2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
74 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
126 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
127 skb
->dev
? skb
->dev
->name
: "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
142 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
145 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
146 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
171 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
172 int fclone
, int node
)
174 struct kmem_cache
*cache
;
175 struct skb_shared_info
*shinfo
;
179 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
182 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
187 size
= SKB_DATA_ALIGN(size
);
188 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
192 prefetchw(data
+ size
);
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
199 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
200 skb
->truesize
= size
+ sizeof(struct sk_buff
);
201 atomic_set(&skb
->users
, 1);
204 skb_reset_tail_pointer(skb
);
205 skb
->end
= skb
->tail
+ size
;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb
->mac_header
= ~0U;
210 /* make sure we initialize shinfo sequentially */
211 shinfo
= skb_shinfo(skb
);
212 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
213 atomic_set(&shinfo
->dataref
, 1);
214 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
217 struct sk_buff
*child
= skb
+ 1;
218 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
220 kmemcheck_annotate_bitfield(child
, flags1
);
221 kmemcheck_annotate_bitfield(child
, flags2
);
222 skb
->fclone
= SKB_FCLONE_ORIG
;
223 atomic_set(fclone_ref
, 1);
225 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
230 kmem_cache_free(cache
, skb
);
234 EXPORT_SYMBOL(__alloc_skb
);
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
247 * %NULL is returned if there is no free memory.
249 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
250 unsigned int length
, gfp_t gfp_mask
)
254 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
256 skb_reserve(skb
, NET_SKB_PAD
);
261 EXPORT_SYMBOL(__netdev_alloc_skb
);
263 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
266 skb_fill_page_desc(skb
, i
, page
, off
, size
);
268 skb
->data_len
+= size
;
269 skb
->truesize
+= size
;
271 EXPORT_SYMBOL(skb_add_rx_frag
);
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
285 struct sk_buff
*dev_alloc_skb(unsigned int length
)
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
291 return __dev_alloc_skb(length
, GFP_ATOMIC
);
293 EXPORT_SYMBOL(dev_alloc_skb
);
295 static void skb_drop_list(struct sk_buff
**listp
)
297 struct sk_buff
*list
= *listp
;
302 struct sk_buff
*this = list
;
308 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
310 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
313 static void skb_clone_fraglist(struct sk_buff
*skb
)
315 struct sk_buff
*list
;
317 skb_walk_frags(skb
, list
)
321 static void skb_release_data(struct sk_buff
*skb
)
324 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
325 &skb_shinfo(skb
)->dataref
)) {
326 if (skb_shinfo(skb
)->nr_frags
) {
328 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
329 put_page(skb_shinfo(skb
)->frags
[i
].page
);
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
336 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
337 struct ubuf_info
*uarg
;
339 uarg
= skb_shinfo(skb
)->destructor_arg
;
341 uarg
->callback(uarg
);
344 if (skb_has_frag_list(skb
))
345 skb_drop_fraglist(skb
);
352 * Free an skbuff by memory without cleaning the state.
354 static void kfree_skbmem(struct sk_buff
*skb
)
356 struct sk_buff
*other
;
357 atomic_t
*fclone_ref
;
359 switch (skb
->fclone
) {
360 case SKB_FCLONE_UNAVAILABLE
:
361 kmem_cache_free(skbuff_head_cache
, skb
);
364 case SKB_FCLONE_ORIG
:
365 fclone_ref
= (atomic_t
*) (skb
+ 2);
366 if (atomic_dec_and_test(fclone_ref
))
367 kmem_cache_free(skbuff_fclone_cache
, skb
);
370 case SKB_FCLONE_CLONE
:
371 fclone_ref
= (atomic_t
*) (skb
+ 1);
374 /* The clone portion is available for
375 * fast-cloning again.
377 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
379 if (atomic_dec_and_test(fclone_ref
))
380 kmem_cache_free(skbuff_fclone_cache
, other
);
385 static void skb_release_head_state(struct sk_buff
*skb
)
389 secpath_put(skb
->sp
);
391 if (skb
->destructor
) {
393 skb
->destructor(skb
);
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb
->nfct
);
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb
->nfct_reasm
);
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb
->nf_bridge
);
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
407 #ifdef CONFIG_NET_CLS_ACT
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff
*skb
)
416 skb_release_head_state(skb
);
417 skb_release_data(skb
);
421 * __kfree_skb - private function
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
429 void __kfree_skb(struct sk_buff
*skb
)
431 skb_release_all(skb
);
434 EXPORT_SYMBOL(__kfree_skb
);
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
440 * Drop a reference to the buffer and free it if the usage count has
443 void kfree_skb(struct sk_buff
*skb
)
447 if (likely(atomic_read(&skb
->users
) == 1))
449 else if (likely(!atomic_dec_and_test(&skb
->users
)))
451 trace_kfree_skb(skb
, __builtin_return_address(0));
454 EXPORT_SYMBOL(kfree_skb
);
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
464 void consume_skb(struct sk_buff
*skb
)
468 if (likely(atomic_read(&skb
->users
) == 1))
470 else if (likely(!atomic_dec_and_test(&skb
->users
)))
472 trace_consume_skb(skb
);
475 EXPORT_SYMBOL(consume_skb
);
478 * skb_recycle_check - check if skb can be reused for receive
480 * @skb_size: minimum receive buffer size
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
489 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
491 struct skb_shared_info
*shinfo
;
496 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
)
499 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
502 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
503 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
506 if (skb_shared(skb
) || skb_cloned(skb
))
509 skb_release_head_state(skb
);
511 shinfo
= skb_shinfo(skb
);
512 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
513 atomic_set(&shinfo
->dataref
, 1);
515 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
516 skb
->data
= skb
->head
+ NET_SKB_PAD
;
517 skb_reset_tail_pointer(skb
);
521 EXPORT_SYMBOL(skb_recycle_check
);
523 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
525 new->tstamp
= old
->tstamp
;
527 new->transport_header
= old
->transport_header
;
528 new->network_header
= old
->network_header
;
529 new->mac_header
= old
->mac_header
;
530 skb_dst_copy(new, old
);
531 new->rxhash
= old
->rxhash
;
533 new->sp
= secpath_get(old
->sp
);
535 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
536 new->csum
= old
->csum
;
537 new->local_df
= old
->local_df
;
538 new->pkt_type
= old
->pkt_type
;
539 new->ip_summed
= old
->ip_summed
;
540 skb_copy_queue_mapping(new, old
);
541 new->priority
= old
->priority
;
542 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
543 new->ipvs_property
= old
->ipvs_property
;
545 new->protocol
= old
->protocol
;
546 new->mark
= old
->mark
;
547 new->skb_iif
= old
->skb_iif
;
549 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
550 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
551 new->nf_trace
= old
->nf_trace
;
553 #ifdef CONFIG_NET_SCHED
554 new->tc_index
= old
->tc_index
;
555 #ifdef CONFIG_NET_CLS_ACT
556 new->tc_verd
= old
->tc_verd
;
559 new->vlan_tci
= old
->vlan_tci
;
561 skb_copy_secmark(new, old
);
565 * You should not add any new code to this function. Add it to
566 * __copy_skb_header above instead.
568 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
570 #define C(x) n->x = skb->x
572 n
->next
= n
->prev
= NULL
;
574 __copy_skb_header(n
, skb
);
579 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
582 n
->destructor
= NULL
;
588 atomic_set(&n
->users
, 1);
590 atomic_inc(&(skb_shinfo(skb
)->dataref
));
598 * skb_morph - morph one skb into another
599 * @dst: the skb to receive the contents
600 * @src: the skb to supply the contents
602 * This is identical to skb_clone except that the target skb is
603 * supplied by the user.
605 * The target skb is returned upon exit.
