OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / dma / amba-pl08x.c
blob8a281584458b582bbb872137323ff82cdaac2eb1
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
88 #define DRIVER_NAME "pl08xdmac"
90 static struct amba_driver pl08x_amba_driver;
92 /**
93 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
94 * @channels: the number of channels available in this variant
95 * @dualmaster: whether this version supports dual AHB masters or not.
97 struct vendor_data {
98 u8 channels;
99 bool dualmaster;
103 * PL08X private data structures
104 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
105 * start & end do not - their bus bit info is in cctl. Also note that these
106 * are fixed 32-bit quantities.
108 struct pl08x_lli {
109 u32 src;
110 u32 dst;
111 u32 lli;
112 u32 cctl;
116 * struct pl08x_driver_data - the local state holder for the PL08x
117 * @slave: slave engine for this instance
118 * @memcpy: memcpy engine for this instance
119 * @base: virtual memory base (remapped) for the PL08x
120 * @adev: the corresponding AMBA (PrimeCell) bus entry
121 * @vd: vendor data for this PL08x variant
122 * @pd: platform data passed in from the platform/machine
123 * @phy_chans: array of data for the physical channels
124 * @pool: a pool for the LLI descriptors
125 * @pool_ctr: counter of LLIs in the pool
126 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
127 * fetches
128 * @mem_buses: set to indicate memory transfers on AHB2.
129 * @lock: a spinlock for this struct
131 struct pl08x_driver_data {
132 struct dma_device slave;
133 struct dma_device memcpy;
134 void __iomem *base;
135 struct amba_device *adev;
136 const struct vendor_data *vd;
137 struct pl08x_platform_data *pd;
138 struct pl08x_phy_chan *phy_chans;
139 struct dma_pool *pool;
140 int pool_ctr;
141 u8 lli_buses;
142 u8 mem_buses;
143 spinlock_t lock;
147 * PL08X specific defines
150 /* Size (bytes) of each LLI buffer allocated for one transfer */
151 # define PL08X_LLI_TSFR_SIZE 0x2000
153 /* Maximum times we call dma_pool_alloc on this pool without freeing */
154 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
155 #define PL08X_ALIGN 8
157 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
159 return container_of(chan, struct pl08x_dma_chan, chan);
162 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
164 return container_of(tx, struct pl08x_txd, tx);
168 * Physical channel handling
171 /* Whether a certain channel is busy or not */
172 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
174 unsigned int val;
176 val = readl(ch->base + PL080_CH_CONFIG);
177 return val & PL080_CONFIG_ACTIVE;
181 * Set the initial DMA register values i.e. those for the first LLI
182 * The next LLI pointer and the configuration interrupt bit have
183 * been set when the LLIs were constructed. Poke them into the hardware
184 * and start the transfer.
186 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
187 struct pl08x_txd *txd)
189 struct pl08x_driver_data *pl08x = plchan->host;
190 struct pl08x_phy_chan *phychan = plchan->phychan;
191 struct pl08x_lli *lli = &txd->llis_va[0];
192 u32 val;
194 plchan->at = txd;
196 /* Wait for channel inactive */
197 while (pl08x_phy_channel_busy(phychan))
198 cpu_relax();
200 dev_vdbg(&pl08x->adev->dev,
201 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
202 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
203 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
204 txd->ccfg);
206 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
207 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
208 writel(lli->lli, phychan->base + PL080_CH_LLI);
209 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
210 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
212 /* Enable the DMA channel */
213 /* Do not access config register until channel shows as disabled */
214 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
215 cpu_relax();
217 /* Do not access config register until channel shows as inactive */
218 val = readl(phychan->base + PL080_CH_CONFIG);
219 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
220 val = readl(phychan->base + PL080_CH_CONFIG);
222 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
226 * Pause the channel by setting the HALT bit.
228 * For M->P transfers, pause the DMAC first and then stop the peripheral -
229 * the FIFO can only drain if the peripheral is still requesting data.
230 * (note: this can still timeout if the DMAC FIFO never drains of data.)
232 * For P->M transfers, disable the peripheral first to stop it filling
233 * the DMAC FIFO, and then pause the DMAC.
235 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
237 u32 val;
238 int timeout;
240 /* Set the HALT bit and wait for the FIFO to drain */
241 val = readl(ch->base + PL080_CH_CONFIG);
242 val |= PL080_CONFIG_HALT;
243 writel(val, ch->base + PL080_CH_CONFIG);
245 /* Wait for channel inactive */
246 for (timeout = 1000; timeout; timeout--) {
247 if (!pl08x_phy_channel_busy(ch))
248 break;
249 udelay(1);
251 if (pl08x_phy_channel_busy(ch))
252 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
255 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
257 u32 val;
259 /* Clear the HALT bit */
260 val = readl(ch->base + PL080_CH_CONFIG);
261 val &= ~PL080_CONFIG_HALT;
262 writel(val, ch->base + PL080_CH_CONFIG);
266 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
267 * clears any pending interrupt status. This should not be used for
268 * an on-going transfer, but as a method of shutting down a channel
269 * (eg, when it's no longer used) or terminating a transfer.
271 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
272 struct pl08x_phy_chan *ch)
274 u32 val = readl(ch->base + PL080_CH_CONFIG);
276 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
277 PL080_CONFIG_TC_IRQ_MASK);
279 writel(val, ch->base + PL080_CH_CONFIG);
281 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
282 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
285 static inline u32 get_bytes_in_cctl(u32 cctl)
287 /* The source width defines the number of bytes */
288 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
290 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
291 case PL080_WIDTH_8BIT:
292 break;
293 case PL080_WIDTH_16BIT:
294 bytes *= 2;
295 break;
296 case PL080_WIDTH_32BIT:
297 bytes *= 4;
298 break;
300 return bytes;
303 /* The channel should be paused when calling this */
304 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
306 struct pl08x_phy_chan *ch;
307 struct pl08x_txd *txd;
308 unsigned long flags;
309 size_t bytes = 0;
311 spin_lock_irqsave(&plchan->lock, flags);
312 ch = plchan->phychan;
313 txd = plchan->at;
316 * Follow the LLIs to get the number of remaining
317 * bytes in the currently active transaction.
319 if (ch && txd) {
320 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
322 /* First get the remaining bytes in the active transfer */
323 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
325 if (clli) {
326 struct pl08x_lli *llis_va = txd->llis_va;
327 dma_addr_t llis_bus = txd->llis_bus;
328 int index;
330 BUG_ON(clli < llis_bus || clli >= llis_bus +
331 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
334 * Locate the next LLI - as this is an array,
335 * it's simple maths to find.
