OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / gpu / drm / i915 / intel_dp.c
blob12eb789935cf0a53661f1fd8eae7fd7e04796606
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
44 #define DP_LINK_CONFIGURATION_SIZE 9
46 struct intel_dp {
47 struct intel_encoder base;
48 uint32_t output_reg;
49 uint32_t DP;
50 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
51 bool has_audio;
52 int force_audio;
53 uint32_t color_range;
54 int dpms_mode;
55 uint8_t link_bw;
56 uint8_t lane_count;
57 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
60 bool is_pch_edp;
61 uint8_t train_set[4];
62 int panel_power_up_delay;
63 int panel_power_down_delay;
64 int panel_power_cycle_delay;
65 int backlight_on_delay;
66 int backlight_off_delay;
67 struct drm_display_mode *panel_fixed_mode; /* for eDP */
68 struct delayed_work panel_vdd_work;
69 bool want_panel_vdd;
72 /**
73 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74 * @intel_dp: DP struct
76 * If a CPU or PCH DP output is attached to an eDP panel, this function
77 * will return true, and false otherwise.
79 static bool is_edp(struct intel_dp *intel_dp)
81 return intel_dp->base.type == INTEL_OUTPUT_EDP;
84 /**
85 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86 * @intel_dp: DP struct
88 * Returns true if the given DP struct corresponds to a PCH DP port attached
89 * to an eDP panel, false otherwise. Helpful for determining whether we
90 * may need FDI resources for a given DP output or not.
92 static bool is_pch_edp(struct intel_dp *intel_dp)
94 return intel_dp->is_pch_edp;
97 /**
98 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99 * @intel_dp: DP struct
101 * Returns true if the given DP struct corresponds to a CPU eDP port.
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
105 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
110 return container_of(encoder, struct intel_dp, base.base);
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
115 return container_of(intel_attached_encoder(connector),
116 struct intel_dp, base);
120 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121 * @encoder: DRM encoder
123 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
124 * by intel_display.c.
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
128 struct intel_dp *intel_dp;
130 if (!encoder)
131 return false;
133 intel_dp = enc_to_intel_dp(encoder);
135 return is_pch_edp(intel_dp);
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144 int *lane_num, int *link_bw)
146 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
148 *lane_num = intel_dp->lane_count;
149 if (intel_dp->link_bw == DP_LINK_BW_1_62)
150 *link_bw = 162000;
151 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152 *link_bw = 270000;
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159 switch (max_lane_count) {
160 case 1: case 2: case 4:
161 break;
162 default:
163 max_lane_count = 4;
165 return max_lane_count;
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
171 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
173 switch (max_link_bw) {
174 case DP_LINK_BW_1_62:
175 case DP_LINK_BW_2_7:
176 break;
177 default:
178 max_link_bw = DP_LINK_BW_1_62;
179 break;
181 return max_link_bw;
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
187 if (link_bw == DP_LINK_BW_2_7)
188 return 270000;
189 else
190 return 162000;
194 * The units on the numbers in the next two are... bizarre. Examples will
195 * make it clearer; this one parallels an example in the eDP spec.
197 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
199 * 270000 * 1 * 8 / 10 == 216000
201 * The actual data capacity of that configuration is 2.16Gbit/s, so the
202 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
203 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204 * 119000. At 18bpp that's 2142000 kilobits per second.
206 * Thus the strange-looking division by 10 in intel_dp_link_required, to
207 * get the result in decakilobits instead of kilobits.
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
213 return (pixel_clock * bpp + 9) / 10;
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
219 return (max_link_clock * max_lanes * 8) / 10;
222 static bool
223 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
224 struct drm_display_mode *mode,
225 struct drm_display_mode *adjusted_mode)
227 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228 int max_lanes = intel_dp_max_lane_count(intel_dp);
229 int max_rate, mode_rate;
231 mode_rate = intel_dp_link_required(mode->clock, 24);
232 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
234 if (mode_rate > max_rate) {
235 mode_rate = intel_dp_link_required(mode->clock, 18);
236 if (mode_rate > max_rate)
237 return false;
239 if (adjusted_mode)
240 adjusted_mode->private_flags
241 |= INTEL_MODE_DP_FORCE_6BPC;
243 return true;
246 return true;
249 static int
250 intel_dp_mode_valid(struct drm_connector *connector,
251 struct drm_display_mode *mode)
253 struct intel_dp *intel_dp = intel_attached_dp(connector);
255 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
256 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
257 return MODE_PANEL;
259 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
260 return MODE_PANEL;
263 if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
264 return MODE_CLOCK_HIGH;
266 if (mode->clock < 10000)
267 return MODE_CLOCK_LOW;
269 return MODE_OK;
272 static uint32_t
273 pack_aux(uint8_t *src, int src_bytes)
275 int i;
276 uint32_t v = 0;
278 if (src_bytes > 4)
279 src_bytes = 4;
280 for (i = 0; i < src_bytes; i++)
281 v |= ((uint32_t) src[i]) << ((3-i) * 8);
282 return v;
285 static void
286 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
288 int i;
289 if (dst_bytes > 4)
290 dst_bytes = 4;
291 for (i = 0; i < dst_bytes; i++)
292 dst[i] = src >> ((3-i) * 8);
295 /* hrawclock is 1/4 the FSB frequency */
296 static int
297 intel_hrawclk(struct drm_device *dev)
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 uint32_t clkcfg;
302 clkcfg = I915_READ(CLKCFG);
303 switch (clkcfg & CLKCFG_FSB_MASK) {
304 case CLKCFG_FSB_400:
305 return 100;
306 case CLKCFG_FSB_533:
307 return 133;
308 case CLKCFG_FSB_667:
309 return 166;
310 case CLKCFG_FSB_800:
311 return 200;
312 case CLKCFG_FSB_1067:
313 return 266;
314 case CLKCFG_FSB_1333:
315 return 333;
316 /* these two are just a guess; one of them might be right */
317 case CLKCFG_FSB_1600:
318 case CLKCFG_FSB_1600_ALT:
319 return 400;
320 default:
321 return 133;
325 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
327 struct drm_device *dev = intel_dp->base.base.dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
330 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
333 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
335 struct drm_device *dev = intel_dp->base.base.dev;
336 struct drm_i915_private *dev_priv = dev->dev_private;
338 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
341 static void
342 intel_dp_check_edp(struct intel_dp *intel_dp)
344 struct drm_device *dev = intel_dp->base.base.dev;
345 struct drm_i915_private *dev_priv = dev->dev_private;
347 if (!is_edp(intel_dp))
348 return;
349 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
350 WARN(1, "eDP powered off while attempting aux channel communication.\n");
351 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
352 I915_READ(PCH_PP_STATUS),
353 I915_READ(PCH_PP_CONTROL));
357 static int
358 intel_dp_aux_ch(struct intel_dp *intel_dp,
359 uint8_t *send, int send_bytes,
360 uint8_t *recv, int recv_size)
362 uint32_t output_reg = intel_dp->output_reg;
363 struct drm_device *dev = intel_dp->base.base.dev;
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 uint32_t ch_ctl = output_reg + 0x10;
366 uint32_t ch_data = ch_ctl + 4;
367 int i;
368 int recv_bytes;
369 uint32_t status;
370 uint32_t aux_clock_divider;
371 int try, precharge;
373 intel_dp_check_edp(intel_dp);
374 /* The clock divider is based off the hrawclk,
375 * and would like to run at 2MHz. So, take the
376 * hrawclk value and divide by 2 and use that
378 * Note that PCH attached eDP panels should use a 125MHz input
379 * clock divider.
