OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / arch / powerpc / platforms / pseries / eeh.c
blobc0b40af4ce4f130edbd094d48467f747a10d78cc
1 /*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/sched.h> /* for init_mm */
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rbtree.h>
31 #include <linux/seq_file.h>
32 #include <linux/spinlock.h>
33 #include <linux/export.h>
34 #include <linux/of.h>
36 #include <linux/atomic.h>
37 #include <asm/eeh.h>
38 #include <asm/eeh_event.h>
39 #include <asm/io.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/rtas.h>
45 /** Overview:
46 * EEH, or "Extended Error Handling" is a PCI bridge technology for
47 * dealing with PCI bus errors that can't be dealt with within the
48 * usual PCI framework, except by check-stopping the CPU. Systems
49 * that are designed for high-availability/reliability cannot afford
50 * to crash due to a "mere" PCI error, thus the need for EEH.
51 * An EEH-capable bridge operates by converting a detected error
52 * into a "slot freeze", taking the PCI adapter off-line, making
53 * the slot behave, from the OS'es point of view, as if the slot
54 * were "empty": all reads return 0xff's and all writes are silently
55 * ignored. EEH slot isolation events can be triggered by parity
56 * errors on the address or data busses (e.g. during posted writes),
57 * which in turn might be caused by low voltage on the bus, dust,
58 * vibration, humidity, radioactivity or plain-old failed hardware.
60 * Note, however, that one of the leading causes of EEH slot
61 * freeze events are buggy device drivers, buggy device microcode,
62 * or buggy device hardware. This is because any attempt by the
63 * device to bus-master data to a memory address that is not
64 * assigned to the device will trigger a slot freeze. (The idea
65 * is to prevent devices-gone-wild from corrupting system memory).
66 * Buggy hardware/drivers will have a miserable time co-existing
67 * with EEH.
69 * Ideally, a PCI device driver, when suspecting that an isolation
70 * event has occurred (e.g. by reading 0xff's), will then ask EEH
71 * whether this is the case, and then take appropriate steps to
72 * reset the PCI slot, the PCI device, and then resume operations.
73 * However, until that day, the checking is done here, with the
74 * eeh_check_failure() routine embedded in the MMIO macros. If
75 * the slot is found to be isolated, an "EEH Event" is synthesized
76 * and sent out for processing.
79 /* If a device driver keeps reading an MMIO register in an interrupt
80 * handler after a slot isolation event, it might be broken.
81 * This sets the threshold for how many read attempts we allow
82 * before printing an error message.
84 #define EEH_MAX_FAILS 2100000
86 /* Time to wait for a PCI slot to report status, in milliseconds */
87 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
89 /* RTAS tokens */
90 static int ibm_set_eeh_option;
91 static int ibm_set_slot_reset;
92 static int ibm_read_slot_reset_state;
93 static int ibm_read_slot_reset_state2;
94 static int ibm_slot_error_detail;
95 static int ibm_get_config_addr_info;
96 static int ibm_get_config_addr_info2;
97 static int ibm_configure_bridge;
98 static int ibm_configure_pe;
100 int eeh_subsystem_enabled;
101 EXPORT_SYMBOL(eeh_subsystem_enabled);
103 /* Lock to avoid races due to multiple reports of an error */
104 static DEFINE_RAW_SPINLOCK(confirm_error_lock);
106 /* Buffer for reporting slot-error-detail rtas calls. Its here
107 * in BSS, and not dynamically alloced, so that it ends up in
108 * RMO where RTAS can access it.
110 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
111 static DEFINE_SPINLOCK(slot_errbuf_lock);
112 static int eeh_error_buf_size;
114 /* Buffer for reporting pci register dumps. Its here in BSS, and
115 * not dynamically alloced, so that it ends up in RMO where RTAS
116 * can access it.