607 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
609 skb_release_all(dst
);
610 return __skb_clone(dst
, src
);
612 EXPORT_SYMBOL_GPL(skb_morph
);
614 /* skb frags copy userspace buffers to kernel */
615 static int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
618 int num_frags
= skb_shinfo(skb
)->nr_frags
;
619 struct page
*page
, *head
= NULL
;
620 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
622 for (i
= 0; i
< num_frags
; i
++) {
624 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
626 page
= alloc_page(GFP_ATOMIC
);
629 struct page
*next
= (struct page
*)head
->private;
635 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
636 memcpy(page_address(page
),
637 vaddr
+ f
->page_offset
, f
->size
);
638 kunmap_skb_frag(vaddr
);
639 page
->private = (unsigned long)head
;
643 /* skb frags release userspace buffers */
644 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
645 put_page(skb_shinfo(skb
)->frags
[i
].page
);
647 uarg
->callback(uarg
);
649 /* skb frags point to kernel buffers */
650 for (i
= skb_shinfo(skb
)->nr_frags
; i
> 0; i
--) {
651 skb_shinfo(skb
)->frags
[i
- 1].page_offset
= 0;
652 skb_shinfo(skb
)->frags
[i
- 1].page
= head
;
653 head
= (struct page
*)head
->private;
660 * skb_clone - duplicate an sk_buff
661 * @skb: buffer to clone
662 * @gfp_mask: allocation priority
664 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
665 * copies share the same packet data but not structure. The new
666 * buffer has a reference count of 1. If the allocation fails the
667 * function returns %NULL otherwise the new buffer is returned.
669 * If this function is called from an interrupt gfp_mask() must be
673 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
677 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
678 if (skb_copy_ubufs(skb
, gfp_mask
))
680 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
684 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
685 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
686 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
687 n
->fclone
= SKB_FCLONE_CLONE
;
688 atomic_inc(fclone_ref
);
690 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
694 kmemcheck_annotate_bitfield(n
, flags1
);
695 kmemcheck_annotate_bitfield(n
, flags2
);
696 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
699 return __skb_clone(n
, skb
);
701 EXPORT_SYMBOL(skb_clone
);
703 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
705 #ifndef NET_SKBUFF_DATA_USES_OFFSET
707 * Shift between the two data areas in bytes
709 unsigned long offset
= new->data
- old
->data
;
712 __copy_skb_header(new, old
);
714 #ifndef NET_SKBUFF_DATA_USES_OFFSET
715 /* {transport,network,mac}_header are relative to skb->head */
716 new->transport_header
+= offset
;
717 new->network_header
+= offset
;
718 if (skb_mac_header_was_set(new))
719 new->mac_header
+= offset
;
721 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
722 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
723 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
727 * skb_copy - create private copy of an sk_buff
728 * @skb: buffer to copy
729 * @gfp_mask: allocation priority
731 * Make a copy of both an &sk_buff and its data. This is used when the
732 * caller wishes to modify the data and needs a private copy of the
733 * data to alter. Returns %NULL on failure or the pointer to the buffer
734 * on success. The returned buffer has a reference count of 1.
736 * As by-product this function converts non-linear &sk_buff to linear
737 * one, so that &sk_buff becomes completely private and caller is allowed
738 * to modify all the data of returned buffer. This means that this
739 * function is not recommended for use in circumstances when only
740 * header is going to be modified. Use pskb_copy() instead.
743 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
745 int headerlen
= skb_headroom(skb
);
746 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
747 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
752 /* Set the data pointer */
753 skb_reserve(n
, headerlen
);
754 /* Set the tail pointer and length */
755 skb_put(n
, skb
->len
);
757 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
760 copy_skb_header(n
, skb
);
763 EXPORT_SYMBOL(skb_copy
);
766 * pskb_copy - create copy of an sk_buff with private head.
767 * @skb: buffer to copy
768 * @gfp_mask: allocation priority
770 * Make a copy of both an &sk_buff and part of its data, located
771 * in header. Fragmented data remain shared. This is used when
772 * the caller wishes to modify only header of &sk_buff and needs
773 * private copy of the header to alter. Returns %NULL on failure
774 * or the pointer to the buffer on success.
775 * The returned buffer has a reference count of 1.
778 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
780 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
781 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
786 /* Set the data pointer */
787 skb_reserve(n
, skb_headroom(skb
));
788 /* Set the tail pointer and length */
789 skb_put(n
, skb_headlen(skb
));
791 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
793 n
->truesize
+= skb
->data_len
;
794 n
->data_len
= skb
->data_len
;
797 if (skb_shinfo(skb
)->nr_frags
) {
800 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
801 if (skb_copy_ubufs(skb
, gfp_mask
)) {
806 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
808 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
809 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
810 get_page(skb_shinfo(n
)->frags
[i
].page
);
812 skb_shinfo(n
)->nr_frags
= i
;
815 if (skb_has_frag_list(skb
)) {
816 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
817 skb_clone_fraglist(n
);
820 copy_skb_header(n
, skb
);
824 EXPORT_SYMBOL(pskb_copy
);
827 * pskb_expand_head - reallocate header of &sk_buff
828 * @skb: buffer to reallocate
829 * @nhead: room to add at head
830 * @ntail: room to add at tail
831 * @gfp_mask: allocation priority
833 * Expands (or creates identical copy, if &nhead and &ntail are zero)
834 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
835 * reference count of 1. Returns zero in the case of success or error,
836 * if expansion failed. In the last case, &sk_buff is not changed.
838 * All the pointers pointing into skb header may change and must be
839 * reloaded after call to this function.
842 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
847 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
856 size
= SKB_DATA_ALIGN(size
);
858 /* Check if we can avoid taking references on fragments if we own
859 * the last reference on skb->head. (see skb_release_data())
864 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
865 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
869 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
870 memmove(skb
->head
+ size
, skb_shinfo(skb
),
871 offsetof(struct skb_shared_info
,
872 frags
[skb_shinfo(skb
)->nr_frags
]));
873 memmove(skb
->head
+ nhead
, skb
->head
,
874 skb_tail_pointer(skb
) - skb
->head
);
879 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
883 /* Copy only real data... and, alas, header. This should be
884 * optimized for the cases when header is void.
886 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
888 memcpy((struct skb_shared_info
*)(data
+ size
),
890 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
895 /* copy this zero copy skb frags */
896 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
897 if (skb_copy_ubufs(skb
, gfp_mask
))
899 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
901 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
902 get_page(skb_shinfo(skb
)->frags
[i
].page
);
904 if (skb_has_frag_list(skb
))
905 skb_clone_fraglist(skb
);
907 skb_release_data(skb
);
909 off
= (data
+ nhead
) - skb
->head
;
914 #ifdef NET_SKBUFF_DATA_USES_OFFSET
918 skb
->end
= skb
->head
+ size
;
920 /* {transport,network,mac}_header and tail are relative to skb->head */
922 skb
->transport_header
+= off
;
923 skb
->network_header
+= off
;
924 if (skb_mac_header_was_set(skb
))
925 skb
->mac_header
+= off
;
926 /* Only adjust this if it actually is csum_start rather than csum */
927 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
928 skb
->csum_start
+= nhead
;
932 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
940 EXPORT_SYMBOL(pskb_expand_head
);
942 /* Make private copy of skb with writable head and some headroom */
944 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
946 struct sk_buff
*skb2
;
947 int delta
= headroom
- skb_headroom(skb
);
950 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
952 skb2
= skb_clone(skb
, GFP_ATOMIC
);
953 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
961 EXPORT_SYMBOL(skb_realloc_headroom
);
964 * skb_copy_expand - copy and expand sk_buff
965 * @skb: buffer to copy
966 * @newheadroom: new free bytes at head
967 * @newtailroom: new free bytes at tail
968 * @gfp_mask: allocation priority
970 * Make a copy of both an &sk_buff and its data and while doing so
971 * allocate additional space.