381 if (is_cpu_edp(intel_dp)) {
382 if (IS_GEN6(dev) || IS_GEN7(dev))
383 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
384 else
385 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
386 } else if (HAS_PCH_SPLIT(dev))
387 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
388 else
389 aux_clock_divider = intel_hrawclk(dev) / 2;
391 if (IS_GEN6(dev))
392 precharge = 3;
393 else
394 precharge = 5;
396 /* Try to wait for any previous AUX channel activity */
397 for (try = 0; try < 3; try++) {
398 status = I915_READ(ch_ctl);
399 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
400 break;
401 msleep(1);
404 if (try == 3) {
405 WARN(1, "dp_aux_ch not started status 0x%08x\n",
406 I915_READ(ch_ctl));
407 return -EBUSY;
410 /* Must try at least 3 times according to DP spec */
411 for (try = 0; try < 5; try++) {
412 /* Load the send data into the aux channel data registers */
413 for (i = 0; i < send_bytes; i += 4)
414 I915_WRITE(ch_data + i,
415 pack_aux(send + i, send_bytes - i));
417 /* Send the command and wait for it to complete */
418 I915_WRITE(ch_ctl,
419 DP_AUX_CH_CTL_SEND_BUSY |
420 DP_AUX_CH_CTL_TIME_OUT_400us |
421 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
422 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
423 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
424 DP_AUX_CH_CTL_DONE |
425 DP_AUX_CH_CTL_TIME_OUT_ERROR |
426 DP_AUX_CH_CTL_RECEIVE_ERROR);
427 for (;;) {
428 status = I915_READ(ch_ctl);
429 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
430 break;
431 udelay(100);
434 /* Clear done status and any errors */
435 I915_WRITE(ch_ctl,
436 status |
437 DP_AUX_CH_CTL_DONE |
438 DP_AUX_CH_CTL_TIME_OUT_ERROR |
439 DP_AUX_CH_CTL_RECEIVE_ERROR);
440 if (status & DP_AUX_CH_CTL_DONE)
441 break;
444 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
445 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
446 return -EBUSY;
449 /* Check for timeout or receive error.
450 * Timeouts occur when the sink is not connected
452 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
453 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
454 return -EIO;
457 /* Timeouts occur when the device isn't connected, so they're
458 * "normal" -- don't fill the kernel log with these */
459 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
460 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
461 return -ETIMEDOUT;
464 /* Unload any bytes sent back from the other side */
465 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
466 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
467 if (recv_bytes > recv_size)
468 recv_bytes = recv_size;
470 for (i = 0; i < recv_bytes; i += 4)
471 unpack_aux(I915_READ(ch_data + i),
472 recv + i, recv_bytes - i);
474 return recv_bytes;
477 /* Write data to the aux channel in native mode */
478 static int
479 intel_dp_aux_native_write(struct intel_dp *intel_dp,
480 uint16_t address, uint8_t *send, int send_bytes)
482 int ret;
483 uint8_t msg[20];
484 int msg_bytes;
485 uint8_t ack;
487 intel_dp_check_edp(intel_dp);
488 if (send_bytes > 16)
489 return -1;
490 msg[0] = AUX_NATIVE_WRITE << 4;
491 msg[1] = address >> 8;
492 msg[2] = address & 0xff;
493 msg[3] = send_bytes - 1;
494 memcpy(&msg[4], send, send_bytes);
495 msg_bytes = send_bytes + 4;
496 for (;;) {
497 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
498 if (ret < 0)
499 return ret;
500 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
501 break;
502 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
503 udelay(100);
504 else
505 return -EIO;
507 return send_bytes;
510 /* Write a single byte to the aux channel in native mode */
511 static int
512 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
513 uint16_t address, uint8_t byte)
515 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
518 /* read bytes from a native aux channel */
519 static int
520 intel_dp_aux_native_read(struct intel_dp *intel_dp,
521 uint16_t address, uint8_t *recv, int recv_bytes)
523 uint8_t msg[4];
524 int msg_bytes;
525 uint8_t reply[20];
526 int reply_bytes;
527 uint8_t ack;
528 int ret;
530 intel_dp_check_edp(intel_dp);
531 msg[0] = AUX_NATIVE_READ << 4;
532 msg[1] = address >> 8;
533 msg[2] = address & 0xff;
534 msg[3] = recv_bytes - 1;
536 msg_bytes = 4;
537 reply_bytes = recv_bytes + 1;
539 for (;;) {
540 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
541 reply, reply_bytes);
542 if (ret == 0)
543 return -EPROTO;
544 if (ret < 0)
545 return ret;
546 ack = reply[0];
547 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
548 memcpy(recv, reply + 1, ret - 1);
549 return ret - 1;
551 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
552 udelay(100);
553 else
554 return -EIO;
558 static int
559 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
560 uint8_t write_byte, uint8_t *read_byte)
562 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
563 struct intel_dp *intel_dp = container_of(adapter,
564 struct intel_dp,
565 adapter);
566 uint16_t address = algo_data->address;
567 uint8_t msg[5];
568 uint8_t reply[2];
569 unsigned retry;
570 int msg_bytes;
571 int reply_bytes;
572 int ret;
574 intel_dp_check_edp(intel_dp);
575 /* Set up the command byte */
576 if (mode & MODE_I2C_READ)
577 msg[0] = AUX_I2C_READ << 4;
578 else
579 msg[0] = AUX_I2C_WRITE << 4;
581 if (!(mode & MODE_I2C_STOP))
582 msg[0] |= AUX_I2C_MOT << 4;
584 msg[1] = address >> 8;
585 msg[2] = address;
587 switch (mode) {
588 case MODE_I2C_WRITE:
589 msg[3] = 0;
590 msg[4] = write_byte;
591 msg_bytes = 5;
592 reply_bytes = 1;
593 break;
594 case MODE_I2C_READ:
595 msg[3] = 0;
596 msg_bytes = 4;
597 reply_bytes = 2;
598 break;
599 default:
600 msg_bytes = 3;
601 reply_bytes = 1;
602 break;
605 for (retry = 0; retry < 5; retry++) {
606 ret = intel_dp_aux_ch(intel_dp,
607 msg, msg_bytes,
608 reply, reply_bytes);
609 if (ret < 0) {
610 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
611 return ret;
614 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
615 case AUX_NATIVE_REPLY_ACK:
616 /* I2C-over-AUX Reply field is only valid
617 * when paired with AUX ACK.
619 break;
620 case AUX_NATIVE_REPLY_NACK:
621 DRM_DEBUG_KMS("aux_ch native nack\n");
622 return -EREMOTEIO;
623 case AUX_NATIVE_REPLY_DEFER:
624 udelay(100);
625 continue;
626 default:
627 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
628 reply[0]);
629 return -EREMOTEIO;
632 switch (reply[0] & AUX_I2C_REPLY_MASK) {
633 case AUX_I2C_REPLY_ACK:
634 if (mode == MODE_I2C_READ) {
635 *read_byte = reply[1];
637 return reply_bytes - 1;
638 case AUX_I2C_REPLY_NACK:
639 DRM_DEBUG_KMS("aux_i2c nack\n");
640 return -EREMOTEIO;
641 case AUX_I2C_REPLY_DEFER:
642 DRM_DEBUG_KMS("aux_i2c defer\n");
643 udelay(100);
644 break;
645 default:
646 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
647 return -EREMOTEIO;
651 DRM_ERROR("too many retries, giving up\n");
652 return -EREMOTEIO;
655 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
656 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
658 static int
659 intel_dp_i2c_init(struct intel_dp *intel_dp,
660 struct intel_connector *intel_connector, const char *name)
662 int ret;
664 DRM_DEBUG_KMS("i2c_init %s\n", name);
665 intel_dp->algo.running = false;
666 intel_dp->algo.address = 0;
667 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
669 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
670 intel_dp->adapter.owner = THIS_MODULE;
671 intel_dp->adapter.class = I2C_CLASS_DDC;
672 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
673 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
674 intel_dp->adapter.algo_data = &intel_dp->algo;
675 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
677 ironlake_edp_panel_vdd_on(intel_dp);
678 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
679 ironlake_edp_panel_vdd_off(intel_dp, false);
680 return ret;
683 static bool
684 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
685 struct drm_display_mode *adjusted_mode)
687 struct drm_device *dev = encoder->dev;
688 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
689 int lane_count, clock;
690 int max_lane_count = intel_dp_max_lane_count(intel_dp);
691 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
692 int bpp;
693 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
695 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
696 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
697 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
698 mode, adjusted_mode);
700 * the mode->clock is used to calculate the Data&Link M/N
701 * of the pipe. For the eDP the fixed clock should be used.