118 #define EEH_PCI_REGS_LOG_LEN 4096
119 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
121 /* System monitoring statistics */
122 static unsigned long no_device;
123 static unsigned long no_dn;
124 static unsigned long no_cfg_addr;
125 static unsigned long ignored_check;
126 static unsigned long total_mmio_ffs;
127 static unsigned long false_positives;
128 static unsigned long slot_resets;
130 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
132 /* --------------------------------------------------------------- */
133 /* Below lies the EEH event infrastructure */
135 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
136 char *driver_log, size_t loglen)
138 int config_addr;
139 unsigned long flags;
140 int rc;
142 /* Log the error with the rtas logger */
143 spin_lock_irqsave(&slot_errbuf_lock, flags);
144 memset(slot_errbuf, 0, eeh_error_buf_size);
146 /* Use PE configuration address, if present */
147 config_addr = pdn->eeh_config_addr;
148 if (pdn->eeh_pe_config_addr)
149 config_addr = pdn->eeh_pe_config_addr;
151 rc = rtas_call(ibm_slot_error_detail,
152 8, 1, NULL, config_addr,
153 BUID_HI(pdn->phb->buid),
154 BUID_LO(pdn->phb->buid),
155 virt_to_phys(driver_log), loglen,
156 virt_to_phys(slot_errbuf),
157 eeh_error_buf_size,
158 severity);
160 if (rc == 0)
161 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
162 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
166 * gather_pci_data - copy assorted PCI config space registers to buff
167 * @pdn: device to report data for
168 * @buf: point to buffer in which to log
169 * @len: amount of room in buffer
171 * This routine captures assorted PCI configuration space data,
172 * and puts them into a buffer for RTAS error logging.
174 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
176 struct pci_dev *dev = pdn->pcidev;
177 u32 cfg;
178 int cap, i;
179 int n = 0;
181 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
182 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
184 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
185 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
186 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
188 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
189 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
190 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
192 if (!dev) {
193 printk(KERN_WARNING "EEH: no PCI device for this of node\n");
194 return n;
197 /* Gather bridge-specific registers */
198 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
199 rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
200 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
201 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
203 rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
204 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
205 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
208 /* Dump out the PCI-X command and status regs */
209 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
210 if (cap) {
211 rtas_read_config(pdn, cap, 4, &cfg);
212 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
213 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
215 rtas_read_config(pdn, cap+4, 4, &cfg);
216 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
217 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
220 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
221 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
222 if (cap) {
223 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
224 printk(KERN_WARNING
225 "EEH: PCI-E capabilities and status follow:\n");
227 for (i=0; i<=8; i++) {
228 rtas_read_config(pdn, cap+4*i, 4, &cfg);
229 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
230 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
233 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
234 if (cap) {
235 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
236 printk(KERN_WARNING
237 "EEH: PCI-E AER capability register set follows:\n");
239 for (i=0; i<14; i++) {
240 rtas_read_config(pdn, cap+4*i, 4, &cfg);
241 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
242 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
247 /* Gather status on devices under the bridge */
248 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
249 struct device_node *dn;
251 for_each_child_of_node(pdn->node, dn) {
252 pdn = PCI_DN(dn);
253 if (pdn)
254 n += gather_pci_data(pdn, buf+n, len-n);
258 return n;
261 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
263 size_t loglen = 0;
264 pci_regs_buf[0] = 0;
266 rtas_pci_enable(pdn, EEH_THAW_MMIO);
267 rtas_configure_bridge(pdn);
268 eeh_restore_bars(pdn);
269 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
271 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
275 * read_slot_reset_state - Read the reset state of a device node's slot
276 * @dn: device node to read
277 * @rets: array to return results in
279 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
281 int token, outputs;
282 int config_addr;
284 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
285 token = ibm_read_slot_reset_state2;
286 outputs = 4;
287 } else {
288 token = ibm_read_slot_reset_state;
289 rets[2] = 0; /* fake PE Unavailable info */
290 outputs = 3;
293 /* Use PE configuration address, if present */
294 config_addr = pdn->eeh_config_addr;
295 if (pdn->eeh_pe_config_addr)
296 config_addr = pdn->eeh_pe_config_addr;
298 return rtas_call(token, 3, outputs, rets, config_addr,
299 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
303 * eeh_wait_for_slot_status - returns error status of slot
304 * @pdn pci device node
305 * @max_wait_msecs maximum number to millisecs to wait
307 * Return negative value if a permanent error, else return
308 * Partition Endpoint (PE) status value.
310 * If @max_wait_msecs is positive, then this routine will
311 * sleep until a valid status can be obtained, or until
312 * the max allowed wait time is exceeded, in which case
313 * a -2 is returned.
316 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
318 int rc;
319 int rets[3];
320 int mwait;
322 while (1) {
323 rc = read_slot_reset_state(pdn, rets);
324 if (rc) return rc;
325 if (rets[1] == 0) return -1; /* EEH is not supported */
327 if (rets[0] != 5) return rets[0]; /* return actual status */
329 if (rets[2] == 0) return -1; /* permanently unavailable */
331 if (max_wait_msecs <= 0) break;
333 mwait = rets[2];
334 if (mwait <= 0) {
335 printk (KERN_WARNING
336 "EEH: Firmware returned bad wait value=%d\n", mwait);
337 mwait = 1000;
338 } else if (mwait > 300*1000) {
339 printk (KERN_WARNING
340 "EEH: Firmware is taking too long, time=%d\n", mwait);
341 mwait = 300*1000;
343 max_wait_msecs -= mwait;
344 msleep (mwait);
347 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
348 return -2;
352 * eeh_token_to_phys - convert EEH address token to phys address
353 * @token i/o token, should be address in the form 0xA....