973 * This is used when the caller wishes to modify the data and needs a
974 * private copy of the data to alter as well as more space for new fields.
975 * Returns %NULL on failure or the pointer to the buffer
976 * on success. The returned buffer has a reference count of 1.
978 * You must pass %GFP_ATOMIC as the allocation priority if this function
979 * is called from an interrupt.
981 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
982 int newheadroom
, int newtailroom
,
986 * Allocate the copy buffer
988 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
990 int oldheadroom
= skb_headroom(skb
);
991 int head_copy_len
, head_copy_off
;
997 skb_reserve(n
, newheadroom
);
999 /* Set the tail pointer and length */
1000 skb_put(n
, skb
->len
);
1002 head_copy_len
= oldheadroom
;
1004 if (newheadroom
<= head_copy_len
)
1005 head_copy_len
= newheadroom
;
1007 head_copy_off
= newheadroom
- head_copy_len
;
1009 /* Copy the linear header and data. */
1010 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1011 skb
->len
+ head_copy_len
))
1014 copy_skb_header(n
, skb
);
1016 off
= newheadroom
- oldheadroom
;
1017 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1018 n
->csum_start
+= off
;
1019 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1020 n
->transport_header
+= off
;
1021 n
->network_header
+= off
;
1022 if (skb_mac_header_was_set(skb
))
1023 n
->mac_header
+= off
;
1028 EXPORT_SYMBOL(skb_copy_expand
);
1031 * skb_pad - zero pad the tail of an skb
1032 * @skb: buffer to pad
1033 * @pad: space to pad
1035 * Ensure that a buffer is followed by a padding area that is zero
1036 * filled. Used by network drivers which may DMA or transfer data
1037 * beyond the buffer end onto the wire.
1039 * May return error in out of memory cases. The skb is freed on error.
1042 int skb_pad(struct sk_buff
*skb
, int pad
)
1047 /* If the skbuff is non linear tailroom is always zero.. */
1048 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1049 memset(skb
->data
+skb
->len
, 0, pad
);
1053 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1054 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1055 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1060 /* FIXME: The use of this function with non-linear skb's really needs
1063 err
= skb_linearize(skb
);
1067 memset(skb
->data
+ skb
->len
, 0, pad
);
1074 EXPORT_SYMBOL(skb_pad
);
1077 * skb_put - add data to a buffer
1078 * @skb: buffer to use
1079 * @len: amount of data to add
1081 * This function extends the used data area of the buffer. If this would
1082 * exceed the total buffer size the kernel will panic. A pointer to the
1083 * first byte of the extra data is returned.
1085 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1087 unsigned char *tmp
= skb_tail_pointer(skb
);
1088 SKB_LINEAR_ASSERT(skb
);
1091 if (unlikely(skb
->tail
> skb
->end
))
1092 skb_over_panic(skb
, len
, __builtin_return_address(0));
1095 EXPORT_SYMBOL(skb_put
);
1098 * skb_push - add data to the start of a buffer
1099 * @skb: buffer to use
1100 * @len: amount of data to add
1102 * This function extends the used data area of the buffer at the buffer
1103 * start. If this would exceed the total buffer headroom the kernel will
1104 * panic. A pointer to the first byte of the extra data is returned.
1106 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1110 if (unlikely(skb
->data
<skb
->head
))
1111 skb_under_panic(skb
, len
, __builtin_return_address(0));
1114 EXPORT_SYMBOL(skb_push
);
1117 * skb_pull - remove data from the start of a buffer
1118 * @skb: buffer to use
1119 * @len: amount of data to remove
1121 * This function removes data from the start of a buffer, returning
1122 * the memory to the headroom. A pointer to the next data in the buffer
1123 * is returned. Once the data has been pulled future pushes will overwrite
1126 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1128 return skb_pull_inline(skb
, len
);
1130 EXPORT_SYMBOL(skb_pull
);
1133 * skb_trim - remove end from a buffer
1134 * @skb: buffer to alter
1137 * Cut the length of a buffer down by removing data from the tail. If
1138 * the buffer is already under the length specified it is not modified.
1139 * The skb must be linear.
1141 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1144 __skb_trim(skb
, len
);
1146 EXPORT_SYMBOL(skb_trim
);
1148 /* Trims skb to length len. It can change skb pointers.
1151 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1153 struct sk_buff
**fragp
;
1154 struct sk_buff
*frag
;
1155 int offset
= skb_headlen(skb
);
1156 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1160 if (skb_cloned(skb
) &&
1161 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1168 for (; i
< nfrags
; i
++) {
1169 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1176 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1179 skb_shinfo(skb
)->nr_frags
= i
;
1181 for (; i
< nfrags
; i
++)
1182 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1184 if (skb_has_frag_list(skb
))
1185 skb_drop_fraglist(skb
);
1189 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1190 fragp
= &frag
->next
) {
1191 int end
= offset
+ frag
->len
;
1193 if (skb_shared(frag
)) {
1194 struct sk_buff
*nfrag
;
1196 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1197 if (unlikely(!nfrag
))
1200 nfrag
->next
= frag
->next
;
1212 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1216 skb_drop_list(&frag
->next
);
1221 if (len
> skb_headlen(skb
)) {
1222 skb
->data_len
-= skb
->len
- len
;
1227 skb_set_tail_pointer(skb
, len
);
1232 EXPORT_SYMBOL(___pskb_trim
);
1235 * __pskb_pull_tail - advance tail of skb header
1236 * @skb: buffer to reallocate
1237 * @delta: number of bytes to advance tail
1239 * The function makes a sense only on a fragmented &sk_buff,
1240 * it expands header moving its tail forward and copying necessary
1241 * data from fragmented part.
1243 * &sk_buff MUST have reference count of 1.
1245 * Returns %NULL (and &sk_buff does not change) if pull failed
1246 * or value of new tail of skb in the case of success.
1248 * All the pointers pointing into skb header may change and must be
1249 * reloaded after call to this function.
1252 /* Moves tail of skb head forward, copying data from fragmented part,
1253 * when it is necessary.
1254 * 1. It may fail due to malloc failure.
1255 * 2. It may change skb pointers.
1257 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1259 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1261 /* If skb has not enough free space at tail, get new one
1262 * plus 128 bytes for future expansions. If we have enough
1263 * room at tail, reallocate without expansion only if skb is cloned.
1265 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1267 if (eat
> 0 || skb_cloned(skb
)) {
1268 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1273 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1276 /* Optimization: no fragments, no reasons to preestimate
1277 * size of pulled pages. Superb.
1279 if (!skb_has_frag_list(skb
))
1282 /* Estimate size of pulled pages. */
1284 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1285 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1287 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1290 /* If we need update frag list, we are in troubles.
1291 * Certainly, it possible to add an offset to skb data,
1292 * but taking into account that pulling is expected to
1293 * be very rare operation, it is worth to fight against
1294 * further bloating skb head and crucify ourselves here instead.
1295 * Pure masohism, indeed. 8)8)
1298 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1299 struct sk_buff
*clone
= NULL
;
1300 struct sk_buff
*insp
= NULL
;
1305 if (list
->len
<= eat
) {
1306 /* Eaten as whole. */
1311 /* Eaten partially. */
1313 if (skb_shared(list
)) {
1314 /* Sucks! We need to fork list. :-( */
1315 clone
= skb_clone(list
, GFP_ATOMIC
);
1321 /* This may be pulled without
1325 if (!pskb_pull(list
, eat
)) {
1333 /* Free pulled out fragments. */
1334 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1335 skb_shinfo(skb
)->frag_list
= list
->next
;
1338 /* And insert new clone at head. */
1341 skb_shinfo(skb
)->frag_list
= clone
;
1344 /* Success! Now we may commit changes to skb data. */
1349 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1350 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1351 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1352 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1354 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1356 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1357 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1363 skb_shinfo(skb
)->nr_frags
= k
;
1366 skb
->data_len
-= delta
;
1368 return skb_tail_pointer(skb
);
1370 EXPORT_SYMBOL(__pskb_pull_tail
);
1373 * skb_copy_bits - copy bits from skb to kernel buffer
1375 * @offset: offset in source
1376 * @to: destination buffer
1377 * @len: number of bytes to copy
1379 * Copy the specified number of bytes from the source skb to the
1380 * destination buffer.
