Staging: hv: mousevsc: Cleanup and properly implement reportdesc_callback()
[zen-stable.git] / drivers / net / sfc / nic.c
blobbafa23a6874c1a20a5fbbd57e5167bc78bf63b98
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
25 /**************************************************************************
27 * Configurable values
29 **************************************************************************
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
52 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
54 #define EFX_FLUSH_INTERVAL 10
55 #define EFX_FLUSH_POLL_COUNT 100
57 /* Size and alignment of special buffers (4KB) */
58 #define EFX_BUF_SIZE 4096
60 /* Depth of RX flush request fifo */
61 #define EFX_RX_FLUSH_COUNT 4
63 /* Generated event code for efx_generate_test_event() */
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 (0x00010100 + (_channel)->channel)
67 /* Generated event code for efx_generate_fill_event() */
68 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
69 (0x00010200 + (_channel)->channel)
71 /**************************************************************************
73 * Solarstorm hardware access
75 **************************************************************************/
77 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
78 unsigned int index)
80 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
81 value, index);
84 /* Read the current event from the event queue */
85 static inline efx_qword_t *efx_event(struct efx_channel *channel,
86 unsigned int index)
88 return ((efx_qword_t *) (channel->eventq.addr)) +
89 (index & channel->eventq_mask);
92 /* See if an event is present
94 * We check both the high and low dword of the event for all ones. We
95 * wrote all ones when we cleared the event, and no valid event can
96 * have all ones in either its high or low dwords. This approach is
97 * robust against reordering.
99 * Note that using a single 64-bit comparison is incorrect; even
100 * though the CPU read will be atomic, the DMA write may not be.
102 static inline int efx_event_present(efx_qword_t *event)
104 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
105 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
108 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
109 const efx_oword_t *mask)
111 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
112 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
115 int efx_nic_test_registers(struct efx_nic *efx,
116 const struct efx_nic_register_test *regs,
117 size_t n_regs)
119 unsigned address = 0, i, j;
120 efx_oword_t mask, imask, original, reg, buf;
122 /* Falcon should be in loopback to isolate the XMAC from the PHY */
123 WARN_ON(!LOOPBACK_INTERNAL(efx));
125 for (i = 0; i < n_regs; ++i) {
126 address = regs[i].address;
127 mask = imask = regs[i].mask;
128 EFX_INVERT_OWORD(imask);
130 efx_reado(efx, &original, address);
132 /* bit sweep on and off */
133 for (j = 0; j < 128; j++) {
134 if (!EFX_EXTRACT_OWORD32(mask, j, j))
135 continue;
137 /* Test this testable bit can be set in isolation */
138 EFX_AND_OWORD(reg, original, mask);
139 EFX_SET_OWORD32(reg, j, j, 1);
141 efx_writeo(efx, &reg, address);
142 efx_reado(efx, &buf, address);
144 if (efx_masked_compare_oword(&reg, &buf, &mask))
145 goto fail;
147 /* Test this testable bit can be cleared in isolation */
148 EFX_OR_OWORD(reg, original, mask);
149 EFX_SET_OWORD32(reg, j, j, 0);
151 efx_writeo(efx, &reg, address);
152 efx_reado(efx, &buf, address);
154 if (efx_masked_compare_oword(&reg, &buf, &mask))
155 goto fail;
158 efx_writeo(efx, &original, address);
161 return 0;
163 fail:
164 netif_err(efx, hw, efx->net_dev,
165 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
166 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
167 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
168 return -EIO;
171 /**************************************************************************
173 * Special buffer handling
174 * Special buffers are used for event queues and the TX and RX
175 * descriptor rings.
177 *************************************************************************/
180 * Initialise a special buffer
182 * This will define a buffer (previously allocated via
183 * efx_alloc_special_buffer()) in the buffer table, allowing
184 * it to be used for event queues, descriptor rings etc.
186 static void
187 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
189 efx_qword_t buf_desc;
190 int index;
191 dma_addr_t dma_addr;
192 int i;
194 EFX_BUG_ON_PARANOID(!buffer->addr);
196 /* Write buffer descriptors to NIC */
197 for (i = 0; i < buffer->entries; i++) {
198 index = buffer->index + i;
199 dma_addr = buffer->dma_addr + (i * 4096);
200 netif_dbg(efx, probe, efx->net_dev,
201 "mapping special buffer %d at %llx\n",
202 index, (unsigned long long)dma_addr);
203 EFX_POPULATE_QWORD_3(buf_desc,
204 FRF_AZ_BUF_ADR_REGION, 0,
205 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
206 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
207 efx_write_buf_tbl(efx, &buf_desc, index);
211 /* Unmaps a buffer and clears the buffer table entries */
212 static void
213 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
215 efx_oword_t buf_tbl_upd;
216 unsigned int start = buffer->index;
217 unsigned int end = (buffer->index + buffer->entries - 1);
219 if (!buffer->entries)
220 return;
222 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
223 buffer->index, buffer->index + buffer->entries - 1);
225 EFX_POPULATE_OWORD_4(buf_tbl_upd,
226 FRF_AZ_BUF_UPD_CMD, 0,
227 FRF_AZ_BUF_CLR_CMD, 1,
228 FRF_AZ_BUF_CLR_END_ID, end,
229 FRF_AZ_BUF_CLR_START_ID, start);
230 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
234 * Allocate a new special buffer
236 * This allocates memory for a new buffer, clears it and allocates a
237 * new buffer ID range. It does not write into the buffer table.
239 * This call will allocate 4KB buffers, since 8KB buffers can't be
240 * used for event queues and descriptor rings.
242 static int efx_alloc_special_buffer(struct efx_nic *efx,
243 struct efx_special_buffer *buffer,
244 unsigned int len)
246 len = ALIGN(len, EFX_BUF_SIZE);
248 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
249 &buffer->dma_addr, GFP_KERNEL);
250 if (!buffer->addr)
251 return -ENOMEM;
252 buffer->len = len;
253 buffer->entries = len / EFX_BUF_SIZE;
254 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
256 /* All zeros is a potentially valid event so memset to 0xff */
257 memset(buffer->addr, 0xff, len);
259 /* Select new buffer ID */
260 buffer->index = efx->next_buffer_table;
261 efx->next_buffer_table += buffer->entries;
263 netif_dbg(efx, probe, efx->net_dev,
264 "allocating special buffers %d-%d at %llx+%x "
265 "(virt %p phys %llx)\n", buffer->index,
266 buffer->index + buffer->entries - 1,
267 (u64)buffer->dma_addr, len,
268 buffer->addr, (u64)virt_to_phys(buffer->addr));
270 return 0;
273 static void
274 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
276 if (!buffer->addr)
277 return;
279 netif_dbg(efx, hw, efx->net_dev,
280 "deallocating special buffers %d-%d at %llx+%x "
281 "(virt %p phys %llx)\n", buffer->index,
282 buffer->index + buffer->entries - 1,
283 (u64)buffer->dma_addr, buffer->len,
284 buffer->addr, (u64)virt_to_phys(buffer->addr));
286 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
287 buffer->dma_addr);
288 buffer->addr = NULL;
289 buffer->entries = 0;
292 /**************************************************************************
294 * Generic buffer handling
295 * These buffers are used for interrupt status and MAC stats
297 **************************************************************************/
299 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
300 unsigned int len)
302 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
303 &buffer->dma_addr);
304 if (!buffer->addr)
305 return -ENOMEM;
306 buffer->len = len;
307 memset(buffer->addr, 0, len);
308 return 0;
311 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
313 if (buffer->addr) {
314 pci_free_consistent(efx->pci_dev, buffer->len,
315 buffer->addr, buffer->dma_addr);
316 buffer->addr = NULL;
320 /**************************************************************************
322 * TX path
324 **************************************************************************/
326 /* Returns a pointer to the specified transmit descriptor in the TX
327 * descriptor queue belonging to the specified channel.