337 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
339 for (; index < MAX_NUM_TSFR_LLIS; index++) {
340 bytes += get_bytes_in_cctl(llis_va[index].cctl);
343 * A LLI pointer of 0 terminates the LLI list
345 if (!llis_va[index].lli)
346 break;
351 /* Sum up all queued transactions */
352 if (!list_empty(&plchan->pend_list)) {
353 struct pl08x_txd *txdi;
354 list_for_each_entry(txdi, &plchan->pend_list, node) {
355 struct pl08x_sg *dsg;
356 list_for_each_entry(dsg, &txd->dsg_list, node)
357 bytes += dsg->len;
361 spin_unlock_irqrestore(&plchan->lock, flags);
363 return bytes;
367 * Allocate a physical channel for a virtual channel
369 * Try to locate a physical channel to be used for this transfer. If all
370 * are taken return NULL and the requester will have to cope by using
371 * some fallback PIO mode or retrying later.
373 static struct pl08x_phy_chan *
374 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
375 struct pl08x_dma_chan *virt_chan)
377 struct pl08x_phy_chan *ch = NULL;
378 unsigned long flags;
379 int i;
381 for (i = 0; i < pl08x->vd->channels; i++) {
382 ch = &pl08x->phy_chans[i];
384 spin_lock_irqsave(&ch->lock, flags);
386 if (!ch->serving) {
387 ch->serving = virt_chan;
388 ch->signal = -1;
389 spin_unlock_irqrestore(&ch->lock, flags);
390 break;
393 spin_unlock_irqrestore(&ch->lock, flags);
396 if (i == pl08x->vd->channels) {
397 /* No physical channel available, cope with it */
398 return NULL;
401 pm_runtime_get_sync(&pl08x->adev->dev);
402 return ch;
405 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
406 struct pl08x_phy_chan *ch)
408 unsigned long flags;
410 spin_lock_irqsave(&ch->lock, flags);
412 /* Stop the channel and clear its interrupts */
413 pl08x_terminate_phy_chan(pl08x, ch);
415 pm_runtime_put(&pl08x->adev->dev);
417 /* Mark it as free */
418 ch->serving = NULL;
419 spin_unlock_irqrestore(&ch->lock, flags);
423 * LLI handling
426 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
428 switch (coded) {
429 case PL080_WIDTH_8BIT:
430 return 1;
431 case PL080_WIDTH_16BIT:
432 return 2;
433 case PL080_WIDTH_32BIT:
434 return 4;
435 default:
436 break;
438 BUG();
439 return 0;
442 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
443 size_t tsize)
445 u32 retbits = cctl;
447 /* Remove all src, dst and transfer size bits */
448 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
449 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
450 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
452 /* Then set the bits according to the parameters */
453 switch (srcwidth) {
454 case 1:
455 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 break;
457 case 2:
458 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 break;
460 case 4:
461 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 default:
464 BUG();
465 break;
468 switch (dstwidth) {
469 case 1:
470 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 break;
472 case 2:
473 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 break;
475 case 4:
476 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 default:
479 BUG();
480 break;
483 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
484 return retbits;
487 struct pl08x_lli_build_data {
488 struct pl08x_txd *txd;
489 struct pl08x_bus_data srcbus;
490 struct pl08x_bus_data dstbus;
491 size_t remainder;
492 u32 lli_bus;
496 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
497 * victim in case src & dest are not similarly aligned. i.e. If after aligning
498 * masters address with width requirements of transfer (by sending few byte by
499 * byte data), slave is still not aligned, then its width will be reduced to
500 * BYTE.
501 * - prefers the destination bus if both available
502 * - prefers bus with fixed address (i.e. peripheral)
504 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
505 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
507 if (!(cctl & PL080_CONTROL_DST_INCR)) {
508 *mbus = &bd->dstbus;
509 *sbus = &bd->srcbus;
510 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
511 *mbus = &bd->srcbus;
512 *sbus = &bd->dstbus;
513 } else {
514 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
515 *mbus = &bd->dstbus;
516 *sbus = &bd->srcbus;
517 } else {
518 *mbus = &bd->srcbus;
519 *sbus = &bd->dstbus;
525 * Fills in one LLI for a certain transfer descriptor and advance the counter
527 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
528 int num_llis, int len, u32 cctl)
530 struct pl08x_lli *llis_va = bd->txd->llis_va;
531 dma_addr_t llis_bus = bd->txd->llis_bus;
533 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
535 llis_va[num_llis].cctl = cctl;
536 llis_va[num_llis].src = bd->srcbus.addr;
537 llis_va[num_llis].dst = bd->dstbus.addr;
538 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
539 sizeof(struct pl08x_lli);
540 llis_va[num_llis].lli |= bd->lli_bus;
542 if (cctl & PL080_CONTROL_SRC_INCR)
543 bd->srcbus.addr += len;
544 if (cctl & PL080_CONTROL_DST_INCR)
545 bd->dstbus.addr += len;
547 BUG_ON(bd->remainder < len);
549 bd->remainder -= len;
552 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
553 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
555 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
556 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
557 (*total_bytes) += len;
561 * This fills in the table of LLIs for the transfer descriptor
562 * Note that we assume we never have to change the burst sizes
563 * Return 0 for error
565 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
566 struct pl08x_txd *txd)
568 struct pl08x_bus_data *mbus, *sbus;
569 struct pl08x_lli_build_data bd;
570 int num_llis = 0;
571 u32 cctl, early_bytes = 0;
572 size_t max_bytes_per_lli, total_bytes;
573 struct pl08x_lli *llis_va;
574 struct pl08x_sg *dsg;
576 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
577 if (!txd->llis_va) {
578 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
579 return 0;
582 pl08x->pool_ctr++;
584 bd.txd = txd;
585 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
586 cctl = txd->cctl;
588 /* Find maximum width of the source bus */
589 bd.srcbus.maxwidth =
590 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
591 PL080_CONTROL_SWIDTH_SHIFT);
593 /* Find maximum width of the destination bus */
594 bd.dstbus.maxwidth =
595 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
596 PL080_CONTROL_DWIDTH_SHIFT);
598 list_for_each_entry(dsg, &txd->dsg_list, node) {
599 total_bytes = 0;
600 cctl = txd->cctl;
602 bd.srcbus.addr = dsg->src_addr;
603 bd.dstbus.addr = dsg->dst_addr;
604 bd.remainder = dsg->len;
605 bd.srcbus.buswidth = bd.srcbus.maxwidth;
606 bd.dstbus.buswidth = bd.dstbus.maxwidth;
608 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
610 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
611 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
612 bd.srcbus.buswidth,
613 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
614 bd.dstbus.buswidth,
615 bd.remainder);
616 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
617 mbus == &bd.srcbus ? "src" : "dst",
618 sbus == &bd.srcbus ? "src" : "dst");
621 * Zero length is only allowed if all these requirements are
622 * met:
623 * - flow controller is peripheral.