703 mode->clock = intel_dp->panel_fixed_mode->clock;
706 if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
707 return false;
709 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
711 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
712 for (clock = 0; clock <= max_clock; clock++) {
713 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
715 if (intel_dp_link_required(mode->clock, bpp)
716 <= link_avail) {
717 intel_dp->link_bw = bws[clock];
718 intel_dp->lane_count = lane_count;
719 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
720 DRM_DEBUG_KMS("Display port link bw %02x lane "
721 "count %d clock %d\n",
722 intel_dp->link_bw, intel_dp->lane_count,
723 adjusted_mode->clock);
724 return true;
729 return false;
732 struct intel_dp_m_n {
733 uint32_t tu;
734 uint32_t gmch_m;
735 uint32_t gmch_n;
736 uint32_t link_m;
737 uint32_t link_n;
740 static void
741 intel_reduce_ratio(uint32_t *num, uint32_t *den)
743 while (*num > 0xffffff || *den > 0xffffff) {
744 *num >>= 1;
745 *den >>= 1;
749 static void
750 intel_dp_compute_m_n(int bpp,
751 int nlanes,
752 int pixel_clock,
753 int link_clock,
754 struct intel_dp_m_n *m_n)
756 m_n->tu = 64;
757 m_n->gmch_m = (pixel_clock * bpp) >> 3;
758 m_n->gmch_n = link_clock * nlanes;
759 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
760 m_n->link_m = pixel_clock;
761 m_n->link_n = link_clock;
762 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
765 void
766 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
767 struct drm_display_mode *adjusted_mode)
769 struct drm_device *dev = crtc->dev;
770 struct drm_mode_config *mode_config = &dev->mode_config;
771 struct drm_encoder *encoder;
772 struct drm_i915_private *dev_priv = dev->dev_private;
773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
774 int lane_count = 4;
775 struct intel_dp_m_n m_n;
776 int pipe = intel_crtc->pipe;
779 * Find the lane count in the intel_encoder private
781 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
782 struct intel_dp *intel_dp;
784 if (encoder->crtc != crtc)
785 continue;
787 intel_dp = enc_to_intel_dp(encoder);
788 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
789 intel_dp->base.type == INTEL_OUTPUT_EDP)
791 lane_count = intel_dp->lane_count;
792 break;
797 * Compute the GMCH and Link ratios. The '3' here is
798 * the number of bytes_per_pixel post-LUT, which we always
799 * set up for 8-bits of R/G/B, or 3 bytes total.
801 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
802 mode->clock, adjusted_mode->clock, &m_n);
804 if (HAS_PCH_SPLIT(dev)) {
805 I915_WRITE(TRANSDATA_M1(pipe),
806 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
807 m_n.gmch_m);
808 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
809 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
810 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
811 } else {
812 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
813 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
814 m_n.gmch_m);
815 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
816 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
817 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
821 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
822 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
824 static void
825 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
826 struct drm_display_mode *adjusted_mode)
828 struct drm_device *dev = encoder->dev;
829 struct drm_i915_private *dev_priv = dev->dev_private;
830 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
831 struct drm_crtc *crtc = intel_dp->base.base.crtc;
832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
834 /* Turn on the eDP PLL if needed */
835 if (is_edp(intel_dp)) {
836 if (!is_pch_edp(intel_dp))
837 ironlake_edp_pll_on(encoder);
838 else
839 ironlake_edp_pll_off(encoder);
843 * There are four kinds of DP registers:
845 * IBX PCH
846 * SNB CPU
847 * IVB CPU
848 * CPT PCH
850 * IBX PCH and CPU are the same for almost everything,
851 * except that the CPU DP PLL is configured in this
852 * register
854 * CPT PCH is quite different, having many bits moved
855 * to the TRANS_DP_CTL register instead. That
856 * configuration happens (oddly) in ironlake_pch_enable
859 /* Preserve the BIOS-computed detected bit. This is
860 * supposed to be read-only.
862 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
863 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
865 /* Handle DP bits in common between all three register formats */
867 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
869 switch (intel_dp->lane_count) {
870 case 1:
871 intel_dp->DP |= DP_PORT_WIDTH_1;
872 break;
873 case 2:
874 intel_dp->DP |= DP_PORT_WIDTH_2;
875 break;
876 case 4:
877 intel_dp->DP |= DP_PORT_WIDTH_4;
878 break;
880 if (intel_dp->has_audio) {
881 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
882 pipe_name(intel_crtc->pipe));
883 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
884 intel_write_eld(encoder, adjusted_mode);
886 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
887 intel_dp->link_configuration[0] = intel_dp->link_bw;
888 intel_dp->link_configuration[1] = intel_dp->lane_count;
889 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
891 * Check for DPCD version > 1.1 and enhanced framing support
893 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
894 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
895 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
898 /* Split out the IBX/CPU vs CPT settings */
900 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
901 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
902 intel_dp->DP |= DP_SYNC_HS_HIGH;
903 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
904 intel_dp->DP |= DP_SYNC_VS_HIGH;
905 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
907 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
908 intel_dp->DP |= DP_ENHANCED_FRAMING;
910 intel_dp->DP |= intel_crtc->pipe << 29;
912 /* don't miss out required setting for eDP */
913 intel_dp->DP |= DP_PLL_ENABLE;
914 if (adjusted_mode->clock < 200000)
915 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
916 else
917 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
919 intel_dp->DP |= intel_dp->color_range;
921 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
922 intel_dp->DP |= DP_SYNC_HS_HIGH;
923 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
924 intel_dp->DP |= DP_SYNC_VS_HIGH;
925 intel_dp->DP |= DP_LINK_TRAIN_OFF;
927 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
928 intel_dp->DP |= DP_ENHANCED_FRAMING;
930 if (intel_crtc->pipe == 1)
931 intel_dp->DP |= DP_PIPEB_SELECT;
933 if (is_cpu_edp(intel_dp)) {
934 /* don't miss out required setting for eDP */
935 intel_dp->DP |= DP_PLL_ENABLE;
936 if (adjusted_mode->clock < 200000)
937 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
938 else
939 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
941 } else {
942 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
946 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
947 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
949 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
950 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
952 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
953 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
955 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
956 u32 mask,
957 u32 value)
959 struct drm_device *dev = intel_dp->base.base.dev;
960 struct drm_i915_private *dev_priv = dev->dev_private;
962 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
963 mask, value,
964 I915_READ(PCH_PP_STATUS),
965 I915_READ(PCH_PP_CONTROL));
967 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
968 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
969 I915_READ(PCH_PP_STATUS),
970 I915_READ(PCH_PP_CONTROL));
974 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
976 DRM_DEBUG_KMS("Wait for panel power on\n");
977 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
980 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
982 DRM_DEBUG_KMS("Wait for panel power off time\n");
983 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
986 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
988 DRM_DEBUG_KMS("Wait for panel power cycle\n");
989 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
993 /* Read the current pp_control value, unlocking the register if it
994 * is locked
997 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
999 u32 control = I915_READ(PCH_PP_CONTROL);
1001 control &= ~PANEL_UNLOCK_MASK;
1002 control |= PANEL_UNLOCK_REGS;
1003 return control;
1006 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1008 struct drm_device *dev = intel_dp->base.base.dev;
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 u32 pp;
1012 if (!is_edp(intel_dp))
1013 return;