1383 * If its prototype is ever changed,
1384 * check arch/{*}/net/{*}.S files,
1385 * since it is called from BPF assembly code.
1387 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1389 int start
= skb_headlen(skb
);
1390 struct sk_buff
*frag_iter
;
1393 if (offset
> (int)skb
->len
- len
)
1397 if ((copy
= start
- offset
) > 0) {
1400 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1401 if ((len
-= copy
) == 0)
1407 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1410 WARN_ON(start
> offset
+ len
);
1412 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1413 if ((copy
= end
- offset
) > 0) {
1419 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1421 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1422 offset
- start
, copy
);
1423 kunmap_skb_frag(vaddr
);
1425 if ((len
-= copy
) == 0)
1433 skb_walk_frags(skb
, frag_iter
) {
1436 WARN_ON(start
> offset
+ len
);
1438 end
= start
+ frag_iter
->len
;
1439 if ((copy
= end
- offset
) > 0) {
1442 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1444 if ((len
-= copy
) == 0)
1458 EXPORT_SYMBOL(skb_copy_bits
);
1461 * Callback from splice_to_pipe(), if we need to release some pages
1462 * at the end of the spd in case we error'ed out in filling the pipe.
1464 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1466 put_page(spd
->pages
[i
]);
1469 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1470 unsigned int *offset
,
1471 struct sk_buff
*skb
, struct sock
*sk
)
1473 struct page
*p
= sk
->sk_sndmsg_page
;
1478 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1482 off
= sk
->sk_sndmsg_off
= 0;
1483 /* hold one ref to this page until it's full */
1487 off
= sk
->sk_sndmsg_off
;
1488 mlen
= PAGE_SIZE
- off
;
1489 if (mlen
< 64 && mlen
< *len
) {
1494 *len
= min_t(unsigned int, *len
, mlen
);
1497 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1498 sk
->sk_sndmsg_off
+= *len
;
1506 * Fill page/offset/length into spd, if it can hold more pages.
1508 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1509 struct pipe_inode_info
*pipe
, struct page
*page
,
1510 unsigned int *len
, unsigned int offset
,
1511 struct sk_buff
*skb
, int linear
,
1514 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1518 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1524 spd
->pages
[spd
->nr_pages
] = page
;
1525 spd
->partial
[spd
->nr_pages
].len
= *len
;
1526 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1532 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1533 unsigned int *plen
, unsigned int off
)
1538 n
= *poff
/ PAGE_SIZE
;
1540 *page
= nth_page(*page
, n
);
1542 *poff
= *poff
% PAGE_SIZE
;
1546 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1547 unsigned int plen
, unsigned int *off
,
1548 unsigned int *len
, struct sk_buff
*skb
,
1549 struct splice_pipe_desc
*spd
, int linear
,
1551 struct pipe_inode_info
*pipe
)
1556 /* skip this segment if already processed */
1562 /* ignore any bits we already processed */
1564 __segment_seek(&page
, &poff
, &plen
, *off
);
1569 unsigned int flen
= min(*len
, plen
);
1571 /* the linear region may spread across several pages */
1572 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1574 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1577 __segment_seek(&page
, &poff
, &plen
, flen
);
1580 } while (*len
&& plen
);
1586 * Map linear and fragment data from the skb to spd. It reports failure if the
1587 * pipe is full or if we already spliced the requested length.
1589 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1590 unsigned int *offset
, unsigned int *len
,
1591 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1596 * map the linear part
1598 if (__splice_segment(virt_to_page(skb
->data
),
1599 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1601 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1605 * then map the fragments
1607 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1608 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1610 if (__splice_segment(f
->page
, f
->page_offset
, f
->size
,
1611 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1619 * Map data from the skb to a pipe. Should handle both the linear part,
1620 * the fragments, and the frag list. It does NOT handle frag lists within
1621 * the frag list, if such a thing exists. We'd probably need to recurse to
1622 * handle that cleanly.
1624 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1625 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1628 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1629 struct page
*pages
[PIPE_DEF_BUFFERS
];
1630 struct splice_pipe_desc spd
= {
1634 .ops
= &sock_pipe_buf_ops
,
1635 .spd_release
= sock_spd_release
,
1637 struct sk_buff
*frag_iter
;
1638 struct sock
*sk
= skb
->sk
;
1641 if (splice_grow_spd(pipe
, &spd
))
1645 * __skb_splice_bits() only fails if the output has no room left,
1646 * so no point in going over the frag_list for the error case.
1648 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1654 * now see if we have a frag_list to map
1656 skb_walk_frags(skb
, frag_iter
) {
1659 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1666 * Drop the socket lock, otherwise we have reverse
1667 * locking dependencies between sk_lock and i_mutex
1668 * here as compared to sendfile(). We enter here
1669 * with the socket lock held, and splice_to_pipe() will
1670 * grab the pipe inode lock. For sendfile() emulation,
1671 * we call into ->sendpage() with the i_mutex lock held
1672 * and networking will grab the socket lock.
1675 ret
= splice_to_pipe(pipe
, &spd
);
1679 splice_shrink_spd(pipe
, &spd
);
1684 * skb_store_bits - store bits from kernel buffer to skb
1685 * @skb: destination buffer
1686 * @offset: offset in destination
1687 * @from: source buffer
1688 * @len: number of bytes to copy
1690 * Copy the specified number of bytes from the source buffer to the
1691 * destination skb. This function handles all the messy bits of
1692 * traversing fragment lists and such.
