1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_nvm.h"
35 * igb_raise_eec_clk - Raise EEPROM clock
36 * @hw: pointer to the HW structure
37 * @eecd: pointer to the EEPROM
39 * Enable/Raise the EEPROM clock bit.
41 static void igb_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
43 *eecd
= *eecd
| E1000_EECD_SK
;
44 wr32(E1000_EECD
, *eecd
);
46 udelay(hw
->nvm
.delay_usec
);
50 * igb_lower_eec_clk - Lower EEPROM clock
51 * @hw: pointer to the HW structure
52 * @eecd: pointer to the EEPROM
54 * Clear/Lower the EEPROM clock bit.
56 static void igb_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
58 *eecd
= *eecd
& ~E1000_EECD_SK
;
59 wr32(E1000_EECD
, *eecd
);
61 udelay(hw
->nvm
.delay_usec
);
65 * igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66 * @hw: pointer to the HW structure
67 * @data: data to send to the EEPROM
68 * @count: number of bits to shift out
70 * We need to shift 'count' bits out to the EEPROM. So, the value in the
71 * "data" parameter will be shifted out to the EEPROM one bit at a time.
72 * In order to do this, "data" must be broken down into bits.
74 static void igb_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
76 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
77 u32 eecd
= rd32(E1000_EECD
);
80 mask
= 0x01 << (count
- 1);
81 if (nvm
->type
== e1000_nvm_eeprom_spi
)
82 eecd
|= E1000_EECD_DO
;
85 eecd
&= ~E1000_EECD_DI
;
88 eecd
|= E1000_EECD_DI
;
90 wr32(E1000_EECD
, eecd
);
93 udelay(nvm
->delay_usec
);
95 igb_raise_eec_clk(hw
, &eecd
);
96 igb_lower_eec_clk(hw
, &eecd
);
101 eecd
&= ~E1000_EECD_DI
;
102 wr32(E1000_EECD
, eecd
);
106 * igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 * @hw: pointer to the HW structure
108 * @count: number of bits to shift in
110 * In order to read a register from the EEPROM, we need to shift 'count' bits
111 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
112 * the EEPROM (setting the SK bit), and then reading the value of the data out
113 * "DO" bit. During this "shifting in" process the data in "DI" bit should
116 static u16
igb_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
122 eecd
= rd32(E1000_EECD
);
124 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
127 for (i
= 0; i
< count
; i
++) {
129 igb_raise_eec_clk(hw
, &eecd
);
131 eecd
= rd32(E1000_EECD
);
133 eecd
&= ~E1000_EECD_DI
;
134 if (eecd
& E1000_EECD_DO
)
137 igb_lower_eec_clk(hw
, &eecd
);
144 * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 * @hw: pointer to the HW structure
146 * @ee_reg: EEPROM flag for polling
148 * Polls the EEPROM status bit for either read or write completion based
149 * upon the value of 'ee_reg'.
151 static s32
igb_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
153 u32 attempts
= 100000;
155 s32 ret_val
= -E1000_ERR_NVM
;
157 for (i
= 0; i
< attempts
; i
++) {
158 if (ee_reg
== E1000_NVM_POLL_READ
)
159 reg
= rd32(E1000_EERD
);
161 reg
= rd32(E1000_EEWR
);
163 if (reg
& E1000_NVM_RW_REG_DONE
) {
175 * igb_acquire_nvm - Generic request for access to EEPROM
176 * @hw: pointer to the HW structure
178 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
179 * Return successful if access grant bit set, else clear the request for
180 * EEPROM access and return -E1000_ERR_NVM (-1).
182 s32
igb_acquire_nvm(struct e1000_hw
*hw
)
184 u32 eecd
= rd32(E1000_EECD
);
185 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
189 wr32(E1000_EECD
, eecd
| E1000_EECD_REQ
);
190 eecd
= rd32(E1000_EECD
);
193 if (eecd
& E1000_EECD_GNT
)
196 eecd
= rd32(E1000_EECD
);
201 eecd
&= ~E1000_EECD_REQ
;
202 wr32(E1000_EECD
, eecd
);
203 hw_dbg("Could not acquire NVM grant\n");
204 ret_val
= -E1000_ERR_NVM
;
211 * igb_standby_nvm - Return EEPROM to standby state
212 * @hw: pointer to the HW structure
214 * Return the EEPROM to a standby state.
