OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / crypto / mv_cesa.c
blob0d40cf66b3cc55111182515fd4d695101d200fa0
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/sha.h>
22 #include "mv_cesa.h"
24 #define MV_CESA "MV-CESA:"
25 #define MAX_HW_HASH_SIZE 0xFFFF
28 * STM:
29 * /---------------------------------------\
30 * | | request complete
31 * \./ |
32 * IDLE -> new request -> BUSY -> done -> DEQUEUE
33 * /°\ |
34 * | | more scatter entries
35 * \________________/
37 enum engine_status {
38 ENGINE_IDLE,
39 ENGINE_BUSY,
40 ENGINE_W_DEQUEUE,
43 /**
44 * struct req_progress - used for every crypt request
45 * @src_sg_it: sg iterator for src
46 * @dst_sg_it: sg iterator for dst
47 * @sg_src_left: bytes left in src to process (scatter list)
48 * @src_start: offset to add to src start position (scatter list)
49 * @crypt_len: length of current hw crypt/hash process
50 * @hw_nbytes: total bytes to process in hw for this request
51 * @copy_back: whether to copy data back (crypt) or not (hash)
52 * @sg_dst_left: bytes left dst to process in this scatter list
53 * @dst_start: offset to add to dst start position (scatter list)
54 * @hw_processed_bytes: number of bytes processed by hw (request).
56 * sg helper are used to iterate over the scatterlist. Since the size of the
57 * SRAM may be less than the scatter size, this struct struct is used to keep
58 * track of progress within current scatterlist.
60 struct req_progress {
61 struct sg_mapping_iter src_sg_it;
62 struct sg_mapping_iter dst_sg_it;
63 void (*complete) (void);
64 void (*process) (int is_first);
66 /* src mostly */
67 int sg_src_left;
68 int src_start;
69 int crypt_len;
70 int hw_nbytes;
71 /* dst mostly */
72 int copy_back;
73 int sg_dst_left;
74 int dst_start;
75 int hw_processed_bytes;
78 struct crypto_priv {
79 void __iomem *reg;
80 void __iomem *sram;
81 int irq;
82 struct task_struct *queue_th;
84 /* the lock protects queue and eng_st */
85 spinlock_t lock;
86 struct crypto_queue queue;
87 enum engine_status eng_st;
88 struct crypto_async_request *cur_req;
89 struct req_progress p;
90 int max_req_size;
91 int sram_size;
92 int has_sha1;
93 int has_hmac_sha1;
96 static struct crypto_priv *cpg;
98 struct mv_ctx {
99 u8 aes_enc_key[AES_KEY_LEN];
100 u32 aes_dec_key[8];
101 int key_len;
102 u32 need_calc_aes_dkey;
105 enum crypto_op {
106 COP_AES_ECB,
107 COP_AES_CBC,
110 struct mv_req_ctx {
111 enum crypto_op op;
112 int decrypt;
115 enum hash_op {
116 COP_SHA1,
117 COP_HMAC_SHA1
120 struct mv_tfm_hash_ctx {
121 struct crypto_shash *fallback;
122 struct crypto_shash *base_hash;
123 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
124 int count_add;
125 enum hash_op op;
128 struct mv_req_hash_ctx {
129 u64 count;
130 u32 state[SHA1_DIGEST_SIZE / 4];
131 u8 buffer[SHA1_BLOCK_SIZE];
132 int first_hash; /* marks that we don't have previous state */
133 int last_chunk; /* marks that this is the 'final' request */
134 int extra_bytes; /* unprocessed bytes in buffer */
135 enum hash_op op;
136 int count_add;
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
141 struct crypto_aes_ctx gen_aes_key;
142 int key_pos;
144 if (!ctx->need_calc_aes_dkey)
145 return;
147 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
149 key_pos = ctx->key_len + 24;
150 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151 switch (ctx->key_len) {
152 case AES_KEYSIZE_256:
153 key_pos -= 2;
154 /* fall */
155 case AES_KEYSIZE_192:
156 key_pos -= 2;
157 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158 4 * 4);
159 break;
161 ctx->need_calc_aes_dkey = 0;
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165 unsigned int len)
167 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
170 switch (len) {
171 case AES_KEYSIZE_128:
172 case AES_KEYSIZE_192:
173 case AES_KEYSIZE_256:
174 break;
175 default:
176 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177 return -EINVAL;
179 ctx->key_len = len;
180 ctx->need_calc_aes_dkey = 1;
182 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183 return 0;
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
188 int ret;
189 void *sbuf;
190 int copy_len;
192 while (len) {
193 if (!p->sg_src_left) {
194 ret = sg_miter_next(&p->src_sg_it);
195 BUG_ON(!ret);
196 p->sg_src_left = p->src_sg_it.length;
197 p->src_start = 0;
200 sbuf = p->src_sg_it.addr + p->src_start;
202 copy_len = min(p->sg_src_left, len);
203 memcpy(dbuf, sbuf, copy_len);
205 p->src_start += copy_len;
206 p->sg_src_left -= copy_len;
208 len -= copy_len;
209 dbuf += copy_len;
213 static void setup_data_in(void)
215 struct req_progress *p = &cpg->p;
216 int data_in_sram =
217 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
218 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
219 data_in_sram - p->crypt_len);
220 p->crypt_len = data_in_sram;