624 * - src.addr is aligned to src.width
625 * - dst.addr is aligned to dst.width
627 * sg_len == 1 should be true, as there can be two cases here:
629 * - Memory addresses are contiguous and are not scattered.
630 * Here, Only one sg will be passed by user driver, with
631 * memory address and zero length. We pass this to controller
632 * and after the transfer it will receive the last burst
633 * request from peripheral and so transfer finishes.
635 * - Memory addresses are scattered and are not contiguous.
636 * Here, Obviously as DMA controller doesn't know when a lli's
637 * transfer gets over, it can't load next lli. So in this
638 * case, there has to be an assumption that only one lli is
639 * supported. Thus, we can't have scattered addresses.
641 if (!bd.remainder) {
642 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
643 PL080_CONFIG_FLOW_CONTROL_SHIFT;
644 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
645 (fc <= PL080_FLOW_SRC2DST_SRC))) {
646 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
647 __func__);
648 return 0;
651 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
652 (bd.srcbus.addr % bd.srcbus.buswidth)) {
653 dev_err(&pl08x->adev->dev,
654 "%s src & dst address must be aligned to src"
655 " & dst width if peripheral is flow controller",
656 __func__);
657 return 0;
660 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
661 bd.dstbus.buswidth, 0);
662 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
663 break;
667 * Send byte by byte for following cases
668 * - Less than a bus width available
669 * - until master bus is aligned
671 if (bd.remainder < mbus->buswidth)
672 early_bytes = bd.remainder;
673 else if ((mbus->addr) % (mbus->buswidth)) {
674 early_bytes = mbus->buswidth - (mbus->addr) %
675 (mbus->buswidth);
676 if ((bd.remainder - early_bytes) < mbus->buswidth)
677 early_bytes = bd.remainder;
680 if (early_bytes) {
681 dev_vdbg(&pl08x->adev->dev,
682 "%s byte width LLIs (remain 0x%08x)\n",
683 __func__, bd.remainder);
684 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
685 &total_bytes);
688 if (bd.remainder) {
690 * Master now aligned
691 * - if slave is not then we must set its width down
693 if (sbus->addr % sbus->buswidth) {
694 dev_dbg(&pl08x->adev->dev,
695 "%s set down bus width to one byte\n",
696 __func__);
698 sbus->buswidth = 1;
702 * Bytes transferred = tsize * src width, not
703 * MIN(buswidths)
705 max_bytes_per_lli = bd.srcbus.buswidth *
706 PL080_CONTROL_TRANSFER_SIZE_MASK;
707 dev_vdbg(&pl08x->adev->dev,
708 "%s max bytes per lli = %zu\n",
709 __func__, max_bytes_per_lli);
712 * Make largest possible LLIs until less than one bus
713 * width left
715 while (bd.remainder > (mbus->buswidth - 1)) {
716 size_t lli_len, tsize, width;
719 * If enough left try to send max possible,
720 * otherwise try to send the remainder
722 lli_len = min(bd.remainder, max_bytes_per_lli);
725 * Check against maximum bus alignment:
726 * Calculate actual transfer size in relation to
727 * bus width an get a maximum remainder of the
728 * highest bus width - 1
730 width = max(mbus->buswidth, sbus->buswidth);
731 lli_len = (lli_len / width) * width;
732 tsize = lli_len / bd.srcbus.buswidth;
734 dev_vdbg(&pl08x->adev->dev,
735 "%s fill lli with single lli chunk of "
736 "size 0x%08zx (remainder 0x%08zx)\n",
737 __func__, lli_len, bd.remainder);
739 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
740 bd.dstbus.buswidth, tsize);
741 pl08x_fill_lli_for_desc(&bd, num_llis++,
742 lli_len, cctl);
743 total_bytes += lli_len;
747 * Send any odd bytes
749 if (bd.remainder) {
750 dev_vdbg(&pl08x->adev->dev,
751 "%s align with boundary, send odd bytes (remain %zu)\n",
752 __func__, bd.remainder);
753 prep_byte_width_lli(&bd, &cctl, bd.remainder,
754 num_llis++, &total_bytes);
758 if (total_bytes != dsg->len) {
759 dev_err(&pl08x->adev->dev,
760 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
761 __func__, total_bytes, dsg->len);
762 return 0;
765 if (num_llis >= MAX_NUM_TSFR_LLIS) {
766 dev_err(&pl08x->adev->dev,
767 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
768 __func__, (u32) MAX_NUM_TSFR_LLIS);
769 return 0;
773 llis_va = txd->llis_va;
774 /* The final LLI terminates the LLI. */
775 llis_va[num_llis - 1].lli = 0;
776 /* The final LLI element shall also fire an interrupt. */
777 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
779 #ifdef VERBOSE_DEBUG
781 int i;
783 dev_vdbg(&pl08x->adev->dev,
784 "%-3s %-9s %-10s %-10s %-10s %s\n",
785 "lli", "", "csrc", "cdst", "clli", "cctl");
786 for (i = 0; i < num_llis; i++) {
787 dev_vdbg(&pl08x->adev->dev,
788 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
789 i, &llis_va[i], llis_va[i].src,
790 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
794 #endif
796 return num_llis;
799 /* You should call this with the struct pl08x lock held */
800 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
801 struct pl08x_txd *txd)
803 struct pl08x_sg *dsg, *_dsg;
805 /* Free the LLI */
806 if (txd->llis_va)
807 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
809 pl08x->pool_ctr--;
811 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
812 list_del(&dsg->node);
813 kfree(dsg);
816 kfree(txd);
819 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
820 struct pl08x_dma_chan *plchan)
822 struct pl08x_txd *txdi = NULL;
823 struct pl08x_txd *next;
825 if (!list_empty(&plchan->pend_list)) {
826 list_for_each_entry_safe(txdi,
827 next, &plchan->pend_list, node) {
828 list_del(&txdi->node);
829 pl08x_free_txd(pl08x, txdi);
835 * The DMA ENGINE API
837 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
839 return 0;
842 static void pl08x_free_chan_resources(struct dma_chan *chan)
847 * This should be called with the channel plchan->lock held
849 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
850 struct pl08x_txd *txd)
852 struct pl08x_driver_data *pl08x = plchan->host;
853 struct pl08x_phy_chan *ch;
854 int ret;
856 /* Check if we already have a channel */
857 if (plchan->phychan) {
858 ch = plchan->phychan;
859 goto got_channel;
862 ch = pl08x_get_phy_channel(pl08x, plchan);
863 if (!ch) {
864 /* No physical channel available, cope with it */
865 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
866 return -EBUSY;
870 * OK we have a physical channel: for memcpy() this is all we
871 * need, but for slaves the physical signals may be muxed!
