OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / dma / ioat / dma_v3.c
blob2dbf32b02735a90b11271175c54357bc29a9df5b
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22 * The full GNU General Public License is included in this distribution in
23 * the file called "COPYING".
25 * BSD LICENSE
27 * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions are met:
32 * * Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * * Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in
36 * the documentation and/or other materials provided with the
37 * distribution.
38 * * Neither the name of Intel Corporation nor the names of its
39 * contributors may be used to endorse or promote products derived
40 * from this software without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
43 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
46 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
47 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
48 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
49 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
50 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52 * POSSIBILITY OF SUCH DAMAGE.
56 * Support routines for v3+ hardware
59 #include <linux/pci.h>
60 #include <linux/gfp.h>
61 #include <linux/dmaengine.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/prefetch.h>
64 #include "registers.h"
65 #include "hw.h"
66 #include "dma.h"
67 #include "dma_v2.h"
69 /* ioat hardware assumes at least two sources for raid operations */
70 #define src_cnt_to_sw(x) ((x) + 2)
71 #define src_cnt_to_hw(x) ((x) - 2)
73 /* provide a lookup table for setting the source address in the base or
74 * extended descriptor of an xor or pq descriptor
76 static const u8 xor_idx_to_desc = 0xe0;
77 static const u8 xor_idx_to_field[] = { 1, 4, 5, 6, 7, 0, 1, 2 };
78 static const u8 pq_idx_to_desc = 0xf8;
79 static const u8 pq_idx_to_field[] = { 1, 4, 5, 0, 1, 2, 4, 5 };
81 static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
83 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
85 return raw->field[xor_idx_to_field[idx]];
88 static void xor_set_src(struct ioat_raw_descriptor *descs[2],
89 dma_addr_t addr, u32 offset, int idx)
91 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
93 raw->field[xor_idx_to_field[idx]] = addr + offset;
96 static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
98 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
100 return raw->field[pq_idx_to_field[idx]];
103 static void pq_set_src(struct ioat_raw_descriptor *descs[2],
104 dma_addr_t addr, u32 offset, u8 coef, int idx)
106 struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
107 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
109 raw->field[pq_idx_to_field[idx]] = addr + offset;
110 pq->coef[idx] = coef;
113 static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
114 struct ioat_ring_ent *desc, int idx)
116 struct ioat_chan_common *chan = &ioat->base;
117 struct pci_dev *pdev = chan->device->pdev;
118 size_t len = desc->len;
119 size_t offset = len - desc->hw->size;
120 struct dma_async_tx_descriptor *tx = &desc->txd;
121 enum dma_ctrl_flags flags = tx->flags;
123 switch (desc->hw->ctl_f.op) {
124 case IOAT_OP_COPY:
125 if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
126 ioat_dma_unmap(chan, flags, len, desc->hw);
127 break;
128 case IOAT_OP_FILL: {
129 struct ioat_fill_descriptor *hw = desc->fill;
131 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
132 ioat_unmap(pdev, hw->dst_addr - offset, len,
133 PCI_DMA_FROMDEVICE, flags, 1);
134 break;
136 case IOAT_OP_XOR_VAL:
137 case IOAT_OP_XOR: {
138 struct ioat_xor_descriptor *xor = desc->xor;
139 struct ioat_ring_ent *ext;
140 struct ioat_xor_ext_descriptor *xor_ex = NULL;
141 int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
142 struct ioat_raw_descriptor *descs[2];
143 int i;
145 if (src_cnt > 5) {
146 ext = ioat2_get_ring_ent(ioat, idx + 1);
147 xor_ex = ext->xor_ex;
150 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
151 descs[0] = (struct ioat_raw_descriptor *) xor;
152 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
153 for (i = 0; i < src_cnt; i++) {
154 dma_addr_t src = xor_get_src(descs, i);
156 ioat_unmap(pdev, src - offset, len,
157 PCI_DMA_TODEVICE, flags, 0);
160 /* dest is a source in xor validate operations */
161 if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
162 ioat_unmap(pdev, xor->dst_addr - offset, len,
163 PCI_DMA_TODEVICE, flags, 1);
164 break;
168 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
169 ioat_unmap(pdev, xor->dst_addr - offset, len,
170 PCI_DMA_FROMDEVICE, flags, 1);
171 break;
173 case IOAT_OP_PQ_VAL:
174 case IOAT_OP_PQ: {
175 struct ioat_pq_descriptor *pq = desc->pq;