223 static void mv_process_current_q(int first_block)
225 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
226 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
227 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
228 struct sec_accel_config op;
230 switch (req_ctx->op) {
231 case COP_AES_ECB:
232 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
233 break;
234 case COP_AES_CBC:
235 default:
236 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
237 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
238 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
239 if (first_block)
240 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
241 break;
243 if (req_ctx->decrypt) {
244 op.config |= CFG_DIR_DEC;
245 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
246 AES_KEY_LEN);
247 } else {
248 op.config |= CFG_DIR_ENC;
249 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
250 AES_KEY_LEN);
253 switch (ctx->key_len) {
254 case AES_KEYSIZE_128:
255 op.config |= CFG_AES_LEN_128;
256 break;
257 case AES_KEYSIZE_192:
258 op.config |= CFG_AES_LEN_192;
259 break;
260 case AES_KEYSIZE_256:
261 op.config |= CFG_AES_LEN_256;
262 break;
264 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
265 ENC_P_DST(SRAM_DATA_OUT_START);
266 op.enc_key_p = SRAM_DATA_KEY_P;
268 setup_data_in();
269 op.enc_len = cpg->p.crypt_len;
270 memcpy(cpg->sram + SRAM_CONFIG, &op,
271 sizeof(struct sec_accel_config));
273 /* GO */
274 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
277 * XXX: add timer if the interrupt does not occur for some mystery
278 * reason
282 static void mv_crypto_algo_completion(void)
284 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
285 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
287 sg_miter_stop(&cpg->p.src_sg_it);
288 sg_miter_stop(&cpg->p.dst_sg_it);
290 if (req_ctx->op != COP_AES_CBC)
291 return ;
293 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
296 static void mv_process_hash_current(int first_block)
298 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
299 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
300 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
301 struct req_progress *p = &cpg->p;
302 struct sec_accel_config op = { 0 };
303 int is_last;
305 switch (req_ctx->op) {
306 case COP_SHA1:
307 default:
308 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
309 break;
310 case COP_HMAC_SHA1:
311 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
312 memcpy(cpg->sram + SRAM_HMAC_IV_IN,
313 tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
314 break;
317 op.mac_src_p =
318 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
319 req_ctx->
320 count);
322 setup_data_in();
324 op.mac_digest =
325 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
326 op.mac_iv =
327 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
328 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
330 is_last = req_ctx->last_chunk
331 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
332 && (req_ctx->count <= MAX_HW_HASH_SIZE);
333 if (req_ctx->first_hash) {
334 if (is_last)
335 op.config |= CFG_NOT_FRAG;
336 else
337 op.config |= CFG_FIRST_FRAG;
339 req_ctx->first_hash = 0;
340 } else {
341 if (is_last)
342 op.config |= CFG_LAST_FRAG;
343 else
344 op.config |= CFG_MID_FRAG;
346 if (first_block) {
347 writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
348 writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
349 writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
350 writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
351 writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
355 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
357 /* GO */
358 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
361 * XXX: add timer if the interrupt does not occur for some mystery
362 * reason
366 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
367 struct shash_desc *desc)
369 int i;
370 struct sha1_state shash_state;
372 shash_state.count = ctx->count + ctx->count_add;
373 for (i = 0; i < 5; i++)
374 shash_state.state[i] = ctx->state[i];
375 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
376 return crypto_shash_import(desc, &shash_state);
379 static int mv_hash_final_fallback(struct ahash_request *req)
381 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
382 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
383 struct {
384 struct shash_desc shash;
385 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
386 } desc;
387 int rc;
389 desc.shash.tfm = tfm_ctx->fallback;
390 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
391 if (unlikely(req_ctx->first_hash)) {
392 crypto_shash_init(&desc.shash);
393 crypto_shash_update(&desc.shash, req_ctx->buffer,
394 req_ctx->extra_bytes);
395 } else {
396 /* only SHA1 for now....