329 static inline efx_qword_t *
330 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
332 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
335 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
336 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
338 unsigned write_ptr;
339 efx_dword_t reg;
341 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
342 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
343 efx_writed_page(tx_queue->efx, &reg,
344 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
347 /* Write pointer and first descriptor for TX descriptor ring */
348 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
349 const efx_qword_t *txd)
351 unsigned write_ptr;
352 efx_oword_t reg;
354 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
355 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
357 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
358 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
359 FRF_AZ_TX_DESC_WPTR, write_ptr);
360 reg.qword[0] = *txd;
361 efx_writeo_page(tx_queue->efx, &reg,
362 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
365 static inline bool
366 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
368 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
370 if (empty_read_count == 0)
371 return false;
373 tx_queue->empty_read_count = 0;
374 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
377 /* For each entry inserted into the software descriptor ring, create a
378 * descriptor in the hardware TX descriptor ring (in host memory), and
379 * write a doorbell.
381 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
384 struct efx_tx_buffer *buffer;
385 efx_qword_t *txd;
386 unsigned write_ptr;
387 unsigned old_write_count = tx_queue->write_count;
389 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
391 do {
392 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
393 buffer = &tx_queue->buffer[write_ptr];
394 txd = efx_tx_desc(tx_queue, write_ptr);
395 ++tx_queue->write_count;
397 /* Create TX descriptor ring entry */
398 EFX_POPULATE_QWORD_4(*txd,
399 FSF_AZ_TX_KER_CONT, buffer->continuation,
400 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
401 FSF_AZ_TX_KER_BUF_REGION, 0,
402 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
403 } while (tx_queue->write_count != tx_queue->insert_count);
405 wmb(); /* Ensure descriptors are written before they are fetched */
407 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
408 txd = efx_tx_desc(tx_queue,
409 old_write_count & tx_queue->ptr_mask);
410 efx_push_tx_desc(tx_queue, txd);
411 ++tx_queue->pushes;
412 } else {
413 efx_notify_tx_desc(tx_queue);
417 /* Allocate hardware resources for a TX queue */
418 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
420 struct efx_nic *efx = tx_queue->efx;
421 unsigned entries;
423 entries = tx_queue->ptr_mask + 1;
424 return efx_alloc_special_buffer(efx, &tx_queue->txd,
425 entries * sizeof(efx_qword_t));
428 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
430 struct efx_nic *efx = tx_queue->efx;
431 efx_oword_t reg;
433 tx_queue->flushed = FLUSH_NONE;
435 /* Pin TX descriptor ring */
436 efx_init_special_buffer(efx, &tx_queue->txd);
438 /* Push TX descriptor ring to card */
439 EFX_POPULATE_OWORD_10(reg,
440 FRF_AZ_TX_DESCQ_EN, 1,
441 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
442 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
443 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
444 FRF_AZ_TX_DESCQ_EVQ_ID,
445 tx_queue->channel->channel,
446 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
447 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
448 FRF_AZ_TX_DESCQ_SIZE,
449 __ffs(tx_queue->txd.entries),
450 FRF_AZ_TX_DESCQ_TYPE, 0,
451 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
453 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
454 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
455 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
456 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
457 !csum);
460 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
461 tx_queue->queue);
463 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
464 /* Only 128 bits in this register */
465 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
467 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
468 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
469 clear_bit_le(tx_queue->queue, (void *)&reg);
470 else
471 set_bit_le(tx_queue->queue, (void *)&reg);
472 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
476 EFX_POPULATE_OWORD_1(reg,
477 FRF_BZ_TX_PACE,
478 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
479 FFE_BZ_TX_PACE_OFF :
480 FFE_BZ_TX_PACE_RESERVED);
481 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
482 tx_queue->queue);
486 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
488 struct efx_nic *efx = tx_queue->efx;
489 efx_oword_t tx_flush_descq;
491 tx_queue->flushed = FLUSH_PENDING;
493 /* Post a flush command */
494 EFX_POPULATE_OWORD_2(tx_flush_descq,
495 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
496 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
497 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
500 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
502 struct efx_nic *efx = tx_queue->efx;
503 efx_oword_t tx_desc_ptr;
505 /* The queue should have been flushed */
506 WARN_ON(tx_queue->flushed != FLUSH_DONE);
508 /* Remove TX descriptor ring from card */
509 EFX_ZERO_OWORD(tx_desc_ptr);
510 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511 tx_queue->queue);
513 /* Unpin TX descriptor ring */
514 efx_fini_special_buffer(efx, &tx_queue->txd);
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
520 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
523 /**************************************************************************
525 * RX path
527 **************************************************************************/
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t *
531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
533 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
536 /* This creates an entry in the RX descriptor queue */
537 static inline void
538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
540 struct efx_rx_buffer *rx_buf;
541 efx_qword_t *rxd;
543 rxd = efx_rx_desc(rx_queue, index);
544 rx_buf = efx_rx_buffer(rx_queue, index);
545 EFX_POPULATE_QWORD_3(*rxd,
546 FSF_AZ_RX_KER_BUF_SIZE,
547 rx_buf->len -
548 rx_queue->efx->type->rx_buffer_padding,
549 FSF_AZ_RX_KER_BUF_REGION, 0,
550 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
553 /* This writes to the RX_DESC_WPTR register for the specified receive
554 * descriptor ring.