872 * Can the platform allow us to use this channel?
874 if (plchan->slave && pl08x->pd->get_signal) {
875 ret = pl08x->pd->get_signal(plchan);
876 if (ret < 0) {
877 dev_dbg(&pl08x->adev->dev,
878 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
879 ch->id, plchan->name);
880 /* Release physical channel & return */
881 pl08x_put_phy_channel(pl08x, ch);
882 return -EBUSY;
884 ch->signal = ret;
887 plchan->phychan = ch;
888 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
889 ch->id,
890 ch->signal,
891 plchan->name);
893 got_channel:
894 /* Assign the flow control signal to this channel */
895 if (txd->direction == DMA_MEM_TO_DEV)
896 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
897 else if (txd->direction == DMA_DEV_TO_MEM)
898 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
900 plchan->phychan_hold++;
902 return 0;
905 static void release_phy_channel(struct pl08x_dma_chan *plchan)
907 struct pl08x_driver_data *pl08x = plchan->host;
909 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
910 pl08x->pd->put_signal(plchan);
911 plchan->phychan->signal = -1;
913 pl08x_put_phy_channel(pl08x, plchan->phychan);
914 plchan->phychan = NULL;
917 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
919 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
920 struct pl08x_txd *txd = to_pl08x_txd(tx);
921 unsigned long flags;
923 spin_lock_irqsave(&plchan->lock, flags);
925 plchan->chan.cookie += 1;
926 if (plchan->chan.cookie < 0)
927 plchan->chan.cookie = 1;
928 tx->cookie = plchan->chan.cookie;
930 /* Put this onto the pending list */
931 list_add_tail(&txd->node, &plchan->pend_list);
934 * If there was no physical channel available for this memcpy,
935 * stack the request up and indicate that the channel is waiting
936 * for a free physical channel.
938 if (!plchan->slave && !plchan->phychan) {
939 /* Do this memcpy whenever there is a channel ready */
940 plchan->state = PL08X_CHAN_WAITING;
941 plchan->waiting = txd;
942 } else {
943 plchan->phychan_hold--;
946 spin_unlock_irqrestore(&plchan->lock, flags);
948 return tx->cookie;
951 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
952 struct dma_chan *chan, unsigned long flags)
954 struct dma_async_tx_descriptor *retval = NULL;
956 return retval;
960 * Code accessing dma_async_is_complete() in a tight loop may give problems.
961 * If slaves are relying on interrupts to signal completion this function
962 * must not be called with interrupts disabled.
964 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
965 dma_cookie_t cookie, struct dma_tx_state *txstate)
967 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
968 dma_cookie_t last_used;
969 dma_cookie_t last_complete;
970 enum dma_status ret;
971 u32 bytesleft = 0;
973 last_used = plchan->chan.cookie;
974 last_complete = plchan->lc;
976 ret = dma_async_is_complete(cookie, last_complete, last_used);
977 if (ret == DMA_SUCCESS) {
978 dma_set_tx_state(txstate, last_complete, last_used, 0);
979 return ret;
983 * This cookie not complete yet
985 last_used = plchan->chan.cookie;
986 last_complete = plchan->lc;
988 /* Get number of bytes left in the active transactions and queue */
989 bytesleft = pl08x_getbytes_chan(plchan);
991 dma_set_tx_state(txstate, last_complete, last_used,
992 bytesleft);
994 if (plchan->state == PL08X_CHAN_PAUSED)
995 return DMA_PAUSED;
997 /* Whether waiting or running, we're in progress */
998 return DMA_IN_PROGRESS;
1001 /* PrimeCell DMA extension */
1002 struct burst_table {
1003 u32 burstwords;
1004 u32 reg;
1007 static const struct burst_table burst_sizes[] = {
1009 .burstwords = 256,
1010 .reg = PL080_BSIZE_256,
1013 .burstwords = 128,
1014 .reg = PL080_BSIZE_128,
1017 .burstwords = 64,
1018 .reg = PL080_BSIZE_64,
1021 .burstwords = 32,
1022 .reg = PL080_BSIZE_32,
1025 .burstwords = 16,
1026 .reg = PL080_BSIZE_16,
1029 .burstwords = 8,
1030 .reg = PL080_BSIZE_8,
1033 .burstwords = 4,
1034 .reg = PL080_BSIZE_4,
1037 .burstwords = 0,
1038 .reg = PL080_BSIZE_1,
1043 * Given the source and destination available bus masks, select which
1044 * will be routed to each port. We try to have source and destination
1045 * on separate ports, but always respect the allowable settings.
1047 static u32 pl08x_select_bus(u8 src, u8 dst)
1049 u32 cctl = 0;
1051 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1052 cctl |= PL080_CONTROL_DST_AHB2;
1053 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1054 cctl |= PL080_CONTROL_SRC_AHB2;
1056 return cctl;
1059 static u32 pl08x_cctl(u32 cctl)
1061 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1062 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1063 PL080_CONTROL_PROT_MASK);
1065 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1066 return cctl | PL080_CONTROL_PROT_SYS;
1069 static u32 pl08x_width(enum dma_slave_buswidth width)
1071 switch (width) {
1072 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1073 return PL080_WIDTH_8BIT;
1074 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1075 return PL080_WIDTH_16BIT;
1076 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1077 return PL080_WIDTH_32BIT;
1078 default:
1079 return ~0;
1083 static u32 pl08x_burst(u32 maxburst)
1085 int i;
1087 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1088 if (burst_sizes[i].burstwords <= maxburst)
1089 break;
1091 return burst_sizes[i].reg;
1094 static int dma_set_runtime_config(struct dma_chan *chan,
1095 struct dma_slave_config *config)
1097 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1098 struct pl08x_driver_data *pl08x = plchan->host;
1099 enum dma_slave_buswidth addr_width;
1100 u32 width, burst, maxburst;
1101 u32 cctl = 0;
1103 if (!plchan->slave)
1104 return -EINVAL;
1106 /* Transfer direction */
1107 plchan->runtime_direction = config->direction;
1108 if (config->direction == DMA_MEM_TO_DEV) {
1109 addr_width = config->dst_addr_width;
1110 maxburst = config->dst_maxburst;
1111 } else if (config->direction == DMA_DEV_TO_MEM) {
1112 addr_width = config->src_addr_width;
1113 maxburst = config->src_maxburst;
1114 } else {
1115 dev_err(&pl08x->adev->dev,
1116 "bad runtime_config: alien transfer direction\n");
1117 return -EINVAL;
1120 width = pl08x_width(addr_width);
1121 if (width == ~0) {
1122 dev_err(&pl08x->adev->dev,
1123 "bad runtime_config: alien address width\n");
1124 return -EINVAL;
1127 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1128 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1131 * If this channel will only request single transfers, set this
1132 * down to ONE element. Also select one element if no maxburst
1133 * is specified.
