2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <linux/moduleparam.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
22 #include <asm/setup.h>
24 #define PAGE_SHIFT_64K 16
25 #define PAGE_SHIFT_16M 24
26 #define PAGE_SHIFT_16G 34
28 unsigned int HPAGE_SHIFT
;
31 * Tracks gpages after the device tree is scanned and before the
32 * huge_boot_pages list is ready. On non-Freescale implementations, this is
33 * just used to track 16G pages and so is a single array. FSL-based
34 * implementations may have more than one gpage size, so we need multiple
37 #ifdef CONFIG_PPC_FSL_BOOK3E
38 #define MAX_NUMBER_GPAGES 128
40 u64 gpage_list
[MAX_NUMBER_GPAGES
];
41 unsigned int nr_gpages
;
43 static struct psize_gpages gpage_freearray
[MMU_PAGE_COUNT
];
45 #define MAX_NUMBER_GPAGES 1024
46 static u64 gpage_freearray
[MAX_NUMBER_GPAGES
];
47 static unsigned nr_gpages
;
50 static inline int shift_to_mmu_psize(unsigned int shift
)
54 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
)
55 if (mmu_psize_defs
[psize
].shift
== shift
)
60 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize
)
62 if (mmu_psize_defs
[mmu_psize
].shift
)
63 return mmu_psize_defs
[mmu_psize
].shift
;
67 #define hugepd_none(hpd) ((hpd).pd == 0)
69 pte_t
*find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
, unsigned *shift
)
74 hugepd_t
*hpdp
= NULL
;
75 unsigned pdshift
= PGDIR_SHIFT
;
80 pg
= pgdir
+ pgd_index(ea
);
82 hpdp
= (hugepd_t
*)pg
;
83 } else if (!pgd_none(*pg
)) {
85 pu
= pud_offset(pg
, ea
);
87 hpdp
= (hugepd_t
*)pu
;
88 else if (!pud_none(*pu
)) {
90 pm
= pmd_offset(pu
, ea
);
92 hpdp
= (hugepd_t
*)pm
;
93 else if (!pmd_none(*pm
)) {
94 return pte_offset_kernel(pm
, ea
);
103 *shift
= hugepd_shift(*hpdp
);
104 return hugepte_offset(hpdp
, ea
, pdshift
);
107 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
109 return find_linux_pte_or_hugepte(mm
->pgd
, addr
, NULL
);
112 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
113 unsigned long address
, unsigned pdshift
, unsigned pshift
)
115 struct kmem_cache
*cachep
;
118 #ifdef CONFIG_PPC_FSL_BOOK3E
120 int num_hugepd
= 1 << (pshift
- pdshift
);
121 cachep
= hugepte_cache
;
123 cachep
= PGT_CACHE(pdshift
- pshift
);
126 new = kmem_cache_zalloc(cachep
, GFP_KERNEL
|__GFP_REPEAT
);
128 BUG_ON(pshift
> HUGEPD_SHIFT_MASK
);
129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK
);
134 spin_lock(&mm
->page_table_lock
);
135 #ifdef CONFIG_PPC_FSL_BOOK3E
137 * We have multiple higher-level entries that point to the same
138 * actual pte location. Fill in each as we go and backtrack on error.
139 * We need all of these so the DTLB pgtable walk code can find the
140 * right higher-level entry without knowing if it's a hugepage or not.
142 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++) {
143 if (unlikely(!hugepd_none(*hpdp
)))
146 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
148 /* If we bailed from the for loop early, an error occurred, clean up */
149 if (i
< num_hugepd
) {
150 for (i
= i
- 1 ; i
>= 0; i
--, hpdp
--)
152 kmem_cache_free(cachep
, new);
155 if (!hugepd_none(*hpdp
))
156 kmem_cache_free(cachep
, new);
158 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
160 spin_unlock(&mm
->page_table_lock
);
165 * These macros define how to determine which level of the page table holds
168 #ifdef CONFIG_PPC_FSL_BOOK3E
169 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
170 #define HUGEPD_PUD_SHIFT PUD_SHIFT
172 #define HUGEPD_PGD_SHIFT PUD_SHIFT
173 #define HUGEPD_PUD_SHIFT PMD_SHIFT
176 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
181 hugepd_t
*hpdp
= NULL
;
182 unsigned pshift
= __ffs(sz
);
183 unsigned pdshift
= PGDIR_SHIFT
;
187 pg
= pgd_offset(mm
, addr
);
189 if (pshift
>= HUGEPD_PGD_SHIFT
) {
190 hpdp
= (hugepd_t
*)pg
;
193 pu
= pud_alloc(mm
, pg
, addr
);
194 if (pshift
>= HUGEPD_PUD_SHIFT
) {
195 hpdp
= (hugepd_t
*)pu
;
198 pm
= pmd_alloc(mm
, pu
, addr
);
199 hpdp
= (hugepd_t
*)pm
;
206 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
208 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
211 return hugepte_offset(hpdp
, addr
, pdshift
);
214 #ifdef CONFIG_PPC_FSL_BOOK3E
215 /* Build list of addresses of gigantic pages. This function is used in early
216 * boot before the buddy or bootmem allocator is setup.