1014 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1016 WARN(intel_dp->want_panel_vdd,
1017 "eDP VDD already requested on\n");
1019 intel_dp->want_panel_vdd = true;
1021 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1022 DRM_DEBUG_KMS("eDP VDD already on\n");
1023 return;
1026 if (!ironlake_edp_have_panel_power(intel_dp))
1027 ironlake_wait_panel_power_cycle(intel_dp);
1029 pp = ironlake_get_pp_control(dev_priv);
1030 pp |= EDP_FORCE_VDD;
1031 I915_WRITE(PCH_PP_CONTROL, pp);
1032 POSTING_READ(PCH_PP_CONTROL);
1033 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1034 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1037 * If the panel wasn't on, delay before accessing aux channel
1039 if (!ironlake_edp_have_panel_power(intel_dp)) {
1040 DRM_DEBUG_KMS("eDP was not running\n");
1041 msleep(intel_dp->panel_power_up_delay);
1045 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1047 struct drm_device *dev = intel_dp->base.base.dev;
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 u32 pp;
1051 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1052 pp = ironlake_get_pp_control(dev_priv);
1053 pp &= ~EDP_FORCE_VDD;
1054 I915_WRITE(PCH_PP_CONTROL, pp);
1055 POSTING_READ(PCH_PP_CONTROL);
1057 /* Make sure sequencer is idle before allowing subsequent activity */
1058 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1059 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1061 msleep(intel_dp->panel_power_down_delay);
1065 static void ironlake_panel_vdd_work(struct work_struct *__work)
1067 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1068 struct intel_dp, panel_vdd_work);
1069 struct drm_device *dev = intel_dp->base.base.dev;
1071 mutex_lock(&dev->mode_config.mutex);
1072 ironlake_panel_vdd_off_sync(intel_dp);
1073 mutex_unlock(&dev->mode_config.mutex);
1076 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1078 if (!is_edp(intel_dp))
1079 return;
1081 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1082 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1084 intel_dp->want_panel_vdd = false;
1086 if (sync) {
1087 ironlake_panel_vdd_off_sync(intel_dp);
1088 } else {
1090 * Queue the timer to fire a long
1091 * time from now (relative to the power down delay)
1092 * to keep the panel power up across a sequence of operations
1094 schedule_delayed_work(&intel_dp->panel_vdd_work,
1095 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1099 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1101 struct drm_device *dev = intel_dp->base.base.dev;
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 u32 pp;
1105 if (!is_edp(intel_dp))
1106 return;
1108 DRM_DEBUG_KMS("Turn eDP power on\n");
1110 if (ironlake_edp_have_panel_power(intel_dp)) {
1111 DRM_DEBUG_KMS("eDP power already on\n");
1112 return;
1115 ironlake_wait_panel_power_cycle(intel_dp);
1117 pp = ironlake_get_pp_control(dev_priv);
1118 if (IS_GEN5(dev)) {
1119 /* ILK workaround: disable reset around power sequence */
1120 pp &= ~PANEL_POWER_RESET;
1121 I915_WRITE(PCH_PP_CONTROL, pp);
1122 POSTING_READ(PCH_PP_CONTROL);
1125 pp |= POWER_TARGET_ON;
1126 if (!IS_GEN5(dev))
1127 pp |= PANEL_POWER_RESET;
1129 I915_WRITE(PCH_PP_CONTROL, pp);
1130 POSTING_READ(PCH_PP_CONTROL);
1132 ironlake_wait_panel_on(intel_dp);
1134 if (IS_GEN5(dev)) {
1135 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1136 I915_WRITE(PCH_PP_CONTROL, pp);
1137 POSTING_READ(PCH_PP_CONTROL);
1141 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1143 struct drm_device *dev = intel_dp->base.base.dev;
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 u32 pp;
1147 if (!is_edp(intel_dp))
1148 return;
1150 DRM_DEBUG_KMS("Turn eDP power off\n");
1152 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1154 pp = ironlake_get_pp_control(dev_priv);
1155 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1156 I915_WRITE(PCH_PP_CONTROL, pp);
1157 POSTING_READ(PCH_PP_CONTROL);
1159 ironlake_wait_panel_off(intel_dp);
1162 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1164 struct drm_device *dev = intel_dp->base.base.dev;
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 pp;
1168 if (!is_edp(intel_dp))
1169 return;
1171 DRM_DEBUG_KMS("\n");
1173 * If we enable the backlight right away following a panel power
1174 * on, we may see slight flicker as the panel syncs with the eDP
1175 * link. So delay a bit to make sure the image is solid before
1176 * allowing it to appear.
1178 msleep(intel_dp->backlight_on_delay);
1179 pp = ironlake_get_pp_control(dev_priv);
1180 pp |= EDP_BLC_ENABLE;
1181 I915_WRITE(PCH_PP_CONTROL, pp);
1182 POSTING_READ(PCH_PP_CONTROL);
1185 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1187 struct drm_device *dev = intel_dp->base.base.dev;
1188 struct drm_i915_private *dev_priv = dev->dev_private;
1189 u32 pp;
1191 if (!is_edp(intel_dp))
1192 return;
1194 DRM_DEBUG_KMS("\n");
1195 pp = ironlake_get_pp_control(dev_priv);
1196 pp &= ~EDP_BLC_ENABLE;
1197 I915_WRITE(PCH_PP_CONTROL, pp);
1198 POSTING_READ(PCH_PP_CONTROL);
1199 msleep(intel_dp->backlight_off_delay);
1202 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1204 struct drm_device *dev = encoder->dev;
1205 struct drm_i915_private *dev_priv = dev->dev_private;
1206 u32 dpa_ctl;
1208 DRM_DEBUG_KMS("\n");
1209 dpa_ctl = I915_READ(DP_A);
1210 dpa_ctl |= DP_PLL_ENABLE;
1211 I915_WRITE(DP_A, dpa_ctl);
1212 POSTING_READ(DP_A);
1213 udelay(200);
1216 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1218 struct drm_device *dev = encoder->dev;
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220 u32 dpa_ctl;
1222 dpa_ctl = I915_READ(DP_A);
1223 dpa_ctl &= ~DP_PLL_ENABLE;
1224 I915_WRITE(DP_A, dpa_ctl);
1225 POSTING_READ(DP_A);
1226 udelay(200);
1229 /* If the sink supports it, try to set the power state appropriately */
1230 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1232 int ret, i;
1234 /* Should have a valid DPCD by this point */
1235 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1236 return;
1238 if (mode != DRM_MODE_DPMS_ON) {
1239 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1240 DP_SET_POWER_D3);
1241 if (ret != 1)
1242 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1243 } else {
1245 * When turning on, we need to retry for 1ms to give the sink
1246 * time to wake up.
1248 for (i = 0; i < 3; i++) {
1249 ret = intel_dp_aux_native_write_1(intel_dp,
1250 DP_SET_POWER,
1251 DP_SET_POWER_D0);
1252 if (ret == 1)
1253 break;
1254 msleep(1);
1259 static void intel_dp_prepare(struct drm_encoder *encoder)
1261 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1263 ironlake_edp_backlight_off(intel_dp);
1264 ironlake_edp_panel_off(intel_dp);
1266 /* Wake up the sink first */
1267 ironlake_edp_panel_vdd_on(intel_dp);
1268 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1269 intel_dp_link_down(intel_dp);
1270 ironlake_edp_panel_vdd_off(intel_dp, false);
1272 /* Make sure the panel is off before trying to
1273 * change the mode
1277 static void intel_dp_commit(struct drm_encoder *encoder)
1279 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1280 struct drm_device *dev = encoder->dev;
1281 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1283 ironlake_edp_panel_vdd_on(intel_dp);
1284 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1285 intel_dp_start_link_train(intel_dp);
1286 ironlake_edp_panel_on(intel_dp);
1287 ironlake_edp_panel_vdd_off(intel_dp, true);
1288 intel_dp_complete_link_train(intel_dp);
1289 ironlake_edp_backlight_on(intel_dp);
1291 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1293 if (HAS_PCH_CPT(dev))
1294 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1297 static void
1298 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1300 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1301 struct drm_device *dev = encoder->dev;
1302 struct drm_i915_private *dev_priv = dev->dev_private;
1303 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1305 if (mode != DRM_MODE_DPMS_ON) {
1306 ironlake_edp_backlight_off(intel_dp);
1307 ironlake_edp_panel_off(intel_dp);
1309 ironlake_edp_panel_vdd_on(intel_dp);
1310 intel_dp_sink_dpms(intel_dp, mode);
1311 intel_dp_link_down(intel_dp);
1312 ironlake_edp_panel_vdd_off(intel_dp, false);
1314 if (is_cpu_edp(intel_dp))
1315 ironlake_edp_pll_off(encoder);
1316 } else {
1317 if (is_cpu_edp(intel_dp))
1318 ironlake_edp_pll_on(encoder);
1320 ironlake_edp_panel_vdd_on(intel_dp);
1321 intel_dp_sink_dpms(intel_dp, mode);
1322 if (!(dp_reg & DP_PORT_EN)) {
1323 intel_dp_start_link_train(intel_dp);
1324 ironlake_edp_panel_on(intel_dp);
1325 ironlake_edp_panel_vdd_off(intel_dp, true);
1326 intel_dp_complete_link_train(intel_dp);
1327 } else
1328 ironlake_edp_panel_vdd_off(intel_dp, false);
1329 ironlake_edp_backlight_on(intel_dp);
1331 intel_dp->dpms_mode = mode;
1335 * Native read with retry for link status and receiver capability reads for
1336 * cases where the sink may still be asleep.
