Linux 3.3-rc1
[zen-stable.git] / drivers / block / loop.c
blobf00257782fccd34af45fc233ecb26255828e7a0a
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
80 #include <asm/uaccess.h>
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
85 static int max_part;
86 static int part_shift;
89 * Transfer functions
91 static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
104 kunmap_atomic(loop_buf, KM_USER1);
105 kunmap_atomic(raw_buf, KM_USER0);
106 cond_resched();
107 return 0;
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
133 kunmap_atomic(loop_buf, KM_USER1);
134 kunmap_atomic(raw_buf, KM_USER0);
135 cond_resched();
136 return 0;
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
146 static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
151 static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
165 loff_t size, loopsize;
167 /* Compute loopsize in bytes */
168 size = i_size_read(file->f_mapping->host);
169 loopsize = size - offset;
170 /* offset is beyond i_size, wierd but possible */
171 if (loopsize < 0)
172 return 0;
174 if (sizelimit > 0 && sizelimit < loopsize)
175 loopsize = sizelimit;
177 * Unfortunately, if we want to do I/O on the device,
178 * the number of 512-byte sectors has to fit into a sector_t.
180 return loopsize >> 9;
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 sector_t x = (sector_t)size;
194 if (unlikely((loff_t)x != size))
195 return -EFBIG;
196 if (lo->lo_offset != offset)
197 lo->lo_offset = offset;
198 if (lo->lo_sizelimit != sizelimit)
199 lo->lo_sizelimit = sizelimit;
200 set_capacity(lo->lo_disk, x);
201 return 0;
204 static inline int
205 lo_do_transfer(struct loop_device *lo, int cmd,
206 struct page *rpage, unsigned roffs,
207 struct page *lpage, unsigned loffs,
208 int size, sector_t rblock)
210 if (unlikely(!lo->transfer))
211 return 0;
213 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
217 * __do_lo_send_write - helper for writing data to a loop device
219 * This helper just factors out common code between do_lo_send_direct_write()
220 * and do_lo_send_write().
222 static int __do_lo_send_write(struct file *file,
223 u8 *buf, const int len, loff_t pos)
225 ssize_t bw;
226 mm_segment_t old_fs = get_fs();
228 set_fs(get_ds());
229 bw = file->f_op->write(file, buf, len, &pos);
230 set_fs(old_fs);
231 if (likely(bw == len))
232 return 0;
233 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234 (unsigned long long)pos, len);
235 if (bw >= 0)
236 bw = -EIO;
237 return bw;
241 * do_lo_send_direct_write - helper for writing data to a loop device
243 * This is the fast, non-transforming version that does not need double
244 * buffering.
246 static int do_lo_send_direct_write(struct loop_device *lo,
247 struct bio_vec *bvec, loff_t pos, struct page *page)
249 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250 kmap(bvec->bv_page) + bvec->bv_offset,
251 bvec->bv_len, pos);
252 kunmap(bvec->bv_page);
253 cond_resched();
254 return bw;
258 * do_lo_send_write - helper for writing data to a loop device
260 * This is the slow, transforming version that needs to double buffer the
261 * data as it cannot do the transformations in place without having direct
262 * access to the destination pages of the backing file.
264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265 loff_t pos, struct page *page)
267 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268 bvec->bv_offset, bvec->bv_len, pos >> 9);
269 if (likely(!ret))
270 return __do_lo_send_write(lo->lo_backing_file,
271 page_address(page), bvec->bv_len,
272 pos);
273 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
275 if (ret > 0)
276 ret = -EIO;
277 return ret;
280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
282 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283 struct page *page);
284 struct bio_vec *bvec;
285 struct page *page = NULL;
286 int i, ret = 0;
288 if (lo->transfer != transfer_none) {
289 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
290 if (unlikely(!page))
291 goto fail;
292 kmap(page);
293 do_lo_send = do_lo_send_write;
294 } else {
295 do_lo_send = do_lo_send_direct_write;
298 bio_for_each_segment(bvec, bio, i) {
299 ret = do_lo_send(lo, bvec, pos, page);
300 if (ret < 0)
301 break;
302 pos += bvec->bv_len;
304 if (page) {
305 kunmap(page);
306 __free_page(page);
308 out:
309 return ret;
310 fail:
311 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312 ret = -ENOMEM;
313 goto out;
316 struct lo_read_data {
317 struct loop_device *lo;
318 struct page *page;
319 unsigned offset;
320 int bsize;
323 static int
324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325 struct splice_desc *sd)
327 struct lo_read_data *p = sd->u.data;
328 struct loop_device *lo = p->lo;
329 struct page *page = buf->page;
330 sector_t IV;
331 int size;
333 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334 (buf->offset >> 9);
335 size = sd->len;
336 if (size > p->bsize)
337 size = p->bsize;
339 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340 printk(KERN_ERR "loop: transfer error block %ld\n",
341 page->index);
342 size = -EINVAL;
345 flush_dcache_page(p->page);
347 if (size > 0)
348 p->offset += size;
350 return size;
353 static int
354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
356 return __splice_from_pipe(pipe, sd, lo_splice_actor);
359 static int
360 do_lo_receive(struct loop_device *lo,
361 struct bio_vec *bvec, int bsize, loff_t pos)
363 struct lo_read_data cookie;
364 struct splice_desc sd;
365 struct file *file;
366 long retval;
368 cookie.lo = lo;
369 cookie.page = bvec->bv_page;
370 cookie.offset = bvec->bv_offset;
371 cookie.bsize = bsize;
373 sd.len = 0;
374 sd.total_len = bvec->bv_len;
375 sd.flags = 0;
376 sd.pos = pos;
377 sd.u.data = &cookie;
379 file = lo->lo_backing_file;
380 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
382 if (retval < 0)
383 return retval;
384 if (retval != bvec->bv_len)
385 return -EIO;
386 return 0;
389 static int
390 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
392 struct bio_vec *bvec;
393 int i, ret = 0;
395 bio_for_each_segment(bvec, bio, i) {
396 ret = do_lo_receive(lo, bvec, bsize, pos);
397 if (ret < 0)
398 break;
399 pos += bvec->bv_len;
401 return ret;
404 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
406 loff_t pos;
407 int ret;
409 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
411 if (bio_rw(bio) == WRITE) {
412 struct file *file = lo->lo_backing_file;
414 if (bio->bi_rw & REQ_FLUSH) {
415 ret = vfs_fsync(file, 0);
416 if (unlikely(ret && ret != -EINVAL)) {
417 ret = -EIO;
418 goto out;
423 * We use punch hole to reclaim the free space used by the
424 * image a.k.a. discard. However we do not support discard if
425 * encryption is enabled, because it may give an attacker
426 * useful information.