218 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
220 unsigned int idx
= shift_to_mmu_psize(__ffs(page_size
));
226 gpage_freearray
[idx
].nr_gpages
= number_of_pages
;
228 for (i
= 0; i
< number_of_pages
; i
++) {
229 gpage_freearray
[idx
].gpage_list
[i
] = addr
;
235 * Moves the gigantic page addresses from the temporary list to the
236 * huge_boot_pages list.
238 int alloc_bootmem_huge_page(struct hstate
*hstate
)
240 struct huge_bootmem_page
*m
;
241 int idx
= shift_to_mmu_psize(hstate
->order
+ PAGE_SHIFT
);
242 int nr_gpages
= gpage_freearray
[idx
].nr_gpages
;
247 #ifdef CONFIG_HIGHMEM
249 * If gpages can be in highmem we can't use the trick of storing the
250 * data structure in the page; allocate space for this
252 m
= alloc_bootmem(sizeof(struct huge_bootmem_page
));
253 m
->phys
= gpage_freearray
[idx
].gpage_list
[--nr_gpages
];
255 m
= phys_to_virt(gpage_freearray
[idx
].gpage_list
[--nr_gpages
]);
258 list_add(&m
->list
, &huge_boot_pages
);
259 gpage_freearray
[idx
].nr_gpages
= nr_gpages
;
260 gpage_freearray
[idx
].gpage_list
[nr_gpages
] = 0;
266 * Scan the command line hugepagesz= options for gigantic pages; store those in
267 * a list that we use to allocate the memory once all options are parsed.
270 unsigned long gpage_npages
[MMU_PAGE_COUNT
];
272 static int __init
do_gpage_early_setup(char *param
, char *val
)
274 static phys_addr_t size
;
275 unsigned long npages
;
278 * The hugepagesz and hugepages cmdline options are interleaved. We
279 * use the size variable to keep track of whether or not this was done
280 * properly and skip over instances where it is incorrect. Other
281 * command-line parsing code will issue warnings, so we don't need to.
284 if ((strcmp(param
, "default_hugepagesz") == 0) ||
285 (strcmp(param
, "hugepagesz") == 0)) {
286 size
= memparse(val
, NULL
);
287 } else if (strcmp(param
, "hugepages") == 0) {
289 if (sscanf(val
, "%lu", &npages
) <= 0)
291 gpage_npages
[shift_to_mmu_psize(__ffs(size
))] = npages
;
300 * This function allocates physical space for pages that are larger than the
301 * buddy allocator can handle. We want to allocate these in highmem because
302 * the amount of lowmem is limited. This means that this function MUST be
303 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
304 * allocate to grab highmem.
306 void __init
reserve_hugetlb_gpages(void)
308 static __initdata
char cmdline
[COMMAND_LINE_SIZE
];
309 phys_addr_t size
, base
;
312 strlcpy(cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
313 parse_args("hugetlb gpages", cmdline
, NULL
, 0, &do_gpage_early_setup
);
316 * Walk gpage list in reverse, allocating larger page sizes first.
317 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
318 * When we reach the point in the list where pages are no longer
319 * considered gpages, we're done.
321 for (i
= MMU_PAGE_COUNT
-1; i
>= 0; i
--) {
322 if (mmu_psize_defs
[i
].shift
== 0 || gpage_npages
[i
] == 0)
324 else if (mmu_psize_to_shift(i
) < (MAX_ORDER
+ PAGE_SHIFT
))
327 size
= (phys_addr_t
)(1ULL << mmu_psize_to_shift(i
));
328 base
= memblock_alloc_base(size
* gpage_npages
[i
], size
,
329 MEMBLOCK_ALLOC_ANYWHERE
);
330 add_gpage(base
, size
, gpage_npages
[i
]);
334 #else /* !PPC_FSL_BOOK3E */
336 /* Build list of addresses of gigantic pages. This function is used in early
337 * boot before the buddy or bootmem allocator is setup.