1135 if (plchan->cd->single)
1136 maxburst = 1;
1138 burst = pl08x_burst(maxburst);
1139 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1140 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1142 if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1143 plchan->src_addr = config->src_addr;
1144 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1145 pl08x_select_bus(plchan->cd->periph_buses,
1146 pl08x->mem_buses);
1147 } else {
1148 plchan->dst_addr = config->dst_addr;
1149 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1150 pl08x_select_bus(pl08x->mem_buses,
1151 plchan->cd->periph_buses);
1154 dev_dbg(&pl08x->adev->dev,
1155 "configured channel %s (%s) for %s, data width %d, "
1156 "maxburst %d words, LE, CCTL=0x%08x\n",
1157 dma_chan_name(chan), plchan->name,
1158 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1159 addr_width,
1160 maxburst,
1161 cctl);
1163 return 0;
1167 * Slave transactions callback to the slave device to allow
1168 * synchronization of slave DMA signals with the DMAC enable
1170 static void pl08x_issue_pending(struct dma_chan *chan)
1172 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1173 unsigned long flags;
1175 spin_lock_irqsave(&plchan->lock, flags);
1176 /* Something is already active, or we're waiting for a channel... */
1177 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1178 spin_unlock_irqrestore(&plchan->lock, flags);
1179 return;
1182 /* Take the first element in the queue and execute it */
1183 if (!list_empty(&plchan->pend_list)) {
1184 struct pl08x_txd *next;
1186 next = list_first_entry(&plchan->pend_list,
1187 struct pl08x_txd,
1188 node);
1189 list_del(&next->node);
1190 plchan->state = PL08X_CHAN_RUNNING;
1192 pl08x_start_txd(plchan, next);
1195 spin_unlock_irqrestore(&plchan->lock, flags);
1198 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1199 struct pl08x_txd *txd)
1201 struct pl08x_driver_data *pl08x = plchan->host;
1202 unsigned long flags;
1203 int num_llis, ret;
1205 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1206 if (!num_llis) {
1207 spin_lock_irqsave(&plchan->lock, flags);
1208 pl08x_free_txd(pl08x, txd);
1209 spin_unlock_irqrestore(&plchan->lock, flags);
1210 return -EINVAL;
1213 spin_lock_irqsave(&plchan->lock, flags);
1216 * See if we already have a physical channel allocated,
1217 * else this is the time to try to get one.
1219 ret = prep_phy_channel(plchan, txd);
1220 if (ret) {
1222 * No physical channel was available.
1224 * memcpy transfers can be sorted out at submission time.
1226 * Slave transfers may have been denied due to platform
1227 * channel muxing restrictions. Since there is no guarantee
1228 * that this will ever be resolved, and the signal must be
1229 * acquired AFTER acquiring the physical channel, we will let
1230 * them be NACK:ed with -EBUSY here. The drivers can retry
1231 * the prep() call if they are eager on doing this using DMA.
1233 if (plchan->slave) {
1234 pl08x_free_txd_list(pl08x, plchan);
1235 pl08x_free_txd(pl08x, txd);
1236 spin_unlock_irqrestore(&plchan->lock, flags);
1237 return -EBUSY;
1239 } else
1241 * Else we're all set, paused and ready to roll, status
1242 * will switch to PL08X_CHAN_RUNNING when we call
1243 * issue_pending(). If there is something running on the
1244 * channel already we don't change its state.
1246 if (plchan->state == PL08X_CHAN_IDLE)
1247 plchan->state = PL08X_CHAN_PAUSED;
1249 spin_unlock_irqrestore(&plchan->lock, flags);
1251 return 0;
1254 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1255 unsigned long flags)
1257 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1259 if (txd) {
1260 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1261 txd->tx.flags = flags;
1262 txd->tx.tx_submit = pl08x_tx_submit;
1263 INIT_LIST_HEAD(&txd->node);
1264 INIT_LIST_HEAD(&txd->dsg_list);
1266 /* Always enable error and terminal interrupts */
1267 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1268 PL080_CONFIG_TC_IRQ_MASK;
1270 return txd;
1274 * Initialize a descriptor to be used by memcpy submit
1276 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1277 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1278 size_t len, unsigned long flags)
1280 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1281 struct pl08x_driver_data *pl08x = plchan->host;
1282 struct pl08x_txd *txd;
1283 struct pl08x_sg *dsg;
1284 int ret;
1286 txd = pl08x_get_txd(plchan, flags);
1287 if (!txd) {
1288 dev_err(&pl08x->adev->dev,
1289 "%s no memory for descriptor\n", __func__);
1290 return NULL;
1293 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1294 if (!dsg) {
1295 pl08x_free_txd(pl08x, txd);
1296 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1297 __func__);
1298 return NULL;
1300 list_add_tail(&dsg->node, &txd->dsg_list);
1302 txd->direction = DMA_NONE;
1303 dsg->src_addr = src;
1304 dsg->dst_addr = dest;
1305 dsg->len = len;
1307 /* Set platform data for m2m */
1308 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1309 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1310 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1312 /* Both to be incremented or the code will break */
1313 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1315 if (pl08x->vd->dualmaster)
1316 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1317 pl08x->mem_buses);
1319 ret = pl08x_prep_channel_resources(plchan, txd);
1320 if (ret)
1321 return NULL;
1323 return &txd->tx;
1326 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1327 struct dma_chan *chan, struct scatterlist *sgl,
1328 unsigned int sg_len, enum dma_transfer_direction direction,
1329 unsigned long flags)
1331 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1332 struct pl08x_driver_data *pl08x = plchan->host;
1333 struct pl08x_txd *txd;
1334 struct pl08x_sg *dsg;
1335 struct scatterlist *sg;
1336 dma_addr_t slave_addr;
1337 int ret, tmp;
1339 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1340 __func__, sgl->length, plchan->name);
1342 txd = pl08x_get_txd(plchan, flags);
1343 if (!txd) {
1344 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1345 return NULL;
1348 if (direction != plchan->runtime_direction)
1349 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1350 "the direction configured for the PrimeCell\n",
1351 __func__);
1354 * Set up addresses, the PrimeCell configured address
1355 * will take precedence since this may configure the
1356 * channel target address dynamically at runtime.