428 if (bio->bi_rw & REQ_DISCARD) {
429 struct file *file = lo->lo_backing_file;
430 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
432 if ((!file->f_op->fallocate) ||
433 lo->lo_encrypt_key_size) {
434 ret = -EOPNOTSUPP;
435 goto out;
437 ret = file->f_op->fallocate(file, mode, pos,
438 bio->bi_size);
439 if (unlikely(ret && ret != -EINVAL &&
440 ret != -EOPNOTSUPP))
441 ret = -EIO;
442 goto out;
445 ret = lo_send(lo, bio, pos);
447 if ((bio->bi_rw & REQ_FUA) && !ret) {
448 ret = vfs_fsync(file, 0);
449 if (unlikely(ret && ret != -EINVAL))
450 ret = -EIO;
452 } else
453 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
455 out:
456 return ret;
460 * Add bio to back of pending list
462 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
464 bio_list_add(&lo->lo_bio_list, bio);
468 * Grab first pending buffer
470 static struct bio *loop_get_bio(struct loop_device *lo)
472 return bio_list_pop(&lo->lo_bio_list);
475 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
477 struct loop_device *lo = q->queuedata;
478 int rw = bio_rw(old_bio);
480 if (rw == READA)
481 rw = READ;
483 BUG_ON(!lo || (rw != READ && rw != WRITE));
485 spin_lock_irq(&lo->lo_lock);
486 if (lo->lo_state != Lo_bound)
487 goto out;
488 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
489 goto out;
490 loop_add_bio(lo, old_bio);
491 wake_up(&lo->lo_event);
492 spin_unlock_irq(&lo->lo_lock);
493 return;
495 out:
496 spin_unlock_irq(&lo->lo_lock);
497 bio_io_error(old_bio);
500 struct switch_request {
501 struct file *file;
502 struct completion wait;
505 static void do_loop_switch(struct loop_device *, struct switch_request *);
507 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
509 if (unlikely(!bio->bi_bdev)) {
510 do_loop_switch(lo, bio->bi_private);
511 bio_put(bio);
512 } else {
513 int ret = do_bio_filebacked(lo, bio);
514 bio_endio(bio, ret);
519 * worker thread that handles reads/writes to file backed loop devices,
520 * to avoid blocking in our make_request_fn. it also does loop decrypting
521 * on reads for block backed loop, as that is too heavy to do from
522 * b_end_io context where irqs may be disabled.
524 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
525 * calling kthread_stop(). Therefore once kthread_should_stop() is
526 * true, make_request will not place any more requests. Therefore
527 * once kthread_should_stop() is true and lo_bio is NULL, we are
528 * done with the loop.
530 static int loop_thread(void *data)
532 struct loop_device *lo = data;
533 struct bio *bio;
535 set_user_nice(current, -20);
537 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
539 wait_event_interruptible(lo->lo_event,
540 !bio_list_empty(&lo->lo_bio_list) ||
541 kthread_should_stop());
543 if (bio_list_empty(&lo->lo_bio_list))
544 continue;
545 spin_lock_irq(&lo->lo_lock);
546 bio = loop_get_bio(lo);
547 spin_unlock_irq(&lo->lo_lock);
549 BUG_ON(!bio);
550 loop_handle_bio(lo, bio);
553 return 0;
557 * loop_switch performs the hard work of switching a backing store.
558 * First it needs to flush existing IO, it does this by sending a magic
559 * BIO down the pipe. The completion of this BIO does the actual switch.
561 static int loop_switch(struct loop_device *lo, struct file *file)
563 struct switch_request w;
564 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
565 if (!bio)
566 return -ENOMEM;
567 init_completion(&w.wait);
568 w.file = file;
569 bio->bi_private = &w;
570 bio->bi_bdev = NULL;
571 loop_make_request(lo->lo_queue, bio);
572 wait_for_completion(&w.wait);
573 return 0;
577 * Helper to flush the IOs in loop, but keeping loop thread running
579 static int loop_flush(struct loop_device *lo)
581 /* loop not yet configured, no running thread, nothing to flush */
582 if (!lo->lo_thread)
583 return 0;
585 return loop_switch(lo, NULL);
589 * Do the actual switch; called from the BIO completion routine
591 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
593 struct file *file = p->file;
594 struct file *old_file = lo->lo_backing_file;
595 struct address_space *mapping;
597 /* if no new file, only flush of queued bios requested */
598 if (!file)
599 goto out;
601 mapping = file->f_mapping;
602 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
603 lo->lo_backing_file = file;
604 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
605 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
606 lo->old_gfp_mask = mapping_gfp_mask(mapping);
607 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
608 out:
609 complete(&p->wait);
614 * loop_change_fd switched the backing store of a loopback device to
615 * a new file. This is useful for operating system installers to free up
616 * the original file and in High Availability environments to switch to
617 * an alternative location for the content in case of server meltdown.
618 * This can only work if the loop device is used read-only, and if the
619 * new backing store is the same size and type as the old backing store.