176 struct ioat_ring_ent *ext;
177 struct ioat_pq_ext_descriptor *pq_ex = NULL;
178 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
179 struct ioat_raw_descriptor *descs[2];
180 int i;
182 if (src_cnt > 3) {
183 ext = ioat2_get_ring_ent(ioat, idx + 1);
184 pq_ex = ext->pq_ex;
187 /* in the 'continue' case don't unmap the dests as sources */
188 if (dmaf_p_disabled_continue(flags))
189 src_cnt--;
190 else if (dmaf_continue(flags))
191 src_cnt -= 3;
193 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
194 descs[0] = (struct ioat_raw_descriptor *) pq;
195 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
196 for (i = 0; i < src_cnt; i++) {
197 dma_addr_t src = pq_get_src(descs, i);
199 ioat_unmap(pdev, src - offset, len,
200 PCI_DMA_TODEVICE, flags, 0);
203 /* the dests are sources in pq validate operations */
204 if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
205 if (!(flags & DMA_PREP_PQ_DISABLE_P))
206 ioat_unmap(pdev, pq->p_addr - offset,
207 len, PCI_DMA_TODEVICE, flags, 0);
208 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
209 ioat_unmap(pdev, pq->q_addr - offset,
210 len, PCI_DMA_TODEVICE, flags, 0);
211 break;
215 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
216 if (!(flags & DMA_PREP_PQ_DISABLE_P))
217 ioat_unmap(pdev, pq->p_addr - offset, len,
218 PCI_DMA_BIDIRECTIONAL, flags, 1);
219 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
220 ioat_unmap(pdev, pq->q_addr - offset, len,
221 PCI_DMA_BIDIRECTIONAL, flags, 1);
223 break;
225 default:
226 dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
227 __func__, desc->hw->ctl_f.op);
231 static bool desc_has_ext(struct ioat_ring_ent *desc)
233 struct ioat_dma_descriptor *hw = desc->hw;
235 if (hw->ctl_f.op == IOAT_OP_XOR ||
236 hw->ctl_f.op == IOAT_OP_XOR_VAL) {
237 struct ioat_xor_descriptor *xor = desc->xor;
239 if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
240 return true;
241 } else if (hw->ctl_f.op == IOAT_OP_PQ ||
242 hw->ctl_f.op == IOAT_OP_PQ_VAL) {
243 struct ioat_pq_descriptor *pq = desc->pq;
245 if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
246 return true;
249 return false;
253 * __cleanup - reclaim used descriptors
254 * @ioat: channel (ring) to clean
256 * The difference from the dma_v2.c __cleanup() is that this routine
257 * handles extended descriptors and dma-unmapping raid operations.
259 static void __cleanup(struct ioat2_dma_chan *ioat, dma_addr_t phys_complete)
261 struct ioat_chan_common *chan = &ioat->base;
262 struct ioat_ring_ent *desc;
263 bool seen_current = false;
264 int idx = ioat->tail, i;
265 u16 active;
267 dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
268 __func__, ioat->head, ioat->tail, ioat->issued);
270 active = ioat2_ring_active(ioat);
271 for (i = 0; i < active && !seen_current; i++) {
272 struct dma_async_tx_descriptor *tx;
274 smp_read_barrier_depends();
275 prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
276 desc = ioat2_get_ring_ent(ioat, idx + i);
277 dump_desc_dbg(ioat, desc);
278 tx = &desc->txd;
279 if (tx->cookie) {
280 chan->completed_cookie = tx->cookie;
281 ioat3_dma_unmap(ioat, desc, idx + i);
282 tx->cookie = 0;
283 if (tx->callback) {
284 tx->callback(tx->callback_param);
285 tx->callback = NULL;
289 if (tx->phys == phys_complete)
290 seen_current = true;
292 /* skip extended descriptors */
293 if (desc_has_ext(desc)) {
294 BUG_ON(i + 1 >= active);
295 i++;
298 smp_mb(); /* finish all descriptor reads before incrementing tail */
299 ioat->tail = idx + i;
300 BUG_ON(active && !seen_current); /* no active descs have written a completion? */
301 chan->last_completion = phys_complete;
303 if (active - i == 0) {
304 dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
305 __func__);
306 clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
307 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
309 /* 5 microsecond delay per pending descriptor */
310 writew(min((5 * (active - i)), IOAT_INTRDELAY_MASK),
311 chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
314 static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
316 struct ioat_chan_common *chan = &ioat->base;
317 dma_addr_t phys_complete;
319 spin_lock_bh(&chan->cleanup_lock);
320 if (ioat_cleanup_preamble(chan, &phys_complete))
321 __cleanup(ioat, phys_complete);
322 spin_unlock_bh(&chan->cleanup_lock);
325 static void ioat3_cleanup_event(unsigned long data)
327 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
329 ioat3_cleanup(ioat);
330 writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
333 static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
335 struct ioat_chan_common *chan = &ioat->base;
336 dma_addr_t phys_complete;
338 ioat2_quiesce(chan, 0);