355 static inline unsigned long eeh_token_to_phys(unsigned long token)
357 pte_t *ptep;
358 unsigned long pa;
360 ptep = find_linux_pte(init_mm.pgd, token);
361 if (!ptep)
362 return token;
363 pa = pte_pfn(*ptep) << PAGE_SHIFT;
365 return pa | (token & (PAGE_SIZE-1));
368 /**
369 * Return the "partitionable endpoint" (pe) under which this device lies
371 struct device_node * find_device_pe(struct device_node *dn)
373 while ((dn->parent) && PCI_DN(dn->parent) &&
374 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
375 dn = dn->parent;
377 return dn;
380 /** Mark all devices that are children of this device as failed.
381 * Mark the device driver too, so that it can see the failure
382 * immediately; this is critical, since some drivers poll
383 * status registers in interrupts ... If a driver is polling,
384 * and the slot is frozen, then the driver can deadlock in
385 * an interrupt context, which is bad.
388 static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
390 struct device_node *dn;
392 for_each_child_of_node(parent, dn) {
393 if (PCI_DN(dn)) {
394 /* Mark the pci device driver too */
395 struct pci_dev *dev = PCI_DN(dn)->pcidev;
397 PCI_DN(dn)->eeh_mode |= mode_flag;
399 if (dev && dev->driver)
400 dev->error_state = pci_channel_io_frozen;
402 __eeh_mark_slot(dn, mode_flag);
407 void eeh_mark_slot (struct device_node *dn, int mode_flag)
409 struct pci_dev *dev;
410 dn = find_device_pe (dn);
412 /* Back up one, since config addrs might be shared */
413 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
414 dn = dn->parent;
416 PCI_DN(dn)->eeh_mode |= mode_flag;
418 /* Mark the pci device too */
419 dev = PCI_DN(dn)->pcidev;
420 if (dev)
421 dev->error_state = pci_channel_io_frozen;
423 __eeh_mark_slot(dn, mode_flag);
426 static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
428 struct device_node *dn;
430 for_each_child_of_node(parent, dn) {
431 if (PCI_DN(dn)) {
432 PCI_DN(dn)->eeh_mode &= ~mode_flag;
433 PCI_DN(dn)->eeh_check_count = 0;
434 __eeh_clear_slot(dn, mode_flag);
439 void eeh_clear_slot (struct device_node *dn, int mode_flag)
441 unsigned long flags;
442 raw_spin_lock_irqsave(&confirm_error_lock, flags);
444 dn = find_device_pe (dn);
446 /* Back up one, since config addrs might be shared */
447 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
448 dn = dn->parent;
450 PCI_DN(dn)->eeh_mode &= ~mode_flag;
451 PCI_DN(dn)->eeh_check_count = 0;
452 __eeh_clear_slot(dn, mode_flag);
453 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
456 void __eeh_set_pe_freset(struct device_node *parent, unsigned int *freset)
458 struct device_node *dn;
460 for_each_child_of_node(parent, dn) {
461 if (PCI_DN(dn)) {
463 struct pci_dev *dev = PCI_DN(dn)->pcidev;
465 if (dev && dev->driver)
466 *freset |= dev->needs_freset;
468 __eeh_set_pe_freset(dn, freset);
473 void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
475 struct pci_dev *dev;
476 dn = find_device_pe(dn);
478 /* Back up one, since config addrs might be shared */
479 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
480 dn = dn->parent;
482 dev = PCI_DN(dn)->pcidev;
483 if (dev)
484 *freset |= dev->needs_freset;
486 __eeh_set_pe_freset(dn, freset);
490 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
491 * @dn device node
492 * @dev pci device, if known
494 * Check for an EEH failure for the given device node. Call this
495 * routine if the result of a read was all 0xff's and you want to
496 * find out if this is due to an EEH slot freeze. This routine
497 * will query firmware for the EEH status.
499 * Returns 0 if there has not been an EEH error; otherwise returns
500 * a non-zero value and queues up a slot isolation event notification.
502 * It is safe to call this routine in an interrupt context.