621 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
622 unsigned int arg)
624 struct file *file, *old_file;
625 struct inode *inode;
626 int error;
628 error = -ENXIO;
629 if (lo->lo_state != Lo_bound)
630 goto out;
632 /* the loop device has to be read-only */
633 error = -EINVAL;
634 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
635 goto out;
637 error = -EBADF;
638 file = fget(arg);
639 if (!file)
640 goto out;
642 inode = file->f_mapping->host;
643 old_file = lo->lo_backing_file;
645 error = -EINVAL;
647 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
648 goto out_putf;
650 /* size of the new backing store needs to be the same */
651 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
652 goto out_putf;
654 /* and ... switch */
655 error = loop_switch(lo, file);
656 if (error)
657 goto out_putf;
659 fput(old_file);
660 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
661 ioctl_by_bdev(bdev, BLKRRPART, 0);
662 return 0;
664 out_putf:
665 fput(file);
666 out:
667 return error;
670 static inline int is_loop_device(struct file *file)
672 struct inode *i = file->f_mapping->host;
674 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
677 /* loop sysfs attributes */
679 static ssize_t loop_attr_show(struct device *dev, char *page,
680 ssize_t (*callback)(struct loop_device *, char *))
682 struct gendisk *disk = dev_to_disk(dev);
683 struct loop_device *lo = disk->private_data;
685 return callback(lo, page);
688 #define LOOP_ATTR_RO(_name) \
689 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
690 static ssize_t loop_attr_do_show_##_name(struct device *d, \
691 struct device_attribute *attr, char *b) \
693 return loop_attr_show(d, b, loop_attr_##_name##_show); \
695 static struct device_attribute loop_attr_##_name = \
696 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
698 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
700 ssize_t ret;
701 char *p = NULL;
703 spin_lock_irq(&lo->lo_lock);
704 if (lo->lo_backing_file)
705 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
706 spin_unlock_irq(&lo->lo_lock);
708 if (IS_ERR_OR_NULL(p))
709 ret = PTR_ERR(p);
710 else {
711 ret = strlen(p);
712 memmove(buf, p, ret);
713 buf[ret++] = '\n';
714 buf[ret] = 0;
717 return ret;
720 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
722 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
725 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
727 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
730 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
732 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
734 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
737 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
739 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
741 return sprintf(buf, "%s\n", partscan ? "1" : "0");
744 LOOP_ATTR_RO(backing_file);
745 LOOP_ATTR_RO(offset);
746 LOOP_ATTR_RO(sizelimit);
747 LOOP_ATTR_RO(autoclear);
748 LOOP_ATTR_RO(partscan);
750 static struct attribute *loop_attrs[] = {
751 &loop_attr_backing_file.attr,
752 &loop_attr_offset.attr,
753 &loop_attr_sizelimit.attr,
754 &loop_attr_autoclear.attr,
755 &loop_attr_partscan.attr,
756 NULL,
759 static struct attribute_group loop_attribute_group = {
760 .name = "loop",
761 .attrs= loop_attrs,
764 static int loop_sysfs_init(struct loop_device *lo)
766 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
767 &loop_attribute_group);
770 static void loop_sysfs_exit(struct loop_device *lo)
772 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
773 &loop_attribute_group);
776 static void loop_config_discard(struct loop_device *lo)
778 struct file *file = lo->lo_backing_file;
779 struct inode *inode = file->f_mapping->host;
780 struct request_queue *q = lo->lo_queue;
783 * We use punch hole to reclaim the free space used by the
784 * image a.k.a. discard. However we do support discard if
785 * encryption is enabled, because it may give an attacker
786 * useful information.
788 if ((!file->f_op->fallocate) ||
789 lo->lo_encrypt_key_size) {
790 q->limits.discard_granularity = 0;
791 q->limits.discard_alignment = 0;
792 q->limits.max_discard_sectors = 0;
793 q->limits.discard_zeroes_data = 0;
794 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
795 return;
798 q->limits.discard_granularity = inode->i_sb->s_blocksize;
799 q->limits.discard_alignment = 0;
800 q->limits.max_discard_sectors = UINT_MAX >> 9;
801 q->limits.discard_zeroes_data = 1;
802 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
805 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
806 struct block_device *bdev, unsigned int arg)
808 struct file *file, *f;
809 struct inode *inode;
810 struct address_space *mapping;
811 unsigned lo_blocksize;
812 int lo_flags = 0;
813 int error;
814 loff_t size;
816 /* This is safe, since we have a reference from open(). */
817 __module_get(THIS_MODULE);
819 error = -EBADF;
820 file = fget(arg);
821 if (!file)
822 goto out;
824 error = -EBUSY;
825 if (lo->lo_state != Lo_unbound)
826 goto out_putf;
828 /* Avoid recursion */
829 f = file;
830 while (is_loop_device(f)) {
831 struct loop_device *l;
833 if (f->f_mapping->host->i_bdev == bdev)
834 goto out_putf;
836 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
837 if (l->lo_state == Lo_unbound) {
838 error = -EINVAL;
839 goto out_putf;
841 f = l->lo_backing_file;
844 mapping = file->f_mapping;
845 inode = mapping->host;
847 error = -EINVAL;
848 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
849 goto out_putf;
851 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
852 !file->f_op->write)
853 lo_flags |= LO_FLAGS_READ_ONLY;
855 lo_blocksize = S_ISBLK(inode->i_mode) ?