339 if (ioat_cleanup_preamble(chan, &phys_complete))
340 __cleanup(ioat, phys_complete);
342 __ioat2_restart_chan(ioat);
345 static void ioat3_timer_event(unsigned long data)
347 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
348 struct ioat_chan_common *chan = &ioat->base;
350 if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
351 dma_addr_t phys_complete;
352 u64 status;
354 status = ioat_chansts(chan);
356 /* when halted due to errors check for channel
357 * programming errors before advancing the completion state
359 if (is_ioat_halted(status)) {
360 u32 chanerr;
362 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
363 dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
364 __func__, chanerr);
365 if (test_bit(IOAT_RUN, &chan->state))
366 BUG_ON(is_ioat_bug(chanerr));
367 else /* we never got off the ground */
368 return;
371 /* if we haven't made progress and we have already
372 * acknowledged a pending completion once, then be more
373 * forceful with a restart
375 spin_lock_bh(&chan->cleanup_lock);
376 if (ioat_cleanup_preamble(chan, &phys_complete))
377 __cleanup(ioat, phys_complete);
378 else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
379 spin_lock_bh(&ioat->prep_lock);
380 ioat3_restart_channel(ioat);
381 spin_unlock_bh(&ioat->prep_lock);
382 } else {
383 set_bit(IOAT_COMPLETION_ACK, &chan->state);
384 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
386 spin_unlock_bh(&chan->cleanup_lock);
387 } else {
388 u16 active;
390 /* if the ring is idle, empty, and oversized try to step
391 * down the size
393 spin_lock_bh(&chan->cleanup_lock);
394 spin_lock_bh(&ioat->prep_lock);
395 active = ioat2_ring_active(ioat);
396 if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
397 reshape_ring(ioat, ioat->alloc_order-1);
398 spin_unlock_bh(&ioat->prep_lock);
399 spin_unlock_bh(&chan->cleanup_lock);
401 /* keep shrinking until we get back to our minimum
402 * default size
404 if (ioat->alloc_order > ioat_get_alloc_order())
405 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
409 static enum dma_status
410 ioat3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
411 struct dma_tx_state *txstate)
413 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
415 if (ioat_tx_status(c, cookie, txstate) == DMA_SUCCESS)
416 return DMA_SUCCESS;
418 ioat3_cleanup(ioat);
420 return ioat_tx_status(c, cookie, txstate);
423 static struct dma_async_tx_descriptor *
424 ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
425 size_t len, unsigned long flags)
427 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
428 struct ioat_ring_ent *desc;
429 size_t total_len = len;
430 struct ioat_fill_descriptor *fill;
431 u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
432 int num_descs, idx, i;
434 num_descs = ioat2_xferlen_to_descs(ioat, len);
435 if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs) == 0)
436 idx = ioat->head;
437 else
438 return NULL;
439 i = 0;
440 do {
441 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
443 desc = ioat2_get_ring_ent(ioat, idx + i);
444 fill = desc->fill;
446 fill->size = xfer_size;
447 fill->src_data = src_data;
448 fill->dst_addr = dest;
449 fill->ctl = 0;
450 fill->ctl_f.op = IOAT_OP_FILL;
452 len -= xfer_size;
453 dest += xfer_size;
454 dump_desc_dbg(ioat, desc);
455 } while (++i < num_descs);
457 desc->txd.flags = flags;
458 desc->len = total_len;
459 fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
460 fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
461 fill->ctl_f.compl_write = 1;
462 dump_desc_dbg(ioat, desc);
464 /* we leave the channel locked to ensure in order submission */
465 return &desc->txd;
468 static struct dma_async_tx_descriptor *
469 __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
470 dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
471 size_t len, unsigned long flags)
473 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
474 struct ioat_ring_ent *compl_desc;
475 struct ioat_ring_ent *desc;
476 struct ioat_ring_ent *ext;
477 size_t total_len = len;
478 struct ioat_xor_descriptor *xor;
479 struct ioat_xor_ext_descriptor *xor_ex = NULL;
480 struct ioat_dma_descriptor *hw;
481 int num_descs, with_ext, idx, i;
482 u32 offset = 0;
483 u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
485 BUG_ON(src_cnt < 2);
487 num_descs = ioat2_xferlen_to_descs(ioat, len);
488 /* we need 2x the number of descriptors to cover greater than 5
489 * sources
491 if (src_cnt > 5) {
492 with_ext = 1;
493 num_descs *= 2;
494 } else
495 with_ext = 0;
497 /* completion writes from the raid engine may pass completion
498 * writes from the legacy engine, so we need one extra null
499 * (legacy) descriptor to ensure all completion writes arrive in
500 * order.