1695 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1697 int start
= skb_headlen(skb
);
1698 struct sk_buff
*frag_iter
;
1701 if (offset
> (int)skb
->len
- len
)
1704 if ((copy
= start
- offset
) > 0) {
1707 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1708 if ((len
-= copy
) == 0)
1714 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1715 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1718 WARN_ON(start
> offset
+ len
);
1720 end
= start
+ frag
->size
;
1721 if ((copy
= end
- offset
) > 0) {
1727 vaddr
= kmap_skb_frag(frag
);
1728 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1730 kunmap_skb_frag(vaddr
);
1732 if ((len
-= copy
) == 0)
1740 skb_walk_frags(skb
, frag_iter
) {
1743 WARN_ON(start
> offset
+ len
);
1745 end
= start
+ frag_iter
->len
;
1746 if ((copy
= end
- offset
) > 0) {
1749 if (skb_store_bits(frag_iter
, offset
- start
,
1752 if ((len
-= copy
) == 0)
1765 EXPORT_SYMBOL(skb_store_bits
);
1767 /* Checksum skb data. */
1769 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1770 int len
, __wsum csum
)
1772 int start
= skb_headlen(skb
);
1773 int i
, copy
= start
- offset
;
1774 struct sk_buff
*frag_iter
;
1777 /* Checksum header. */
1781 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1782 if ((len
-= copy
) == 0)
1788 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1791 WARN_ON(start
> offset
+ len
);
1793 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1794 if ((copy
= end
- offset
) > 0) {
1797 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1801 vaddr
= kmap_skb_frag(frag
);
1802 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1803 offset
- start
, copy
, 0);
1804 kunmap_skb_frag(vaddr
);
1805 csum
= csum_block_add(csum
, csum2
, pos
);
1814 skb_walk_frags(skb
, frag_iter
) {
1817 WARN_ON(start
> offset
+ len
);
1819 end
= start
+ frag_iter
->len
;
1820 if ((copy
= end
- offset
) > 0) {
1824 csum2
= skb_checksum(frag_iter
, offset
- start
,
1826 csum
= csum_block_add(csum
, csum2
, pos
);
1827 if ((len
-= copy
) == 0)
1838 EXPORT_SYMBOL(skb_checksum
);
1840 /* Both of above in one bottle. */
1842 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1843 u8
*to
, int len
, __wsum csum
)
1845 int start
= skb_headlen(skb
);
1846 int i
, copy
= start
- offset
;
1847 struct sk_buff
*frag_iter
;
1854 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1856 if ((len
-= copy
) == 0)
1863 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1866 WARN_ON(start
> offset
+ len
);
1868 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1869 if ((copy
= end
- offset
) > 0) {
1872 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1876 vaddr
= kmap_skb_frag(frag
);
1877 csum2
= csum_partial_copy_nocheck(vaddr
+
1881 kunmap_skb_frag(vaddr
);
1882 csum
= csum_block_add(csum
, csum2
, pos
);
1892 skb_walk_frags(skb
, frag_iter
) {
1896 WARN_ON(start
> offset
+ len
);
1898 end
= start
+ frag_iter
->len
;
1899 if ((copy
= end
- offset
) > 0) {
1902 csum2
= skb_copy_and_csum_bits(frag_iter
,
1905 csum
= csum_block_add(csum
, csum2
, pos
);
1906 if ((len
-= copy
) == 0)
1917 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1919 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1924 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1925 csstart
= skb_checksum_start_offset(skb
);
1927 csstart
= skb_headlen(skb
);
1929 BUG_ON(csstart
> skb_headlen(skb
));
1931 skb_copy_from_linear_data(skb
, to
, csstart
);
1934 if (csstart
!= skb
->len
)
1935 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1936 skb
->len
- csstart
, 0);
1938 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1939 long csstuff
= csstart
+ skb
->csum_offset
;
1941 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1944 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1947 * skb_dequeue - remove from the head of the queue
1948 * @list: list to dequeue from
1950 * Remove the head of the list. The list lock is taken so the function
1951 * may be used safely with other locking list functions. The head item is
1952 * returned or %NULL if the list is empty.
1955 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1957 unsigned long flags
;
1958 struct sk_buff
*result
;
1960 spin_lock_irqsave(&list
->lock
, flags
);
1961 result
= __skb_dequeue(list
);
1962 spin_unlock_irqrestore(&list
->lock
, flags
);
1965 EXPORT_SYMBOL(skb_dequeue
);
1968 * skb_dequeue_tail - remove from the tail of the queue
1969 * @list: list to dequeue from
1971 * Remove the tail of the list. The list lock is taken so the function
1972 * may be used safely with other locking list functions. The tail item is
1973 * returned or %NULL if the list is empty.
1975 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1977 unsigned long flags
;
1978 struct sk_buff
*result
;
1980 spin_lock_irqsave(&list
->lock
, flags
);
1981 result
= __skb_dequeue_tail(list
);
1982 spin_unlock_irqrestore(&list
->lock
, flags
);
1985 EXPORT_SYMBOL(skb_dequeue_tail
);
1988 * skb_queue_purge - empty a list
1989 * @list: list to empty
1991 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1992 * the list and one reference dropped. This function takes the list
1993 * lock and is atomic with respect to other list locking functions.
1995 void skb_queue_purge(struct sk_buff_head
*list
)
1997 struct sk_buff
*skb
;
1998 while ((skb
= skb_dequeue(list
)) != NULL
)
2001 EXPORT_SYMBOL(skb_queue_purge
);
2004 * skb_queue_head - queue a buffer at the list head
2005 * @list: list to use
2006 * @newsk: buffer to queue
2008 * Queue a buffer at the start of the list. This function takes the
2009 * list lock and can be used safely with other locking &sk_buff functions
2012 * A buffer cannot be placed on two lists at the same time.
2014 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2016 unsigned long flags
;
2018 spin_lock_irqsave(&list
->lock
, flags
);
2019 __skb_queue_head(list
, newsk
);
2020 spin_unlock_irqrestore(&list
->lock
, flags
);
2022 EXPORT_SYMBOL(skb_queue_head
);
2025 * skb_queue_tail - queue a buffer at the list tail
2026 * @list: list to use
2027 * @newsk: buffer to queue
2029 * Queue a buffer at the tail of the list. This function takes the
2030 * list lock and can be used safely with other locking &sk_buff functions
2033 * A buffer cannot be placed on two lists at the same time.
2035 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2037 unsigned long flags
;
2039 spin_lock_irqsave(&list
->lock
, flags
);
2040 __skb_queue_tail(list
, newsk
);
2041 spin_unlock_irqrestore(&list
->lock
, flags
);
2043 EXPORT_SYMBOL(skb_queue_tail
);
2046 * skb_unlink - remove a buffer from a list
2047 * @skb: buffer to remove
2048 * @list: list to use
2050 * Remove a packet from a list. The list locks are taken and this
2051 * function is atomic with respect to other list locked calls
2053 * You must know what list the SKB is on.
2055 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2057 unsigned long flags
;
2059 spin_lock_irqsave(&list
->lock
, flags
);
2060 __skb_unlink(skb
, list
);
2061 spin_unlock_irqrestore(&list
->lock
, flags
);
2063 EXPORT_SYMBOL(skb_unlink
);
2066 * skb_append - append a buffer
2067 * @old: buffer to insert after
2068 * @newsk: buffer to insert
2069 * @list: list to use
2071 * Place a packet after a given packet in a list. The list locks are taken
2072 * and this function is atomic with respect to other list locked calls.
2073 * A buffer cannot be placed on two lists at the same time.
2075 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2077 unsigned long flags
;
2079 spin_lock_irqsave(&list
->lock
, flags
);
2080 __skb_queue_after(list
, old
, newsk
);
2081 spin_unlock_irqrestore(&list
->lock
, flags
);
2083 EXPORT_SYMBOL(skb_append
);
2086 * skb_insert - insert a buffer
2087 * @old: buffer to insert before
2088 * @newsk: buffer to insert
2089 * @list: list to use
2091 * Place a packet before a given packet in a list. The list locks are
2092 * taken and this function is atomic with respect to other list locked
2095 * A buffer cannot be placed on two lists at the same time.
2097 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2099 unsigned long flags
;
2101 spin_lock_irqsave(&list
->lock
, flags
);
2102 __skb_insert(newsk
, old
->prev
, old
, list
);
2103 spin_unlock_irqrestore(&list
->lock
, flags
);
2105 EXPORT_SYMBOL(skb_insert
);
2107 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2108 struct sk_buff
* skb1
,
2109 const u32 len
, const int pos
)
2113 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2115 /* And move data appendix as is. */
2116 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2117 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2119 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2120 skb_shinfo(skb
)->nr_frags
= 0;
2121 skb1
->data_len
= skb
->data_len
;
2122 skb1
->len
+= skb1
->data_len
;
2125 skb_set_tail_pointer(skb
, len
);
2128 static inline void skb_split_no_header(struct sk_buff
*skb
,
2129 struct sk_buff
* skb1
,
2130 const u32 len
, int pos
)
2133 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2135 skb_shinfo(skb
)->nr_frags
= 0;
2136 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2138 skb
->data_len
= len
- pos
;
2140 for (i
= 0; i
< nfrags
; i
++) {
2141 int size
= skb_shinfo(skb
)->frags
[i
].size
;
2143 if (pos
+ size
> len
) {
2144 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2148 * We have two variants in this case:
2149 * 1. Move all the frag to the second
2150 * part, if it is possible. F.e.