556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
558 struct efx_nic *efx = rx_queue->efx;
559 efx_dword_t reg;
560 unsigned write_ptr;
562 while (rx_queue->notified_count != rx_queue->added_count) {
563 efx_build_rx_desc(
564 rx_queue,
565 rx_queue->notified_count & rx_queue->ptr_mask);
566 ++rx_queue->notified_count;
569 wmb();
570 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
571 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
572 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
573 efx_rx_queue_index(rx_queue));
576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
578 struct efx_nic *efx = rx_queue->efx;
579 unsigned entries;
581 entries = rx_queue->ptr_mask + 1;
582 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
583 entries * sizeof(efx_qword_t));
586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
588 efx_oword_t rx_desc_ptr;
589 struct efx_nic *efx = rx_queue->efx;
590 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591 bool iscsi_digest_en = is_b0;
593 netif_dbg(efx, hw, efx->net_dev,
594 "RX queue %d ring in special buffers %d-%d\n",
595 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
596 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
598 rx_queue->flushed = FLUSH_NONE;
600 /* Pin RX descriptor ring */
601 efx_init_special_buffer(efx, &rx_queue->rxd);
603 /* Push RX descriptor ring to card */
604 EFX_POPULATE_OWORD_10(rx_desc_ptr,
605 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
606 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
607 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
608 FRF_AZ_RX_DESCQ_EVQ_ID,
609 efx_rx_queue_channel(rx_queue)->channel,
610 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
611 FRF_AZ_RX_DESCQ_LABEL,
612 efx_rx_queue_index(rx_queue),
613 FRF_AZ_RX_DESCQ_SIZE,
614 __ffs(rx_queue->rxd.entries),
615 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
616 /* For >=B0 this is scatter so disable */
617 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
618 FRF_AZ_RX_DESCQ_EN, 1);
619 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
620 efx_rx_queue_index(rx_queue));
623 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
625 struct efx_nic *efx = rx_queue->efx;
626 efx_oword_t rx_flush_descq;
628 rx_queue->flushed = FLUSH_PENDING;
630 /* Post a flush command */
631 EFX_POPULATE_OWORD_2(rx_flush_descq,
632 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
633 FRF_AZ_RX_FLUSH_DESCQ,
634 efx_rx_queue_index(rx_queue));
635 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
638 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
640 efx_oword_t rx_desc_ptr;
641 struct efx_nic *efx = rx_queue->efx;
643 /* The queue should already have been flushed */
644 WARN_ON(rx_queue->flushed != FLUSH_DONE);
646 /* Remove RX descriptor ring from card */
647 EFX_ZERO_OWORD(rx_desc_ptr);
648 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
649 efx_rx_queue_index(rx_queue));
651 /* Unpin RX descriptor ring */
652 efx_fini_special_buffer(efx, &rx_queue->rxd);
655 /* Free buffers backing RX queue */
656 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
658 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
661 /**************************************************************************
663 * Event queue processing
664 * Event queues are processed by per-channel tasklets.
666 **************************************************************************/
668 /* Update a channel's event queue's read pointer (RPTR) register
670 * This writes the EVQ_RPTR_REG register for the specified channel's
671 * event queue.
673 void efx_nic_eventq_read_ack(struct efx_channel *channel)
675 efx_dword_t reg;
676 struct efx_nic *efx = channel->efx;
678 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
679 channel->eventq_read_ptr & channel->eventq_mask);
680 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
681 channel->channel);
684 /* Use HW to insert a SW defined event */
685 static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
687 efx_oword_t drv_ev_reg;
689 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
690 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
691 drv_ev_reg.u32[0] = event->u32[0];
692 drv_ev_reg.u32[1] = event->u32[1];
693 drv_ev_reg.u32[2] = 0;
694 drv_ev_reg.u32[3] = 0;
695 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
696 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
699 /* Handle a transmit completion event
701 * The NIC batches TX completion events; the message we receive is of
702 * the form "complete all TX events up to this index".
704 static int
705 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
707 unsigned int tx_ev_desc_ptr;
708 unsigned int tx_ev_q_label;
709 struct efx_tx_queue *tx_queue;
710 struct efx_nic *efx = channel->efx;
711 int tx_packets = 0;
713 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
714 /* Transmit completion */
715 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
716 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
717 tx_queue = efx_channel_get_tx_queue(
718 channel, tx_ev_q_label % EFX_TXQ_TYPES);
719 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
720 tx_queue->ptr_mask);
721 channel->irq_mod_score += tx_packets;
722 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
723 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
724 /* Rewrite the FIFO write pointer */
725 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
726 tx_queue = efx_channel_get_tx_queue(
727 channel, tx_ev_q_label % EFX_TXQ_TYPES);
729 if (efx_dev_registered(efx))
730 netif_tx_lock(efx->net_dev);
731 efx_notify_tx_desc(tx_queue);
732 if (efx_dev_registered(efx))
733 netif_tx_unlock(efx->net_dev);
734 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
735 EFX_WORKAROUND_10727(efx)) {
736 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
737 } else {
738 netif_err(efx, tx_err, efx->net_dev,
739 "channel %d unexpected TX event "
740 EFX_QWORD_FMT"\n", channel->channel,
741 EFX_QWORD_VAL(*event));
744 return tx_packets;
747 /* Detect errors included in the rx_evt_pkt_ok bit. */
748 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
749 const efx_qword_t *event,
750 bool *rx_ev_pkt_ok,
751 bool *discard)
753 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
754 struct efx_nic *efx = rx_queue->efx;
755 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
756 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
757 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
758 bool rx_ev_other_err, rx_ev_pause_frm;
759 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
760 unsigned rx_ev_pkt_type;
762 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
763 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
764 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
765 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
766 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
767 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
768 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
769 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
770 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
771 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
772 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
773 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
774 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
775 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
776 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
778 /* Every error apart from tobe_disc and pause_frm */
779 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
780 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
781 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
783 /* Count errors that are not in MAC stats. Ignore expected
784 * checksum errors during self-test. */
785 if (rx_ev_frm_trunc)
786 ++channel->n_rx_frm_trunc;
787 else if (rx_ev_tobe_disc)
788 ++channel->n_rx_tobe_disc;
789 else if (!efx->loopback_selftest) {
790 if (rx_ev_ip_hdr_chksum_err)
791 ++channel->n_rx_ip_hdr_chksum_err;
792 else if (rx_ev_tcp_udp_chksum_err)
793 ++channel->n_rx_tcp_udp_chksum_err;
796 /* The frame must be discarded if any of these are true. */
797 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
798 rx_ev_tobe_disc | rx_ev_pause_frm);
800 /* TOBE_DISC is expected on unicast mismatches; don't print out an
801 * error message. FRM_TRUNC indicates RXDP dropped the packet due
802 * to a FIFO overflow.
804 #ifdef EFX_ENABLE_DEBUG
805 if (rx_ev_other_err && net_ratelimit()) {
806 netif_dbg(efx, rx_err, efx->net_dev,
807 " RX queue %d unexpected RX event "
808 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
809 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
810 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
811 rx_ev_ip_hdr_chksum_err ?
812 " [IP_HDR_CHKSUM_ERR]" : "",
813 rx_ev_tcp_udp_chksum_err ?
814 " [TCP_UDP_CHKSUM_ERR]" : "",
815 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
816 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
817 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
818 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
819 rx_ev_pause_frm ? " [PAUSE]" : "");
821 #endif
824 /* Handle receive events that are not in-order. */
825 static void
826 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
828 struct efx_nic *efx = rx_queue->efx;
829 unsigned expected, dropped;
831 expected = rx_queue->removed_count & rx_queue->ptr_mask;
832 dropped = (index - expected) & rx_queue->ptr_mask;
833 netif_info(efx, rx_err, efx->net_dev,
834 "dropped %d events (index=%d expected=%d)\n",
835 dropped, index, expected);
837 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
838 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
841 /* Handle a packet received event
843 * The NIC gives a "discard" flag if it's a unicast packet with the
844 * wrong destination address
845 * Also "is multicast" and "matches multicast filter" flags can be used to
846 * discard non-matching multicast packets.