502 if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs+1) == 0)
503 idx = ioat->head;
504 else
505 return NULL;
506 i = 0;
507 do {
508 struct ioat_raw_descriptor *descs[2];
509 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
510 int s;
512 desc = ioat2_get_ring_ent(ioat, idx + i);
513 xor = desc->xor;
515 /* save a branch by unconditionally retrieving the
516 * extended descriptor xor_set_src() knows to not write
517 * to it in the single descriptor case
519 ext = ioat2_get_ring_ent(ioat, idx + i + 1);
520 xor_ex = ext->xor_ex;
522 descs[0] = (struct ioat_raw_descriptor *) xor;
523 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
524 for (s = 0; s < src_cnt; s++)
525 xor_set_src(descs, src[s], offset, s);
526 xor->size = xfer_size;
527 xor->dst_addr = dest + offset;
528 xor->ctl = 0;
529 xor->ctl_f.op = op;
530 xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
532 len -= xfer_size;
533 offset += xfer_size;
534 dump_desc_dbg(ioat, desc);
535 } while ((i += 1 + with_ext) < num_descs);
537 /* last xor descriptor carries the unmap parameters and fence bit */
538 desc->txd.flags = flags;
539 desc->len = total_len;
540 if (result)
541 desc->result = result;
542 xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
544 /* completion descriptor carries interrupt bit */
545 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
546 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
547 hw = compl_desc->hw;
548 hw->ctl = 0;
549 hw->ctl_f.null = 1;
550 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
551 hw->ctl_f.compl_write = 1;
552 hw->size = NULL_DESC_BUFFER_SIZE;
553 dump_desc_dbg(ioat, compl_desc);
555 /* we leave the channel locked to ensure in order submission */
556 return &compl_desc->txd;
559 static struct dma_async_tx_descriptor *
560 ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
561 unsigned int src_cnt, size_t len, unsigned long flags)
563 return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
566 struct dma_async_tx_descriptor *
567 ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
568 unsigned int src_cnt, size_t len,
569 enum sum_check_flags *result, unsigned long flags)
571 /* the cleanup routine only sets bits on validate failure, it
572 * does not clear bits on validate success... so clear it here
574 *result = 0;
576 return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
577 src_cnt - 1, len, flags);
580 static void
581 dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
583 struct device *dev = to_dev(&ioat->base);
584 struct ioat_pq_descriptor *pq = desc->pq;
585 struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
586 struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
587 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
588 int i;
590 dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
591 " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
592 desc_id(desc), (unsigned long long) desc->txd.phys,
593 (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
594 desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
595 pq->ctl_f.compl_write,
596 pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
597 pq->ctl_f.src_cnt);
598 for (i = 0; i < src_cnt; i++)
599 dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
600 (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
601 dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
602 dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
605 static struct dma_async_tx_descriptor *
606 __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
607 const dma_addr_t *dst, const dma_addr_t *src,
608 unsigned int src_cnt, const unsigned char *scf,
609 size_t len, unsigned long flags)
611 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
612 struct ioat_chan_common *chan = &ioat->base;
613 struct ioat_ring_ent *compl_desc;
614 struct ioat_ring_ent *desc;
615 struct ioat_ring_ent *ext;
616 size_t total_len = len;
617 struct ioat_pq_descriptor *pq;
618 struct ioat_pq_ext_descriptor *pq_ex = NULL;
619 struct ioat_dma_descriptor *hw;
620 u32 offset = 0;
621 u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
622 int i, s, idx, with_ext, num_descs;
624 dev_dbg(to_dev(chan), "%s\n", __func__);
625 /* the engine requires at least two sources (we provide
626 * at least 1 implied source in the DMA_PREP_CONTINUE case)
628 BUG_ON(src_cnt + dmaf_continue(flags) < 2);
630 num_descs = ioat2_xferlen_to_descs(ioat, len);
631 /* we need 2x the number of descriptors to cover greater than 3
632 * sources (we need 1 extra source in the q-only continuation
633 * case and 3 extra sources in the p+q continuation case.