339 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
343 while (number_of_pages
> 0) {
344 gpage_freearray
[nr_gpages
] = addr
;
351 /* Moves the gigantic page addresses from the temporary list to the
352 * huge_boot_pages list.
354 int alloc_bootmem_huge_page(struct hstate
*hstate
)
356 struct huge_bootmem_page
*m
;
359 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
360 gpage_freearray
[nr_gpages
] = 0;
361 list_add(&m
->list
, &huge_boot_pages
);
367 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
372 #ifdef CONFIG_PPC_FSL_BOOK3E
373 #define HUGEPD_FREELIST_SIZE \
374 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
376 struct hugepd_freelist
{
382 static DEFINE_PER_CPU(struct hugepd_freelist
*, hugepd_freelist_cur
);
384 static void hugepd_free_rcu_callback(struct rcu_head
*head
)
386 struct hugepd_freelist
*batch
=
387 container_of(head
, struct hugepd_freelist
, rcu
);
390 for (i
= 0; i
< batch
->index
; i
++)
391 kmem_cache_free(hugepte_cache
, batch
->ptes
[i
]);
393 free_page((unsigned long)batch
);
396 static void hugepd_free(struct mmu_gather
*tlb
, void *hugepte
)
398 struct hugepd_freelist
**batchp
;
400 batchp
= &__get_cpu_var(hugepd_freelist_cur
);
402 if (atomic_read(&tlb
->mm
->mm_users
) < 2 ||
403 cpumask_equal(mm_cpumask(tlb
->mm
),
404 cpumask_of(smp_processor_id()))) {
405 kmem_cache_free(hugepte_cache
, hugepte
);
409 if (*batchp
== NULL
) {
410 *batchp
= (struct hugepd_freelist
*)__get_free_page(GFP_ATOMIC
);
411 (*batchp
)->index
= 0;
414 (*batchp
)->ptes
[(*batchp
)->index
++] = hugepte
;
415 if ((*batchp
)->index
== HUGEPD_FREELIST_SIZE
) {
416 call_rcu_sched(&(*batchp
)->rcu
, hugepd_free_rcu_callback
);
422 static void free_hugepd_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
, int pdshift
,
423 unsigned long start
, unsigned long end
,
424 unsigned long floor
, unsigned long ceiling
)
426 pte_t
*hugepte
= hugepd_page(*hpdp
);
429 unsigned long pdmask
= ~((1UL << pdshift
) - 1);
430 unsigned int num_hugepd
= 1;
432 #ifdef CONFIG_PPC_FSL_BOOK3E
433 /* Note: On fsl the hpdp may be the first of several */
434 num_hugepd
= (1 << (hugepd_shift(*hpdp
) - pdshift
));
436 unsigned int shift
= hugepd_shift(*hpdp
);
447 if (end
- 1 > ceiling
- 1)
450 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++)
455 #ifdef CONFIG_PPC_FSL_BOOK3E
456 hugepd_free(tlb
, hugepte
);
458 pgtable_free_tlb(tlb
, hugepte
, pdshift
- shift
);
462 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
463 unsigned long addr
, unsigned long end
,
464 unsigned long floor
, unsigned long ceiling
)
472 pmd
= pmd_offset(pud
, addr
);
473 next
= pmd_addr_end(addr
, end
);
476 #ifdef CONFIG_PPC_FSL_BOOK3E
478 * Increment next by the size of the huge mapping since
479 * there may be more than one entry at this level for a
480 * single hugepage, but all of them point to
481 * the same kmem cache that holds the hugepte.
483 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pmd
));
485 free_hugepd_range(tlb
, (hugepd_t
*)pmd
, PMD_SHIFT
,
486 addr
, next
, floor
, ceiling
);
487 } while (addr
= next
, addr
!= end
);
497 if (end
- 1 > ceiling
- 1)
500 pmd
= pmd_offset(pud
, start
);
502 pmd_free_tlb(tlb
, pmd
, start
);
505 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
506 unsigned long addr
, unsigned long end
,
507 unsigned long floor
, unsigned long ceiling
)
515 pud
= pud_offset(pgd
, addr
);
516 next
= pud_addr_end(addr
, end
);
517 if (!is_hugepd(pud
)) {
518 if (pud_none_or_clear_bad(pud
))
520 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
523 #ifdef CONFIG_PPC_FSL_BOOK3E
525 * Increment next by the size of the huge mapping since
526 * there may be more than one entry at this level for a
527 * single hugepage, but all of them point to
528 * the same kmem cache that holds the hugepte.