398 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
399 if (rc)
400 goto out;
402 rc = crypto_shash_final(&desc.shash, req->result);
403 out:
404 return rc;
407 static void mv_hash_algo_completion(void)
409 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
410 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
412 if (ctx->extra_bytes)
413 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
414 sg_miter_stop(&cpg->p.src_sg_it);
416 if (likely(ctx->last_chunk)) {
417 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
418 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
419 crypto_ahash_digestsize(crypto_ahash_reqtfm
420 (req)));
421 } else
422 mv_hash_final_fallback(req);
423 } else {
424 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
425 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
426 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
427 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
428 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
432 static void dequeue_complete_req(void)
434 struct crypto_async_request *req = cpg->cur_req;
435 void *buf;
436 int ret;
437 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
438 if (cpg->p.copy_back) {
439 int need_copy_len = cpg->p.crypt_len;
440 int sram_offset = 0;
441 do {
442 int dst_copy;
444 if (!cpg->p.sg_dst_left) {
445 ret = sg_miter_next(&cpg->p.dst_sg_it);
446 BUG_ON(!ret);
447 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
448 cpg->p.dst_start = 0;
451 buf = cpg->p.dst_sg_it.addr;
452 buf += cpg->p.dst_start;
454 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
456 memcpy(buf,
457 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
458 dst_copy);
459 sram_offset += dst_copy;
460 cpg->p.sg_dst_left -= dst_copy;
461 need_copy_len -= dst_copy;
462 cpg->p.dst_start += dst_copy;
463 } while (need_copy_len > 0);
466 cpg->p.crypt_len = 0;
468 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
469 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
470 /* process next scatter list entry */
471 cpg->eng_st = ENGINE_BUSY;
472 cpg->p.process(0);
473 } else {
474 cpg->p.complete();
475 cpg->eng_st = ENGINE_IDLE;
476 local_bh_disable();
477 req->complete(req, 0);
478 local_bh_enable();
482 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
484 int i = 0;
485 size_t cur_len;
487 while (sl) {
488 cur_len = sl[i].length;
489 ++i;
490 if (total_bytes > cur_len)
491 total_bytes -= cur_len;
492 else
493 break;
496 return i;
499 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
501 struct req_progress *p = &cpg->p;
502 int num_sgs;
504 cpg->cur_req = &req->base;
505 memset(p, 0, sizeof(struct req_progress));
506 p->hw_nbytes = req->nbytes;
507 p->complete = mv_crypto_algo_completion;
508 p->process = mv_process_current_q;
509 p->copy_back = 1;
511 num_sgs = count_sgs(req->src, req->nbytes);
512 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
514 num_sgs = count_sgs(req->dst, req->nbytes);
515 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
517 mv_process_current_q(1);
520 static void mv_start_new_hash_req(struct ahash_request *req)
522 struct req_progress *p = &cpg->p;
523 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
524 int num_sgs, hw_bytes, old_extra_bytes, rc;
525 cpg->cur_req = &req->base;
526 memset(p, 0, sizeof(struct req_progress));
527 hw_bytes = req->nbytes + ctx->extra_bytes;
528 old_extra_bytes = ctx->extra_bytes;
530 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
531 if (ctx->extra_bytes != 0
532 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
533 hw_bytes -= ctx->extra_bytes;
534 else
535 ctx->extra_bytes = 0;
537 num_sgs = count_sgs(req->src, req->nbytes);