2151 * this approach is mandatory for TUX,
2152 * where splitting is expensive.
2153 * 2. Split is accurately. We make this.
2155 get_page(skb_shinfo(skb
)->frags
[i
].page
);
2156 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2157 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
2158 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
2159 skb_shinfo(skb
)->nr_frags
++;
2163 skb_shinfo(skb
)->nr_frags
++;
2166 skb_shinfo(skb1
)->nr_frags
= k
;
2170 * skb_split - Split fragmented skb to two parts at length len.
2171 * @skb: the buffer to split
2172 * @skb1: the buffer to receive the second part
2173 * @len: new length for skb
2175 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2177 int pos
= skb_headlen(skb
);
2179 if (len
< pos
) /* Split line is inside header. */
2180 skb_split_inside_header(skb
, skb1
, len
, pos
);
2181 else /* Second chunk has no header, nothing to copy. */
2182 skb_split_no_header(skb
, skb1
, len
, pos
);
2184 EXPORT_SYMBOL(skb_split
);
2186 /* Shifting from/to a cloned skb is a no-go.
2188 * Caller cannot keep skb_shinfo related pointers past calling here!
2190 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2192 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2196 * skb_shift - Shifts paged data partially from skb to another
2197 * @tgt: buffer into which tail data gets added
2198 * @skb: buffer from which the paged data comes from
2199 * @shiftlen: shift up to this many bytes
2201 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2202 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2203 * It's up to caller to free skb if everything was shifted.
2205 * If @tgt runs out of frags, the whole operation is aborted.
2207 * Skb cannot include anything else but paged data while tgt is allowed
2208 * to have non-paged data as well.
2210 * TODO: full sized shift could be optimized but that would need
2211 * specialized skb free'er to handle frags without up-to-date nr_frags.
2213 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2215 int from
, to
, merge
, todo
;
2216 struct skb_frag_struct
*fragfrom
, *fragto
;
2218 BUG_ON(shiftlen
> skb
->len
);
2219 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2223 to
= skb_shinfo(tgt
)->nr_frags
;
2224 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2226 /* Actual merge is delayed until the point when we know we can
2227 * commit all, so that we don't have to undo partial changes
2230 !skb_can_coalesce(tgt
, to
, fragfrom
->page
, fragfrom
->page_offset
)) {
2235 todo
-= fragfrom
->size
;
2237 if (skb_prepare_for_shift(skb
) ||
2238 skb_prepare_for_shift(tgt
))
2241 /* All previous frag pointers might be stale! */
2242 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2243 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2245 fragto
->size
+= shiftlen
;
2246 fragfrom
->size
-= shiftlen
;
2247 fragfrom
->page_offset
+= shiftlen
;
2255 /* Skip full, not-fitting skb to avoid expensive operations */
2256 if ((shiftlen
== skb
->len
) &&
2257 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2260 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2263 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2264 if (to
== MAX_SKB_FRAGS
)
2267 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2268 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2270 if (todo
>= fragfrom
->size
) {
2271 *fragto
= *fragfrom
;
2272 todo
-= fragfrom
->size
;
2277 get_page(fragfrom
->page
);
2278 fragto
->page
= fragfrom
->page
;
2279 fragto
->page_offset
= fragfrom
->page_offset
;
2280 fragto
->size
= todo
;
2282 fragfrom
->page_offset
+= todo
;
2283 fragfrom
->size
-= todo
;
2291 /* Ready to "commit" this state change to tgt */
2292 skb_shinfo(tgt
)->nr_frags
= to
;
2295 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2296 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2298 fragto
->size
+= fragfrom
->size
;
2299 put_page(fragfrom
->page
);
2302 /* Reposition in the original skb */
2304 while (from
< skb_shinfo(skb
)->nr_frags
)
2305 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2306 skb_shinfo(skb
)->nr_frags
= to
;
2308 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2311 /* Most likely the tgt won't ever need its checksum anymore, skb on
2312 * the other hand might need it if it needs to be resent
2314 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2315 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2317 /* Yak, is it really working this way? Some helper please? */
2318 skb
->len
-= shiftlen
;
2319 skb
->data_len
-= shiftlen
;
2320 skb
->truesize
-= shiftlen
;
2321 tgt
->len
+= shiftlen
;
2322 tgt
->data_len
+= shiftlen
;
2323 tgt
->truesize
+= shiftlen
;
2329 * skb_prepare_seq_read - Prepare a sequential read of skb data
2330 * @skb: the buffer to read
2331 * @from: lower offset of data to be read
2332 * @to: upper offset of data to be read
2333 * @st: state variable
2335 * Initializes the specified state variable. Must be called before
2336 * invoking skb_seq_read() for the first time.
2338 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2339 unsigned int to
, struct skb_seq_state
*st
)
2341 st
->lower_offset
= from
;
2342 st
->upper_offset
= to
;
2343 st
->root_skb
= st
->cur_skb
= skb
;
2344 st
->frag_idx
= st
->stepped_offset
= 0;
2345 st
->frag_data
= NULL
;
2347 EXPORT_SYMBOL(skb_prepare_seq_read
);
2350 * skb_seq_read - Sequentially read skb data
2351 * @consumed: number of bytes consumed by the caller so far
2352 * @data: destination pointer for data to be returned
2353 * @st: state variable
2355 * Reads a block of skb data at &consumed relative to the
2356 * lower offset specified to skb_prepare_seq_read(). Assigns
2357 * the head of the data block to &data and returns the length
2358 * of the block or 0 if the end of the skb data or the upper
2359 * offset has been reached.
2361 * The caller is not required to consume all of the data
2362 * returned, i.e. &consumed is typically set to the number
2363 * of bytes already consumed and the next call to
2364 * skb_seq_read() will return the remaining part of the block.
2366 * Note 1: The size of each block of data returned can be arbitrary,
2367 * this limitation is the cost for zerocopy seqeuental
2368 * reads of potentially non linear data.
2370 * Note 2: Fragment lists within fragments are not implemented
2371 * at the moment, state->root_skb could be replaced with
2372 * a stack for this purpose.
2374 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2375 struct skb_seq_state
*st
)
2377 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2380 if (unlikely(abs_offset
>= st
->upper_offset
))
2384 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2386 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2387 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2388 return block_limit
- abs_offset
;
2391 if (st
->frag_idx
== 0 && !st
->frag_data
)
2392 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2394 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2395 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2396 block_limit
= frag
->size
+ st
->stepped_offset
;
2398 if (abs_offset
< block_limit
) {
2400 st
->frag_data
= kmap_skb_frag(frag
);
2402 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2403 (abs_offset
- st
->stepped_offset
);
2405 return block_limit
- abs_offset
;
2408 if (st
->frag_data
) {
2409 kunmap_skb_frag(st
->frag_data
);
2410 st
->frag_data
= NULL
;
2414 st
->stepped_offset
+= frag
->size
;
2417 if (st
->frag_data
) {
2418 kunmap_skb_frag(st
->frag_data
);
2419 st
->frag_data
= NULL
;
2422 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2423 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2426 } else if (st
->cur_skb
->next
) {
2427 st
->cur_skb
= st
->cur_skb
->next
;
2434 EXPORT_SYMBOL(skb_seq_read
);
2437 * skb_abort_seq_read - Abort a sequential read of skb data
2438 * @st: state variable
2440 * Must be called if skb_seq_read() was not called until it
2443 void skb_abort_seq_read(struct skb_seq_state
*st
)
2446 kunmap_skb_frag(st
->frag_data
);
2448 EXPORT_SYMBOL(skb_abort_seq_read
);
2450 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2452 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2453 struct ts_config
*conf
,
2454 struct ts_state
*state
)
2456 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2459 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2461 skb_abort_seq_read(TS_SKB_CB(state
));
2465 * skb_find_text - Find a text pattern in skb data
2466 * @skb: the buffer to look in
2467 * @from: search offset
2469 * @config: textsearch configuration
2470 * @state: uninitialized textsearch state variable
2472 * Finds a pattern in the skb data according to the specified
2473 * textsearch configuration. Use textsearch_next() to retrieve
2474 * subsequent occurrences of the pattern. Returns the offset
2475 * to the first occurrence or UINT_MAX if no match was found.