635 if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
636 (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
637 with_ext = 1;
638 num_descs *= 2;
639 } else
640 with_ext = 0;
642 /* completion writes from the raid engine may pass completion
643 * writes from the legacy engine, so we need one extra null
644 * (legacy) descriptor to ensure all completion writes arrive in
645 * order.
647 if (likely(num_descs) &&
648 ioat2_check_space_lock(ioat, num_descs+1) == 0)
649 idx = ioat->head;
650 else
651 return NULL;
652 i = 0;
653 do {
654 struct ioat_raw_descriptor *descs[2];
655 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
657 desc = ioat2_get_ring_ent(ioat, idx + i);
658 pq = desc->pq;
660 /* save a branch by unconditionally retrieving the
661 * extended descriptor pq_set_src() knows to not write
662 * to it in the single descriptor case
664 ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
665 pq_ex = ext->pq_ex;
667 descs[0] = (struct ioat_raw_descriptor *) pq;
668 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
670 for (s = 0; s < src_cnt; s++)
671 pq_set_src(descs, src[s], offset, scf[s], s);
673 /* see the comment for dma_maxpq in include/linux/dmaengine.h */
674 if (dmaf_p_disabled_continue(flags))
675 pq_set_src(descs, dst[1], offset, 1, s++);
676 else if (dmaf_continue(flags)) {
677 pq_set_src(descs, dst[0], offset, 0, s++);
678 pq_set_src(descs, dst[1], offset, 1, s++);
679 pq_set_src(descs, dst[1], offset, 0, s++);
681 pq->size = xfer_size;
682 pq->p_addr = dst[0] + offset;
683 pq->q_addr = dst[1] + offset;
684 pq->ctl = 0;
685 pq->ctl_f.op = op;
686 pq->ctl_f.src_cnt = src_cnt_to_hw(s);
687 pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
688 pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
690 len -= xfer_size;
691 offset += xfer_size;
692 } while ((i += 1 + with_ext) < num_descs);
694 /* last pq descriptor carries the unmap parameters and fence bit */
695 desc->txd.flags = flags;
696 desc->len = total_len;
697 if (result)
698 desc->result = result;
699 pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
700 dump_pq_desc_dbg(ioat, desc, ext);
702 /* completion descriptor carries interrupt bit */
703 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
704 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
705 hw = compl_desc->hw;
706 hw->ctl = 0;
707 hw->ctl_f.null = 1;
708 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
709 hw->ctl_f.compl_write = 1;
710 hw->size = NULL_DESC_BUFFER_SIZE;
711 dump_desc_dbg(ioat, compl_desc);
713 /* we leave the channel locked to ensure in order submission */
714 return &compl_desc->txd;
717 static struct dma_async_tx_descriptor *
718 ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
719 unsigned int src_cnt, const unsigned char *scf, size_t len,
720 unsigned long flags)
722 /* specify valid address for disabled result */
723 if (flags & DMA_PREP_PQ_DISABLE_P)
724 dst[0] = dst[1];
725 if (flags & DMA_PREP_PQ_DISABLE_Q)
726 dst[1] = dst[0];
728 /* handle the single source multiply case from the raid6
729 * recovery path
731 if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
732 dma_addr_t single_source[2];
733 unsigned char single_source_coef[2];
735 BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
736 single_source[0] = src[0];
737 single_source[1] = src[0];
738 single_source_coef[0] = scf[0];
739 single_source_coef[1] = 0;
741 return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
742 single_source_coef, len, flags);
743 } else
744 return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
745 len, flags);
748 struct dma_async_tx_descriptor *
749 ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
750 unsigned int src_cnt, const unsigned char *scf, size_t len,
751 enum sum_check_flags *pqres, unsigned long flags)
753 /* specify valid address for disabled result */
754 if (flags & DMA_PREP_PQ_DISABLE_P)
755 pq[0] = pq[1];
756 if (flags & DMA_PREP_PQ_DISABLE_Q)
757 pq[1] = pq[0];
759 /* the cleanup routine only sets bits on validate failure, it
760 * does not clear bits on validate success... so clear it here
762 *pqres = 0;
764 return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
765 flags);
768 static struct dma_async_tx_descriptor *
769 ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
770 unsigned int src_cnt, size_t len, unsigned long flags)
772 unsigned char scf[src_cnt];
773 dma_addr_t pq[2];
775 memset(scf, 0, src_cnt);
776 pq[0] = dst;
777 flags |= DMA_PREP_PQ_DISABLE_Q;