538 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
540 if (hw_bytes) {
541 p->hw_nbytes = hw_bytes;
542 p->complete = mv_hash_algo_completion;
543 p->process = mv_process_hash_current;
545 if (unlikely(old_extra_bytes)) {
546 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
547 old_extra_bytes);
548 p->crypt_len = old_extra_bytes;
551 mv_process_hash_current(1);
552 } else {
553 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
554 ctx->extra_bytes - old_extra_bytes);
555 sg_miter_stop(&p->src_sg_it);
556 if (ctx->last_chunk)
557 rc = mv_hash_final_fallback(req);
558 else
559 rc = 0;
560 cpg->eng_st = ENGINE_IDLE;
561 local_bh_disable();
562 req->base.complete(&req->base, rc);
563 local_bh_enable();
567 static int queue_manag(void *data)
569 cpg->eng_st = ENGINE_IDLE;
570 do {
571 struct crypto_async_request *async_req = NULL;
572 struct crypto_async_request *backlog;
574 __set_current_state(TASK_INTERRUPTIBLE);
576 if (cpg->eng_st == ENGINE_W_DEQUEUE)
577 dequeue_complete_req();
579 spin_lock_irq(&cpg->lock);
580 if (cpg->eng_st == ENGINE_IDLE) {
581 backlog = crypto_get_backlog(&cpg->queue);
582 async_req = crypto_dequeue_request(&cpg->queue);
583 if (async_req) {
584 BUG_ON(cpg->eng_st != ENGINE_IDLE);
585 cpg->eng_st = ENGINE_BUSY;
588 spin_unlock_irq(&cpg->lock);
590 if (backlog) {
591 backlog->complete(backlog, -EINPROGRESS);
592 backlog = NULL;
595 if (async_req) {
596 if (async_req->tfm->__crt_alg->cra_type !=
597 &crypto_ahash_type) {
598 struct ablkcipher_request *req =
599 ablkcipher_request_cast(async_req);
600 mv_start_new_crypt_req(req);
601 } else {
602 struct ahash_request *req =
603 ahash_request_cast(async_req);
604 mv_start_new_hash_req(req);
606 async_req = NULL;
609 schedule();
611 } while (!kthread_should_stop());
612 return 0;
615 static int mv_handle_req(struct crypto_async_request *req)
617 unsigned long flags;
618 int ret;
620 spin_lock_irqsave(&cpg->lock, flags);
621 ret = crypto_enqueue_request(&cpg->queue, req);
622 spin_unlock_irqrestore(&cpg->lock, flags);
623 wake_up_process(cpg->queue_th);
624 return ret;
627 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
629 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
631 req_ctx->op = COP_AES_ECB;
632 req_ctx->decrypt = 0;
634 return mv_handle_req(&req->base);
637 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
639 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
640 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
642 req_ctx->op = COP_AES_ECB;
643 req_ctx->decrypt = 1;
645 compute_aes_dec_key(ctx);
646 return mv_handle_req(&req->base);
649 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
651 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
653 req_ctx->op = COP_AES_CBC;
654 req_ctx->decrypt = 0;
656 return mv_handle_req(&req->base);
659 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
661 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
662 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
664 req_ctx->op = COP_AES_CBC;
665 req_ctx->decrypt = 1;
667 compute_aes_dec_key(ctx);
668 return mv_handle_req(&req->base);
671 static int mv_cra_init(struct crypto_tfm *tfm)
673 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
674 return 0;
677 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
678 int is_last, unsigned int req_len,
679 int count_add)
681 memset(ctx, 0, sizeof(*ctx));
682 ctx->op = op;
683 ctx->count = req_len;
684 ctx->first_hash = 1;
685 ctx->last_chunk = is_last;
686 ctx->count_add = count_add;
689 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
690 unsigned req_len)
692 ctx->last_chunk = is_last;
693 ctx->count += req_len;
696 static int mv_hash_init(struct ahash_request *req)