856 inode->i_bdev->bd_block_size : PAGE_SIZE;
858 error = -EFBIG;
859 size = get_loop_size(lo, file);
860 if ((loff_t)(sector_t)size != size)
861 goto out_putf;
863 error = 0;
865 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
867 lo->lo_blocksize = lo_blocksize;
868 lo->lo_device = bdev;
869 lo->lo_flags = lo_flags;
870 lo->lo_backing_file = file;
871 lo->transfer = transfer_none;
872 lo->ioctl = NULL;
873 lo->lo_sizelimit = 0;
874 lo->old_gfp_mask = mapping_gfp_mask(mapping);
875 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
877 bio_list_init(&lo->lo_bio_list);
880 * set queue make_request_fn, and add limits based on lower level
881 * device
883 blk_queue_make_request(lo->lo_queue, loop_make_request);
884 lo->lo_queue->queuedata = lo;
886 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
887 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
889 set_capacity(lo->lo_disk, size);
890 bd_set_size(bdev, size << 9);
891 loop_sysfs_init(lo);
892 /* let user-space know about the new size */
893 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
895 set_blocksize(bdev, lo_blocksize);
897 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
898 lo->lo_number);
899 if (IS_ERR(lo->lo_thread)) {
900 error = PTR_ERR(lo->lo_thread);
901 goto out_clr;
903 lo->lo_state = Lo_bound;
904 wake_up_process(lo->lo_thread);
905 if (part_shift)
906 lo->lo_flags |= LO_FLAGS_PARTSCAN;
907 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
908 ioctl_by_bdev(bdev, BLKRRPART, 0);
909 return 0;
911 out_clr:
912 loop_sysfs_exit(lo);
913 lo->lo_thread = NULL;
914 lo->lo_device = NULL;
915 lo->lo_backing_file = NULL;
916 lo->lo_flags = 0;
917 set_capacity(lo->lo_disk, 0);
918 invalidate_bdev(bdev);
919 bd_set_size(bdev, 0);
920 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
921 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
922 lo->lo_state = Lo_unbound;
923 out_putf:
924 fput(file);
925 out:
926 /* This is safe: open() is still holding a reference. */
927 module_put(THIS_MODULE);
928 return error;
931 static int
932 loop_release_xfer(struct loop_device *lo)
934 int err = 0;
935 struct loop_func_table *xfer = lo->lo_encryption;
937 if (xfer) {
938 if (xfer->release)
939 err = xfer->release(lo);
940 lo->transfer = NULL;
941 lo->lo_encryption = NULL;
942 module_put(xfer->owner);
944 return err;
947 static int
948 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
949 const struct loop_info64 *i)
951 int err = 0;
953 if (xfer) {
954 struct module *owner = xfer->owner;
956 if (!try_module_get(owner))
957 return -EINVAL;
958 if (xfer->init)
959 err = xfer->init(lo, i);
960 if (err)
961 module_put(owner);
962 else
963 lo->lo_encryption = xfer;
965 return err;
968 static int loop_clr_fd(struct loop_device *lo)
970 struct file *filp = lo->lo_backing_file;
971 gfp_t gfp = lo->old_gfp_mask;
972 struct block_device *bdev = lo->lo_device;
974 if (lo->lo_state != Lo_bound)
975 return -ENXIO;
977 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
978 return -EBUSY;
980 if (filp == NULL)
981 return -EINVAL;
983 spin_lock_irq(&lo->lo_lock);
984 lo->lo_state = Lo_rundown;
985 spin_unlock_irq(&lo->lo_lock);
987 kthread_stop(lo->lo_thread);
989 spin_lock_irq(&lo->lo_lock);
990 lo->lo_backing_file = NULL;
991 spin_unlock_irq(&lo->lo_lock);
993 loop_release_xfer(lo);
994 lo->transfer = NULL;
995 lo->ioctl = NULL;
996 lo->lo_device = NULL;
997 lo->lo_encryption = NULL;
998 lo->lo_offset = 0;
999 lo->lo_sizelimit = 0;
1000 lo->lo_encrypt_key_size = 0;
1001 lo->lo_thread = NULL;
1002 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1003 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1004 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1005 if (bdev)
1006 invalidate_bdev(bdev);
1007 set_capacity(lo->lo_disk, 0);
1008 loop_sysfs_exit(lo);
1009 if (bdev) {
1010 bd_set_size(bdev, 0);
1011 /* let user-space know about this change */
1012 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1014 mapping_set_gfp_mask(filp->f_mapping, gfp);
1015 lo->lo_state = Lo_unbound;
1016 /* This is safe: open() is still holding a reference. */
1017 module_put(THIS_MODULE);
1018 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1019 ioctl_by_bdev(bdev, BLKRRPART, 0);
1020 lo->lo_flags = 0;
1021 if (!part_shift)
1022 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1023 mutex_unlock(&lo->lo_ctl_mutex);
1025 * Need not hold lo_ctl_mutex to fput backing file.
1026 * Calling fput holding lo_ctl_mutex triggers a circular
1027 * lock dependency possibility warning as fput can take
1028 * bd_mutex which is usually taken before lo_ctl_mutex.