216 static void igb_standby_nvm(struct e1000_hw
*hw
)
218 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
219 u32 eecd
= rd32(E1000_EECD
);
221 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
222 /* Toggle CS to flush commands */
223 eecd
|= E1000_EECD_CS
;
224 wr32(E1000_EECD
, eecd
);
226 udelay(nvm
->delay_usec
);
227 eecd
&= ~E1000_EECD_CS
;
228 wr32(E1000_EECD
, eecd
);
230 udelay(nvm
->delay_usec
);
235 * e1000_stop_nvm - Terminate EEPROM command
236 * @hw: pointer to the HW structure
238 * Terminates the current command by inverting the EEPROM's chip select pin.
240 static void e1000_stop_nvm(struct e1000_hw
*hw
)
244 eecd
= rd32(E1000_EECD
);
245 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
247 eecd
|= E1000_EECD_CS
;
248 igb_lower_eec_clk(hw
, &eecd
);
253 * igb_release_nvm - Release exclusive access to EEPROM
254 * @hw: pointer to the HW structure
256 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
258 void igb_release_nvm(struct e1000_hw
*hw
)
264 eecd
= rd32(E1000_EECD
);
265 eecd
&= ~E1000_EECD_REQ
;
266 wr32(E1000_EECD
, eecd
);
270 * igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 * @hw: pointer to the HW structure
273 * Setups the EEPROM for reading and writing.
275 static s32
igb_ready_nvm_eeprom(struct e1000_hw
*hw
)
277 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
278 u32 eecd
= rd32(E1000_EECD
);
284 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
285 /* Clear SK and CS */
286 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
287 wr32(E1000_EECD
, eecd
);
290 timeout
= NVM_MAX_RETRY_SPI
;
293 * Read "Status Register" repeatedly until the LSB is cleared.
294 * The EEPROM will signal that the command has been completed
295 * by clearing bit 0 of the internal status register. If it's
296 * not cleared within 'timeout', then error out.
299 igb_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
300 hw
->nvm
.opcode_bits
);
301 spi_stat_reg
= (u8
)igb_shift_in_eec_bits(hw
, 8);
302 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
311 hw_dbg("SPI NVM Status error\n");
312 ret_val
= -E1000_ERR_NVM
;
322 * igb_read_nvm_spi - Read EEPROM's using SPI
323 * @hw: pointer to the HW structure
324 * @offset: offset of word in the EEPROM to read
325 * @words: number of words to read
326 * @data: word read from the EEPROM
328 * Reads a 16 bit word from the EEPROM.
330 s32
igb_read_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
332 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
336 u8 read_opcode
= NVM_READ_OPCODE_SPI
;
339 * A check for invalid values: offset too large, too many words,
340 * and not enough words.
342 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
344 hw_dbg("nvm parameter(s) out of bounds\n");
345 ret_val
= -E1000_ERR_NVM
;
349 ret_val
= nvm
->ops
.acquire(hw
);
353 ret_val
= igb_ready_nvm_eeprom(hw
);
359 if ((nvm
->address_bits
== 8) && (offset
>= 128))
360 read_opcode
|= NVM_A8_OPCODE_SPI
;
362 /* Send the READ command (opcode + addr) */
363 igb_shift_out_eec_bits(hw
, read_opcode
, nvm
->opcode_bits
);
364 igb_shift_out_eec_bits(hw
, (u16
)(offset
*2), nvm
->address_bits
);
367 * Read the data. SPI NVMs increment the address with each byte
368 * read and will roll over if reading beyond the end. This allows
369 * us to read the whole NVM from any offset
371 for (i
= 0; i
< words
; i
++) {
372 word_in
= igb_shift_in_eec_bits(hw
, 16);
373 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
377 nvm
->ops
.release(hw
);
384 * igb_read_nvm_eerd - Reads EEPROM using EERD register
385 * @hw: pointer to the HW structure
386 * @offset: offset of word in the EEPROM to read
387 * @words: number of words to read
388 * @data: word read from the EEPROM
390 * Reads a 16 bit word from the EEPROM using the EERD register.