698 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
699 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
700 tfm_ctx->count_add);
701 return 0;
704 static int mv_hash_update(struct ahash_request *req)
706 if (!req->nbytes)
707 return 0;
709 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
710 return mv_handle_req(&req->base);
713 static int mv_hash_final(struct ahash_request *req)
715 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
717 ahash_request_set_crypt(req, NULL, req->result, 0);
718 mv_update_hash_req_ctx(ctx, 1, 0);
719 return mv_handle_req(&req->base);
722 static int mv_hash_finup(struct ahash_request *req)
724 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
725 return mv_handle_req(&req->base);
728 static int mv_hash_digest(struct ahash_request *req)
730 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
731 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
732 req->nbytes, tfm_ctx->count_add);
733 return mv_handle_req(&req->base);
736 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
737 const void *ostate)
739 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
740 int i;
741 for (i = 0; i < 5; i++) {
742 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
743 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
747 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
748 unsigned int keylen)
750 int rc;
751 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
752 int bs, ds, ss;
754 if (!ctx->base_hash)
755 return 0;
757 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
758 if (rc)
759 return rc;
761 /* Can't see a way to extract the ipad/opad from the fallback tfm
762 so I'm basically copying code from the hmac module */
763 bs = crypto_shash_blocksize(ctx->base_hash);
764 ds = crypto_shash_digestsize(ctx->base_hash);
765 ss = crypto_shash_statesize(ctx->base_hash);
768 struct {
769 struct shash_desc shash;
770 char ctx[crypto_shash_descsize(ctx->base_hash)];
771 } desc;
772 unsigned int i;
773 char ipad[ss];
774 char opad[ss];
776 desc.shash.tfm = ctx->base_hash;
777 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
778 CRYPTO_TFM_REQ_MAY_SLEEP;
780 if (keylen > bs) {
781 int err;
783 err =
784 crypto_shash_digest(&desc.shash, key, keylen, ipad);
785 if (err)
786 return err;
788 keylen = ds;
789 } else
790 memcpy(ipad, key, keylen);
792 memset(ipad + keylen, 0, bs - keylen);
793 memcpy(opad, ipad, bs);
795 for (i = 0; i < bs; i++) {
796 ipad[i] ^= 0x36;
797 opad[i] ^= 0x5c;
800 rc = crypto_shash_init(&desc.shash) ? :
801 crypto_shash_update(&desc.shash, ipad, bs) ? :
802 crypto_shash_export(&desc.shash, ipad) ? :
803 crypto_shash_init(&desc.shash) ? :
804 crypto_shash_update(&desc.shash, opad, bs) ? :
805 crypto_shash_export(&desc.shash, opad);
807 if (rc == 0)
808 mv_hash_init_ivs(ctx, ipad, opad);
810 return rc;
814 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
815 enum hash_op op, int count_add)
817 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
818 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
819 struct crypto_shash *fallback_tfm = NULL;
820 struct crypto_shash *base_hash = NULL;
821 int err = -ENOMEM;
823 ctx->op = op;
824 ctx->count_add = count_add;
826 /* Allocate a fallback and abort if it failed. */
827 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
828 CRYPTO_ALG_NEED_FALLBACK);
829 if (IS_ERR(fallback_tfm)) {
830 printk(KERN_WARNING MV_CESA
831 "Fallback driver '%s' could not be loaded!\n",
832 fallback_driver_name);
833 err = PTR_ERR(fallback_tfm);
834 goto out;
836 ctx->fallback = fallback_tfm;
838 if (base_hash_name) {
839 /* Allocate a hash to compute the ipad/opad of hmac. */
840 base_hash = crypto_alloc_shash(base_hash_name, 0,