1030 fput(filp);
1031 return 0;
1034 static int
1035 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1037 int err;
1038 struct loop_func_table *xfer;
1039 uid_t uid = current_uid();
1041 if (lo->lo_encrypt_key_size &&
1042 lo->lo_key_owner != uid &&
1043 !capable(CAP_SYS_ADMIN))
1044 return -EPERM;
1045 if (lo->lo_state != Lo_bound)
1046 return -ENXIO;
1047 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1048 return -EINVAL;
1050 err = loop_release_xfer(lo);
1051 if (err)
1052 return err;
1054 if (info->lo_encrypt_type) {
1055 unsigned int type = info->lo_encrypt_type;
1057 if (type >= MAX_LO_CRYPT)
1058 return -EINVAL;
1059 xfer = xfer_funcs[type];
1060 if (xfer == NULL)
1061 return -EINVAL;
1062 } else
1063 xfer = NULL;
1065 err = loop_init_xfer(lo, xfer, info);
1066 if (err)
1067 return err;
1069 if (lo->lo_offset != info->lo_offset ||
1070 lo->lo_sizelimit != info->lo_sizelimit) {
1071 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1072 return -EFBIG;
1074 loop_config_discard(lo);
1076 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1077 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1078 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1079 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1081 if (!xfer)
1082 xfer = &none_funcs;
1083 lo->transfer = xfer->transfer;
1084 lo->ioctl = xfer->ioctl;
1086 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1087 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1088 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1090 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1091 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1092 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1093 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1094 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1097 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1098 lo->lo_init[0] = info->lo_init[0];
1099 lo->lo_init[1] = info->lo_init[1];
1100 if (info->lo_encrypt_key_size) {
1101 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1102 info->lo_encrypt_key_size);
1103 lo->lo_key_owner = uid;
1106 return 0;
1109 static int
1110 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1112 struct file *file = lo->lo_backing_file;
1113 struct kstat stat;
1114 int error;
1116 if (lo->lo_state != Lo_bound)
1117 return -ENXIO;
1118 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1119 if (error)
1120 return error;
1121 memset(info, 0, sizeof(*info));
1122 info->lo_number = lo->lo_number;
1123 info->lo_device = huge_encode_dev(stat.dev);
1124 info->lo_inode = stat.ino;
1125 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1126 info->lo_offset = lo->lo_offset;
1127 info->lo_sizelimit = lo->lo_sizelimit;
1128 info->lo_flags = lo->lo_flags;
1129 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1130 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1131 info->lo_encrypt_type =
1132 lo->lo_encryption ? lo->lo_encryption->number : 0;
1133 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1134 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1135 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1136 lo->lo_encrypt_key_size);
1138 return 0;
1141 static void
1142 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1144 memset(info64, 0, sizeof(*info64));
1145 info64->lo_number = info->lo_number;
1146 info64->lo_device = info->lo_device;
1147 info64->lo_inode = info->lo_inode;
1148 info64->lo_rdevice = info->lo_rdevice;
1149 info64->lo_offset = info->lo_offset;
1150 info64->lo_sizelimit = 0;
1151 info64->lo_encrypt_type = info->lo_encrypt_type;
1152 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1153 info64->lo_flags = info->lo_flags;
1154 info64->lo_init[0] = info->lo_init[0];
1155 info64->lo_init[1] = info->lo_init[1];
1156 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1157 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1158 else
1159 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1160 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1163 static int
1164 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1166 memset(info, 0, sizeof(*info));
1167 info->lo_number = info64->lo_number;
1168 info->lo_device = info64->lo_device;
1169 info->lo_inode = info64->lo_inode;
1170 info->lo_rdevice = info64->lo_rdevice;
1171 info->lo_offset = info64->lo_offset;
1172 info->lo_encrypt_type = info64->lo_encrypt_type;
1173 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1174 info->lo_flags = info64->lo_flags;
1175 info->lo_init[0] = info64->lo_init[0];
1176 info->lo_init[1] = info64->lo_init[1];
1177 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1178 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1179 else
1180 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1181 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1183 /* error in case values were truncated */
1184 if (info->lo_device != info64->lo_device ||
1185 info->lo_rdevice != info64->lo_rdevice ||
1186 info->lo_inode != info64->lo_inode ||
1187 info->lo_offset != info64->lo_offset)
1188 return -EOVERFLOW;
1190 return 0;
1193 static int
1194 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1196 struct loop_info info;
1197 struct loop_info64 info64;
1199 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1200 return -EFAULT;
1201 loop_info64_from_old(&info, &info64);
1202 return loop_set_status(lo, &info64);
1205 static int
1206 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1208 struct loop_info64 info64;
1210 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1211 return -EFAULT;
1212 return loop_set_status(lo, &info64);
1215 static int
1216 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1217 struct loop_info info;
1218 struct loop_info64 info64;
1219 int err = 0;
1221 if (!arg)
1222 err = -EINVAL;
1223 if (!err)
1224 err = loop_get_status(lo, &info64);
1225 if (!err)
1226 err = loop_info64_to_old(&info64, &info);
1227 if (!err && copy_to_user(arg, &info, sizeof(info)))
1228 err = -EFAULT;
1230 return err;
1233 static int
1234 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1235 struct loop_info64 info64;
1236 int err = 0;
1238 if (!arg)
1239 err = -EINVAL;
1240 if (!err)
1241 err = loop_get_status(lo, &info64);
1242 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1243 err = -EFAULT;
1245 return err;
1248 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1250 int err;
1251 sector_t sec;
1252 loff_t sz;
1254 err = -ENXIO;
1255 if (unlikely(lo->lo_state != Lo_bound))
1256 goto out;
1257 err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1258 if (unlikely(err))
1259 goto out;
1260 sec = get_capacity(lo->lo_disk);
1261 /* the width of sector_t may be narrow for bit-shift */
1262 sz = sec;
1263 sz <<= 9;
1264 mutex_lock(&bdev->bd_mutex);
1265 bd_set_size(bdev, sz);
1266 /* let user-space know about the new size */
1267 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1268 mutex_unlock(&bdev->bd_mutex);
