get_variants_ich8lan
,
4127 .mac_ops
= &ich8_mac_ops
,
4128 .phy_ops
= &ich8_phy_ops
,
4129 .nvm_ops
= &ich8_nvm_ops
,
4132 struct e1000_info e1000_pch2_info
= {
4133 .mac
= e1000_pch2lan
,
4134 .flags
= FLAG_IS_ICH
4136 | FLAG_RX_CSUM_ENABLED
4137 | FLAG_HAS_CTRLEXT_ON_LOAD
4140 | FLAG_HAS_JUMBO_FRAMES
4142 .flags2
= FLAG2_HAS_PHY_STATS
4145 .max_hw_frame_size
= DEFAULT_JUMBO
,
4146 .get_variants
= e1000_get_variants_ich8lan
,
4147 .mac_ops
= &ich8_mac_ops
,
4148 .phy_ops
= &ich8_phy_ops
,
4149 .nvm_ops
= &ich8_nvm_ops
,