1338 static bool
1339 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1340 uint8_t *recv, int recv_bytes)
1342 int ret, i;
1345 * Sinks are *supposed* to come up within 1ms from an off state,
1346 * but we're also supposed to retry 3 times per the spec.
1348 for (i = 0; i < 3; i++) {
1349 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1350 recv_bytes);
1351 if (ret == recv_bytes)
1352 return true;
1353 msleep(1);
1356 return false;
1360 * Fetch AUX CH registers 0x202 - 0x207 which contain
1361 * link status information
1363 static bool
1364 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1366 return intel_dp_aux_native_read_retry(intel_dp,
1367 DP_LANE0_1_STATUS,
1368 link_status,
1369 DP_LINK_STATUS_SIZE);
1372 static uint8_t
1373 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1374 int r)
1376 return link_status[r - DP_LANE0_1_STATUS];
1379 static uint8_t
1380 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1381 int lane)
1383 int s = ((lane & 1) ?
1384 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1385 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1386 uint8_t l = adjust_request[lane>>1];
1388 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1391 static uint8_t
1392 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1393 int lane)
1395 int s = ((lane & 1) ?
1396 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1397 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1398 uint8_t l = adjust_request[lane>>1];
1400 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1404 #if 0
1405 static char *voltage_names[] = {
1406 "0.4V", "0.6V", "0.8V", "1.2V"
1408 static char *pre_emph_names[] = {
1409 "0dB", "3.5dB", "6dB", "9.5dB"
1411 static char *link_train_names[] = {
1412 "pattern 1", "pattern 2", "idle", "off"
1414 #endif
1417 * These are source-specific values; current Intel hardware supports
1418 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1421 static uint8_t
1422 intel_dp_voltage_max(struct intel_dp *intel_dp)
1424 struct drm_device *dev = intel_dp->base.base.dev;
1426 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1427 return DP_TRAIN_VOLTAGE_SWING_800;
1428 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1429 return DP_TRAIN_VOLTAGE_SWING_1200;
1430 else
1431 return DP_TRAIN_VOLTAGE_SWING_800;
1434 static uint8_t
1435 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1437 struct drm_device *dev = intel_dp->base.base.dev;
1439 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1440 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1441 case DP_TRAIN_VOLTAGE_SWING_400:
1442 return DP_TRAIN_PRE_EMPHASIS_6;
1443 case DP_TRAIN_VOLTAGE_SWING_600:
1444 case DP_TRAIN_VOLTAGE_SWING_800:
1445 return DP_TRAIN_PRE_EMPHASIS_3_5;
1446 default:
1447 return DP_TRAIN_PRE_EMPHASIS_0;
1449 } else {
1450 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1451 case DP_TRAIN_VOLTAGE_SWING_400:
1452 return DP_TRAIN_PRE_EMPHASIS_6;
1453 case DP_TRAIN_VOLTAGE_SWING_600:
1454 return DP_TRAIN_PRE_EMPHASIS_6;
1455 case DP_TRAIN_VOLTAGE_SWING_800:
1456 return DP_TRAIN_PRE_EMPHASIS_3_5;
1457 case DP_TRAIN_VOLTAGE_SWING_1200:
1458 default:
1459 return DP_TRAIN_PRE_EMPHASIS_0;
1464 static void
1465 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1467 uint8_t v = 0;
1468 uint8_t p = 0;
1469 int lane;
1470 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1471 uint8_t voltage_max;
1472 uint8_t preemph_max;
1474 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1475 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1476 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1478 if (this_v > v)
1479 v = this_v;
1480 if (this_p > p)
1481 p = this_p;
1484 voltage_max = intel_dp_voltage_max(intel_dp);
1485 if (v >= voltage_max)
1486 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1488 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1489 if (p >= preemph_max)
1490 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1492 for (lane = 0; lane < 4; lane++)
1493 intel_dp->train_set[lane] = v | p;
1496 static uint32_t
1497 intel_dp_signal_levels(uint8_t train_set)
1499 uint32_t signal_levels = 0;
1501 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1502 case DP_TRAIN_VOLTAGE_SWING_400:
1503 default:
1504 signal_levels |= DP_VOLTAGE_0_4;
1505 break;
1506 case DP_TRAIN_VOLTAGE_SWING_600:
1507 signal_levels |= DP_VOLTAGE_0_6;
1508 break;
1509 case DP_TRAIN_VOLTAGE_SWING_800:
1510 signal_levels |= DP_VOLTAGE_0_8;
1511 break;
1512 case DP_TRAIN_VOLTAGE_SWING_1200:
1513 signal_levels |= DP_VOLTAGE_1_2;
1514 break;
1516 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1517 case DP_TRAIN_PRE_EMPHASIS_0:
1518 default:
1519 signal_levels |= DP_PRE_EMPHASIS_0;
1520 break;
1521 case DP_TRAIN_PRE_EMPHASIS_3_5:
1522 signal_levels |= DP_PRE_EMPHASIS_3_5;
1523 break;
1524 case DP_TRAIN_PRE_EMPHASIS_6:
1525 signal_levels |= DP_PRE_EMPHASIS_6;
1526 break;
1527 case DP_TRAIN_PRE_EMPHASIS_9_5:
1528 signal_levels |= DP_PRE_EMPHASIS_9_5;
1529 break;
1531 return signal_levels;
1534 /* Gen6's DP voltage swing and pre-emphasis control */
1535 static uint32_t
1536 intel_gen6_edp_signal_levels(uint8_t train_set)
1538 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1539 DP_TRAIN_PRE_EMPHASIS_MASK);
1540 switch (signal_levels) {
1541 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1542 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1543 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1544 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1545 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1546 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1547 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1548 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1549 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1550 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1551 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1552 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1553 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1554 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1555 default:
1556 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1557 "0x%x\n", signal_levels);
1558 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1562 /* Gen7's DP voltage swing and pre-emphasis control */
1563 static uint32_t
1564 intel_gen7_edp_signal_levels(uint8_t train_set)
1566 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1567 DP_TRAIN_PRE_EMPHASIS_MASK);
1568 switch (signal_levels) {
1569 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1570 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1571 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1572 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1573 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1574 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1576 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1577 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1578 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1579 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1581 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1582 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1583 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1586 default:
1587 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1588 "0x%x\n", signal_levels);
1589 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1593 static uint8_t
1594 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1595 int lane)
1597 int s = (lane & 1) * 4;
1598 uint8_t l = link_status[lane>>1];
1600 return (l >> s) & 0xf;
1603 /* Check for clock recovery is done on all channels */
1604 static bool
1605 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1607 int lane;
1608 uint8_t lane_status;
1610 for (lane = 0; lane < lane_count; lane++) {
1611 lane_status = intel_get_lane_status(link_status, lane);
1612 if ((lane_status & DP_LANE_CR_DONE) == 0)
1613 return false;
1615 return true;
1618 /* Check to see if channel eq is done on all channels */
1619 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1620 DP_LANE_CHANNEL_EQ_DONE|\
1621 DP_LANE_SYMBOL_LOCKED)
1622 static bool
1623 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1625 uint8_t lane_align;
1626 uint8_t lane_status;
1627 int lane;
1629 lane_align = intel_dp_link_status(link_status,
1630 DP_LANE_ALIGN_STATUS_UPDATED);
1631 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1632 return false;
1633 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1634 lane_status = intel_get_lane_status(link_status, lane);
1635 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1636 return false;
1638 return true;
1641 static bool
1642 intel_dp_set_link_train(struct intel_dp *intel_dp,
1643 uint32_t dp_reg_value,
1644 uint8_t dp_train_pat)
1646 struct drm_device *dev = intel_dp->base.base.dev;
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 int ret;
1650 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1651 POSTING_READ(intel_dp->output_reg);
1653 intel_dp_aux_native_write_1(intel_dp,
1654 DP_TRAINING_PATTERN_SET,
1655 dp_train_pat);
1657 ret = intel_dp_aux_native_write(intel_dp,
1658 DP_TRAINING_LANE0_SET,
1659 intel_dp->train_set,
1660 intel_dp->lane_count);
1661 if (ret != intel_dp->lane_count)
1662 return false;
1664 return true;
1667 /* Enable corresponding port and start training pattern 1 */
1668 static void
1669 intel_dp_start_link_train(struct intel_dp *intel_dp)
1671 struct drm_device *dev = intel_dp->base.base.dev;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1674 int i;
1675 uint8_t voltage;
1676 bool clock_recovery = false;
1677 int voltage_tries, loop_tries;
1678 u32 reg;
1679 uint32_t DP = intel_dp->DP;
1682 * On CPT we have to enable the port in training pattern 1, which
1683 * will happen below in intel_dp_set_link_train. Otherwise, enable
1684 * the port and wait for it to become active.