504 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
506 int ret;
507 int rets[3];
508 unsigned long flags;
509 struct pci_dn *pdn;
510 int rc = 0;
511 const char *location;
513 total_mmio_ffs++;
515 if (!eeh_subsystem_enabled)
516 return 0;
518 if (!dn) {
519 no_dn++;
520 return 0;
522 dn = find_device_pe(dn);
523 pdn = PCI_DN(dn);
525 /* Access to IO BARs might get this far and still not want checking. */
526 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
527 pdn->eeh_mode & EEH_MODE_NOCHECK) {
528 ignored_check++;
529 pr_debug("EEH: Ignored check (%x) for %s %s\n",
530 pdn->eeh_mode, eeh_pci_name(dev), dn->full_name);
531 return 0;
534 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
535 no_cfg_addr++;
536 return 0;
539 /* If we already have a pending isolation event for this
540 * slot, we know it's bad already, we don't need to check.
541 * Do this checking under a lock; as multiple PCI devices
542 * in one slot might report errors simultaneously, and we
543 * only want one error recovery routine running.
545 raw_spin_lock_irqsave(&confirm_error_lock, flags);
546 rc = 1;
547 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
548 pdn->eeh_check_count ++;
549 if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) {
550 location = of_get_property(dn, "ibm,loc-code", NULL);
551 printk (KERN_ERR "EEH: %d reads ignored for recovering device at "
552 "location=%s driver=%s pci addr=%s\n",
553 pdn->eeh_check_count, location,
554 eeh_driver_name(dev), eeh_pci_name(dev));
555 printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n",
556 eeh_driver_name(dev));
557 dump_stack();
559 goto dn_unlock;
563 * Now test for an EEH failure. This is VERY expensive.
564 * Note that the eeh_config_addr may be a parent device
565 * in the case of a device behind a bridge, or it may be
566 * function zero of a multi-function device.
567 * In any case they must share a common PHB.
569 ret = read_slot_reset_state(pdn, rets);
571 /* If the call to firmware failed, punt */
572 if (ret != 0) {
573 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
574 ret, dn->full_name);
575 false_positives++;
576 pdn->eeh_false_positives ++;
577 rc = 0;
578 goto dn_unlock;
581 /* Note that config-io to empty slots may fail;
582 * they are empty when they don't have children. */
583 if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
584 false_positives++;
585 pdn->eeh_false_positives ++;
586 rc = 0;
587 goto dn_unlock;
590 /* If EEH is not supported on this device, punt. */
591 if (rets[1] != 1) {
592 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
593 ret, dn->full_name);
594 false_positives++;
595 pdn->eeh_false_positives ++;
596 rc = 0;
597 goto dn_unlock;
600 /* If not the kind of error we know about, punt. */
601 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
602 false_positives++;
603 pdn->eeh_false_positives ++;
604 rc = 0;
605 goto dn_unlock;
608 slot_resets++;
610 /* Avoid repeated reports of this failure, including problems
611 * with other functions on this device, and functions under
612 * bridges. */
613 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
614 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
616 eeh_send_failure_event (dn, dev);
618 /* Most EEH events are due to device driver bugs. Having
619 * a stack trace will help the device-driver authors figure
620 * out what happened. So print that out. */
621 dump_stack();
622 return 1;
624 dn_unlock:
625 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
626 return rc;
629 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
632 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
633 * @token i/o token, should be address in the form 0xA....
634 * @val value, should be all 1's (XXX why do we need this arg??)
636 * Check for an EEH failure at the given token address. Call this
637 * routine if the result of a read was all 0xff's and you want to
638 * find out if this is due to an EEH slot freeze event. This routine
639 * will query firmware for the EEH status.
641 * Note this routine is safe to call in an interrupt context.
643 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
645 unsigned long addr;
646 struct pci_dev *dev;
647 struct device_node *dn;
649 /* Finding the phys addr + pci device; this is pretty quick. */
650 addr = eeh_token_to_phys((unsigned long __force) token);
651 dev = pci_get_device_by_addr(addr);
652 if (!dev) {
653 no_device++;
654 return val;
657 dn = pci_device_to_OF_node(dev);
658 eeh_dn_check_failure (dn, dev);
660 pci_dev_put(dev);
661 return val;
664 EXPORT_SYMBOL(eeh_check_failure);
666 /* ------------------------------------------------------------- */
667 /* The code below deals with error recovery */
670 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
671 * @pdn pci device node
675 rtas_pci_enable(struct pci_dn *pdn, int function)
677 int config_addr;
678 int rc;
680 /* Use PE configuration address, if present */
681 config_addr = pdn->eeh_config_addr;
682 if (pdn->eeh_pe_config_addr)
683 config_addr = pdn->eeh_pe_config_addr;
685 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
686 config_addr,
687 BUID_HI(pdn->phb->buid),
688 BUID_LO(pdn->phb->buid),
689 function);
691 if (rc)
692 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
693 function, rc, pdn->node->full_name);
695 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
696 if ((rc == 4) && (function == EEH_THAW_MMIO))
697 return 0;
699 return rc;
703 * rtas_pci_slot_reset - raises/lowers the pci #RST line
704 * @pdn pci device node
705 * @state: 1/0 to raise/lower the #RST
707 * Clear the EEH-frozen condition on a slot. This routine
708 * asserts the PCI #RST line if the 'state' argument is '1',
709 * and drops the #RST line if 'state is '0'. This routine is
710 * safe to call in an interrupt context.