2477 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2478 unsigned int to
, struct ts_config
*config
,
2479 struct ts_state
*state
)
2483 config
->get_next_block
= skb_ts_get_next_block
;
2484 config
->finish
= skb_ts_finish
;
2486 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2488 ret
= textsearch_find(config
, state
);
2489 return (ret
<= to
- from
? ret
: UINT_MAX
);
2491 EXPORT_SYMBOL(skb_find_text
);
2494 * skb_append_datato_frags: - append the user data to a skb
2495 * @sk: sock structure
2496 * @skb: skb structure to be appened with user data.
2497 * @getfrag: call back function to be used for getting the user data
2498 * @from: pointer to user message iov
2499 * @length: length of the iov message
2501 * Description: This procedure append the user data in the fragment part
2502 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2504 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2505 int (*getfrag
)(void *from
, char *to
, int offset
,
2506 int len
, int odd
, struct sk_buff
*skb
),
2507 void *from
, int length
)
2510 skb_frag_t
*frag
= NULL
;
2511 struct page
*page
= NULL
;
2517 /* Return error if we don't have space for new frag */
2518 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2519 if (frg_cnt
>= MAX_SKB_FRAGS
)
2522 /* allocate a new page for next frag */
2523 page
= alloc_pages(sk
->sk_allocation
, 0);
2525 /* If alloc_page fails just return failure and caller will
2526 * free previous allocated pages by doing kfree_skb()
2531 /* initialize the next frag */
2532 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2533 skb
->truesize
+= PAGE_SIZE
;
2534 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2536 /* get the new initialized frag */
2537 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2538 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2540 /* copy the user data to page */
2541 left
= PAGE_SIZE
- frag
->page_offset
;
2542 copy
= (length
> left
)? left
: length
;
2544 ret
= getfrag(from
, (page_address(frag
->page
) +
2545 frag
->page_offset
+ frag
->size
),
2546 offset
, copy
, 0, skb
);
2550 /* copy was successful so update the size parameters */
2553 skb
->data_len
+= copy
;
2557 } while (length
> 0);
2561 EXPORT_SYMBOL(skb_append_datato_frags
);
2564 * skb_pull_rcsum - pull skb and update receive checksum
2565 * @skb: buffer to update
2566 * @len: length of data pulled
2568 * This function performs an skb_pull on the packet and updates
2569 * the CHECKSUM_COMPLETE checksum. It should be used on
2570 * receive path processing instead of skb_pull unless you know
2571 * that the checksum difference is zero (e.g., a valid IP header)
2572 * or you are setting ip_summed to CHECKSUM_NONE.
2574 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2576 BUG_ON(len
> skb
->len
);
2578 BUG_ON(skb
->len
< skb
->data_len
);
2579 skb_postpull_rcsum(skb
, skb
->data
, len
);
2580 return skb
->data
+= len
;
2582 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2585 * skb_segment - Perform protocol segmentation on skb.
2586 * @skb: buffer to segment
2587 * @features: features for the output path (see dev->features)
2589 * This function performs segmentation on the given skb. It returns
2590 * a pointer to the first in a list of new skbs for the segments.
2591 * In case of error it returns ERR_PTR(err).
2593 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2595 struct sk_buff
*segs
= NULL
;
2596 struct sk_buff
*tail
= NULL
;
2597 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2598 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2599 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2600 unsigned int offset
= doffset
;
2601 unsigned int headroom
;
2603 int sg
= !!(features
& NETIF_F_SG
);
2604 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2609 __skb_push(skb
, doffset
);
2610 headroom
= skb_headroom(skb
);
2611 pos
= skb_headlen(skb
);
2614 struct sk_buff
*nskb
;
2619 len
= skb
->len
- offset
;
2623 hsize
= skb_headlen(skb
) - offset
;
2626 if (hsize
> len
|| !sg
)
2629 if (!hsize
&& i
>= nfrags
) {
2630 BUG_ON(fskb
->len
!= len
);
2633 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2636 if (unlikely(!nskb
))
2639 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2640 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2645 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2647 skb_release_head_state(nskb
);
2648 __skb_push(nskb
, doffset
);
2650 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2653 if (unlikely(!nskb
))
2656 skb_reserve(nskb
, headroom
);
2657 __skb_put(nskb
, doffset
);
2666 __copy_skb_header(nskb
, skb
);
2667 nskb
->mac_len
= skb
->mac_len
;
2669 /* nskb and skb might have different headroom */
2670 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2671 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2673 skb_reset_mac_header(nskb
);
2674 skb_set_network_header(nskb
, skb
->mac_len
);
2675 nskb
->transport_header
= (nskb
->network_header
+
2676 skb_network_header_len(skb
));
2677 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2679 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2683 nskb
->ip_summed
= CHECKSUM_NONE
;
2684 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2690 frag
= skb_shinfo(nskb
)->frags
;
2692 skb_copy_from_linear_data_offset(skb
, offset
,
2693 skb_put(nskb
, hsize
), hsize
);
2695 while (pos
< offset
+ len
&& i
< nfrags
) {
2696 *frag
= skb_shinfo(skb
)->frags
[i
];
2697 get_page(frag
->page
);
2701 frag
->page_offset
+= offset
- pos
;
2702 frag
->size
-= offset
- pos
;
2705 skb_shinfo(nskb
)->nr_frags
++;
2707 if (pos
+ size
<= offset
+ len
) {
2711 frag
->size
-= pos
+ size
- (offset
+ len
);
2718 if (pos
< offset
+ len
) {
2719 struct sk_buff
*fskb2
= fskb
;
2721 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2727 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2733 SKB_FRAG_ASSERT(nskb
);
2734 skb_shinfo(nskb
)->frag_list
= fskb2
;
2738 nskb
->data_len
= len
- hsize
;
2739 nskb
->len
+= nskb
->data_len
;
2740 nskb
->truesize
+= nskb
->data_len
;
2741 } while ((offset
+= len
) < skb
->len
);
2746 while ((skb
= segs
)) {
2750 return ERR_PTR(err
);
2752 EXPORT_SYMBOL_GPL(skb_segment
);
2754 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2756 struct sk_buff
*p
= *head
;
2757 struct sk_buff
*nskb
;
2758 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2759 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2760 unsigned int headroom
;
2761 unsigned int len
= skb_gro_len(skb
);
2762 unsigned int offset
= skb_gro_offset(skb
);
2763 unsigned int headlen
= skb_headlen(skb
);
2765 if (p
->len
+ len
>= 65536)
2768 if (pinfo
->frag_list
)
2770 else if (headlen
<= offset
) {
2773 int i
= skbinfo
->nr_frags
;
2774 int nr_frags
= pinfo
->nr_frags
+ i
;
2778 if (nr_frags
> MAX_SKB_FRAGS
)
2781 pinfo
->nr_frags
= nr_frags
;
2782 skbinfo
->nr_frags
= 0;
2784 frag
= pinfo
->frags
+ nr_frags
;
2785 frag2
= skbinfo
->frags
+ i
;
2790 frag
->page_offset
+= offset
;
2791 frag
->size
-= offset
;
2793 skb
->truesize
-= skb
->data_len
;
2794 skb
->len
-= skb
->data_len
;
2797 NAPI_GRO_CB(skb
)->free
= 1;
2799 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2802 headroom
= skb_headroom(p
);
2803 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2804 if (unlikely(!nskb
))
2807 __copy_skb_header(nskb
, p
);
2808 nskb
->mac_len
= p
->mac_len
;
2810 skb_reserve(nskb
, headroom
);
2811 __skb_put(nskb
, skb_gro_offset(p
));
2813 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2814 skb_set_network_header(nskb
, skb_network_offset(p
));
2815 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2817 __skb_pull(p
, skb_gro_offset(p
));
2818 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2819 p
->data
- skb_mac_header(p
));
2821 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2822 skb_shinfo(nskb
)->frag_list
= p
;
2823 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2824 pinfo
->gso_size
= 0;
2825 skb_header_release(p
);
2828 nskb
->data_len
+= p
->len
;
2829 nskb
->truesize
+= p
->len
;
2830 nskb
->len
+= p
->len
;
2833 nskb
->next
= p
->next
;
2839 if (offset
> headlen
) {
2840 unsigned int eat
= offset
- headlen
;
2842 skbinfo
->frags
[0].page_offset
+= eat
;
2843 skbinfo
->frags
[0].size
-= eat
;
2844 skb
->data_len
-= eat
;
2849 __skb_pull(skb
, offset
);
2851 p
->prev
->next
= skb
;
2853 skb_header_release(skb
);
2856 NAPI_GRO_CB(p
)->count
++;
2861 NAPI_GRO_CB(skb
)->same_flow
= 1;
2864 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2866 void __init
skb_init(void)
2868 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2869 sizeof(struct sk_buff
),
2871 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2873 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2874 (2*sizeof(struct sk_buff
)) +
2877 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2882 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2883 * @skb: Socket buffer containing the buffers to be mapped
2884 * @sg: The scatter-gather list to map into
2885 * @offset: The offset into the buffer's contents to start mapping
2886 * @len: Length of buffer space to be mapped
2888 * Fill the specified scatter-gather list with mappings/pointers into a
2889 * region of the buffer space attached to a socket buffer.