1270 out:
1271 return err;
1274 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1275 unsigned int cmd, unsigned long arg)
1277 struct loop_device *lo = bdev->bd_disk->private_data;
1278 int err;
1280 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1281 switch (cmd) {
1282 case LOOP_SET_FD:
1283 err = loop_set_fd(lo, mode, bdev, arg);
1284 break;
1285 case LOOP_CHANGE_FD:
1286 err = loop_change_fd(lo, bdev, arg);
1287 break;
1288 case LOOP_CLR_FD:
1289 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1290 err = loop_clr_fd(lo);
1291 if (!err)
1292 goto out_unlocked;
1293 break;
1294 case LOOP_SET_STATUS:
1295 err = -EPERM;
1296 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1297 err = loop_set_status_old(lo,
1298 (struct loop_info __user *)arg);
1299 break;
1300 case LOOP_GET_STATUS:
1301 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1302 break;
1303 case LOOP_SET_STATUS64:
1304 err = -EPERM;
1305 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1306 err = loop_set_status64(lo,
1307 (struct loop_info64 __user *) arg);
1308 break;
1309 case LOOP_GET_STATUS64:
1310 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1311 break;
1312 case LOOP_SET_CAPACITY:
1313 err = -EPERM;
1314 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1315 err = loop_set_capacity(lo, bdev);
1316 break;
1317 default:
1318 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1320 mutex_unlock(&lo->lo_ctl_mutex);
1322 out_unlocked:
1323 return err;
1326 #ifdef CONFIG_COMPAT
1327 struct compat_loop_info {
1328 compat_int_t lo_number; /* ioctl r/o */
1329 compat_dev_t lo_device; /* ioctl r/o */
1330 compat_ulong_t lo_inode; /* ioctl r/o */
1331 compat_dev_t lo_rdevice; /* ioctl r/o */
1332 compat_int_t lo_offset;
1333 compat_int_t lo_encrypt_type;
1334 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1335 compat_int_t lo_flags; /* ioctl r/o */
1336 char lo_name[LO_NAME_SIZE];
1337 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1338 compat_ulong_t lo_init[2];
1339 char reserved[4];
1343 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1344 * - noinlined to reduce stack space usage in main part of driver
1346 static noinline int
1347 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1348 struct loop_info64 *info64)
1350 struct compat_loop_info info;
1352 if (copy_from_user(&info, arg, sizeof(info)))
1353 return -EFAULT;
1355 memset(info64, 0, sizeof(*info64));
1356 info64->lo_number = info.lo_number;
1357 info64->lo_device = info.lo_device;
1358 info64->lo_inode = info.lo_inode;
1359 info64->lo_rdevice = info.lo_rdevice;
1360 info64->lo_offset = info.lo_offset;
1361 info64->lo_sizelimit = 0;
1362 info64->lo_encrypt_type = info.lo_encrypt_type;
1363 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1364 info64->lo_flags = info.lo_flags;
1365 info64->lo_init[0] = info.lo_init[0];
1366 info64->lo_init[1] = info.lo_init[1];
1367 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1368 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1369 else
1370 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1371 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1372 return 0;
1376 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1377 * - noinlined to reduce stack space usage in main part of driver
1379 static noinline int
1380 loop_info64_to_compat(const struct loop_info64 *info64,
1381 struct compat_loop_info __user *arg)
1383 struct compat_loop_info info;
1385 memset(&info, 0, sizeof(info));
1386 info.lo_number = info64->lo_number;
1387 info.lo_device = info64->lo_device;
1388 info.lo_inode = info64->lo_inode;
1389 info.lo_rdevice = info64->lo_rdevice;
1390 info.lo_offset = info64->lo_offset;
1391 info.lo_encrypt_type = info64->lo_encrypt_type;
1392 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1393 info.lo_flags = info64->lo_flags;
1394 info.lo_init[0] = info64->lo_init[0];
1395 info.lo_init[1] = info64->lo_init[1];
1396 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1397 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1398 else
1399 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1400 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1402 /* error in case values were truncated */
1403 if (info.lo_device != info64->lo_device ||
1404 info.lo_rdevice != info64->lo_rdevice ||
1405 info.lo_inode != info64->lo_inode ||
1406 info.lo_offset != info64->lo_offset ||
1407 info.lo_init[0] != info64->lo_init[0] ||
1408 info.lo_init[1] != info64->lo_init[1])
1409 return -EOVERFLOW;
1411 if (copy_to_user(arg, &info, sizeof(info)))
1412 return -EFAULT;
1413 return 0;
1416 static int
1417 loop_set_status_compat(struct loop_device *lo,
1418 const struct compat_loop_info __user *arg)
1420 struct loop_info64 info64;
1421 int ret;
1423 ret = loop_info64_from_compat(arg, &info64);
1424 if (ret < 0)
1425 return ret;
1426 return loop_set_status(lo, &info64);
1429 static int
1430 loop_get_status_compat(struct loop_device *lo,
1431 struct compat_loop_info __user *arg)
1433 struct loop_info64 info64;
1434 int err = 0;
1436 if (!arg)
1437 err = -EINVAL;
1438 if (!err)
1439 err = loop_get_status(lo, &info64);
1440 if (!err)
1441 err = loop_info64_to_compat(&info64, arg);
1442 return err;
1445 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1446 unsigned int cmd, unsigned long arg)
1448 struct loop_device *lo = bdev->bd_disk->private_data;
1449 int err;
1451 switch(cmd) {
1452 case LOOP_SET_STATUS:
1453 mutex_lock(&lo->lo_ctl_mutex);
1454 err = loop_set_status_compat(
1455 lo, (const struct compat_loop_info __user *) arg);
1456 mutex_unlock(&lo->lo_ctl_mutex);
1457 break;
1458 case LOOP_GET_STATUS:
1459 mutex_lock(&lo->lo_ctl_mutex);
1460 err = loop_get_status_compat(
1461 lo, (struct compat_loop_info __user *) arg);
1462 mutex_unlock(&lo->lo_ctl_mutex);
1463 break;
1464 case LOOP_SET_CAPACITY:
1465 case LOOP_CLR_FD:
1466 case LOOP_GET_STATUS64:
1467 case LOOP_SET_STATUS64:
1468 arg = (unsigned long) compat_ptr(arg);
1469 case LOOP_SET_FD:
1470 case LOOP_CHANGE_FD:
1471 err = lo_ioctl(bdev, mode, cmd, arg);
1472 break;
1473 default:
1474 err = -ENOIOCTLCMD;
1475 break;
1477 return err;
1479 #endif
1481 static int lo_open(struct block_device *bdev, fmode_t mode)
1483 struct loop_device *lo;
1484 int err = 0;
1486 mutex_lock(&loop_index_mutex);
1487 lo = bdev->bd_disk->private_data;
1488 if (!lo) {
1489 err = -ENXIO;
1490 goto out;
1493 mutex_lock(&lo->lo_ctl_mutex);
1494 lo->lo_refcnt++;
1495 mutex_unlock(&lo->lo_ctl_mutex);
1496 out:
1497 mutex_unlock(&loop_index_mutex);
1498 return err;
1501 static int lo_release(struct gendisk *disk, fmode_t mode)
1503 struct loop_device *lo = disk->private_data;
1504 int err;
1506 mutex_lock(&lo->lo_ctl_mutex);
1508 if (--lo->lo_refcnt)
1509 goto out;
1511 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1513 * In autoclear mode, stop the loop thread
1514 * and remove configuration after last close.