714 static void
715 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
717 int config_addr;
718 int rc;
720 BUG_ON (pdn==NULL);
722 if (!pdn->phb) {
723 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
724 pdn->node->full_name);
725 return;
728 /* Use PE configuration address, if present */
729 config_addr = pdn->eeh_config_addr;
730 if (pdn->eeh_pe_config_addr)
731 config_addr = pdn->eeh_pe_config_addr;
733 rc = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
734 config_addr,
735 BUID_HI(pdn->phb->buid),
736 BUID_LO(pdn->phb->buid),
737 state);
739 /* Fundamental-reset not supported on this PE, try hot-reset */
740 if (rc == -8 && state == 3) {
741 rc = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
742 config_addr,
743 BUID_HI(pdn->phb->buid),
744 BUID_LO(pdn->phb->buid), 1);
745 if (rc)
746 printk(KERN_WARNING
747 "EEH: Unable to reset the failed slot,"
748 " #RST=%d dn=%s\n",
749 rc, pdn->node->full_name);
754 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
755 * @dev: pci device struct
756 * @state: reset state to enter
758 * Return value:
759 * 0 if success
761 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
763 struct device_node *dn = pci_device_to_OF_node(dev);
764 struct pci_dn *pdn = PCI_DN(dn);
766 switch (state) {
767 case pcie_deassert_reset:
768 rtas_pci_slot_reset(pdn, 0);
769 break;
770 case pcie_hot_reset:
771 rtas_pci_slot_reset(pdn, 1);
772 break;
773 case pcie_warm_reset:
774 rtas_pci_slot_reset(pdn, 3);
775 break;
776 default:
777 return -EINVAL;
780 return 0;
784 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
785 * @pdn: pci device node to be reset.
788 static void __rtas_set_slot_reset(struct pci_dn *pdn)
790 unsigned int freset = 0;
792 /* Determine type of EEH reset required for
793 * Partitionable Endpoint, a hot-reset (1)
794 * or a fundamental reset (3).
795 * A fundamental reset required by any device under
796 * Partitionable Endpoint trumps hot-reset.
798 eeh_set_pe_freset(pdn->node, &freset);
800 if (freset)
801 rtas_pci_slot_reset(pdn, 3);
802 else
803 rtas_pci_slot_reset(pdn, 1);
805 /* The PCI bus requires that the reset be held high for at least
806 * a 100 milliseconds. We wait a bit longer 'just in case'. */
808 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
809 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
811 /* We might get hit with another EEH freeze as soon as the
812 * pci slot reset line is dropped. Make sure we don't miss
813 * these, and clear the flag now. */
814 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
816 rtas_pci_slot_reset (pdn, 0);
818 /* After a PCI slot has been reset, the PCI Express spec requires
819 * a 1.5 second idle time for the bus to stabilize, before starting
820 * up traffic. */
821 #define PCI_BUS_SETTLE_TIME_MSEC 1800
822 msleep (PCI_BUS_SETTLE_TIME_MSEC);
825 int rtas_set_slot_reset(struct pci_dn *pdn)
827 int i, rc;
829 /* Take three shots at resetting the bus */
830 for (i=0; i<3; i++) {
831 __rtas_set_slot_reset(pdn);
833 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
834 if (rc == 0)
835 return 0;
837 if (rc < 0) {
838 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
839 pdn->node->full_name);
840 return -1;
842 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
843 i+1, pdn->node->full_name, rc);
846 return -1;
849 /* ------------------------------------------------------- */
850 /** Save and restore of PCI BARs
852 * Although firmware will set up BARs during boot, it doesn't
853 * set up device BAR's after a device reset, although it will,
854 * if requested, set up bridge configuration. Thus, we need to
855 * configure the PCI devices ourselves.
859 * __restore_bars - Restore the Base Address Registers
860 * @pdn: pci device node
862 * Loads the PCI configuration space base address registers,
863 * the expansion ROM base address, the latency timer, and etc.