1686 if (!HAS_PCH_CPT(dev)) {
1687 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1688 POSTING_READ(intel_dp->output_reg);
1689 intel_wait_for_vblank(dev, intel_crtc->pipe);
1692 /* Write the link configuration data */
1693 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1694 intel_dp->link_configuration,
1695 DP_LINK_CONFIGURATION_SIZE);
1697 DP |= DP_PORT_EN;
1699 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1700 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1701 else
1702 DP &= ~DP_LINK_TRAIN_MASK;
1703 memset(intel_dp->train_set, 0, 4);
1704 voltage = 0xff;
1705 voltage_tries = 0;
1706 loop_tries = 0;
1707 clock_recovery = false;
1708 for (;;) {
1709 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1710 uint8_t link_status[DP_LINK_STATUS_SIZE];
1711 uint32_t signal_levels;
1714 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1715 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1716 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1717 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1718 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1719 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1720 } else {
1721 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1722 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1723 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1726 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1727 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1728 else
1729 reg = DP | DP_LINK_TRAIN_PAT_1;
1731 if (!intel_dp_set_link_train(intel_dp, reg,
1732 DP_TRAINING_PATTERN_1 |
1733 DP_LINK_SCRAMBLING_DISABLE))
1734 break;
1735 /* Set training pattern 1 */
1737 udelay(100);
1738 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1739 DRM_ERROR("failed to get link status\n");
1740 break;
1743 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1744 DRM_DEBUG_KMS("clock recovery OK\n");
1745 clock_recovery = true;
1746 break;
1749 /* Check to see if we've tried the max voltage */
1750 for (i = 0; i < intel_dp->lane_count; i++)
1751 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1752 break;
1753 if (i == intel_dp->lane_count) {
1754 ++loop_tries;
1755 if (loop_tries == 5) {
1756 DRM_DEBUG_KMS("too many full retries, give up\n");
1757 break;
1759 memset(intel_dp->train_set, 0, 4);
1760 voltage_tries = 0;
1761 continue;
1764 /* Check to see if we've tried the same voltage 5 times */
1765 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1766 ++voltage_tries;
1767 if (voltage_tries == 5) {
1768 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1769 break;
1771 } else
1772 voltage_tries = 0;
1773 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1775 /* Compute new intel_dp->train_set as requested by target */
1776 intel_get_adjust_train(intel_dp, link_status);
1779 intel_dp->DP = DP;
1782 static void
1783 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1785 struct drm_device *dev = intel_dp->base.base.dev;
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 bool channel_eq = false;
1788 int tries, cr_tries;
1789 u32 reg;
1790 uint32_t DP = intel_dp->DP;
1792 /* channel equalization */
1793 tries = 0;
1794 cr_tries = 0;
1795 channel_eq = false;
1796 for (;;) {
1797 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1798 uint32_t signal_levels;
1799 uint8_t link_status[DP_LINK_STATUS_SIZE];
1801 if (cr_tries > 5) {
1802 DRM_ERROR("failed to train DP, aborting\n");
1803 intel_dp_link_down(intel_dp);
1804 break;
1807 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1808 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1809 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1810 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1811 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1812 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1813 } else {
1814 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1815 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1818 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1819 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1820 else
1821 reg = DP | DP_LINK_TRAIN_PAT_2;
1823 /* channel eq pattern */
1824 if (!intel_dp_set_link_train(intel_dp, reg,
1825 DP_TRAINING_PATTERN_2 |
1826 DP_LINK_SCRAMBLING_DISABLE))
1827 break;
1829 udelay(400);
1830 if (!intel_dp_get_link_status(intel_dp, link_status))
1831 break;
1833 /* Make sure clock is still ok */
1834 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1835 intel_dp_start_link_train(intel_dp);
1836 cr_tries++;
1837 continue;
1840 if (intel_channel_eq_ok(intel_dp, link_status)) {
1841 channel_eq = true;
1842 break;
1845 /* Try 5 times, then try clock recovery if that fails */
1846 if (tries > 5) {
1847 intel_dp_link_down(intel_dp);
1848 intel_dp_start_link_train(intel_dp);
1849 tries = 0;
1850 cr_tries++;
1851 continue;
1854 /* Compute new intel_dp->train_set as requested by target */
1855 intel_get_adjust_train(intel_dp, link_status);
1856 ++tries;
1859 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1860 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1861 else
1862 reg = DP | DP_LINK_TRAIN_OFF;
1864 I915_WRITE(intel_dp->output_reg, reg);
1865 POSTING_READ(intel_dp->output_reg);
1866 intel_dp_aux_native_write_1(intel_dp,
1867 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1870 static void
1871 intel_dp_link_down(struct intel_dp *intel_dp)
1873 struct drm_device *dev = intel_dp->base.base.dev;
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875 uint32_t DP = intel_dp->DP;
1877 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1878 return;
1880 DRM_DEBUG_KMS("\n");
1882 if (is_edp(intel_dp)) {
1883 DP &= ~DP_PLL_ENABLE;
1884 I915_WRITE(intel_dp->output_reg, DP);
1885 POSTING_READ(intel_dp->output_reg);
1886 udelay(100);
1889 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1890 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1891 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1892 } else {
1893 DP &= ~DP_LINK_TRAIN_MASK;
1894 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1896 POSTING_READ(intel_dp->output_reg);
1898 msleep(17);
1900 if (is_edp(intel_dp)) {
1901 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1902 DP |= DP_LINK_TRAIN_OFF_CPT;
1903 else
1904 DP |= DP_LINK_TRAIN_OFF;
1907 if (!HAS_PCH_CPT(dev) &&
1908 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1909 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1911 /* Hardware workaround: leaving our transcoder select
1912 * set to transcoder B while it's off will prevent the
1913 * corresponding HDMI output on transcoder A.
1915 * Combine this with another hardware workaround:
1916 * transcoder select bit can only be cleared while the
1917 * port is enabled.
1919 DP &= ~DP_PIPEB_SELECT;
1920 I915_WRITE(intel_dp->output_reg, DP);
1922 /* Changes to enable or select take place the vblank
1923 * after being written.