848 static void
849 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
851 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
852 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
853 unsigned expected_ptr;
854 bool rx_ev_pkt_ok, discard = false, checksummed;
855 struct efx_rx_queue *rx_queue;
857 /* Basic packet information */
858 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
859 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
860 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
861 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
862 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
863 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
864 channel->channel);
866 rx_queue = efx_channel_get_rx_queue(channel);
868 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
869 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
870 if (unlikely(rx_ev_desc_ptr != expected_ptr))
871 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
873 if (likely(rx_ev_pkt_ok)) {
874 /* If packet is marked as OK and packet type is TCP/IP or
875 * UDP/IP, then we can rely on the hardware checksum.
877 checksummed =
878 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
879 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP;
880 } else {
881 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
882 checksummed = false;
885 /* Detect multicast packets that didn't match the filter */
886 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
887 if (rx_ev_mcast_pkt) {
888 unsigned int rx_ev_mcast_hash_match =
889 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
891 if (unlikely(!rx_ev_mcast_hash_match)) {
892 ++channel->n_rx_mcast_mismatch;
893 discard = true;
897 channel->irq_mod_score += 2;
899 /* Handle received packet */
900 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
901 checksummed, discard);
904 static void
905 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
907 struct efx_nic *efx = channel->efx;
908 unsigned code;
910 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
911 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
912 ; /* ignore */
913 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
914 /* The queue must be empty, so we won't receive any rx
915 * events, so efx_process_channel() won't refill the
916 * queue. Refill it here */
917 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
918 else
919 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
920 "generated event "EFX_QWORD_FMT"\n",
921 channel->channel, EFX_QWORD_VAL(*event));
924 static void
925 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
927 struct efx_nic *efx = channel->efx;
928 unsigned int ev_sub_code;
929 unsigned int ev_sub_data;
931 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
932 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
934 switch (ev_sub_code) {
935 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
936 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
937 channel->channel, ev_sub_data);
938 break;
939 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
940 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
941 channel->channel, ev_sub_data);
942 break;
943 case FSE_AZ_EVQ_INIT_DONE_EV:
944 netif_dbg(efx, hw, efx->net_dev,
945 "channel %d EVQ %d initialised\n",
946 channel->channel, ev_sub_data);
947 break;
948 case FSE_AZ_SRM_UPD_DONE_EV:
949 netif_vdbg(efx, hw, efx->net_dev,
950 "channel %d SRAM update done\n", channel->channel);
951 break;
952 case FSE_AZ_WAKE_UP_EV:
953 netif_vdbg(efx, hw, efx->net_dev,
954 "channel %d RXQ %d wakeup event\n",
955 channel->channel, ev_sub_data);
956 break;
957 case FSE_AZ_TIMER_EV:
958 netif_vdbg(efx, hw, efx->net_dev,
959 "channel %d RX queue %d timer expired\n",
960 channel->channel, ev_sub_data);
961 break;
962 case FSE_AA_RX_RECOVER_EV:
963 netif_err(efx, rx_err, efx->net_dev,
964 "channel %d seen DRIVER RX_RESET event. "
965 "Resetting.\n", channel->channel);
966 atomic_inc(&efx->rx_reset);
967 efx_schedule_reset(efx,
968 EFX_WORKAROUND_6555(efx) ?
969 RESET_TYPE_RX_RECOVERY :
970 RESET_TYPE_DISABLE);
971 break;
972 case FSE_BZ_RX_DSC_ERROR_EV:
973 netif_err(efx, rx_err, efx->net_dev,
974 "RX DMA Q %d reports descriptor fetch error."
975 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
976 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
977 break;
978 case FSE_BZ_TX_DSC_ERROR_EV:
979 netif_err(efx, tx_err, efx->net_dev,
980 "TX DMA Q %d reports descriptor fetch error."
981 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
982 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
983 break;
984 default:
985 netif_vdbg(efx, hw, efx->net_dev,
986 "channel %d unknown driver event code %d "
987 "data %04x\n", channel->channel, ev_sub_code,
988 ev_sub_data);
989 break;
993 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
995 struct efx_nic *efx = channel->efx;
996 unsigned int read_ptr;
997 efx_qword_t event, *p_event;
998 int ev_code;
999 int tx_packets = 0;
1000 int spent = 0;
1002 read_ptr = channel->eventq_read_ptr;
1004 for (;;) {
1005 p_event = efx_event(channel, read_ptr);
1006 event = *p_event;
1008 if (!efx_event_present(&event))
1009 /* End of events */
1010 break;
1012 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1013 "channel %d event is "EFX_QWORD_FMT"\n",
1014 channel->channel, EFX_QWORD_VAL(event));
1016 /* Clear this event by marking it all ones */
1017 EFX_SET_QWORD(*p_event);
1019 ++read_ptr;
1021 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1023 switch (ev_code) {
1024 case FSE_AZ_EV_CODE_RX_EV:
1025 efx_handle_rx_event(channel, &event);
1026 if (++spent == budget)
1027 goto out;
1028 break;
1029 case FSE_AZ_EV_CODE_TX_EV:
1030 tx_packets += efx_handle_tx_event(channel, &event);
1031 if (tx_packets > efx->txq_entries) {
1032 spent = budget;
1033 goto out;
1035 break;
1036 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1037 efx_handle_generated_event(channel, &event);
1038 break;
1039 case FSE_AZ_EV_CODE_DRIVER_EV:
1040 efx_handle_driver_event(channel, &event);
1041 break;
1042 case FSE_CZ_EV_CODE_MCDI_EV:
1043 efx_mcdi_process_event(channel, &event);
1044 break;
1045 case FSE_AZ_EV_CODE_GLOBAL_EV:
1046 if (efx->type->handle_global_event &&
1047 efx->type->handle_global_event(channel, &event))
1048 break;
1049 /* else fall through */
1050 default:
1051 netif_err(channel->efx, hw, channel->efx->net_dev,
1052 "channel %d unknown event type %d (data "
1053 EFX_QWORD_FMT ")\n", channel->channel,
1054 ev_code, EFX_QWORD_VAL(event));
1058 out:
1059 channel->eventq_read_ptr = read_ptr;
1060 return spent;
1063 /* Check whether an event is present in the eventq at the current
1064 * read pointer. Only useful for self-test.