1358 txd->direction = direction;
1360 if (direction == DMA_MEM_TO_DEV) {
1361 txd->cctl = plchan->dst_cctl;
1362 slave_addr = plchan->dst_addr;
1363 } else if (direction == DMA_DEV_TO_MEM) {
1364 txd->cctl = plchan->src_cctl;
1365 slave_addr = plchan->src_addr;
1366 } else {
1367 pl08x_free_txd(pl08x, txd);
1368 dev_err(&pl08x->adev->dev,
1369 "%s direction unsupported\n", __func__);
1370 return NULL;
1373 if (plchan->cd->device_fc)
1374 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1375 PL080_FLOW_PER2MEM_PER;
1376 else
1377 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1378 PL080_FLOW_PER2MEM;
1380 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1382 for_each_sg(sgl, sg, sg_len, tmp) {
1383 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1384 if (!dsg) {
1385 pl08x_free_txd(pl08x, txd);
1386 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1387 __func__);
1388 return NULL;
1390 list_add_tail(&dsg->node, &txd->dsg_list);
1392 dsg->len = sg_dma_len(sg);
1393 if (direction == DMA_MEM_TO_DEV) {
1394 dsg->src_addr = sg_phys(sg);
1395 dsg->dst_addr = slave_addr;
1396 } else {
1397 dsg->src_addr = slave_addr;
1398 dsg->dst_addr = sg_phys(sg);
1402 ret = pl08x_prep_channel_resources(plchan, txd);
1403 if (ret)
1404 return NULL;
1406 return &txd->tx;
1409 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1410 unsigned long arg)
1412 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1413 struct pl08x_driver_data *pl08x = plchan->host;
1414 unsigned long flags;
1415 int ret = 0;
1417 /* Controls applicable to inactive channels */
1418 if (cmd == DMA_SLAVE_CONFIG) {
1419 return dma_set_runtime_config(chan,
1420 (struct dma_slave_config *)arg);
1424 * Anything succeeds on channels with no physical allocation and
1425 * no queued transfers.
1427 spin_lock_irqsave(&plchan->lock, flags);
1428 if (!plchan->phychan && !plchan->at) {
1429 spin_unlock_irqrestore(&plchan->lock, flags);
1430 return 0;
1433 switch (cmd) {
1434 case DMA_TERMINATE_ALL:
1435 plchan->state = PL08X_CHAN_IDLE;
1437 if (plchan->phychan) {
1438 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1441 * Mark physical channel as free and free any slave
1442 * signal
1444 release_phy_channel(plchan);
1446 /* Dequeue jobs and free LLIs */
1447 if (plchan->at) {
1448 pl08x_free_txd(pl08x, plchan->at);
1449 plchan->at = NULL;
1451 /* Dequeue jobs not yet fired as well */
1452 pl08x_free_txd_list(pl08x, plchan);
1453 break;
1454 case DMA_PAUSE:
1455 pl08x_pause_phy_chan(plchan->phychan);
1456 plchan->state = PL08X_CHAN_PAUSED;
1457 break;
1458 case DMA_RESUME:
1459 pl08x_resume_phy_chan(plchan->phychan);
1460 plchan->state = PL08X_CHAN_RUNNING;
1461 break;
1462 default:
1463 /* Unknown command */
1464 ret = -ENXIO;
1465 break;
1468 spin_unlock_irqrestore(&plchan->lock, flags);
1470 return ret;
1473 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1475 struct pl08x_dma_chan *plchan;
1476 char *name = chan_id;
1478 /* Reject channels for devices not bound to this driver */
1479 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1480 return false;
1482 plchan = to_pl08x_chan(chan);
1484 /* Check that the channel is not taken! */
1485 if (!strcmp(plchan->name, name))
1486 return true;
1488 return false;
1492 * Just check that the device is there and active
1493 * TODO: turn this bit on/off depending on the number of physical channels
1494 * actually used, if it is zero... well shut it off. That will save some
1495 * power. Cut the clock at the same time.
1497 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1499 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1502 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1504 struct device *dev = txd->tx.chan->device->dev;
1505 struct pl08x_sg *dsg;
1507 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1508 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1509 list_for_each_entry(dsg, &txd->dsg_list, node)
1510 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1511 DMA_TO_DEVICE);
1512 else {
1513 list_for_each_entry(dsg, &txd->dsg_list, node)
1514 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1515 DMA_TO_DEVICE);
1518 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1519 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1520 list_for_each_entry(dsg, &txd->dsg_list, node)
1521 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1522 DMA_FROM_DEVICE);
1523 else
1524 list_for_each_entry(dsg, &txd->dsg_list, node)
1525 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1526 DMA_FROM_DEVICE);
1530 static void pl08x_tasklet(unsigned long data)
1532 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1533 struct pl08x_driver_data *pl08x = plchan->host;
1534 struct pl08x_txd *txd;
1535 unsigned long flags;
1537 spin_lock_irqsave(&plchan->lock, flags);
1539 txd = plchan->at;
1540 plchan->at = NULL;
1542 if (txd) {
1543 /* Update last completed */
1544 plchan->lc = txd->tx.cookie;
1547 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1548 if (!list_empty(&plchan->pend_list)) {
1549 struct pl08x_txd *next;
1551 next = list_first_entry(&plchan->pend_list,
1552 struct pl08x_txd,
1553 node);
1554 list_del(&next->node);
1556 pl08x_start_txd(plchan, next);
1557 } else if (plchan->phychan_hold) {
1559 * This channel is still in use - we have a new txd being
1560 * prepared and will soon be queued. Don't give up the
1561 * physical channel.
1563 } else {
1564 struct pl08x_dma_chan *waiting = NULL;
1567 * No more jobs, so free up the physical channel
1568 * Free any allocated signal on slave transfers too
1570 release_phy_channel(plchan);
1571 plchan->state = PL08X_CHAN_IDLE;
1574 * And NOW before anyone else can grab that free:d up
1575 * physical channel, see if there is some memcpy pending
1576 * that seriously needs to start because of being stacked
1577 * up while we were choking the physical channels with data.