1925 if (crtc == NULL) {
1926 /* We can arrive here never having been attached
1927 * to a CRTC, for instance, due to inheriting
1928 * random state from the BIOS.
1930 * If the pipe is not running, play safe and
1931 * wait for the clocks to stabilise before
1932 * continuing.
1934 POSTING_READ(intel_dp->output_reg);
1935 msleep(50);
1936 } else
1937 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1940 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1941 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1942 POSTING_READ(intel_dp->output_reg);
1943 msleep(intel_dp->panel_power_down_delay);
1946 static bool
1947 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1949 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1950 sizeof(intel_dp->dpcd)) &&
1951 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1952 return true;
1955 return false;
1958 static bool
1959 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1961 int ret;
1963 ret = intel_dp_aux_native_read_retry(intel_dp,
1964 DP_DEVICE_SERVICE_IRQ_VECTOR,
1965 sink_irq_vector, 1);
1966 if (!ret)
1967 return false;
1969 return true;
1972 static void
1973 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1975 /* NAK by default */
1976 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1980 * According to DP spec
1981 * 5.1.2:
1982 * 1. Read DPCD
1983 * 2. Configure link according to Receiver Capabilities
1984 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1985 * 4. Check link status on receipt of hot-plug interrupt
1988 static void
1989 intel_dp_check_link_status(struct intel_dp *intel_dp)
1991 u8 sink_irq_vector;
1992 u8 link_status[DP_LINK_STATUS_SIZE];
1994 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1995 return;
1997 if (!intel_dp->base.base.crtc)
1998 return;
2000 /* Try to read receiver status if the link appears to be up */
2001 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2002 intel_dp_link_down(intel_dp);
2003 return;
2006 /* Now read the DPCD to see if it's actually running */
2007 if (!intel_dp_get_dpcd(intel_dp)) {
2008 intel_dp_link_down(intel_dp);
2009 return;
2012 /* Try to read the source of the interrupt */
2013 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2014 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2015 /* Clear interrupt source */
2016 intel_dp_aux_native_write_1(intel_dp,
2017 DP_DEVICE_SERVICE_IRQ_VECTOR,
2018 sink_irq_vector);
2020 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2021 intel_dp_handle_test_request(intel_dp);
2022 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2023 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2026 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2027 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2028 drm_get_encoder_name(&intel_dp->base.base));
2029 intel_dp_start_link_train(intel_dp);
2030 intel_dp_complete_link_train(intel_dp);
2034 static enum drm_connector_status
2035 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2037 if (intel_dp_get_dpcd(intel_dp))
2038 return connector_status_connected;
2039 return connector_status_disconnected;
2042 static enum drm_connector_status
2043 ironlake_dp_detect(struct intel_dp *intel_dp)
2045 enum drm_connector_status status;
2047 /* Can't disconnect eDP, but you can close the lid... */
2048 if (is_edp(intel_dp)) {
2049 status = intel_panel_detect(intel_dp->base.base.dev);
2050 if (status == connector_status_unknown)
2051 status = connector_status_connected;
2052 return status;
2055 return intel_dp_detect_dpcd(intel_dp);
2058 static enum drm_connector_status
2059 g4x_dp_detect(struct intel_dp *intel_dp)
2061 struct drm_device *dev = intel_dp->base.base.dev;
2062 struct drm_i915_private *dev_priv = dev->dev_private;
2063 uint32_t temp, bit;
2065 switch (intel_dp->output_reg) {
2066 case DP_B:
2067 bit = DPB_HOTPLUG_INT_STATUS;
2068 break;
2069 case DP_C:
2070 bit = DPC_HOTPLUG_INT_STATUS;
2071 break;
2072 case DP_D:
2073 bit = DPD_HOTPLUG_INT_STATUS;
2074 break;
2075 default:
2076 return connector_status_unknown;
2079 temp = I915_READ(PORT_HOTPLUG_STAT);
2081 if ((temp & bit) == 0)
2082 return connector_status_disconnected;
2084 return intel_dp_detect_dpcd(intel_dp);
2087 static struct edid *
2088 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2090 struct intel_dp *intel_dp = intel_attached_dp(connector);
2091 struct edid *edid;
2093 ironlake_edp_panel_vdd_on(intel_dp);
2094 edid = drm_get_edid(connector, adapter);
2095 ironlake_edp_panel_vdd_off(intel_dp, false);
2096 return edid;
2099 static int
2100 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2102 struct intel_dp *intel_dp = intel_attached_dp(connector);
2103 int ret;
2105 ironlake_edp_panel_vdd_on(intel_dp);
2106 ret = intel_ddc_get_modes(connector, adapter);
2107 ironlake_edp_panel_vdd_off(intel_dp, false);
2108 return ret;
2113 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2115 * \return true if DP port is connected.
2116 * \return false if DP port is disconnected.
2118 static enum drm_connector_status
2119 intel_dp_detect(struct drm_connector *connector, bool force)
2121 struct intel_dp *intel_dp = intel_attached_dp(connector);
2122 struct drm_device *dev = intel_dp->base.base.dev;
2123 enum drm_connector_status status;
2124 struct edid *edid = NULL;
2126 intel_dp->has_audio = false;
2128 if (HAS_PCH_SPLIT(dev))
2129 status = ironlake_dp_detect(intel_dp);
2130 else
2131 status = g4x_dp_detect(intel_dp);
2133 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2134 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2135 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2136 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2138 if (status != connector_status_connected)
2139 return status;
2141 if (intel_dp->force_audio) {
2142 intel_dp->has_audio = intel_dp->force_audio > 0;
2143 } else {
2144 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2145 if (edid) {
2146 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2147 connector->display_info.raw_edid = NULL;
2148 kfree(edid);
2152 return connector_status_connected;
2155 static int intel_dp_get_modes(struct drm_connector *connector)
2157 struct intel_dp *intel_dp = intel_attached_dp(connector);
2158 struct drm_device *dev = intel_dp->base.base.dev;
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160 int ret;
2162 /* We should parse the EDID data and find out if it has an audio sink
2165 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2166 if (ret) {
2167 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2168 struct drm_display_mode *newmode;
2169 list_for_each_entry(newmode, &connector->probed_modes,
2170 head) {
2171 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2172 intel_dp->panel_fixed_mode =
2173 drm_mode_duplicate(dev, newmode);
2174 break;
2178 return ret;
2181 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2182 if (is_edp(intel_dp)) {
2183 /* initialize panel mode from VBT if available for eDP */
2184 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2185 intel_dp->panel_fixed_mode =
2186 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2187 if (intel_dp->panel_fixed_mode) {
2188 intel_dp->panel_fixed_mode->type |=
2189 DRM_MODE_TYPE_PREFERRED;
2192 if (intel_dp->panel_fixed_mode) {
2193 struct drm_display_mode *mode;
2194 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2195 drm_mode_probed_add(connector, mode);
2196 return 1;
2199 return 0;
2202 static bool
2203 intel_dp_detect_audio(struct drm_connector *connector)
2205 struct intel_dp *intel_dp = intel_attached_dp(connector);
2206 struct edid *edid;
2207 bool has_audio = false;
2209 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2210 if (edid) {
2211 has_audio = drm_detect_monitor_audio(edid);
2213 connector->display_info.raw_edid = NULL;
2214 kfree(edid);
2217 return has_audio;
2220 static int
2221 intel_dp_set_property(struct drm_connector *connector,
2222 struct drm_property *property,
2223 uint64_t val)
2225 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2226 struct intel_dp *intel_dp = intel_attached_dp(connector);
2227 int ret;
2229 ret = drm_connector_property_set_value(connector, property, val);
2230 if (ret)
2231 return ret;
2233 if (property == dev_priv->force_audio_property) {
2234 int i = val;
2235 bool has_audio;
2237 if (i == intel_dp->force_audio)
2238 return 0;
2240 intel_dp->force_audio = i;
2242 if (i == 0)
2243 has_audio = intel_dp_detect_audio(connector);
2244 else
2245 has_audio = i > 0;
2247 if (has_audio == intel_dp->has_audio)
2248 return 0;
2250 intel_dp->has_audio = has_audio;
2251 goto done;
2254 if (property == dev_priv->broadcast_rgb_property) {
2255 if (val == !!intel_dp->color_range)
2256 return 0;
2258 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2259 goto done;