1516 err = loop_clr_fd(lo);
1517 if (!err)
1518 goto out_unlocked;
1519 } else {
1521 * Otherwise keep thread (if running) and config,
1522 * but flush possible ongoing bios in thread.
1524 loop_flush(lo);
1527 out:
1528 mutex_unlock(&lo->lo_ctl_mutex);
1529 out_unlocked:
1530 return 0;
1533 static const struct block_device_operations lo_fops = {
1534 .owner = THIS_MODULE,
1535 .open = lo_open,
1536 .release = lo_release,
1537 .ioctl = lo_ioctl,
1538 #ifdef CONFIG_COMPAT
1539 .compat_ioctl = lo_compat_ioctl,
1540 #endif
1544 * And now the modules code and kernel interface.
1546 static int max_loop;
1547 module_param(max_loop, int, S_IRUGO);
1548 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1549 module_param(max_part, int, S_IRUGO);
1550 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1551 MODULE_LICENSE("GPL");
1552 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1554 int loop_register_transfer(struct loop_func_table *funcs)
1556 unsigned int n = funcs->number;
1558 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1559 return -EINVAL;
1560 xfer_funcs[n] = funcs;
1561 return 0;
1564 static int unregister_transfer_cb(int id, void *ptr, void *data)
1566 struct loop_device *lo = ptr;
1567 struct loop_func_table *xfer = data;
1569 mutex_lock(&lo->lo_ctl_mutex);
1570 if (lo->lo_encryption == xfer)
1571 loop_release_xfer(lo);
1572 mutex_unlock(&lo->lo_ctl_mutex);
1573 return 0;
1576 int loop_unregister_transfer(int number)
1578 unsigned int n = number;
1579 struct loop_func_table *xfer;
1581 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1582 return -EINVAL;
1584 xfer_funcs[n] = NULL;
1585 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1586 return 0;
1589 EXPORT_SYMBOL(loop_register_transfer);
1590 EXPORT_SYMBOL(loop_unregister_transfer);
1592 static int loop_add(struct loop_device **l, int i)
1594 struct loop_device *lo;
1595 struct gendisk *disk;
1596 int err;
1598 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1599 if (!lo) {
1600 err = -ENOMEM;
1601 goto out;
1604 err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1605 if (err < 0)
1606 goto out_free_dev;
1608 if (i >= 0) {
1609 int m;
1611 /* create specific i in the index */
1612 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1613 if (err >= 0 && i != m) {
1614 idr_remove(&loop_index_idr, m);
1615 err = -EEXIST;
1617 } else if (i == -1) {
1618 int m;
1620 /* get next free nr */
1621 err = idr_get_new(&loop_index_idr, lo, &m);
1622 if (err >= 0)
1623 i = m;
1624 } else {
1625 err = -EINVAL;
1627 if (err < 0)
1628 goto out_free_dev;
1630 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631 if (!lo->lo_queue)
1632 goto out_free_dev;
1634 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1635 if (!disk)
1636 goto out_free_queue;
1639 * Disable partition scanning by default. The in-kernel partition
1640 * scanning can be requested individually per-device during its
1641 * setup. Userspace can always add and remove partitions from all
1642 * devices. The needed partition minors are allocated from the
1643 * extended minor space, the main loop device numbers will continue
1644 * to match the loop minors, regardless of the number of partitions
1645 * used.
1647 * If max_part is given, partition scanning is globally enabled for
1648 * all loop devices. The minors for the main loop devices will be
1649 * multiples of max_part.
1651 * Note: Global-for-all-devices, set-only-at-init, read-only module
1652 * parameteters like 'max_loop' and 'max_part' make things needlessly
1653 * complicated, are too static, inflexible and may surprise
1654 * userspace tools. Parameters like this in general should be avoided.