1066 bool efx_nic_event_present(struct efx_channel *channel)
1068 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1071 /* Allocate buffer table entries for event queue */
1072 int efx_nic_probe_eventq(struct efx_channel *channel)
1074 struct efx_nic *efx = channel->efx;
1075 unsigned entries;
1077 entries = channel->eventq_mask + 1;
1078 return efx_alloc_special_buffer(efx, &channel->eventq,
1079 entries * sizeof(efx_qword_t));
1082 void efx_nic_init_eventq(struct efx_channel *channel)
1084 efx_oword_t reg;
1085 struct efx_nic *efx = channel->efx;
1087 netif_dbg(efx, hw, efx->net_dev,
1088 "channel %d event queue in special buffers %d-%d\n",
1089 channel->channel, channel->eventq.index,
1090 channel->eventq.index + channel->eventq.entries - 1);
1092 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1093 EFX_POPULATE_OWORD_3(reg,
1094 FRF_CZ_TIMER_Q_EN, 1,
1095 FRF_CZ_HOST_NOTIFY_MODE, 0,
1096 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1097 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1100 /* Pin event queue buffer */
1101 efx_init_special_buffer(efx, &channel->eventq);
1103 /* Fill event queue with all ones (i.e. empty events) */
1104 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1106 /* Push event queue to card */
1107 EFX_POPULATE_OWORD_3(reg,
1108 FRF_AZ_EVQ_EN, 1,
1109 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1110 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1111 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1112 channel->channel);
1114 efx->type->push_irq_moderation(channel);
1117 void efx_nic_fini_eventq(struct efx_channel *channel)
1119 efx_oword_t reg;
1120 struct efx_nic *efx = channel->efx;
1122 /* Remove event queue from card */
1123 EFX_ZERO_OWORD(reg);
1124 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1125 channel->channel);
1126 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1127 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1129 /* Unpin event queue */
1130 efx_fini_special_buffer(efx, &channel->eventq);
1133 /* Free buffers backing event queue */
1134 void efx_nic_remove_eventq(struct efx_channel *channel)
1136 efx_free_special_buffer(channel->efx, &channel->eventq);
1140 void efx_nic_generate_test_event(struct efx_channel *channel)
1142 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1143 efx_qword_t test_event;
1145 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1146 FSE_AZ_EV_CODE_DRV_GEN_EV,
1147 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1148 efx_generate_event(channel, &test_event);
1151 void efx_nic_generate_fill_event(struct efx_channel *channel)
1153 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1154 efx_qword_t test_event;
1156 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1157 FSE_AZ_EV_CODE_DRV_GEN_EV,
1158 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1159 efx_generate_event(channel, &test_event);
1162 /**************************************************************************
1164 * Flush handling
1166 **************************************************************************/
1169 static void efx_poll_flush_events(struct efx_nic *efx)
1171 struct efx_channel *channel = efx_get_channel(efx, 0);
1172 struct efx_tx_queue *tx_queue;
1173 struct efx_rx_queue *rx_queue;
1174 unsigned int read_ptr = channel->eventq_read_ptr;
1175 unsigned int end_ptr = read_ptr + channel->eventq_mask - 1;
1177 do {
1178 efx_qword_t *event = efx_event(channel, read_ptr);
1179 int ev_code, ev_sub_code, ev_queue;
1180 bool ev_failed;
1182 if (!efx_event_present(event))
1183 break;
1185 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1186 ev_sub_code = EFX_QWORD_FIELD(*event,
1187 FSF_AZ_DRIVER_EV_SUBCODE);
1188 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1189 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1190 ev_queue = EFX_QWORD_FIELD(*event,
1191 FSF_AZ_DRIVER_EV_SUBDATA);
1192 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1193 tx_queue = efx_get_tx_queue(
1194 efx, ev_queue / EFX_TXQ_TYPES,
1195 ev_queue % EFX_TXQ_TYPES);
1196 tx_queue->flushed = FLUSH_DONE;
1198 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1199 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1200 ev_queue = EFX_QWORD_FIELD(
1201 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1202 ev_failed = EFX_QWORD_FIELD(
1203 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1204 if (ev_queue < efx->n_rx_channels) {
1205 rx_queue = efx_get_rx_queue(efx, ev_queue);
1206 rx_queue->flushed =
1207 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1211 /* We're about to destroy the queue anyway, so
1212 * it's ok to throw away every non-flush event */
1213 EFX_SET_QWORD(*event);
1215 ++read_ptr;
1216 } while (read_ptr != end_ptr);
1218 channel->eventq_read_ptr = read_ptr;
1221 /* Handle tx and rx flushes at the same time, since they run in
1222 * parallel in the hardware and there's no reason for us to
1223 * serialise them */
1224 int efx_nic_flush_queues(struct efx_nic *efx)
1226 struct efx_channel *channel;
1227 struct efx_rx_queue *rx_queue;
1228 struct efx_tx_queue *tx_queue;
1229 int i, tx_pending, rx_pending;
1231 /* If necessary prepare the hardware for flushing */
1232 efx->type->prepare_flush(efx);
1234 /* Flush all tx queues in parallel */
1235 efx_for_each_channel(channel, efx) {
1236 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1237 if (tx_queue->initialised)
1238 efx_flush_tx_queue(tx_queue);
1242 /* The hardware supports four concurrent rx flushes, each of which may
1243 * need to be retried if there is an outstanding descriptor fetch */
1244 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1245 rx_pending = tx_pending = 0;
1246 efx_for_each_channel(channel, efx) {
1247 efx_for_each_channel_rx_queue(rx_queue, channel) {
1248 if (rx_queue->flushed == FLUSH_PENDING)
1249 ++rx_pending;
1252 efx_for_each_channel(channel, efx) {
1253 efx_for_each_channel_rx_queue(rx_queue, channel) {
1254 if (rx_pending == EFX_RX_FLUSH_COUNT)
1255 break;
1256 if (rx_queue->flushed == FLUSH_FAILED ||
1257 rx_queue->flushed == FLUSH_NONE) {
1258 efx_flush_rx_queue(rx_queue);
1259 ++rx_pending;
1262 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1263 if (tx_queue->initialised &&
1264 tx_queue->flushed != FLUSH_DONE)
1265 ++tx_pending;
1269 if (rx_pending == 0 && tx_pending == 0)
1270 return 0;
1272 msleep(EFX_FLUSH_INTERVAL);
1273 efx_poll_flush_events(efx);
1276 /* Mark the queues as all flushed. We're going to return failure
1277 * leading to a reset, or fake up success anyway */
1278 efx_for_each_channel(channel, efx) {
1279 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1280 if (tx_queue->initialised &&
1281 tx_queue->flushed != FLUSH_DONE)
1282 netif_err(efx, hw, efx->net_dev,
1283 "tx queue %d flush command timed out\n",
1284 tx_queue->queue);
1285 tx_queue->flushed = FLUSH_DONE;
1287 efx_for_each_channel_rx_queue(rx_queue, channel) {
1288 if (rx_queue->flushed != FLUSH_DONE)
1289 netif_err(efx, hw, efx->net_dev,
1290 "rx queue %d flush command timed out\n",
1291 efx_rx_queue_index(rx_queue));
1292 rx_queue->flushed = FLUSH_DONE;
1296 return -ETIMEDOUT;
1299 /**************************************************************************
1301 * Hardware interrupts
1302 * The hardware interrupt handler does very little work; all the event
1303 * queue processing is carried out by per-channel tasklets.