2892 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2894 int start
= skb_headlen(skb
);
2895 int i
, copy
= start
- offset
;
2896 struct sk_buff
*frag_iter
;
2902 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2904 if ((len
-= copy
) == 0)
2909 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2912 WARN_ON(start
> offset
+ len
);
2914 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2915 if ((copy
= end
- offset
) > 0) {
2916 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2920 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2921 frag
->page_offset
+offset
-start
);
2930 skb_walk_frags(skb
, frag_iter
) {
2933 WARN_ON(start
> offset
+ len
);
2935 end
= start
+ frag_iter
->len
;
2936 if ((copy
= end
- offset
) > 0) {
2939 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2941 if ((len
-= copy
) == 0)
2951 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2953 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2955 sg_mark_end(&sg
[nsg
- 1]);
2959 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2962 * skb_cow_data - Check that a socket buffer's data buffers are writable
2963 * @skb: The socket buffer to check.
2964 * @tailbits: Amount of trailing space to be added
2965 * @trailer: Returned pointer to the skb where the @tailbits space begins
2967 * Make sure that the data buffers attached to a socket buffer are
2968 * writable. If they are not, private copies are made of the data buffers
2969 * and the socket buffer is set to use these instead.
2971 * If @tailbits is given, make sure that there is space to write @tailbits
2972 * bytes of data beyond current end of socket buffer. @trailer will be
2973 * set to point to the skb in which this space begins.
2975 * The number of scatterlist elements required to completely map the
2976 * COW'd and extended socket buffer will be returned.
2978 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2982 struct sk_buff
*skb1
, **skb_p
;
2984 /* If skb is cloned or its head is paged, reallocate
2985 * head pulling out all the pages (pages are considered not writable
2986 * at the moment even if they are anonymous).
2988 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2989 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2992 /* Easy case. Most of packets will go this way. */
2993 if (!skb_has_frag_list(skb
)) {
2994 /* A little of trouble, not enough of space for trailer.
2995 * This should not happen, when stack is tuned to generate
2996 * good frames. OK, on miss we reallocate and reserve even more
2997 * space, 128 bytes is fair. */
2999 if (skb_tailroom(skb
) < tailbits
&&
3000 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3008 /* Misery. We are in troubles, going to mincer fragments... */
3011 skb_p
= &skb_shinfo(skb
)->frag_list
;
3014 while ((skb1
= *skb_p
) != NULL
) {
3017 /* The fragment is partially pulled by someone,
3018 * this can happen on input. Copy it and everything
3021 if (skb_shared(skb1
))
3024 /* If the skb is the last, worry about trailer. */
3026 if (skb1
->next
== NULL
&& tailbits
) {
3027 if (skb_shinfo(skb1
)->nr_frags
||
3028 skb_has_frag_list(skb1
) ||
3029 skb_tailroom(skb1
) < tailbits
)
3030 ntail
= tailbits
+ 128;
3036 skb_shinfo(skb1
)->nr_frags
||
3037 skb_has_frag_list(skb1
)) {
3038 struct sk_buff
*skb2
;
3040 /* Fuck, we are miserable poor guys... */
3042 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3044 skb2
= skb_copy_expand(skb1
,
3048 if (unlikely(skb2
== NULL
))
3052 skb_set_owner_w(skb2
, skb1
->sk
);
3054 /* Looking around. Are we still alive?
3055 * OK, link new skb, drop old one */
3057 skb2
->next
= skb1
->next
;
3064 skb_p
= &skb1
->next
;
3069 EXPORT_SYMBOL_GPL(skb_cow_data
);
3071 static void sock_rmem_free(struct sk_buff
*skb
)
3073 struct sock
*sk
= skb
->sk
;
3075 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3079 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3081 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3083 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3084 (unsigned)sk
->sk_rcvbuf
)
3089 skb
->destructor
= sock_rmem_free
;
3090 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3092 /* before exiting rcu section, make sure dst is refcounted */
3095 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3096 if (!sock_flag(sk
, SOCK_DEAD
))
3097 sk
->sk_data_ready(sk
, skb
->len
);
3100 EXPORT_SYMBOL(sock_queue_err_skb
);
3102 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3103 struct skb_shared_hwtstamps
*hwtstamps
)
3105 struct sock
*sk
= orig_skb
->sk
;
3106 struct sock_exterr_skb
*serr
;
3107 struct sk_buff
*skb
;
3113 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3118 *skb_hwtstamps(skb
) =
3122 * no hardware time stamps available,
3123 * so keep the shared tx_flags and only
3124 * store software time stamp
3126 skb
->tstamp
= ktime_get_real();
3129 serr
= SKB_EXT_ERR(skb
);
3130 memset(serr
, 0, sizeof(*serr
));
3131 serr
->ee
.ee_errno
= ENOMSG
;
3132 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3134 err
= sock_queue_err_skb(sk
, skb
);
3139 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3143 * skb_partial_csum_set - set up and verify partial csum values for packet
3144 * @skb: the skb to set
3145 * @start: the number of bytes after skb->data to start checksumming.
3146 * @off: the offset from start to place the checksum.
3148 * For untrusted partially-checksummed packets, we need to make sure the values
3149 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3151 * This function checks and sets those values and skb->ip_summed: if this
3152 * returns false you should drop the packet.
3154 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3156 if (unlikely(start
> skb_headlen(skb
)) ||
3157 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3158 if (net_ratelimit())
3160 "bad partial csum: csum=%u/%u len=%u\n",
3161 start
, off
, skb_headlen(skb
));
3164 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3165 skb
->csum_start
= skb_headroom(skb
) + start
;
3166 skb
->csum_offset
= off
;
3169 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3171 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3173 if (net_ratelimit())
3174 pr_warning("%s: received packets cannot be forwarded"
3175 " while LRO is enabled\n", skb
->dev
->name
);
3177 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);