1656 if (!part_shift)
1657 disk->flags |= GENHD_FL_NO_PART_SCAN;
1658 disk->flags |= GENHD_FL_EXT_DEVT;
1659 mutex_init(&lo->lo_ctl_mutex);
1660 lo->lo_number = i;
1661 lo->lo_thread = NULL;
1662 init_waitqueue_head(&lo->lo_event);
1663 spin_lock_init(&lo->lo_lock);
1664 disk->major = LOOP_MAJOR;
1665 disk->first_minor = i << part_shift;
1666 disk->fops = &lo_fops;
1667 disk->private_data = lo;
1668 disk->queue = lo->lo_queue;
1669 sprintf(disk->disk_name, "loop%d", i);
1670 add_disk(disk);
1671 *l = lo;
1672 return lo->lo_number;
1674 out_free_queue:
1675 blk_cleanup_queue(lo->lo_queue);
1676 out_free_dev:
1677 kfree(lo);
1678 out:
1679 return err;
1682 static void loop_remove(struct loop_device *lo)
1684 del_gendisk(lo->lo_disk);
1685 blk_cleanup_queue(lo->lo_queue);
1686 put_disk(lo->lo_disk);
1687 kfree(lo);
1690 static int find_free_cb(int id, void *ptr, void *data)
1692 struct loop_device *lo = ptr;
1693 struct loop_device **l = data;
1695 if (lo->lo_state == Lo_unbound) {
1696 *l = lo;
1697 return 1;
1699 return 0;
1702 static int loop_lookup(struct loop_device **l, int i)
1704 struct loop_device *lo;
1705 int ret = -ENODEV;
1707 if (i < 0) {
1708 int err;
1710 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1711 if (err == 1) {
1712 *l = lo;
1713 ret = lo->lo_number;
1715 goto out;
1718 /* lookup and return a specific i */
1719 lo = idr_find(&loop_index_idr, i);
1720 if (lo) {
1721 *l = lo;
1722 ret = lo->lo_number;
1724 out:
1725 return ret;
1728 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1730 struct loop_device *lo;
1731 struct kobject *kobj;
1732 int err;
1734 mutex_lock(&loop_index_mutex);
1735 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1736 if (err < 0)
1737 err = loop_add(&lo, MINOR(dev) >> part_shift);
1738 if (err < 0)
1739 kobj = ERR_PTR(err);
1740 else
1741 kobj = get_disk(lo->lo_disk);
1742 mutex_unlock(&loop_index_mutex);
1744 *part = 0;
1745 return kobj;
1748 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1749 unsigned long parm)
1751 struct loop_device *lo;
1752 int ret = -ENOSYS;
1754 mutex_lock(&loop_index_mutex);
1755 switch (cmd) {
1756 case LOOP_CTL_ADD:
1757 ret = loop_lookup(&lo, parm);
1758 if (ret >= 0) {
1759 ret = -EEXIST;
1760 break;
1762 ret = loop_add(&lo, parm);
1763 break;
1764 case LOOP_CTL_REMOVE:
1765 ret = loop_lookup(&lo, parm);
1766 if (ret < 0)
1767 break;
1768 mutex_lock(&lo->lo_ctl_mutex);
1769 if (lo->lo_state != Lo_unbound) {
1770 ret = -EBUSY;
1771 mutex_unlock(&lo->lo_ctl_mutex);
1772 break;
1774 if (lo->lo_refcnt > 0) {
1775 ret = -EBUSY;
1776 mutex_unlock(&lo->lo_ctl_mutex);
1777 break;
1779 lo->lo_disk->private_data = NULL;
1780 mutex_unlock(&lo->lo_ctl_mutex);
1781 idr_remove(&loop_index_idr, lo->lo_number);
1782 loop_remove(lo);
1783 break;
1784 case LOOP_CTL_GET_FREE:
1785 ret = loop_lookup(&lo, -1);
1786 if (ret >= 0)
1787 break;
1788 ret = loop_add(&lo, -1);
1790 mutex_unlock(&loop_index_mutex);
1792 return ret;
1795 static const struct file_operations loop_ctl_fops = {
1796 .open = nonseekable_open,
1797 .unlocked_ioctl = loop_control_ioctl,
1798 .compat_ioctl = loop_control_ioctl,
1799 .owner = THIS_MODULE,
1800 .llseek = noop_llseek,
1803 static struct miscdevice loop_misc = {
1804 .minor = LOOP_CTRL_MINOR,
1805 .name = "loop-control",
1806 .fops = &loop_ctl_fops,
1809 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1810 MODULE_ALIAS("devname:loop-control");
1812 static int __init loop_init(void)
1814 int i, nr;
1815 unsigned long range;
1816 struct loop_device *lo;
1817 int err;
1819 err = misc_register(&loop_misc);
1820 if (err < 0)
1821 return err;
1823 part_shift = 0;
1824 if (max_part > 0) {
1825 part_shift = fls(max_part);
1828 * Adjust max_part according to part_shift as it is exported
1829 * to user space so that user can decide correct minor number
1830 * if [s]he want to create more devices.
1832 * Note that -1 is required because partition 0 is reserved
1833 * for the whole disk.
1835 max_part = (1UL << part_shift) - 1;
1838 if ((1UL << part_shift) > DISK_MAX_PARTS)
1839 return -EINVAL;
1841 if (max_loop > 1UL << (MINORBITS - part_shift))
1842 return -EINVAL;
1845 * If max_loop is specified, create that many devices upfront.
1846 * This also becomes a hard limit. If max_loop is not specified,
1847 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1848 * init time. Loop devices can be requested on-demand with the
1849 * /dev/loop-control interface, or be instantiated by accessing
1850 * a 'dead' device node.
1852 if (max_loop) {
1853 nr = max_loop;
1854 range = max_loop << part_shift;
1855 } else {
1856 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1857 range = 1UL << MINORBITS;
1860 if (register_blkdev(LOOP_MAJOR, "loop"))
1861 return -EIO;
1863 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1864 THIS_MODULE, loop_probe, NULL, NULL);
1866 /* pre-create number of devices given by config or max_loop */
1867 mutex_lock(&loop_index_mutex);
1868 for (i = 0; i < nr; i++)
1869 loop_add(&lo, i);
1870 mutex_unlock(&loop_index_mutex);
1872 printk(KERN_INFO "loop: module loaded\n");
1873 return 0;
1876 static int loop_exit_cb(int id, void *ptr, void *data)
1878 struct loop_device *lo = ptr;
1880 loop_remove(lo);
1881 return 0;
1884 static void __exit loop_exit(void)
1886 unsigned long range;
1888 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1890 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1891 idr_remove_all(&loop_index_idr);
1892 idr_destroy(&loop_index_idr);
1894 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1895 unregister_blkdev(LOOP_MAJOR, "loop");
1897 misc_deregister(&loop_misc);
1900 module_init(loop_init);
1901 module_exit(loop_exit);
1903 #ifndef MODULE
1904 static int __init max_loop_setup(char *str)
1906 max_loop = simple_strtol(str, NULL, 0);
1907 return 1;
1910 __setup("max_loop=", max_loop_setup);
1911 #endif