864 * from the saved values in the device node.
866 static inline void __restore_bars (struct pci_dn *pdn)
868 int i;
869 u32 cmd;
871 if (NULL==pdn->phb) return;
872 for (i=4; i<10; i++) {
873 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
876 /* 12 == Expansion ROM Address */
877 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
879 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
880 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
882 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
883 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
885 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
886 SAVED_BYTE(PCI_LATENCY_TIMER));
888 /* max latency, min grant, interrupt pin and line */
889 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
891 /* Restore PERR & SERR bits, some devices require it,
892 don't touch the other command bits */
893 rtas_read_config(pdn, PCI_COMMAND, 4, &cmd);
894 if (pdn->config_space[1] & PCI_COMMAND_PARITY)
895 cmd |= PCI_COMMAND_PARITY;
896 else
897 cmd &= ~PCI_COMMAND_PARITY;
898 if (pdn->config_space[1] & PCI_COMMAND_SERR)
899 cmd |= PCI_COMMAND_SERR;
900 else
901 cmd &= ~PCI_COMMAND_SERR;
902 rtas_write_config(pdn, PCI_COMMAND, 4, cmd);
906 * eeh_restore_bars - restore the PCI config space info
908 * This routine performs a recursive walk to the children
909 * of this device as well.
911 void eeh_restore_bars(struct pci_dn *pdn)
913 struct device_node *dn;
914 if (!pdn)
915 return;
917 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
918 __restore_bars (pdn);
920 for_each_child_of_node(pdn->node, dn)
921 eeh_restore_bars (PCI_DN(dn));
925 * eeh_save_bars - save device bars
927 * Save the values of the device bars. Unlike the restore
928 * routine, this routine is *not* recursive. This is because
929 * PCI devices are added individually; but, for the restore,
930 * an entire slot is reset at a time.
932 static void eeh_save_bars(struct pci_dn *pdn)
934 int i;
936 if (!pdn )
937 return;
939 for (i = 0; i < 16; i++)
940 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
943 void
944 rtas_configure_bridge(struct pci_dn *pdn)
946 int config_addr;
947 int rc;
948 int token;
950 /* Use PE configuration address, if present */
951 config_addr = pdn->eeh_config_addr;
952 if (pdn->eeh_pe_config_addr)
953 config_addr = pdn->eeh_pe_config_addr;
955 /* Use new configure-pe function, if supported */
956 if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE)
957 token = ibm_configure_pe;
958 else
959 token = ibm_configure_bridge;
961 rc = rtas_call(token, 3, 1, NULL,
962 config_addr,
963 BUID_HI(pdn->phb->buid),
964 BUID_LO(pdn->phb->buid));
965 if (rc) {
966 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
967 rc, pdn->node->full_name);
971 /* ------------------------------------------------------------- */
972 /* The code below deals with enabling EEH for devices during the
973 * early boot sequence. EEH must be enabled before any PCI probing
974 * can be done.
977 #define EEH_ENABLE 1
979 struct eeh_early_enable_info {
980 unsigned int buid_hi;
981 unsigned int buid_lo;
984 static int get_pe_addr (int config_addr,
985 struct eeh_early_enable_info *info)
987 unsigned int rets[3];
988 int ret;
990 /* Use latest config-addr token on power6 */
991 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
992 /* Make sure we have a PE in hand */
993 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
994 config_addr, info->buid_hi, info->buid_lo, 1);
995 if (ret || (rets[0]==0))
996 return 0;
998 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
999 config_addr, info->buid_hi, info->buid_lo, 0);
1000 if (ret)
1001 return 0;
1002 return rets[0];
1005 /* Use older config-addr token on power5 */
1006 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
1007 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
1008 config_addr, info->buid_hi, info->buid_lo, 0);
1009 if (ret)
1010 return 0;
1011 return rets[0];
1013 return 0;
1016 /* Enable eeh for the given device node. */
1017 static void *early_enable_eeh(struct device_node *dn, void *data)
1019 unsigned int rets[3];
1020 struct eeh_early_enable_info *info = data;
1021 int ret;
1022 const u32 *class_code = of_get_property(dn, "class-code", NULL);
1023 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
1024 const u32 *device_id = of_get_property(dn, "device-id", NULL);
1025 const u32 *regs;
1026 int enable;
1027 struct pci_dn *pdn = PCI_DN(dn);
1029 pdn->class_code = 0;
1030 pdn->eeh_mode = 0;
1031 pdn->eeh_check_count = 0;
1032 pdn->eeh_freeze_count = 0;
1033 pdn->eeh_false_positives = 0;
1035 if (!of_device_is_available(dn))
1036 return NULL;
1038 /* Ignore bad nodes. */
1039 if (!class_code || !vendor_id || !device_id)
1040 return NULL;
1042 /* There is nothing to check on PCI to ISA bridges */
1043 if (dn->type && !strcmp(dn->type, "isa")) {