778 pq[1] = dst; /* specify valid address for disabled result */
780 return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
781 flags);
784 struct dma_async_tx_descriptor *
785 ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
786 unsigned int src_cnt, size_t len,
787 enum sum_check_flags *result, unsigned long flags)
789 unsigned char scf[src_cnt];
790 dma_addr_t pq[2];
792 /* the cleanup routine only sets bits on validate failure, it
793 * does not clear bits on validate success... so clear it here
795 *result = 0;
797 memset(scf, 0, src_cnt);
798 pq[0] = src[0];
799 flags |= DMA_PREP_PQ_DISABLE_Q;
800 pq[1] = pq[0]; /* specify valid address for disabled result */
802 return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf,
803 len, flags);
806 static struct dma_async_tx_descriptor *
807 ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
809 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
810 struct ioat_ring_ent *desc;
811 struct ioat_dma_descriptor *hw;
813 if (ioat2_check_space_lock(ioat, 1) == 0)
814 desc = ioat2_get_ring_ent(ioat, ioat->head);
815 else
816 return NULL;
818 hw = desc->hw;
819 hw->ctl = 0;
820 hw->ctl_f.null = 1;
821 hw->ctl_f.int_en = 1;
822 hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
823 hw->ctl_f.compl_write = 1;
824 hw->size = NULL_DESC_BUFFER_SIZE;
825 hw->src_addr = 0;
826 hw->dst_addr = 0;
828 desc->txd.flags = flags;
829 desc->len = 1;
831 dump_desc_dbg(ioat, desc);
833 /* we leave the channel locked to ensure in order submission */
834 return &desc->txd;
837 static void __devinit ioat3_dma_test_callback(void *dma_async_param)
839 struct completion *cmp = dma_async_param;
841 complete(cmp);
844 #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
845 static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
847 int i, src_idx;
848 struct page *dest;
849 struct page *xor_srcs[IOAT_NUM_SRC_TEST];
850 struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
851 dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
852 dma_addr_t dma_addr, dest_dma;
853 struct dma_async_tx_descriptor *tx;
854 struct dma_chan *dma_chan;
855 dma_cookie_t cookie;
856 u8 cmp_byte = 0;
857 u32 cmp_word;
858 u32 xor_val_result;
859 int err = 0;
860 struct completion cmp;
861 unsigned long tmo;
862 struct device *dev = &device->pdev->dev;
863 struct dma_device *dma = &device->common;
865 dev_dbg(dev, "%s\n", __func__);
867 if (!dma_has_cap(DMA_XOR, dma->cap_mask))
868 return 0;
870 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
871 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
872 if (!xor_srcs[src_idx]) {
873 while (src_idx--)
874 __free_page(xor_srcs[src_idx]);
875 return -ENOMEM;
879 dest = alloc_page(GFP_KERNEL);
880 if (!dest) {
881 while (src_idx--)
882 __free_page(xor_srcs[src_idx]);
883 return -ENOMEM;
886 /* Fill in src buffers */
887 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
888 u8 *ptr = page_address(xor_srcs[src_idx]);
889 for (i = 0; i < PAGE_SIZE; i++)
890 ptr[i] = (1 << src_idx);
893 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
894 cmp_byte ^= (u8) (1 << src_idx);
896 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
897 (cmp_byte << 8) | cmp_byte;
899 memset(page_address(dest), 0, PAGE_SIZE);
901 dma_chan = container_of(dma->channels.next, struct dma_chan,
902 device_node);
903 if (dma->device_alloc_chan_resources(dma_chan) < 1) {
904 err = -ENODEV;
905 goto out;
908 /* test xor */
909 dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
910 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
911 dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
912 DMA_TO_DEVICE);
913 tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
914 IOAT_NUM_SRC_TEST, PAGE_SIZE,
915 DMA_PREP_INTERRUPT);
917 if (!tx) {
918 dev_err(dev, "Self-test xor prep failed\n");
919 err = -ENODEV;
920 goto free_resources;
923 async_tx_ack(tx);
924 init_completion(&cmp);
925 tx->callback = ioat3_dma_test_callback;
926 tx->callback_param = &cmp;
927 cookie = tx->tx_submit(tx);
928 if (cookie < 0) {
929 dev_err(dev, "Self-test xor setup failed\n");
930 err = -ENODEV;
931 goto free_resources;
933 dma->device_issue_pending(dma_chan);
935 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
937 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
938 dev_err(dev, "Self-test xor timed out\n");
939 err = -ENODEV;
940 goto free_resources;
943 dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
944 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
945 u32 *ptr = page_address(dest);