530 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pud
));
532 free_hugepd_range(tlb
, (hugepd_t
*)pud
, PUD_SHIFT
,
533 addr
, next
, floor
, ceiling
);
535 } while (addr
= next
, addr
!= end
);
541 ceiling
&= PGDIR_MASK
;
545 if (end
- 1 > ceiling
- 1)
548 pud
= pud_offset(pgd
, start
);
550 pud_free_tlb(tlb
, pud
, start
);
554 * This function frees user-level page tables of a process.
556 * Must be called with pagetable lock held.
558 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
559 unsigned long addr
, unsigned long end
,
560 unsigned long floor
, unsigned long ceiling
)
566 * Because there are a number of different possible pagetable
567 * layouts for hugepage ranges, we limit knowledge of how
568 * things should be laid out to the allocation path
569 * (huge_pte_alloc(), above). Everything else works out the
570 * structure as it goes from information in the hugepd
571 * pointers. That means that we can't here use the
572 * optimization used in the normal page free_pgd_range(), of
573 * checking whether we're actually covering a large enough
574 * range to have to do anything at the top level of the walk
575 * instead of at the bottom.
577 * To make sense of this, you should probably go read the big
578 * block comment at the top of the normal free_pgd_range(),
583 next
= pgd_addr_end(addr
, end
);
584 pgd
= pgd_offset(tlb
->mm
, addr
);
585 if (!is_hugepd(pgd
)) {
586 if (pgd_none_or_clear_bad(pgd
))
588 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
590 #ifdef CONFIG_PPC_FSL_BOOK3E
592 * Increment next by the size of the huge mapping since
593 * there may be more than one entry at the pgd level
594 * for a single hugepage, but all of them point to the
595 * same kmem cache that holds the hugepte.
597 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pgd
));
599 free_hugepd_range(tlb
, (hugepd_t
*)pgd
, PGDIR_SHIFT
,
600 addr
, next
, floor
, ceiling
);
602 } while (addr
= next
, addr
!= end
);
606 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
613 ptep
= find_linux_pte_or_hugepte(mm
->pgd
, address
, &shift
);
615 /* Verify it is a huge page else bail. */
617 return ERR_PTR(-EINVAL
);
619 mask
= (1UL << shift
) - 1;
620 page
= pte_page(*ptep
);
622 page
+= (address
& mask
) / PAGE_SIZE
;
627 int pmd_huge(pmd_t pmd
)
632 int pud_huge(pud_t pud
)
638 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
639 pmd_t
*pmd
, int write
)
645 static noinline
int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
646 unsigned long end
, int write
, struct page
**pages
, int *nr
)
649 unsigned long pte_end
;
650 struct page
*head
, *page
, *tail
;
654 pte_end
= (addr
+ sz
) & ~(sz
-1);
659 mask
= _PAGE_PRESENT
| _PAGE_USER
;
663 if ((pte_val(pte
) & mask
) != mask
)
666 /* hugepages are never "special" */
667 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
670 head
= pte_page(pte
);
672 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
675 VM_BUG_ON(compound_head(page
) != head
);
680 } while (addr
+= PAGE_SIZE
, addr
!= end
);
682 if (!page_cache_add_speculative(head
, refs
)) {
687 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
688 /* Could be optimized better */
696 * Any tail page need their mapcount reference taken before we
701 get_huge_page_tail(tail
);
708 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
711 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
712 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
715 int gup_hugepd(hugepd_t
*hugepd
, unsigned pdshift
,
716 unsigned long addr
, unsigned long end
,
717 int write
, struct page
**pages
, int *nr
)
720 unsigned long sz
= 1UL << hugepd_shift(*hugepd
);
723 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
725 next
= hugepte_addr_end(addr
, end
, sz
);
726 if (!gup_hugepte(ptep
, sz
, addr
, end
, write
, pages
, nr
))
728 } while (ptep
++, addr
= next
, addr
!= end
);
733 #ifdef CONFIG_PPC_MM_SLICES
734 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
735 unsigned long len
, unsigned long pgoff
,
738 struct hstate
*hstate
= hstate_file(file
);
739 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
741 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1, 0);
745 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
747 #ifdef CONFIG_PPC_MM_SLICES
748 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
750 return 1UL << mmu_psize_to_shift(psize
);
752 if (!is_vm_hugetlb_page(vma
))
755 return huge_page_size(hstate_vma(vma
));
759 static inline bool is_power_of_4(unsigned long x
)
761 if (is_power_of_2(x
))
762 return (__ilog2(x
) % 2) ? false : true;
766 static int __init
add_huge_page_size(unsigned long long size
)
768 int shift
= __ffs(size
);
771 /* Check that it is a page size supported by the hardware and
772 * that it fits within pagetable and slice limits. */
773 #ifdef CONFIG_PPC_FSL_BOOK3E
774 if ((size
< PAGE_SIZE
) || !is_power_of_4(size
))
777 if (!is_power_of_2(size
)
778 || (shift
> SLICE_HIGH_SHIFT
) || (shift
<= PAGE_SHIFT
))
782 if ((mmu_psize
= shift_to_mmu_psize(shift
)) < 0)
785 #ifdef CONFIG_SPU_FS_64K_LS
786 /* Disable support for 64K huge pages when 64K SPU local store
787 * support is enabled as the current implementation conflicts.
