OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / gpu / drm / gma500 / gtt.c
blobaff194fbe9f3ee00c627e012f8d364af3caa2f8d
1 /*
2 * Copyright (c) 2007, Intel Corporation.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 * Authors: Thomas Hellstrom <thomas-at-tungstengraphics.com>
19 * Alan Cox <alan@linux.intel.com>
22 #include <drm/drmP.h>
23 #include <linux/shmem_fs.h>
24 #include "psb_drv.h"
28 * GTT resource allocator - manage page mappings in GTT space
31 /**
32 * psb_gtt_mask_pte - generate GTT pte entry
33 * @pfn: page number to encode
34 * @type: type of memory in the GTT
36 * Set the GTT entry for the appropriate memory type.
38 static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type)
40 uint32_t mask = PSB_PTE_VALID;
42 if (type & PSB_MMU_CACHED_MEMORY)
43 mask |= PSB_PTE_CACHED;
44 if (type & PSB_MMU_RO_MEMORY)
45 mask |= PSB_PTE_RO;
46 if (type & PSB_MMU_WO_MEMORY)
47 mask |= PSB_PTE_WO;
49 return (pfn << PAGE_SHIFT) | mask;
52 /**
53 * psb_gtt_entry - find the GTT entries for a gtt_range
54 * @dev: our DRM device
55 * @r: our GTT range
57 * Given a gtt_range object return the GTT offset of the page table
58 * entries for this gtt_range
60 u32 *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r)
62 struct drm_psb_private *dev_priv = dev->dev_private;
63 unsigned long offset;
65 offset = r->resource.start - dev_priv->gtt_mem->start;
67 return dev_priv->gtt_map + (offset >> PAGE_SHIFT);
70 /**
71 * psb_gtt_insert - put an object into the GTT
72 * @dev: our DRM device
73 * @r: our GTT range
75 * Take our preallocated GTT range and insert the GEM object into
76 * the GTT. This is protected via the gtt mutex which the caller
77 * must hold.
79 static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r)
81 u32 *gtt_slot, pte;
82 struct page **pages;
83 int i;
85 if (r->pages == NULL) {
86 WARN_ON(1);
87 return -EINVAL;
90 WARN_ON(r->stolen); /* refcount these maybe ? */
92 gtt_slot = psb_gtt_entry(dev, r);
93 pages = r->pages;
95 /* Make sure changes are visible to the GPU */
96 set_pages_array_uc(pages, r->npage);
98 /* Write our page entries into the GTT itself */
99 for (i = r->roll; i < r->npage; i++) {
100 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
101 iowrite32(pte, gtt_slot++);
103 for (i = 0; i < r->roll; i++) {
104 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
105 iowrite32(pte, gtt_slot++);
107 /* Make sure all the entries are set before we return */
108 ioread32(gtt_slot - 1);
110 return 0;
114 * psb_gtt_remove - remove an object from the GTT
115 * @dev: our DRM device
116 * @r: our GTT range
118 * Remove a preallocated GTT range from the GTT. Overwrite all the
119 * page table entries with the dummy page. This is protected via the gtt
120 * mutex which the caller must hold.
122 static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r)
124 struct drm_psb_private *dev_priv = dev->dev_private;
125 u32 *gtt_slot, pte;
126 int i;
128 WARN_ON(r->stolen);
130 gtt_slot = psb_gtt_entry(dev, r);
131 pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 0);
133 for (i = 0; i < r->npage; i++)
134 iowrite32(pte, gtt_slot++);
135 ioread32(gtt_slot - 1);
136 set_pages_array_wb(r->pages, r->npage);
140 * psb_gtt_roll - set scrolling position
141 * @dev: our DRM device
142 * @r: the gtt mapping we are using
143 * @roll: roll offset
145 * Roll an existing pinned mapping by moving the pages through the GTT.