946 if (ptr[i] != cmp_word) {
947 dev_err(dev, "Self-test xor failed compare\n");
948 err = -ENODEV;
949 goto free_resources;
952 dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
954 /* skip validate if the capability is not present */
955 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
956 goto free_resources;
958 /* validate the sources with the destintation page */
959 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
960 xor_val_srcs[i] = xor_srcs[i];
961 xor_val_srcs[i] = dest;
963 xor_val_result = 1;
965 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
966 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
967 DMA_TO_DEVICE);
968 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
969 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
970 &xor_val_result, DMA_PREP_INTERRUPT);
971 if (!tx) {
972 dev_err(dev, "Self-test zero prep failed\n");
973 err = -ENODEV;
974 goto free_resources;
977 async_tx_ack(tx);
978 init_completion(&cmp);
979 tx->callback = ioat3_dma_test_callback;
980 tx->callback_param = &cmp;
981 cookie = tx->tx_submit(tx);
982 if (cookie < 0) {
983 dev_err(dev, "Self-test zero setup failed\n");
984 err = -ENODEV;
985 goto free_resources;
987 dma->device_issue_pending(dma_chan);
989 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
991 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
992 dev_err(dev, "Self-test validate timed out\n");
993 err = -ENODEV;
994 goto free_resources;
997 if (xor_val_result != 0) {
998 dev_err(dev, "Self-test validate failed compare\n");
999 err = -ENODEV;
1000 goto free_resources;
1003 /* skip memset if the capability is not present */
1004 if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
1005 goto free_resources;
1007 /* test memset */
1008 dma_addr = dma_map_page(dev, dest, 0,
1009 PAGE_SIZE, DMA_FROM_DEVICE);
1010 tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
1011 DMA_PREP_INTERRUPT);
1012 if (!tx) {
1013 dev_err(dev, "Self-test memset prep failed\n");
1014 err = -ENODEV;
1015 goto free_resources;
1018 async_tx_ack(tx);
1019 init_completion(&cmp);
1020 tx->callback = ioat3_dma_test_callback;
1021 tx->callback_param = &cmp;
1022 cookie = tx->tx_submit(tx);
1023 if (cookie < 0) {
1024 dev_err(dev, "Self-test memset setup failed\n");
1025 err = -ENODEV;
1026 goto free_resources;
1028 dma->device_issue_pending(dma_chan);
1030 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1032 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1033 dev_err(dev, "Self-test memset timed out\n");
1034 err = -ENODEV;
1035 goto free_resources;
1038 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
1039 u32 *ptr = page_address(dest);
1040 if (ptr[i]) {
1041 dev_err(dev, "Self-test memset failed compare\n");
1042 err = -ENODEV;
1043 goto free_resources;
1047 /* test for non-zero parity sum */
1048 xor_val_result = 0;
1049 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1050 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1051 DMA_TO_DEVICE);
1052 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1053 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1054 &xor_val_result, DMA_PREP_INTERRUPT);
1055 if (!tx) {
1056 dev_err(dev, "Self-test 2nd zero prep failed\n");
1057 err = -ENODEV;
1058 goto free_resources;
1061 async_tx_ack(tx);
1062 init_completion(&cmp);
1063 tx->callback = ioat3_dma_test_callback;
1064 tx->callback_param = &cmp;
1065 cookie = tx->tx_submit(tx);
1066 if (cookie < 0) {
1067 dev_err(dev, "Self-test 2nd zero setup failed\n");
1068 err = -ENODEV;
1069 goto free_resources;
1071 dma->device_issue_pending(dma_chan);
1073 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1075 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1076 dev_err(dev, "Self-test 2nd validate timed out\n");
1077 err = -ENODEV;
1078 goto free_resources;
1081 if (xor_val_result != SUM_CHECK_P_RESULT) {
1082 dev_err(dev, "Self-test validate failed compare\n");
1083 err = -ENODEV;
1084 goto free_resources;
1087 free_resources:
1088 dma->device_free_chan_resources(dma_chan);
1089 out:
1090 src_idx = IOAT_NUM_SRC_TEST;
1091 while (src_idx--)
1092 __free_page(xor_srcs[src_idx]);
1093 __free_page(dest);
1094 return err;
1097 static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
1099 int rc = ioat_dma_self_test(device);
1101 if (rc)
1102 return rc;
1104 rc = ioat_xor_val_self_test(device);
1105 if (rc)
1106 return rc;
1108 return 0;
1111 static int ioat3_reset_hw(struct ioat_chan_common *chan)
1113 /* throw away whatever the channel was doing and get it