2262 return -EINVAL;
2264 done:
2265 if (intel_dp->base.base.crtc) {
2266 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2267 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2268 crtc->x, crtc->y,
2269 crtc->fb);
2272 return 0;
2275 static void
2276 intel_dp_destroy(struct drm_connector *connector)
2278 struct drm_device *dev = connector->dev;
2280 if (intel_dpd_is_edp(dev))
2281 intel_panel_destroy_backlight(dev);
2283 drm_sysfs_connector_remove(connector);
2284 drm_connector_cleanup(connector);
2285 kfree(connector);
2288 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2290 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2292 i2c_del_adapter(&intel_dp->adapter);
2293 drm_encoder_cleanup(encoder);
2294 if (is_edp(intel_dp)) {
2295 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2296 ironlake_panel_vdd_off_sync(intel_dp);
2298 kfree(intel_dp);
2301 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2302 .dpms = intel_dp_dpms,
2303 .mode_fixup = intel_dp_mode_fixup,
2304 .prepare = intel_dp_prepare,
2305 .mode_set = intel_dp_mode_set,
2306 .commit = intel_dp_commit,
2309 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2310 .dpms = drm_helper_connector_dpms,
2311 .detect = intel_dp_detect,
2312 .fill_modes = drm_helper_probe_single_connector_modes,
2313 .set_property = intel_dp_set_property,
2314 .destroy = intel_dp_destroy,
2317 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2318 .get_modes = intel_dp_get_modes,
2319 .mode_valid = intel_dp_mode_valid,
2320 .best_encoder = intel_best_encoder,
2323 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2324 .destroy = intel_dp_encoder_destroy,
2327 static void
2328 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2330 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2332 intel_dp_check_link_status(intel_dp);
2335 /* Return which DP Port should be selected for Transcoder DP control */
2337 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2339 struct drm_device *dev = crtc->dev;
2340 struct drm_mode_config *mode_config = &dev->mode_config;
2341 struct drm_encoder *encoder;
2343 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2344 struct intel_dp *intel_dp;
2346 if (encoder->crtc != crtc)
2347 continue;
2349 intel_dp = enc_to_intel_dp(encoder);
2350 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2351 intel_dp->base.type == INTEL_OUTPUT_EDP)
2352 return intel_dp->output_reg;
2355 return -1;
2358 /* check the VBT to see whether the eDP is on DP-D port */
2359 bool intel_dpd_is_edp(struct drm_device *dev)
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 struct child_device_config *p_child;
2363 int i;
2365 if (!dev_priv->child_dev_num)
2366 return false;
2368 for (i = 0; i < dev_priv->child_dev_num; i++) {
2369 p_child = dev_priv->child_dev + i;
2371 if (p_child->dvo_port == PORT_IDPD &&
2372 p_child->device_type == DEVICE_TYPE_eDP)
2373 return true;
2375 return false;
2378 static void
2379 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2381 intel_attach_force_audio_property(connector);
2382 intel_attach_broadcast_rgb_property(connector);
2385 void
2386 intel_dp_init(struct drm_device *dev, int output_reg)
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 struct drm_connector *connector;
2390 struct intel_dp *intel_dp;
2391 struct intel_encoder *intel_encoder;
2392 struct intel_connector *intel_connector;
2393 const char *name = NULL;
2394 int type;
2396 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2397 if (!intel_dp)
2398 return;
2400 intel_dp->output_reg = output_reg;
2401 intel_dp->dpms_mode = -1;
2403 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2404 if (!intel_connector) {
2405 kfree(intel_dp);
2406 return;
2408 intel_encoder = &intel_dp->base;
2410 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2411 if (intel_dpd_is_edp(dev))
2412 intel_dp->is_pch_edp = true;
2414 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2415 type = DRM_MODE_CONNECTOR_eDP;
2416 intel_encoder->type = INTEL_OUTPUT_EDP;
2417 } else {
2418 type = DRM_MODE_CONNECTOR_DisplayPort;
2419 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2422 connector = &intel_connector->base;
2423 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2424 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2426 connector->polled = DRM_CONNECTOR_POLL_HPD;
2428 if (output_reg == DP_B || output_reg == PCH_DP_B)
2429 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2430 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2431 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2432 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2433 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2435 if (is_edp(intel_dp)) {
2436 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2437 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2438 ironlake_panel_vdd_work);
2441 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2442 connector->interlace_allowed = true;
2443 connector->doublescan_allowed = 0;
2445 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2446 DRM_MODE_ENCODER_TMDS);
2447 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2449 intel_connector_attach_encoder(intel_connector, intel_encoder);
2450 drm_sysfs_connector_add(connector);
2452 /* Set up the DDC bus. */
2453 switch (output_reg) {
2454 case DP_A:
2455 name = "DPDDC-A";
2456 break;
2457 case DP_B:
2458 case PCH_DP_B:
2459 dev_priv->hotplug_supported_mask |=
2460 HDMIB_HOTPLUG_INT_STATUS;
2461 name = "DPDDC-B";
2462 break;
2463 case DP_C:
2464 case PCH_DP_C:
2465 dev_priv->hotplug_supported_mask |=
2466 HDMIC_HOTPLUG_INT_STATUS;
2467 name = "DPDDC-C";
2468 break;
2469 case DP_D:
2470 case PCH_DP_D:
2471 dev_priv->hotplug_supported_mask |=
2472 HDMID_HOTPLUG_INT_STATUS;
2473 name = "DPDDC-D";
2474 break;
2477 /* Cache some DPCD data in the eDP case */
2478 if (is_edp(intel_dp)) {
2479 bool ret;
2480 struct edp_power_seq cur, vbt;
2481 u32 pp_on, pp_off, pp_div;
2483 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2484 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2485 pp_div = I915_READ(PCH_PP_DIVISOR);
2487 /* Pull timing values out of registers */
2488 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2489 PANEL_POWER_UP_DELAY_SHIFT;
2491 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2492 PANEL_LIGHT_ON_DELAY_SHIFT;
2494 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2495 PANEL_LIGHT_OFF_DELAY_SHIFT;
2497 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2498 PANEL_POWER_DOWN_DELAY_SHIFT;
2500 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2501 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2503 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2504 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2506 vbt = dev_priv->edp.pps;
2508 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2509 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2511 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2513 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2514 intel_dp->backlight_on_delay = get_delay(t8);
2515 intel_dp->backlight_off_delay = get_delay(t9);
2516 intel_dp->panel_power_down_delay = get_delay(t10);
2517 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2519 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2520 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2521 intel_dp->panel_power_cycle_delay);
2523 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2524 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2526 ironlake_edp_panel_vdd_on(intel_dp);
2527 ret = intel_dp_get_dpcd(intel_dp);
2528 ironlake_edp_panel_vdd_off(intel_dp, false);
2530 if (ret) {
2531 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2532 dev_priv->no_aux_handshake =
2533 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2534 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2535 } else {
2536 /* if this fails, presume the device is a ghost */
2537 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2538 intel_dp_encoder_destroy(&intel_dp->base.base);
2539 intel_dp_destroy(&intel_connector->base);
2540 return;
2544 intel_dp_i2c_init(intel_dp, intel_connector, name);
2546 intel_encoder->hot_plug = intel_dp_hot_plug;
2548 if (is_edp(intel_dp)) {
2549 dev_priv->int_edp_connector = connector;
2550 intel_panel_setup_backlight(dev);
2553 intel_dp_add_properties(intel_dp, connector);
2555 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2556 * 0xd. Failure to do so will result in spurious interrupts being
2557 * generated on the port when a cable is not attached.
2559 if (IS_G4X(dev) && !IS_GM45(dev)) {
2560 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2561 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);