146 * This allows us to implement hardware scrolling on the consoles without
147 * a 2D engine
149 void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll)
151 u32 *gtt_slot, pte;
152 int i;
154 if (roll >= r->npage) {
155 WARN_ON(1);
156 return;
159 r->roll = roll;
161 /* Not currently in the GTT - no worry we will write the mapping at
162 the right position when it gets pinned */
163 if (!r->stolen && !r->in_gart)
164 return;
166 gtt_slot = psb_gtt_entry(dev, r);
168 for (i = r->roll; i < r->npage; i++) {
169 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
170 iowrite32(pte, gtt_slot++);
172 for (i = 0; i < r->roll; i++) {
173 pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0);
174 iowrite32(pte, gtt_slot++);
176 ioread32(gtt_slot - 1);
180 * psb_gtt_attach_pages - attach and pin GEM pages
181 * @gt: the gtt range
183 * Pin and build an in kernel list of the pages that back our GEM object.
184 * While we hold this the pages cannot be swapped out. This is protected
185 * via the gtt mutex which the caller must hold.
187 static int psb_gtt_attach_pages(struct gtt_range *gt)
189 struct inode *inode;
190 struct address_space *mapping;
191 int i;
192 struct page *p;
193 int pages = gt->gem.size / PAGE_SIZE;
195 WARN_ON(gt->pages);
197 /* This is the shared memory object that backs the GEM resource */
198 inode = gt->gem.filp->f_path.dentry->d_inode;
199 mapping = inode->i_mapping;
201 gt->pages = kmalloc(pages * sizeof(struct page *), GFP_KERNEL);
202 if (gt->pages == NULL)
203 return -ENOMEM;
204 gt->npage = pages;
206 for (i = 0; i < pages; i++) {
207 p = shmem_read_mapping_page(mapping, i);
208 if (IS_ERR(p))
209 goto err;
210 gt->pages[i] = p;
212 return 0;
214 err:
215 while (i--)
216 page_cache_release(gt->pages[i]);
217 kfree(gt->pages);
218 gt->pages = NULL;
219 return PTR_ERR(p);
223 * psb_gtt_detach_pages - attach and pin GEM pages
224 * @gt: the gtt range
226 * Undo the effect of psb_gtt_attach_pages. At this point the pages
227 * must have been removed from the GTT as they could now be paged out
228 * and move bus address. This is protected via the gtt mutex which the
229 * caller must hold.
231 static void psb_gtt_detach_pages(struct gtt_range *gt)
233 int i;
234 for (i = 0; i < gt->npage; i++) {
235 /* FIXME: do we need to force dirty */
236 set_page_dirty(gt->pages[i]);
237 page_cache_release(gt->pages[i]);
239 kfree(gt->pages);
240 gt->pages = NULL;
244 * psb_gtt_pin - pin pages into the GTT
245 * @gt: range to pin
247 * Pin a set of pages into the GTT. The pins are refcounted so that
248 * multiple pins need multiple unpins to undo.
250 * Non GEM backed objects treat this as a no-op as they are always GTT
251 * backed objects.
253 int psb_gtt_pin(struct gtt_range *gt)
255 int ret = 0;
256 struct drm_device *dev = gt->gem.dev;
257 struct drm_psb_private *dev_priv = dev->dev_private;
259 mutex_lock(&dev_priv->gtt_mutex);
261 if (gt->in_gart == 0 && gt->stolen == 0) {
262 ret = psb_gtt_attach_pages(gt);
263 if (ret < 0)
264 goto out;
265 ret = psb_gtt_insert(dev, gt);
266 if (ret < 0) {
267 psb_gtt_detach_pages(gt);
268 goto out;
271 gt->in_gart++;
272 out:
273 mutex_unlock(&dev_priv->gtt_mutex);
274 return ret;
278 * psb_gtt_unpin - Drop a GTT pin requirement
279 * @gt: range to pin
281 * Undoes the effect of psb_gtt_pin. On the last drop the GEM object
282 * will be removed from the GTT which will also drop the page references
283 * and allow the VM to clean up or page stuff.
285 * Non GEM backed objects treat this as a no-op as they are always GTT
286 * backed objects.