1579 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1580 chan.device_node) {
1581 if (waiting->state == PL08X_CHAN_WAITING &&
1582 waiting->waiting != NULL) {
1583 int ret;
1585 /* This should REALLY not fail now */
1586 ret = prep_phy_channel(waiting,
1587 waiting->waiting);
1588 BUG_ON(ret);
1589 waiting->phychan_hold--;
1590 waiting->state = PL08X_CHAN_RUNNING;
1591 waiting->waiting = NULL;
1592 pl08x_issue_pending(&waiting->chan);
1593 break;
1598 spin_unlock_irqrestore(&plchan->lock, flags);
1600 if (txd) {
1601 dma_async_tx_callback callback = txd->tx.callback;
1602 void *callback_param = txd->tx.callback_param;
1604 /* Don't try to unmap buffers on slave channels */
1605 if (!plchan->slave)
1606 pl08x_unmap_buffers(txd);
1608 /* Free the descriptor */
1609 spin_lock_irqsave(&plchan->lock, flags);
1610 pl08x_free_txd(pl08x, txd);
1611 spin_unlock_irqrestore(&plchan->lock, flags);
1613 /* Callback to signal completion */
1614 if (callback)
1615 callback(callback_param);
1619 static irqreturn_t pl08x_irq(int irq, void *dev)
1621 struct pl08x_driver_data *pl08x = dev;
1622 u32 mask = 0, err, tc, i;
1624 /* check & clear - ERR & TC interrupts */
1625 err = readl(pl08x->base + PL080_ERR_STATUS);
1626 if (err) {
1627 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1628 __func__, err);
1629 writel(err, pl08x->base + PL080_ERR_CLEAR);
1631 tc = readl(pl08x->base + PL080_INT_STATUS);
1632 if (tc)
1633 writel(tc, pl08x->base + PL080_TC_CLEAR);
1635 if (!err && !tc)
1636 return IRQ_NONE;
1638 for (i = 0; i < pl08x->vd->channels; i++) {
1639 if (((1 << i) & err) || ((1 << i) & tc)) {
1640 /* Locate physical channel */
1641 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1642 struct pl08x_dma_chan *plchan = phychan->serving;
1644 if (!plchan) {
1645 dev_err(&pl08x->adev->dev,
1646 "%s Error TC interrupt on unused channel: 0x%08x\n",
1647 __func__, i);
1648 continue;
1651 /* Schedule tasklet on this channel */
1652 tasklet_schedule(&plchan->tasklet);
1653 mask |= (1 << i);
1657 return mask ? IRQ_HANDLED : IRQ_NONE;
1660 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1662 u32 cctl = pl08x_cctl(chan->cd->cctl);
1664 chan->slave = true;
1665 chan->name = chan->cd->bus_id;
1666 chan->src_addr = chan->cd->addr;
1667 chan->dst_addr = chan->cd->addr;
1668 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1669 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1670 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1671 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1675 * Initialise the DMAC memcpy/slave channels.
1676 * Make a local wrapper to hold required data
1678 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1679 struct dma_device *dmadev, unsigned int channels, bool slave)
1681 struct pl08x_dma_chan *chan;
1682 int i;
1684 INIT_LIST_HEAD(&dmadev->channels);
1687 * Register as many many memcpy as we have physical channels,
1688 * we won't always be able to use all but the code will have
1689 * to cope with that situation.
1691 for (i = 0; i < channels; i++) {
1692 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1693 if (!chan) {
1694 dev_err(&pl08x->adev->dev,
1695 "%s no memory for channel\n", __func__);
1696 return -ENOMEM;
1699 chan->host = pl08x;
1700 chan->state = PL08X_CHAN_IDLE;
1702 if (slave) {
1703 chan->cd = &pl08x->pd->slave_channels[i];
1704 pl08x_dma_slave_init(chan);
1705 } else {
1706 chan->cd = &pl08x->pd->memcpy_channel;
1707 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1708 if (!chan->name) {
1709 kfree(chan);
1710 return -ENOMEM;
1713 if (chan->cd->circular_buffer) {
1714 dev_err(&pl08x->adev->dev,
1715 "channel %s: circular buffers not supported\n",
1716 chan->name);
1717 kfree(chan);
1718 continue;
1720 dev_dbg(&pl08x->adev->dev,
1721 "initialize virtual channel \"%s\"\n",
1722 chan->name);
1724 chan->chan.device = dmadev;
1725 chan->chan.cookie = 0;
1726 chan->lc = 0;
1728 spin_lock_init(&chan->lock);
1729 INIT_LIST_HEAD(&chan->pend_list);
1730 tasklet_init(&chan->tasklet, pl08x_tasklet,
1731 (unsigned long) chan);
1733 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1735 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1736 i, slave ? "slave" : "memcpy");
1737 return i;
1740 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1742 struct pl08x_dma_chan *chan = NULL;
1743 struct pl08x_dma_chan *next;
1745 list_for_each_entry_safe(chan,
1746 next, &dmadev->channels, chan.device_node) {
1747 list_del(&chan->chan.device_node);
1748 kfree(chan);
1752 #ifdef CONFIG_DEBUG_FS
1753 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1755 switch (state) {
1756 case PL08X_CHAN_IDLE:
1757 return "idle";
1758 case PL08X_CHAN_RUNNING:
1759 return "running";
1760 case PL08X_CHAN_PAUSED:
1761 return "paused";
1762 case PL08X_CHAN_WAITING:
1763 return "waiting";
1764 default:
1765 break;
1767 return "UNKNOWN STATE";
1770 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1772 struct pl08x_driver_data *pl08x = s->private;
1773 struct pl08x_dma_chan *chan;
1774 struct pl08x_phy_chan *ch;
1775 unsigned long flags;
1776 int i;
1778 seq_printf(s, "PL08x physical channels:\n");
1779 seq_printf(s, "CHANNEL:\tUSER:\n");
1780 seq_printf(s, "--------\t-----\n");
1781 for (i = 0; i < pl08x->vd->channels; i++) {
1782 struct pl08x_dma_chan *virt_chan;
1784 ch = &pl08x->phy_chans[i];
1786 spin_lock_irqsave(&ch->lock, flags);
1787 virt_chan = ch->serving;
1789 seq_printf(s, "%d\t\t%s\n",
1790 ch->id, virt_chan ? virt_chan->name : "(none)");
1792 spin_unlock_irqrestore(&ch->lock, flags);
1795 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1796 seq_printf(s, "CHANNEL:\tSTATE:\n");
1797 seq_printf(s, "--------\t------\n");
1798 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1799 seq_printf(s, "%s\t\t%s\n", chan->name,
1800 pl08x_state_str(chan->state));
1803 seq_printf(s, "\nPL08x virtual slave channels:\n");
1804 seq_printf(s, "CHANNEL:\tSTATE:\n");
1805 seq_printf(s, "--------\t------\n");
1806 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1807 seq_printf(s, "%s\t\t%s\n", chan->name,
1808 pl08x_state_str(chan->state));
1811 return 0;
1814 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1816 return single_open(file, pl08x_debugfs_show, inode->i_private);
1819 static const struct file_operations pl08x_debugfs_operations = {
1820 .open = pl08x_debugfs_open,
1821 .read = seq_read,
1822 .llseek = seq_lseek,
1823 .release = single_release,
1826 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1828 /* Expose a simple debugfs interface to view all clocks */
1829 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1830 S_IFREG | S_IRUGO, NULL, pl08x,
1831 &pl08x_debugfs_operations);
1834 #else