841 CRYPTO_ALG_NEED_FALLBACK);
842 if (IS_ERR(base_hash)) {
843 printk(KERN_WARNING MV_CESA
844 "Base driver '%s' could not be loaded!\n",
845 base_hash_name);
846 err = PTR_ERR(base_hash);
847 goto err_bad_base;
850 ctx->base_hash = base_hash;
852 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
853 sizeof(struct mv_req_hash_ctx) +
854 crypto_shash_descsize(ctx->fallback));
855 return 0;
856 err_bad_base:
857 crypto_free_shash(fallback_tfm);
858 out:
859 return err;
862 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
864 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
866 crypto_free_shash(ctx->fallback);
867 if (ctx->base_hash)
868 crypto_free_shash(ctx->base_hash);
871 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
873 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
876 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
878 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
881 irqreturn_t crypto_int(int irq, void *priv)
883 u32 val;
885 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
886 if (!(val & SEC_INT_ACCEL0_DONE))
887 return IRQ_NONE;
889 val &= ~SEC_INT_ACCEL0_DONE;
890 writel(val, cpg->reg + FPGA_INT_STATUS);
891 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
892 BUG_ON(cpg->eng_st != ENGINE_BUSY);
893 cpg->eng_st = ENGINE_W_DEQUEUE;
894 wake_up_process(cpg->queue_th);
895 return IRQ_HANDLED;
898 struct crypto_alg mv_aes_alg_ecb = {
899 .cra_name = "ecb(aes)",
900 .cra_driver_name = "mv-ecb-aes",
901 .cra_priority = 300,
902 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
903 .cra_blocksize = 16,
904 .cra_ctxsize = sizeof(struct mv_ctx),
905 .cra_alignmask = 0,
906 .cra_type = &crypto_ablkcipher_type,
907 .cra_module = THIS_MODULE,
908 .cra_init = mv_cra_init,
909 .cra_u = {
910 .ablkcipher = {
911 .min_keysize = AES_MIN_KEY_SIZE,
912 .max_keysize = AES_MAX_KEY_SIZE,
913 .setkey = mv_setkey_aes,
914 .encrypt = mv_enc_aes_ecb,
915 .decrypt = mv_dec_aes_ecb,
920 struct crypto_alg mv_aes_alg_cbc = {
921 .cra_name = "cbc(aes)",
922 .cra_driver_name = "mv-cbc-aes",
923 .cra_priority = 300,
924 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
925 .cra_blocksize = AES_BLOCK_SIZE,
926 .cra_ctxsize = sizeof(struct mv_ctx),
927 .cra_alignmask = 0,
928 .cra_type = &crypto_ablkcipher_type,
929 .cra_module = THIS_MODULE,
930 .cra_init = mv_cra_init,
931 .cra_u = {
932 .ablkcipher = {
933 .ivsize = AES_BLOCK_SIZE,
934 .min_keysize = AES_MIN_KEY_SIZE,
935 .max_keysize = AES_MAX_KEY_SIZE,
936 .setkey = mv_setkey_aes,
937 .encrypt = mv_enc_aes_cbc,
938 .decrypt = mv_dec_aes_cbc,
943 struct ahash_alg mv_sha1_alg = {
944 .init = mv_hash_init,
945 .update = mv_hash_update,
946 .final = mv_hash_final,
947 .finup = mv_hash_finup,
948 .digest = mv_hash_digest,
949 .halg = {
950 .digestsize = SHA1_DIGEST_SIZE,
951 .base = {
952 .cra_name = "sha1",
953 .cra_driver_name = "mv-sha1",
954 .cra_priority = 300,
955 .cra_flags =
956 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
957 .cra_blocksize = SHA1_BLOCK_SIZE,
958 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
959 .cra_init = mv_cra_hash_sha1_init,
960 .cra_exit = mv_cra_hash_exit,
961 .cra_module = THIS_MODULE,
966 struct ahash_alg mv_hmac_sha1_alg = {
967 .init = mv_hash_init,
968 .update = mv_hash_update,
969 .final = mv_hash_final,
970 .finup = mv_hash_finup,
971 .digest = mv_hash_digest,
972 .setkey = mv_hash_setkey,
973 .halg = {
974 .digestsize = SHA1_DIGEST_SIZE,
975 .base = {
976 .cra_name = "hmac(sha1)",
977 .cra_driver_name = "mv-hmac-sha1",
978 .cra_priority = 300,
979 .cra_flags =
980 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
981 .cra_blocksize = SHA1_BLOCK_SIZE,