1305 **************************************************************************/
1307 /* Enable/disable/generate interrupts */
1308 static inline void efx_nic_interrupts(struct efx_nic *efx,
1309 bool enabled, bool force)
1311 efx_oword_t int_en_reg_ker;
1313 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1314 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1315 FRF_AZ_KER_INT_KER, force,
1316 FRF_AZ_DRV_INT_EN_KER, enabled);
1317 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1320 void efx_nic_enable_interrupts(struct efx_nic *efx)
1322 struct efx_channel *channel;
1324 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1325 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327 /* Enable interrupts */
1328 efx_nic_interrupts(efx, true, false);
1330 /* Force processing of all the channels to get the EVQ RPTRs up to
1331 date */
1332 efx_for_each_channel(channel, efx)
1333 efx_schedule_channel(channel);
1336 void efx_nic_disable_interrupts(struct efx_nic *efx)
1338 /* Disable interrupts */
1339 efx_nic_interrupts(efx, false, false);
1342 /* Generate a test interrupt
1343 * Interrupt must already have been enabled, otherwise nasty things
1344 * may happen.
1346 void efx_nic_generate_interrupt(struct efx_nic *efx)
1348 efx_nic_interrupts(efx, true, true);
1351 /* Process a fatal interrupt
1352 * Disable bus mastering ASAP and schedule a reset
1354 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1356 struct falcon_nic_data *nic_data = efx->nic_data;
1357 efx_oword_t *int_ker = efx->irq_status.addr;
1358 efx_oword_t fatal_intr;
1359 int error, mem_perr;
1361 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1362 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1364 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1365 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1366 EFX_OWORD_VAL(fatal_intr),
1367 error ? "disabling bus mastering" : "no recognised error");
1369 /* If this is a memory parity error dump which blocks are offending */
1370 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1371 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1372 if (mem_perr) {
1373 efx_oword_t reg;
1374 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1375 netif_err(efx, hw, efx->net_dev,
1376 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1377 EFX_OWORD_VAL(reg));
1380 /* Disable both devices */
1381 pci_clear_master(efx->pci_dev);
1382 if (efx_nic_is_dual_func(efx))
1383 pci_clear_master(nic_data->pci_dev2);
1384 efx_nic_disable_interrupts(efx);
1386 /* Count errors and reset or disable the NIC accordingly */
1387 if (efx->int_error_count == 0 ||
1388 time_after(jiffies, efx->int_error_expire)) {
1389 efx->int_error_count = 0;
1390 efx->int_error_expire =
1391 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1393 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1394 netif_err(efx, hw, efx->net_dev,
1395 "SYSTEM ERROR - reset scheduled\n");
1396 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1397 } else {
1398 netif_err(efx, hw, efx->net_dev,
1399 "SYSTEM ERROR - max number of errors seen."
1400 "NIC will be disabled\n");
1401 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1404 return IRQ_HANDLED;
1407 /* Handle a legacy interrupt
1408 * Acknowledges the interrupt and schedule event queue processing.
1410 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1412 struct efx_nic *efx = dev_id;
1413 efx_oword_t *int_ker = efx->irq_status.addr;
1414 irqreturn_t result = IRQ_NONE;
1415 struct efx_channel *channel;
1416 efx_dword_t reg;
1417 u32 queues;
1418 int syserr;
1420 /* Could this be ours? If interrupts are disabled then the
1421 * channel state may not be valid.
1423 if (!efx->legacy_irq_enabled)
1424 return result;
1426 /* Read the ISR which also ACKs the interrupts */
1427 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1428 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1430 /* Check to see if we have a serious error condition */
1431 if (queues & (1U << efx->fatal_irq_level)) {
1432 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1433 if (unlikely(syserr))
1434 return efx_nic_fatal_interrupt(efx);
1437 if (queues != 0) {
1438 if (EFX_WORKAROUND_15783(efx))
1439 efx->irq_zero_count = 0;
1441 /* Schedule processing of any interrupting queues */
1442 efx_for_each_channel(channel, efx) {
1443 if (queues & 1)
1444 efx_schedule_channel(channel);
1445 queues >>= 1;
1447 result = IRQ_HANDLED;
1449 } else if (EFX_WORKAROUND_15783(efx)) {
1450 efx_qword_t *event;
1452 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1453 * because this might be a shared interrupt. */
1454 if (efx->irq_zero_count++ == 0)
1455 result = IRQ_HANDLED;
1457 /* Ensure we schedule or rearm all event queues */
1458 efx_for_each_channel(channel, efx) {
1459 event = efx_event(channel, channel->eventq_read_ptr);
1460 if (efx_event_present(event))
1461 efx_schedule_channel(channel);
1462 else
1463 efx_nic_eventq_read_ack(channel);
1467 if (result == IRQ_HANDLED) {
1468 efx->last_irq_cpu = raw_smp_processor_id();
1469 netif_vdbg(efx, intr, efx->net_dev,
1470 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1471 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1474 return result;
1477 /* Handle an MSI interrupt
1479 * Handle an MSI hardware interrupt. This routine schedules event
1480 * queue processing. No interrupt acknowledgement cycle is necessary.
1481 * Also, we never need to check that the interrupt is for us, since
1482 * MSI interrupts cannot be shared.
1484 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1486 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1487 struct efx_nic *efx = channel->efx;
1488 efx_oword_t *int_ker = efx->irq_status.addr;
1489 int syserr;
1491 efx->last_irq_cpu = raw_smp_processor_id();
1492 netif_vdbg(efx, intr, efx->net_dev,
1493 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1494 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1496 /* Check to see if we have a serious error condition */
1497 if (channel->channel == efx->fatal_irq_level) {
1498 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1499 if (unlikely(syserr))
1500 return efx_nic_fatal_interrupt(efx);
1503 /* Schedule processing of the channel */
1504 efx_schedule_channel(channel);
1506 return IRQ_HANDLED;
1510 /* Setup RSS indirection table.
1511 * This maps from the hash value of the packet to RXQ
1513 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1515 size_t i = 0;
1516 efx_dword_t dword;
1518 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1519 return;
1521 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1522 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1524 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1525 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1526 efx->rx_indir_table[i]);
1527 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1531 /* Hook interrupt handler(s)
1532 * Try MSI and then legacy interrupts.