1044 pdn->eeh_mode |= EEH_MODE_NOCHECK;
1045 return NULL;
1047 pdn->class_code = *class_code;
1049 /* Ok... see if this device supports EEH. Some do, some don't,
1050 * and the only way to find out is to check each and every one. */
1051 regs = of_get_property(dn, "reg", NULL);
1052 if (regs) {
1053 /* First register entry is addr (00BBSS00) */
1054 /* Try to enable eeh */
1055 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
1056 regs[0], info->buid_hi, info->buid_lo,
1057 EEH_ENABLE);
1059 enable = 0;
1060 if (ret == 0) {
1061 pdn->eeh_config_addr = regs[0];
1063 /* If the newer, better, ibm,get-config-addr-info is supported,
1064 * then use that instead. */
1065 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
1067 /* Some older systems (Power4) allow the
1068 * ibm,set-eeh-option call to succeed even on nodes
1069 * where EEH is not supported. Verify support
1070 * explicitly. */
1071 ret = read_slot_reset_state(pdn, rets);
1072 if ((ret == 0) && (rets[1] == 1))
1073 enable = 1;
1076 if (enable) {
1077 eeh_subsystem_enabled = 1;
1078 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1080 pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1081 dn->full_name, pdn->eeh_config_addr,
1082 pdn->eeh_pe_config_addr);
1083 } else {
1085 /* This device doesn't support EEH, but it may have an
1086 * EEH parent, in which case we mark it as supported. */
1087 if (dn->parent && PCI_DN(dn->parent)
1088 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1089 /* Parent supports EEH. */
1090 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1091 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1092 return NULL;
1095 } else {
1096 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1097 dn->full_name);
1100 eeh_save_bars(pdn);
1101 return NULL;
1105 * Initialize EEH by trying to enable it for all of the adapters in the system.
1106 * As a side effect we can determine here if eeh is supported at all.
1107 * Note that we leave EEH on so failed config cycles won't cause a machine
1108 * check. If a user turns off EEH for a particular adapter they are really
1109 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1110 * grant access to a slot if EEH isn't enabled, and so we always enable
1111 * EEH for all slots/all devices.
1113 * The eeh-force-off option disables EEH checking globally, for all slots.
1114 * Even if force-off is set, the EEH hardware is still enabled, so that
1115 * newer systems can boot.
1117 void __init eeh_init(void)
1119 struct device_node *phb, *np;
1120 struct eeh_early_enable_info info;
1122 raw_spin_lock_init(&confirm_error_lock);
1123 spin_lock_init(&slot_errbuf_lock);
1125 np = of_find_node_by_path("/rtas");
1126 if (np == NULL)
1127 return;
1129 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1130 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1131 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1132 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1133 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1134 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1135 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1136 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1137 ibm_configure_pe = rtas_token("ibm,configure-pe");
1139 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1140 return;
1142 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1143 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1144 eeh_error_buf_size = 1024;
1146 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1147 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1148 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1149 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1152 /* Enable EEH for all adapters. Note that eeh requires buid's */
1153 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1154 phb = of_find_node_by_name(phb, "pci")) {
1155 unsigned long buid;
1157 buid = get_phb_buid(phb);
1158 if (buid == 0 || PCI_DN(phb) == NULL)
1159 continue;
1161 info.buid_lo = BUID_LO(buid);
1162 info.buid_hi = BUID_HI(buid);
1163 traverse_pci_devices(phb, early_enable_eeh, &info);
1166 if (eeh_subsystem_enabled)
1167 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1168 else
1169 printk(KERN_WARNING "EEH: No capable adapters found\n");
1173 * eeh_add_device_early - enable EEH for the indicated device_node
1174 * @dn: device node for which to set up EEH
1176 * This routine must be used to perform EEH initialization for PCI
1177 * devices that were added after system boot (e.g. hotplug, dlpar).
1178 * This routine must be called before any i/o is performed to the
1179 * adapter (inluding any config-space i/o).
1180 * Whether this actually enables EEH or not for this device depends
1181 * on the CEC architecture, type of the device, on earlier boot
1182 * command-line arguments & etc.