288 void psb_gtt_unpin(struct gtt_range *gt)
290 struct drm_device *dev = gt->gem.dev;
291 struct drm_psb_private *dev_priv = dev->dev_private;
293 mutex_lock(&dev_priv->gtt_mutex);
295 WARN_ON(!gt->in_gart);
297 gt->in_gart--;
298 if (gt->in_gart == 0 && gt->stolen == 0) {
299 psb_gtt_remove(dev, gt);
300 psb_gtt_detach_pages(gt);
302 mutex_unlock(&dev_priv->gtt_mutex);
306 * GTT resource allocator - allocate and manage GTT address space
310 * psb_gtt_alloc_range - allocate GTT address space
311 * @dev: Our DRM device
312 * @len: length (bytes) of address space required
313 * @name: resource name
314 * @backed: resource should be backed by stolen pages
316 * Ask the kernel core to find us a suitable range of addresses
317 * to use for a GTT mapping.
319 * Returns a gtt_range structure describing the object, or NULL on
320 * error. On successful return the resource is both allocated and marked
321 * as in use.
323 struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len,
324 const char *name, int backed)
326 struct drm_psb_private *dev_priv = dev->dev_private;
327 struct gtt_range *gt;
328 struct resource *r = dev_priv->gtt_mem;
329 int ret;
330 unsigned long start, end;
332 if (backed) {
333 /* The start of the GTT is the stolen pages */
334 start = r->start;
335 end = r->start + dev_priv->gtt.stolen_size - 1;
336 } else {
337 /* The rest we will use for GEM backed objects */
338 start = r->start + dev_priv->gtt.stolen_size;
339 end = r->end;
342 gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL);
343 if (gt == NULL)
344 return NULL;
345 gt->resource.name = name;
346 gt->stolen = backed;
347 gt->in_gart = backed;
348 gt->roll = 0;
349 /* Ensure this is set for non GEM objects */
350 gt->gem.dev = dev;
351 ret = allocate_resource(dev_priv->gtt_mem, &gt->resource,
352 len, start, end, PAGE_SIZE, NULL, NULL);
353 if (ret == 0) {
354 gt->offset = gt->resource.start - r->start;
355 return gt;
357 kfree(gt);
358 return NULL;
362 * psb_gtt_free_range - release GTT address space
363 * @dev: our DRM device
364 * @gt: a mapping created with psb_gtt_alloc_range
366 * Release a resource that was allocated with psb_gtt_alloc_range. If the
367 * object has been pinned by mmap users we clean this up here currently.
369 void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt)
371 /* Undo the mmap pin if we are destroying the object */
372 if (gt->mmapping) {
373 psb_gtt_unpin(gt);
374 gt->mmapping = 0;
376 WARN_ON(gt->in_gart && !gt->stolen);
377 release_resource(&gt->resource);
378 kfree(gt);
381 void psb_gtt_alloc(struct drm_device *dev)
383 struct drm_psb_private *dev_priv = dev->dev_private;
384 init_rwsem(&dev_priv->gtt.sem);
387 void psb_gtt_takedown(struct drm_device *dev)
389 struct drm_psb_private *dev_priv = dev->dev_private;
391 if (dev_priv->gtt_map) {
392 iounmap(dev_priv->gtt_map);
393 dev_priv->gtt_map = NULL;
395 if (dev_priv->gtt_initialized) {
396 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
397 dev_priv->gmch_ctrl);
398 PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL);
399 (void) PSB_RVDC32(PSB_PGETBL_CTL);
401 if (dev_priv->vram_addr)
402 iounmap(dev_priv->gtt_map);
405 int psb_gtt_init(struct drm_device *dev, int resume)
407 struct drm_psb_private *dev_priv = dev->dev_private;
408 unsigned gtt_pages;
409 unsigned long stolen_size, vram_stolen_size;
410 unsigned i, num_pages;
411 unsigned pfn_base;
412 uint32_t vram_pages;
413 uint32_t dvmt_mode = 0;
414 struct psb_gtt *pg;
416 int ret = 0;
417 uint32_t pte;
419 mutex_init(&dev_priv->gtt_mutex);
421 psb_gtt_alloc(dev);
422 pg = &dev_priv->gtt;
424 /* Enable the GTT */
425 pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl);
426 pci_write_config_word(dev->pdev, PSB_GMCH_CTRL,
427 dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED);
429 dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL);
430 PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL);
431 (void) PSB_RVDC32(PSB_PGETBL_CTL);
433 /* The root resource we allocate address space from */
434 dev_priv->gtt_initialized = 1;
436 pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK;
439 * The video mmu has a hw bug when accessing 0x0D0000000.