1534 int efx_nic_init_interrupt(struct efx_nic *efx)
1536 struct efx_channel *channel;
1537 int rc;
1539 if (!EFX_INT_MODE_USE_MSI(efx)) {
1540 irq_handler_t handler;
1541 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1542 handler = efx_legacy_interrupt;
1543 else
1544 handler = falcon_legacy_interrupt_a1;
1546 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1547 efx->name, efx);
1548 if (rc) {
1549 netif_err(efx, drv, efx->net_dev,
1550 "failed to hook legacy IRQ %d\n",
1551 efx->pci_dev->irq);
1552 goto fail1;
1554 return 0;
1557 /* Hook MSI or MSI-X interrupt */
1558 efx_for_each_channel(channel, efx) {
1559 rc = request_irq(channel->irq, efx_msi_interrupt,
1560 IRQF_PROBE_SHARED, /* Not shared */
1561 efx->channel_name[channel->channel],
1562 &efx->channel[channel->channel]);
1563 if (rc) {
1564 netif_err(efx, drv, efx->net_dev,
1565 "failed to hook IRQ %d\n", channel->irq);
1566 goto fail2;
1570 return 0;
1572 fail2:
1573 efx_for_each_channel(channel, efx)
1574 free_irq(channel->irq, &efx->channel[channel->channel]);
1575 fail1:
1576 return rc;
1579 void efx_nic_fini_interrupt(struct efx_nic *efx)
1581 struct efx_channel *channel;
1582 efx_oword_t reg;
1584 /* Disable MSI/MSI-X interrupts */
1585 efx_for_each_channel(channel, efx) {
1586 if (channel->irq)
1587 free_irq(channel->irq, &efx->channel[channel->channel]);
1590 /* ACK legacy interrupt */
1591 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1592 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1593 else
1594 falcon_irq_ack_a1(efx);
1596 /* Disable legacy interrupt */
1597 if (efx->legacy_irq)
1598 free_irq(efx->legacy_irq, efx);
1601 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1603 efx_oword_t altera_build;
1604 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1605 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1608 void efx_nic_init_common(struct efx_nic *efx)
1610 efx_oword_t temp;
1612 /* Set positions of descriptor caches in SRAM. */
1613 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1614 efx->type->tx_dc_base / 8);
1615 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1616 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1617 efx->type->rx_dc_base / 8);
1618 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1620 /* Set TX descriptor cache size. */
1621 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1622 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1623 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1625 /* Set RX descriptor cache size. Set low watermark to size-8, as
1626 * this allows most efficient prefetching.
1628 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1629 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1630 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1631 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1632 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1634 /* Program INT_KER address */
1635 EFX_POPULATE_OWORD_2(temp,
1636 FRF_AZ_NORM_INT_VEC_DIS_KER,
1637 EFX_INT_MODE_USE_MSI(efx),
1638 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1639 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1641 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1642 /* Use an interrupt level unused by event queues */
1643 efx->fatal_irq_level = 0x1f;
1644 else
1645 /* Use a valid MSI-X vector */
1646 efx->fatal_irq_level = 0;
1648 /* Enable all the genuinely fatal interrupts. (They are still
1649 * masked by the overall interrupt mask, controlled by
1650 * falcon_interrupts()).
1652 * Note: All other fatal interrupts are enabled
1654 EFX_POPULATE_OWORD_3(temp,
1655 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1656 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1657 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1658 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1659 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1660 EFX_INVERT_OWORD(temp);
1661 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1663 efx_nic_push_rx_indir_table(efx);
1665 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1666 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1668 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1669 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1670 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1671 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1672 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1673 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1674 /* Enable SW_EV to inherit in char driver - assume harmless here */
1675 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1676 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1677 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1678 /* Disable hardware watchdog which can misfire */
1679 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1680 /* Squash TX of packets of 16 bytes or less */
1681 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1682 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1683 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1685 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1686 EFX_POPULATE_OWORD_4(temp,
1687 /* Default values */
1688 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1689 FRF_BZ_TX_PACE_SB_AF, 0xb,
1690 FRF_BZ_TX_PACE_FB_BASE, 0,
1691 /* Allow large pace values in the
1692 * fast bin. */
1693 FRF_BZ_TX_PACE_BIN_TH,
1694 FFE_BZ_TX_PACE_RESERVED);
1695 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1699 /* Register dump */
1701 #define REGISTER_REVISION_A 1
1702 #define REGISTER_REVISION_B 2
1703 #define REGISTER_REVISION_C 3
1704 #define REGISTER_REVISION_Z 3 /* latest revision */
1706 struct efx_nic_reg {
1707 u32 offset:24;
1708 u32 min_revision:2, max_revision:2;
1711 #define REGISTER(name, min_rev, max_rev) { \
1712 FR_ ## min_rev ## max_rev ## _ ## name, \
1713 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1715 #define REGISTER_AA(name) REGISTER(name, A, A)
1716 #define REGISTER_AB(name) REGISTER(name, A, B)
1717 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1718 #define REGISTER_BB(name) REGISTER(name, B, B)
1719 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1720 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1722 static const struct efx_nic_reg efx_nic_regs[] = {
1723 REGISTER_AZ(ADR_REGION),
1724 REGISTER_AZ(INT_EN_KER),
1725 REGISTER_BZ(INT_EN_CHAR),
1726 REGISTER_AZ(INT_ADR_KER),
1727 REGISTER_BZ(INT_ADR_CHAR),
1728 /* INT_ACK_KER is WO */
1729 /* INT_ISR0 is RC */
1730 REGISTER_AZ(HW_INIT),
1731 REGISTER_CZ(USR_EV_CFG),
1732 REGISTER_AB(EE_SPI_HCMD),
1733 REGISTER_AB(EE_SPI_HADR),
1734 REGISTER_AB(EE_SPI_HDATA),
1735 REGISTER_AB(EE_BASE_PAGE),
1736 REGISTER_AB(EE_VPD_CFG0),
1737 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1738 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1739 /* PCIE_CORE_INDIRECT is indirect */
1740 REGISTER_AB(NIC_STAT),
1741 REGISTER_AB(GPIO_CTL),
1742 REGISTER_AB(GLB_CTL),
1743 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1744 REGISTER_BZ(DP_CTRL),
1745 REGISTER_AZ(MEM_STAT),
1746 REGISTER_AZ(CS_DEBUG),
1747 REGISTER_AZ(ALTERA_BUILD),
1748 REGISTER_AZ(CSR_SPARE),
1749 REGISTER_AB(PCIE_SD_CTL0123),
1750 REGISTER_AB(PCIE_SD_CTL45),