392 s32
igb_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
394 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
399 * A check for invalid values: offset too large, too many words,
400 * and not enough words.
402 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
404 hw_dbg("nvm parameter(s) out of bounds\n");
405 ret_val
= -E1000_ERR_NVM
;
409 for (i
= 0; i
< words
; i
++) {
410 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
411 E1000_NVM_RW_REG_START
;
413 wr32(E1000_EERD
, eerd
);
414 ret_val
= igb_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
418 data
[i
] = (rd32(E1000_EERD
) >>
419 E1000_NVM_RW_REG_DATA
);
427 * igb_write_nvm_spi - Write to EEPROM using SPI
428 * @hw: pointer to the HW structure
429 * @offset: offset within the EEPROM to be written to
430 * @words: number of words to write
431 * @data: 16 bit word(s) to be written to the EEPROM
433 * Writes data to EEPROM at offset using SPI interface.
435 * If e1000_update_nvm_checksum is not called after this function , the
436 * EEPROM will most likley contain an invalid checksum.
438 s32
igb_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
440 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
445 * A check for invalid values: offset too large, too many words,
446 * and not enough words.
448 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
450 hw_dbg("nvm parameter(s) out of bounds\n");
451 ret_val
= -E1000_ERR_NVM
;
455 ret_val
= hw
->nvm
.ops
.acquire(hw
);
461 while (widx
< words
) {
462 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
464 ret_val
= igb_ready_nvm_eeprom(hw
);
470 /* Send the WRITE ENABLE command (8 bit opcode) */
471 igb_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
477 * Some SPI eeproms use the 8th address bit embedded in the
480 if ((nvm
->address_bits
== 8) && (offset
>= 128))
481 write_opcode
|= NVM_A8_OPCODE_SPI
;
483 /* Send the Write command (8-bit opcode + addr) */
484 igb_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
485 igb_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
488 /* Loop to allow for up to whole page write of eeprom */
489 while (widx
< words
) {
490 u16 word_out
= data
[widx
];
491 word_out
= (word_out
>> 8) | (word_out
<< 8);
492 igb_shift_out_eec_bits(hw
, word_out
, 16);
495 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
504 hw
->nvm
.ops
.release(hw
);
511 * igb_read_part_string - Read device part number
512 * @hw: pointer to the HW structure
513 * @part_num: pointer to device part number
514 * @part_num_size: size of part number buffer
516 * Reads the product board assembly (PBA) number from the EEPROM and stores
517 * the value in part_num.