440 * Make gatt start at 0x0e000,0000. This doesn't actually
441 * matter for us but may do if the video acceleration ever
442 * gets opened up.
444 pg->mmu_gatt_start = 0xE0000000;
446 pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE);
447 gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE)
448 >> PAGE_SHIFT;
449 /* CDV doesn't report this. In which case the system has 64 gtt pages */
450 if (pg->gtt_start == 0 || gtt_pages == 0) {
451 dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n");
452 gtt_pages = 64;
453 pg->gtt_start = dev_priv->pge_ctl;
456 pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE);
457 pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE)
458 >> PAGE_SHIFT;
459 dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE];
461 if (pg->gatt_pages == 0 || pg->gatt_start == 0) {
462 static struct resource fudge; /* Preferably peppermint */
463 /* This can occur on CDV systems. Fudge it in this case.
464 We really don't care what imaginary space is being allocated
465 at this point */
466 dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n");
467 pg->gatt_start = 0x40000000;
468 pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT;
469 /* This is a little confusing but in fact the GTT is providing
470 a view from the GPU into memory and not vice versa. As such
471 this is really allocating space that is not the same as the
472 CPU address space on CDV */
473 fudge.start = 0x40000000;
474 fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1;
475 fudge.name = "fudge";
476 fudge.flags = IORESOURCE_MEM;
477 dev_priv->gtt_mem = &fudge;
480 pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base);
481 vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base
482 - PAGE_SIZE;
484 stolen_size = vram_stolen_size;
486 printk(KERN_INFO "Stolen memory information\n");
487 printk(KERN_INFO " base in RAM: 0x%x\n", dev_priv->stolen_base);
488 printk(KERN_INFO " size: %luK, calculated by (GTT RAM base) - (Stolen base), seems wrong\n",
489 vram_stolen_size/1024);
490 dvmt_mode = (dev_priv->gmch_ctrl >> 4) & 0x7;
491 printk(KERN_INFO " the correct size should be: %dM(dvmt mode=%d)\n",
492 (dvmt_mode == 1) ? 1 : (2 << (dvmt_mode - 1)), dvmt_mode);
494 if (resume && (gtt_pages != pg->gtt_pages) &&
495 (stolen_size != pg->stolen_size)) {
496 dev_err(dev->dev, "GTT resume error.\n");
497 ret = -EINVAL;
498 goto out_err;
501 pg->gtt_pages = gtt_pages;
502 pg->stolen_size = stolen_size;
503 dev_priv->vram_stolen_size = vram_stolen_size;
506 * Map the GTT and the stolen memory area
508 dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start,
509 gtt_pages << PAGE_SHIFT);
510 if (!dev_priv->gtt_map) {
511 dev_err(dev->dev, "Failure to map gtt.\n");
512 ret = -ENOMEM;
513 goto out_err;
516 dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, stolen_size);
517 if (!dev_priv->vram_addr) {
518 dev_err(dev->dev, "Failure to map stolen base.\n");
519 ret = -ENOMEM;
520 goto out_err;
524 * Insert vram stolen pages into the GTT
527 pfn_base = dev_priv->stolen_base >> PAGE_SHIFT;
528 vram_pages = num_pages = vram_stolen_size >> PAGE_SHIFT;
529 printk(KERN_INFO"Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n",
530 num_pages, pfn_base << PAGE_SHIFT, 0);
531 for (i = 0; i < num_pages; ++i) {
532 pte = psb_gtt_mask_pte(pfn_base + i, 0);
533 iowrite32(pte, dev_priv->gtt_map + i);
537 * Init rest of GTT to the scratch page to avoid accidents or scribbles
540 pfn_base = page_to_pfn(dev_priv->scratch_page);
541 pte = psb_gtt_mask_pte(pfn_base, 0);
542 for (; i < gtt_pages; ++i)
543 iowrite32(pte, dev_priv->gtt_map + i);
545 (void) ioread32(dev_priv->gtt_map + i - 1);
546 return 0;
548 out_err:
549 psb_gtt_takedown(dev);
550 return ret;