982 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
983 .cra_init = mv_cra_hash_hmac_sha1_init,
984 .cra_exit = mv_cra_hash_exit,
985 .cra_module = THIS_MODULE,
990 static int mv_probe(struct platform_device *pdev)
992 struct crypto_priv *cp;
993 struct resource *res;
994 int irq;
995 int ret;
997 if (cpg) {
998 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
999 return -EEXIST;
1002 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1003 if (!res)
1004 return -ENXIO;
1006 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1007 if (!cp)
1008 return -ENOMEM;
1010 spin_lock_init(&cp->lock);
1011 crypto_init_queue(&cp->queue, 50);
1012 cp->reg = ioremap(res->start, resource_size(res));
1013 if (!cp->reg) {
1014 ret = -ENOMEM;
1015 goto err;
1018 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1019 if (!res) {
1020 ret = -ENXIO;
1021 goto err_unmap_reg;
1023 cp->sram_size = resource_size(res);
1024 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1025 cp->sram = ioremap(res->start, cp->sram_size);
1026 if (!cp->sram) {
1027 ret = -ENOMEM;
1028 goto err_unmap_reg;
1031 irq = platform_get_irq(pdev, 0);
1032 if (irq < 0 || irq == NO_IRQ) {
1033 ret = irq;
1034 goto err_unmap_sram;
1036 cp->irq = irq;
1038 platform_set_drvdata(pdev, cp);
1039 cpg = cp;
1041 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1042 if (IS_ERR(cp->queue_th)) {
1043 ret = PTR_ERR(cp->queue_th);
1044 goto err_unmap_sram;
1047 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1048 cp);
1049 if (ret)
1050 goto err_thread;
1052 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1053 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1054 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1056 ret = crypto_register_alg(&mv_aes_alg_ecb);
1057 if (ret) {
1058 printk(KERN_WARNING MV_CESA
1059 "Could not register aes-ecb driver\n");
1060 goto err_irq;
1063 ret = crypto_register_alg(&mv_aes_alg_cbc);
1064 if (ret) {
1065 printk(KERN_WARNING MV_CESA
1066 "Could not register aes-cbc driver\n");
1067 goto err_unreg_ecb;
1070 ret = crypto_register_ahash(&mv_sha1_alg);
1071 if (ret == 0)
1072 cpg->has_sha1 = 1;
1073 else
1074 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1076 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1077 if (ret == 0) {
1078 cpg->has_hmac_sha1 = 1;
1079 } else {
1080 printk(KERN_WARNING MV_CESA
1081 "Could not register hmac-sha1 driver\n");
1084 return 0;
1085 err_unreg_ecb:
1086 crypto_unregister_alg(&mv_aes_alg_ecb);
1087 err_irq:
1088 free_irq(irq, cp);
1089 err_thread:
1090 kthread_stop(cp->queue_th);
1091 err_unmap_sram:
1092 iounmap(cp->sram);
1093 err_unmap_reg:
1094 iounmap(cp->reg);
1095 err:
1096 kfree(cp);
1097 cpg = NULL;
1098 platform_set_drvdata(pdev, NULL);
1099 return ret;
1102 static int mv_remove(struct platform_device *pdev)
1104 struct crypto_priv *cp = platform_get_drvdata(pdev);
1106 crypto_unregister_alg(&mv_aes_alg_ecb);
1107 crypto_unregister_alg(&mv_aes_alg_cbc);
1108 if (cp->has_sha1)
1109 crypto_unregister_ahash(&mv_sha1_alg);
1110 if (cp->has_hmac_sha1)
1111 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1112 kthread_stop(cp->queue_th);
1113 free_irq(cp->irq, cp);
1114 memset(cp->sram, 0, cp->sram_size);
1115 iounmap(cp->sram);
1116 iounmap(cp->reg);
1117 kfree(cp);
1118 cpg = NULL;
1119 return 0;
1122 static struct platform_driver marvell_crypto = {
1123 .probe = mv_probe,
1124 .remove = mv_remove,
1125 .driver = {
1126 .owner = THIS_MODULE,
1127 .name = "mv_crypto",
1130 MODULE_ALIAS("platform:mv_crypto");
1132 module_platform_driver(marvell_crypto);
1134 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1135 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1136 MODULE_LICENSE("GPL");