519 s32
igb_read_part_string(struct e1000_hw
*hw
, u8
*part_num
, u32 part_num_size
)
527 if (part_num
== NULL
) {
528 hw_dbg("PBA string buffer was null\n");
529 ret_val
= E1000_ERR_INVALID_ARGUMENT
;
533 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
535 hw_dbg("NVM Read Error\n");
539 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_PBA_OFFSET_1
, 1, &pointer
);
541 hw_dbg("NVM Read Error\n");
546 * if nvm_data is not ptr guard the PBA must be in legacy format which
547 * means pointer is actually our second data word for the PBA number
548 * and we can decode it into an ascii string
550 if (nvm_data
!= NVM_PBA_PTR_GUARD
) {
551 hw_dbg("NVM PBA number is not stored as string\n");
553 /* we will need 11 characters to store the PBA */
554 if (part_num_size
< 11) {
555 hw_dbg("PBA string buffer too small\n");
556 return E1000_ERR_NO_SPACE
;
559 /* extract hex string from data and pointer */
560 part_num
[0] = (nvm_data
>> 12) & 0xF;
561 part_num
[1] = (nvm_data
>> 8) & 0xF;
562 part_num
[2] = (nvm_data
>> 4) & 0xF;
563 part_num
[3] = nvm_data
& 0xF;
564 part_num
[4] = (pointer
>> 12) & 0xF;
565 part_num
[5] = (pointer
>> 8) & 0xF;
568 part_num
[8] = (pointer
>> 4) & 0xF;
569 part_num
[9] = pointer
& 0xF;
571 /* put a null character on the end of our string */
574 /* switch all the data but the '-' to hex char */
575 for (offset
= 0; offset
< 10; offset
++) {
576 if (part_num
[offset
] < 0xA)
577 part_num
[offset
] += '0';
578 else if (part_num
[offset
] < 0x10)
579 part_num
[offset
] += 'A' - 0xA;
585 ret_val
= hw
->nvm
.ops
.read(hw
, pointer
, 1, &length
);
587 hw_dbg("NVM Read Error\n");
591 if (length
== 0xFFFF || length
== 0) {
592 hw_dbg("NVM PBA number section invalid length\n");
593 ret_val
= E1000_ERR_NVM_PBA_SECTION
;
596 /* check if part_num buffer is big enough */
597 if (part_num_size
< (((u32
)length
* 2) - 1)) {
598 hw_dbg("PBA string buffer too small\n");
599 ret_val
= E1000_ERR_NO_SPACE
;
603 /* trim pba length from start of string */
607 for (offset
= 0; offset
< length
; offset
++) {
608 ret_val
= hw
->nvm
.ops
.read(hw
, pointer
+ offset
, 1, &nvm_data
);
610 hw_dbg("NVM Read Error\n");
613 part_num
[offset
* 2] = (u8
)(nvm_data
>> 8);
614 part_num
[(offset
* 2) + 1] = (u8
)(nvm_data
& 0xFF);
616 part_num
[offset
* 2] = '\0';
623 * igb_read_mac_addr - Read device MAC address
624 * @hw: pointer to the HW structure
626 * Reads the device MAC address from the EEPROM and stores the value.
627 * Since devices with two ports use the same EEPROM, we increment the
628 * last bit in the MAC address for the second port.
630 s32
igb_read_mac_addr(struct e1000_hw
*hw
)
636 rar_high
= rd32(E1000_RAH(0));
637 rar_low
= rd32(E1000_RAL(0));
639 for (i
= 0; i
< E1000_RAL_MAC_ADDR_LEN
; i
++)
640 hw
->mac
.perm_addr
[i
] = (u8
)(rar_low
>> (i
*8));
642 for (i
= 0; i
< E1000_RAH_MAC_ADDR_LEN
; i
++)
643 hw
->mac
.perm_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
645 for (i
= 0; i
< ETH_ALEN
; i
++)
646 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
652 * igb_validate_nvm_checksum - Validate EEPROM checksum
653 * @hw: pointer to the HW structure
655 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
656 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
658 s32
igb_validate_nvm_checksum(struct e1000_hw
*hw
)
664 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
665 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
667 hw_dbg("NVM Read Error\n");
670 checksum
+= nvm_data
;
673 if (checksum
!= (u16
) NVM_SUM
) {
674 hw_dbg("NVM Checksum Invalid\n");
675 ret_val
= -E1000_ERR_NVM
;
684 * igb_update_nvm_checksum - Update EEPROM checksum
685 * @hw: pointer to the HW structure
687 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
688 * up to the checksum. Then calculates the EEPROM checksum and writes the
689 * value to the EEPROM.
691 s32
igb_update_nvm_checksum(struct e1000_hw
*hw
)
697 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
698 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
700 hw_dbg("NVM Read Error while updating checksum.\n");
703 checksum
+= nvm_data
;
705 checksum
= (u16
) NVM_SUM
- checksum
;
706 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
708 hw_dbg("NVM Write Error while updating checksum.\n");