1835 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838 #endif
1840 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1842 struct pl08x_driver_data *pl08x;
1843 const struct vendor_data *vd = id->data;
1844 int ret = 0;
1845 int i;
1847 ret = amba_request_regions(adev, NULL);
1848 if (ret)
1849 return ret;
1851 /* Create the driver state holder */
1852 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1853 if (!pl08x) {
1854 ret = -ENOMEM;
1855 goto out_no_pl08x;
1858 pm_runtime_set_active(&adev->dev);
1859 pm_runtime_enable(&adev->dev);
1861 /* Initialize memcpy engine */
1862 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1863 pl08x->memcpy.dev = &adev->dev;
1864 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1865 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1866 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1867 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1868 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1869 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1870 pl08x->memcpy.device_control = pl08x_control;
1872 /* Initialize slave engine */
1873 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1874 pl08x->slave.dev = &adev->dev;
1875 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1876 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1877 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1878 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1879 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1880 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1881 pl08x->slave.device_control = pl08x_control;
1883 /* Get the platform data */
1884 pl08x->pd = dev_get_platdata(&adev->dev);
1885 if (!pl08x->pd) {
1886 dev_err(&adev->dev, "no platform data supplied\n");
1887 goto out_no_platdata;
1890 /* Assign useful pointers to the driver state */
1891 pl08x->adev = adev;
1892 pl08x->vd = vd;
1894 /* By default, AHB1 only. If dualmaster, from platform */
1895 pl08x->lli_buses = PL08X_AHB1;
1896 pl08x->mem_buses = PL08X_AHB1;
1897 if (pl08x->vd->dualmaster) {
1898 pl08x->lli_buses = pl08x->pd->lli_buses;
1899 pl08x->mem_buses = pl08x->pd->mem_buses;
1902 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1903 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1904 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1905 if (!pl08x->pool) {
1906 ret = -ENOMEM;
1907 goto out_no_lli_pool;
1910 spin_lock_init(&pl08x->lock);
1912 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1913 if (!pl08x->base) {
1914 ret = -ENOMEM;
1915 goto out_no_ioremap;
1918 /* Turn on the PL08x */
1919 pl08x_ensure_on(pl08x);
1921 /* Attach the interrupt handler */
1922 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1923 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1925 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1926 DRIVER_NAME, pl08x);
1927 if (ret) {
1928 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1929 __func__, adev->irq[0]);
1930 goto out_no_irq;
1933 /* Initialize physical channels */
1934 pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1935 GFP_KERNEL);
1936 if (!pl08x->phy_chans) {
1937 dev_err(&adev->dev, "%s failed to allocate "
1938 "physical channel holders\n",
1939 __func__);
1940 goto out_no_phychans;
1943 for (i = 0; i < vd->channels; i++) {
1944 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1946 ch->id = i;
1947 ch->base = pl08x->base + PL080_Cx_BASE(i);
1948 spin_lock_init(&ch->lock);
1949 ch->serving = NULL;
1950 ch->signal = -1;
1951 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1952 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1955 /* Register as many memcpy channels as there are physical channels */
1956 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1957 pl08x->vd->channels, false);
1958 if (ret <= 0) {
1959 dev_warn(&pl08x->adev->dev,
1960 "%s failed to enumerate memcpy channels - %d\n",
1961 __func__, ret);
1962 goto out_no_memcpy;
1964 pl08x->memcpy.chancnt = ret;
1966 /* Register slave channels */
1967 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1968 pl08x->pd->num_slave_channels, true);
1969 if (ret <= 0) {
1970 dev_warn(&pl08x->adev->dev,
1971 "%s failed to enumerate slave channels - %d\n",
1972 __func__, ret);
1973 goto out_no_slave;
1975 pl08x->slave.chancnt = ret;
1977 ret = dma_async_device_register(&pl08x->memcpy);
1978 if (ret) {
1979 dev_warn(&pl08x->adev->dev,
1980 "%s failed to register memcpy as an async device - %d\n",
1981 __func__, ret);
1982 goto out_no_memcpy_reg;
1985 ret = dma_async_device_register(&pl08x->slave);
1986 if (ret) {
1987 dev_warn(&pl08x->adev->dev,
1988 "%s failed to register slave as an async device - %d\n",
1989 __func__, ret);
1990 goto out_no_slave_reg;
1993 amba_set_drvdata(adev, pl08x);
1994 init_pl08x_debugfs(pl08x);
1995 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1996 amba_part(adev), amba_rev(adev),
1997 (unsigned long long)adev->res.start, adev->irq[0]);
1999 pm_runtime_put(&adev->dev);
2000 return 0;
2002 out_no_slave_reg:
2003 dma_async_device_unregister(&pl08x->memcpy);
2004 out_no_memcpy_reg:
2005 pl08x_free_virtual_channels(&pl08x->slave);
2006 out_no_slave:
2007 pl08x_free_virtual_channels(&pl08x->memcpy);
2008 out_no_memcpy:
2009 kfree(pl08x->phy_chans);
2010 out_no_phychans:
2011 free_irq(adev->irq[0], pl08x);
2012 out_no_irq:
2013 iounmap(pl08x->base);
2014 out_no_ioremap:
2015 dma_pool_destroy(pl08x->pool);
2016 out_no_lli_pool:
2017 out_no_platdata:
2018 pm_runtime_put(&adev->dev);
2019 pm_runtime_disable(&adev->dev);
2021 kfree(pl08x);
2022 out_no_pl08x:
2023 amba_release_regions(adev);
2024 return ret;
2027 /* PL080 has 8 channels and the PL080 have just 2 */
2028 static struct vendor_data vendor_pl080 = {
2029 .channels = 8,
2030 .dualmaster = true,
2033 static struct vendor_data vendor_pl081 = {
2034 .channels = 2,
2035 .dualmaster = false,
2038 static struct amba_id pl08x_ids[] = {
2039 /* PL080 */
2041 .id = 0x00041080,
2042 .mask = 0x000fffff,
2043 .data = &vendor_pl080,
2045 /* PL081 */
2047 .id = 0x00041081,
2048 .mask = 0x000fffff,
2049 .data = &vendor_pl081,
2051 /* Nomadik 8815 PL080 variant */
2053 .id = 0x00280880,
2054 .mask = 0x00ffffff,
2055 .data = &vendor_pl080,
2057 { 0, 0 },
2060 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2062 static struct amba_driver pl08x_amba_driver = {
2063 .drv.name = DRIVER_NAME,
2064 .id_table = pl08x_ids,
2065 .probe = pl08x_probe,
2068 static int __init pl08x_init(void)
2070 int retval;
2071 retval = amba_driver_register(&pl08x_amba_driver);
2072 if (retval)
2073 printk(KERN_WARNING DRIVER_NAME
2074 "failed to register as an AMBA device (%d)\n",
2075 retval);
2076 return retval;
2078 subsys_initcall(pl08x_init);