1114 * initialized, with ioat3 specific workarounds
1116 struct ioatdma_device *device = chan->device;
1117 struct pci_dev *pdev = device->pdev;
1118 u32 chanerr;
1119 u16 dev_id;
1120 int err;
1122 ioat2_quiesce(chan, msecs_to_jiffies(100));
1124 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
1125 writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
1127 /* -= IOAT ver.3 workarounds =- */
1128 /* Write CHANERRMSK_INT with 3E07h to mask out the errors
1129 * that can cause stability issues for IOAT ver.3, and clear any
1130 * pending errors
1132 pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
1133 err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
1134 if (err) {
1135 dev_err(&pdev->dev, "channel error register unreachable\n");
1136 return err;
1138 pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
1140 /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
1141 * (workaround for spurious config parity error after restart)
1143 pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
1144 if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
1145 pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
1147 return ioat2_reset_sync(chan, msecs_to_jiffies(200));
1150 int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
1152 struct pci_dev *pdev = device->pdev;
1153 int dca_en = system_has_dca_enabled(pdev);
1154 struct dma_device *dma;
1155 struct dma_chan *c;
1156 struct ioat_chan_common *chan;
1157 bool is_raid_device = false;
1158 int err;
1159 u32 cap;
1161 device->enumerate_channels = ioat2_enumerate_channels;
1162 device->reset_hw = ioat3_reset_hw;
1163 device->self_test = ioat3_dma_self_test;
1164 dma = &device->common;
1165 dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
1166 dma->device_issue_pending = ioat2_issue_pending;
1167 dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
1168 dma->device_free_chan_resources = ioat2_free_chan_resources;
1170 dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
1171 dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
1173 cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
1175 /* dca is incompatible with raid operations */
1176 if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
1177 cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
1179 if (cap & IOAT_CAP_XOR) {
1180 is_raid_device = true;
1181 dma->max_xor = 8;
1182 dma->xor_align = 6;
1184 dma_cap_set(DMA_XOR, dma->cap_mask);
1185 dma->device_prep_dma_xor = ioat3_prep_xor;
1187 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1188 dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
1190 if (cap & IOAT_CAP_PQ) {
1191 is_raid_device = true;
1192 dma_set_maxpq(dma, 8, 0);
1193 dma->pq_align = 6;
1195 dma_cap_set(DMA_PQ, dma->cap_mask);
1196 dma->device_prep_dma_pq = ioat3_prep_pq;
1198 dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
1199 dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
1201 if (!(cap & IOAT_CAP_XOR)) {
1202 dma->max_xor = 8;
1203 dma->xor_align = 6;
1205 dma_cap_set(DMA_XOR, dma->cap_mask);
1206 dma->device_prep_dma_xor = ioat3_prep_pqxor;
1208 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1209 dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
1212 if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) {
1213 dma_cap_set(DMA_MEMSET, dma->cap_mask);
1214 dma->device_prep_dma_memset = ioat3_prep_memset_lock;
1218 if (is_raid_device) {
1219 dma->device_tx_status = ioat3_tx_status;
1220 device->cleanup_fn = ioat3_cleanup_event;
1221 device->timer_fn = ioat3_timer_event;
1222 } else {
1223 dma->device_tx_status = ioat_dma_tx_status;
1224 device->cleanup_fn = ioat2_cleanup_event;
1225 device->timer_fn = ioat2_timer_event;
1228 #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1229 dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
1230 dma->device_prep_dma_pq_val = NULL;
1231 #endif
1233 #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1234 dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
1235 dma->device_prep_dma_xor_val = NULL;
1236 #endif
1238 err = ioat_probe(device);
1239 if (err)
1240 return err;
1241 ioat_set_tcp_copy_break(262144);
1243 list_for_each_entry(c, &dma->channels, device_node) {
1244 chan = to_chan_common(c);
1245 writel(IOAT_DMA_DCA_ANY_CPU,
1246 chan->reg_base + IOAT_DCACTRL_OFFSET);
1249 err = ioat_register(device);
1250 if (err)
1251 return err;
1253 ioat_kobject_add(device, &ioat2_ktype);
1255 if (dca)
1256 device->dca = ioat3_dca_init(pdev, device->reg_base);
1258 return 0;