1751 REGISTER_AB(PCIE_PCS_CTL_STAT),
1752 /* DEBUG_DATA_OUT is not used */
1753 /* DRV_EV is WO */
1754 REGISTER_AZ(EVQ_CTL),
1755 REGISTER_AZ(EVQ_CNT1),
1756 REGISTER_AZ(EVQ_CNT2),
1757 REGISTER_AZ(BUF_TBL_CFG),
1758 REGISTER_AZ(SRM_RX_DC_CFG),
1759 REGISTER_AZ(SRM_TX_DC_CFG),
1760 REGISTER_AZ(SRM_CFG),
1761 /* BUF_TBL_UPD is WO */
1762 REGISTER_AZ(SRM_UPD_EVQ),
1763 REGISTER_AZ(SRAM_PARITY),
1764 REGISTER_AZ(RX_CFG),
1765 REGISTER_BZ(RX_FILTER_CTL),
1766 /* RX_FLUSH_DESCQ is WO */
1767 REGISTER_AZ(RX_DC_CFG),
1768 REGISTER_AZ(RX_DC_PF_WM),
1769 REGISTER_BZ(RX_RSS_TKEY),
1770 /* RX_NODESC_DROP is RC */
1771 REGISTER_AA(RX_SELF_RST),
1772 /* RX_DEBUG, RX_PUSH_DROP are not used */
1773 REGISTER_CZ(RX_RSS_IPV6_REG1),
1774 REGISTER_CZ(RX_RSS_IPV6_REG2),
1775 REGISTER_CZ(RX_RSS_IPV6_REG3),
1776 /* TX_FLUSH_DESCQ is WO */
1777 REGISTER_AZ(TX_DC_CFG),
1778 REGISTER_AA(TX_CHKSM_CFG),
1779 REGISTER_AZ(TX_CFG),
1780 /* TX_PUSH_DROP is not used */
1781 REGISTER_AZ(TX_RESERVED),
1782 REGISTER_BZ(TX_PACE),
1783 /* TX_PACE_DROP_QID is RC */
1784 REGISTER_BB(TX_VLAN),
1785 REGISTER_BZ(TX_IPFIL_PORTEN),
1786 REGISTER_AB(MD_TXD),
1787 REGISTER_AB(MD_RXD),
1788 REGISTER_AB(MD_CS),
1789 REGISTER_AB(MD_PHY_ADR),
1790 REGISTER_AB(MD_ID),
1791 /* MD_STAT is RC */
1792 REGISTER_AB(MAC_STAT_DMA),
1793 REGISTER_AB(MAC_CTRL),
1794 REGISTER_BB(GEN_MODE),
1795 REGISTER_AB(MAC_MC_HASH_REG0),
1796 REGISTER_AB(MAC_MC_HASH_REG1),
1797 REGISTER_AB(GM_CFG1),
1798 REGISTER_AB(GM_CFG2),
1799 /* GM_IPG and GM_HD are not used */
1800 REGISTER_AB(GM_MAX_FLEN),
1801 /* GM_TEST is not used */
1802 REGISTER_AB(GM_ADR1),
1803 REGISTER_AB(GM_ADR2),
1804 REGISTER_AB(GMF_CFG0),
1805 REGISTER_AB(GMF_CFG1),
1806 REGISTER_AB(GMF_CFG2),
1807 REGISTER_AB(GMF_CFG3),
1808 REGISTER_AB(GMF_CFG4),
1809 REGISTER_AB(GMF_CFG5),
1810 REGISTER_BB(TX_SRC_MAC_CTL),
1811 REGISTER_AB(XM_ADR_LO),
1812 REGISTER_AB(XM_ADR_HI),
1813 REGISTER_AB(XM_GLB_CFG),
1814 REGISTER_AB(XM_TX_CFG),
1815 REGISTER_AB(XM_RX_CFG),
1816 REGISTER_AB(XM_MGT_INT_MASK),
1817 REGISTER_AB(XM_FC),
1818 REGISTER_AB(XM_PAUSE_TIME),
1819 REGISTER_AB(XM_TX_PARAM),
1820 REGISTER_AB(XM_RX_PARAM),
1821 /* XM_MGT_INT_MSK (note no 'A') is RC */
1822 REGISTER_AB(XX_PWR_RST),
1823 REGISTER_AB(XX_SD_CTL),
1824 REGISTER_AB(XX_TXDRV_CTL),
1825 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1826 /* XX_CORE_STAT is partly RC */
1829 struct efx_nic_reg_table {
1830 u32 offset:24;
1831 u32 min_revision:2, max_revision:2;
1832 u32 step:6, rows:21;
1835 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1836 offset, \
1837 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1838 step, rows \
1840 #define REGISTER_TABLE(name, min_rev, max_rev) \
1841 REGISTER_TABLE_DIMENSIONS( \
1842 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1843 min_rev, max_rev, \
1844 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1845 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1846 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1847 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1848 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1849 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1850 #define REGISTER_TABLE_BB_CZ(name) \
1851 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1852 FR_BZ_ ## name ## _STEP, \
1853 FR_BB_ ## name ## _ROWS), \
1854 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1855 FR_BZ_ ## name ## _STEP, \
1856 FR_CZ_ ## name ## _ROWS)
1857 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1859 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1860 /* DRIVER is not used */
1861 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1862 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1863 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1864 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1865 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1866 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1867 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1868 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1869 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1870 /* We can't reasonably read all of the buffer table (up to 8MB!).
1871 * However this driver will only use a few entries. Reading
1872 * 1K entries allows for some expansion of queue count and
1873 * size before we need to change the version. */
1874 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1875 A, A, 8, 1024),
1876 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1877 B, Z, 8, 1024),
1878 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1879 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1880 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1881 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1882 /* TX_FILTER_TBL0 is huge and not used by this driver */
1883 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1884 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1885 /* MSIX_PBA_TABLE is not mapped */
1886 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1887 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1890 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1892 const struct efx_nic_reg *reg;
1893 const struct efx_nic_reg_table *table;
1894 size_t len = 0;
1896 for (reg = efx_nic_regs;
1897 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1898 reg++)
1899 if (efx->type->revision >= reg->min_revision &&
1900 efx->type->revision <= reg->max_revision)
1901 len += sizeof(efx_oword_t);
1903 for (table = efx_nic_reg_tables;
1904 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1905 table++)
1906 if (efx->type->revision >= table->min_revision &&
1907 efx->type->revision <= table->max_revision)
1908 len += table->rows * min_t(size_t, table->step, 16);
1910 return len;
1913 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1915 const struct efx_nic_reg *reg;
1916 const struct efx_nic_reg_table *table;
1918 for (reg = efx_nic_regs;
1919 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1920 reg++) {
1921 if (efx->type->revision >= reg->min_revision &&
1922 efx->type->revision <= reg->max_revision) {
1923 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1924 buf += sizeof(efx_oword_t);
1928 for (table = efx_nic_reg_tables;
1929 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1930 table++) {
1931 size_t size, i;
1933 if (!(efx->type->revision >= table->min_revision &&
1934 efx->type->revision <= table->max_revision))
1935 continue;
1937 size = min_t(size_t, table->step, 16);
1939 if (table->offset >= efx->type->mem_map_size) {
1940 /* No longer mapped; return dummy data */
1941 memcpy(buf, "\xde\xc0\xad\xde", 4);
1942 buf += table->rows * size;
1943 continue;
1946 for (i = 0; i < table->rows; i++) {
1947 switch (table->step) {
1948 case 4: /* 32-bit register or SRAM */
1949 efx_readd_table(efx, buf, table->offset, i);
1950 break;
1951 case 8: /* 64-bit SRAM */
1952 efx_sram_readq(efx,
1953 efx->membase + table->offset,
1954 buf, i);
1955 break;
1956 case 16: /* 128-bit register */
1957 efx_reado_table(efx, buf, table->offset, i);
1958 break;
1959 case 32: /* 128-bit register, interleaved */
1960 efx_reado_table(efx, buf, table->offset, 2 * i);
1961 break;
1962 default:
1963 WARN_ON(1);
1964 return;
1966 buf += size;