1184 static void eeh_add_device_early(struct device_node *dn)
1186 struct pci_controller *phb;
1187 struct eeh_early_enable_info info;
1189 if (!dn || !PCI_DN(dn))
1190 return;
1191 phb = PCI_DN(dn)->phb;
1193 /* USB Bus children of PCI devices will not have BUID's */
1194 if (NULL == phb || 0 == phb->buid)
1195 return;
1197 info.buid_hi = BUID_HI(phb->buid);
1198 info.buid_lo = BUID_LO(phb->buid);
1199 early_enable_eeh(dn, &info);
1202 void eeh_add_device_tree_early(struct device_node *dn)
1204 struct device_node *sib;
1206 for_each_child_of_node(dn, sib)
1207 eeh_add_device_tree_early(sib);
1208 eeh_add_device_early(dn);
1210 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1213 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1214 * @dev: pci device for which to set up EEH
1216 * This routine must be used to complete EEH initialization for PCI
1217 * devices that were added after system boot (e.g. hotplug, dlpar).
1219 static void eeh_add_device_late(struct pci_dev *dev)
1221 struct device_node *dn;
1222 struct pci_dn *pdn;
1224 if (!dev || !eeh_subsystem_enabled)
1225 return;
1227 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1229 dn = pci_device_to_OF_node(dev);
1230 pdn = PCI_DN(dn);
1231 if (pdn->pcidev == dev) {
1232 pr_debug("EEH: Already referenced !\n");
1233 return;
1235 WARN_ON(pdn->pcidev);
1237 pci_dev_get (dev);
1238 pdn->pcidev = dev;
1240 pci_addr_cache_insert_device(dev);
1241 eeh_sysfs_add_device(dev);
1244 void eeh_add_device_tree_late(struct pci_bus *bus)
1246 struct pci_dev *dev;
1248 list_for_each_entry(dev, &bus->devices, bus_list) {
1249 eeh_add_device_late(dev);
1250 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1251 struct pci_bus *subbus = dev->subordinate;
1252 if (subbus)
1253 eeh_add_device_tree_late(subbus);
1257 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1260 * eeh_remove_device - undo EEH setup for the indicated pci device
1261 * @dev: pci device to be removed
1263 * This routine should be called when a device is removed from
1264 * a running system (e.g. by hotplug or dlpar). It unregisters
1265 * the PCI device from the EEH subsystem. I/O errors affecting
1266 * this device will no longer be detected after this call; thus,
1267 * i/o errors affecting this slot may leave this device unusable.
1269 static void eeh_remove_device(struct pci_dev *dev)
1271 struct device_node *dn;
1272 if (!dev || !eeh_subsystem_enabled)
1273 return;
1275 /* Unregister the device with the EEH/PCI address search system */
1276 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1278 dn = pci_device_to_OF_node(dev);
1279 if (PCI_DN(dn)->pcidev == NULL) {
1280 pr_debug("EEH: Not referenced !\n");
1281 return;
1283 PCI_DN(dn)->pcidev = NULL;
1284 pci_dev_put (dev);
1286 pci_addr_cache_remove_device(dev);
1287 eeh_sysfs_remove_device(dev);
1290 void eeh_remove_bus_device(struct pci_dev *dev)
1292 struct pci_bus *bus = dev->subordinate;
1293 struct pci_dev *child, *tmp;
1295 eeh_remove_device(dev);
1297 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1298 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1299 eeh_remove_bus_device(child);
1302 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1304 static int proc_eeh_show(struct seq_file *m, void *v)
1306 if (0 == eeh_subsystem_enabled) {
1307 seq_printf(m, "EEH Subsystem is globally disabled\n");
1308 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1309 } else {
1310 seq_printf(m, "EEH Subsystem is enabled\n");
1311 seq_printf(m,
1312 "no device=%ld\n"
1313 "no device node=%ld\n"
1314 "no config address=%ld\n"
1315 "check not wanted=%ld\n"
1316 "eeh_total_mmio_ffs=%ld\n"
1317 "eeh_false_positives=%ld\n"
1318 "eeh_slot_resets=%ld\n",
1319 no_device, no_dn, no_cfg_addr,
1320 ignored_check, total_mmio_ffs,
1321 false_positives,
1322 slot_resets);
1325 return 0;
1328 static int proc_eeh_open(struct inode *inode, struct file *file)
1330 return single_open(file, proc_eeh_show, NULL);
1333 static const struct file_operations proc_eeh_operations = {
1334 .open = proc_eeh_open,
1335 .read = seq_read,
1336 .llseek = seq_lseek,
1337 .release = single_release,
1340 static int __init eeh_init_proc(void)
1342 if (machine_is(pseries))
1343 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1344 return 0;
1346 __initcall(eeh_init_proc);