789 if (shift
== PAGE_SHIFT_64K
)
791 #endif /* CONFIG_SPU_FS_64K_LS */
793 BUG_ON(mmu_psize_defs
[mmu_psize
].shift
!= shift
);
795 /* Return if huge page size has already been setup */
796 if (size_to_hstate(size
))
799 hugetlb_add_hstate(shift
- PAGE_SHIFT
);
804 static int __init
hugepage_setup_sz(char *str
)
806 unsigned long long size
;
808 size
= memparse(str
, &str
);
810 if (add_huge_page_size(size
) != 0)
811 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
815 __setup("hugepagesz=", hugepage_setup_sz
);
817 #ifdef CONFIG_PPC_FSL_BOOK3E
818 struct kmem_cache
*hugepte_cache
;
819 static int __init
hugetlbpage_init(void)
823 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
826 if (!mmu_psize_defs
[psize
].shift
)
829 shift
= mmu_psize_to_shift(psize
);
831 /* Don't treat normal page sizes as huge... */
832 if (shift
!= PAGE_SHIFT
)
833 if (add_huge_page_size(1ULL << shift
) < 0)
838 * Create a kmem cache for hugeptes. The bottom bits in the pte have
839 * size information encoded in them, so align them to allow this
841 hugepte_cache
= kmem_cache_create("hugepte-cache", sizeof(pte_t
),
842 HUGEPD_SHIFT_MASK
+ 1, 0, NULL
);
843 if (hugepte_cache
== NULL
)
844 panic("%s: Unable to create kmem cache for hugeptes\n",
847 /* Default hpage size = 4M */
848 if (mmu_psize_defs
[MMU_PAGE_4M
].shift
)
849 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_4M
].shift
;
851 panic("%s: Unable to set default huge page size\n", __func__
);
857 static int __init
hugetlbpage_init(void)
861 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
864 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
868 if (!mmu_psize_defs
[psize
].shift
)
871 shift
= mmu_psize_to_shift(psize
);
873 if (add_huge_page_size(1ULL << shift
) < 0)
876 if (shift
< PMD_SHIFT
)
878 else if (shift
< PUD_SHIFT
)
881 pdshift
= PGDIR_SHIFT
;
883 pgtable_cache_add(pdshift
- shift
, NULL
);
884 if (!PGT_CACHE(pdshift
- shift
))
885 panic("hugetlbpage_init(): could not create "
886 "pgtable cache for %d bit pagesize\n", shift
);
889 /* Set default large page size. Currently, we pick 16M or 1M
890 * depending on what is available
892 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
893 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_16M
].shift
;
894 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
895 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_1M
].shift
;
900 module_init(hugetlbpage_init
);
902 void flush_dcache_icache_hugepage(struct page
*page
)
907 BUG_ON(!PageCompound(page
));
909 for (i
= 0; i
< (1UL << compound_order(page
)); i
++) {
910 if (!PageHighMem(page
)) {
911 __flush_dcache_icache(page_address(page
+i
));
913 start
= kmap_atomic(page
+i
, KM_PPC_SYNC_ICACHE
);
914 __flush_dcache_icache(start
);
915 kunmap_atomic(start
, KM_PPC_SYNC_ICACHE
);