2 * Copyright (C) 2011 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
17 #define DM_MSG_PREFIX "thin"
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
28 * The block size of the device holding pool data must be
29 * between 64KB and 1GB.
31 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
32 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35 * The metadata device is currently limited in size. The limitation is
36 * checked lower down in dm-space-map-metadata, but we also check it here
37 * so we can fail early.
39 * We have one block of index, which can hold 255 index entries. Each
40 * index entry contains allocation info about 16k metadata blocks.
42 #define METADATA_DEV_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT)))
45 * Device id is restricted to 24 bits.
47 #define MAX_DEV_ID ((1 << 24) - 1)
50 * How do we handle breaking sharing of data blocks?
51 * =================================================
53 * We use a standard copy-on-write btree to store the mappings for the
54 * devices (note I'm talking about copy-on-write of the metadata here, not
55 * the data). When you take an internal snapshot you clone the root node
56 * of the origin btree. After this there is no concept of an origin or a
57 * snapshot. They are just two device trees that happen to point to the
60 * When we get a write in we decide if it's to a shared data block using
61 * some timestamp magic. If it is, we have to break sharing.
63 * Let's say we write to a shared block in what was the origin. The
66 * i) plug io further to this physical block. (see bio_prison code).
68 * ii) quiesce any read io to that shared data block. Obviously
69 * including all devices that share this block. (see deferred_set code)
71 * iii) copy the data block to a newly allocate block. This step can be
72 * missed out if the io covers the block. (schedule_copy).
74 * iv) insert the new mapping into the origin's btree
75 * (process_prepared_mappings). This act of inserting breaks some
76 * sharing of btree nodes between the two devices. Breaking sharing only
77 * effects the btree of that specific device. Btrees for the other
78 * devices that share the block never change. The btree for the origin
79 * device as it was after the last commit is untouched, ie. we're using
80 * persistent data structures in the functional programming sense.
82 * v) unplug io to this physical block, including the io that triggered
83 * the breaking of sharing.
85 * Steps (ii) and (iii) occur in parallel.
87 * The metadata _doesn't_ need to be committed before the io continues. We
88 * get away with this because the io is always written to a _new_ block.
89 * If there's a crash, then:
91 * - The origin mapping will point to the old origin block (the shared
92 * one). This will contain the data as it was before the io that triggered
93 * the breaking of sharing came in.
95 * - The snap mapping still points to the old block. As it would after
98 * The downside of this scheme is the timestamp magic isn't perfect, and
99 * will continue to think that data block in the snapshot device is shared
100 * even after the write to the origin has broken sharing. I suspect data
101 * blocks will typically be shared by many different devices, so we're
102 * breaking sharing n + 1 times, rather than n, where n is the number of
103 * devices that reference this data block. At the moment I think the
104 * benefits far, far outweigh the disadvantages.
107 /*----------------------------------------------------------------*/
110 * Sometimes we can't deal with a bio straight away. We put them in prison
111 * where they can't cause any mischief. Bios are put in a cell identified
112 * by a key, multiple bios can be in the same cell. When the cell is
113 * subsequently unlocked the bios become available.
124 struct hlist_node list
;
125 struct bio_prison
*prison
;
128 struct bio_list bios
;
133 mempool_t
*cell_pool
;
137 struct hlist_head
*cells
;
140 static uint32_t calc_nr_buckets(unsigned nr_cells
)
145 nr_cells
= min(nr_cells
, 8192u);
154 * @nr_cells should be the number of cells you want in use _concurrently_.
155 * Don't confuse it with the number of distinct keys.
157 static struct bio_prison
*prison_create(unsigned nr_cells
)
160 uint32_t nr_buckets
= calc_nr_buckets(nr_cells
);
161 size_t len
= sizeof(struct bio_prison
) +
162 (sizeof(struct hlist_head
) * nr_buckets
);
163 struct bio_prison
*prison
= kmalloc(len
, GFP_KERNEL
);
168 spin_lock_init(&prison
->lock
);
169 prison
->cell_pool
= mempool_create_kmalloc_pool(nr_cells
,
170 sizeof(struct cell
));
171 if (!prison
->cell_pool
) {
176 prison
->nr_buckets
= nr_buckets
;
177 prison
->hash_mask
= nr_buckets
- 1;
178 prison
->cells
= (struct hlist_head
*) (prison
+ 1);
179 for (i
= 0; i
< nr_buckets
; i
++)
180 INIT_HLIST_HEAD(prison
->cells
+ i
);
185 static void prison_destroy(struct bio_prison
*prison
)
187 mempool_destroy(prison
->cell_pool
);
191 static uint32_t hash_key(struct bio_prison
*prison
, struct cell_key
*key
)
193 const unsigned long BIG_PRIME
= 4294967291UL;
194 uint64_t hash
= key
->block
* BIG_PRIME
;
196 return (uint32_t) (hash
& prison
->hash_mask
);
199 static int keys_equal(struct cell_key
*lhs
, struct cell_key
*rhs
)
201 return (lhs
->virtual == rhs
->virtual) &&
202 (lhs
->dev
== rhs
->dev
) &&
203 (lhs
->block
== rhs
->block
);
206 static struct cell
*__search_bucket(struct hlist_head
*bucket
,
207 struct cell_key
*key
)
210 struct hlist_node
*tmp
;
212 hlist_for_each_entry(cell
, tmp
, bucket
, list
)
213 if (keys_equal(&cell
->key
, key
))
220 * This may block if a new cell needs allocating. You must ensure that
221 * cells will be unlocked even if the calling thread is blocked.
223 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
225 static int bio_detain(struct bio_prison
*prison
, struct cell_key
*key
,
226 struct bio
*inmate
, struct cell
**ref
)
230 uint32_t hash
= hash_key(prison
, key
);
231 struct cell
*cell
, *cell2
;
233 BUG_ON(hash
> prison
->nr_buckets
);
235 spin_lock_irqsave(&prison
->lock
, flags
);
237 cell
= __search_bucket(prison
->cells
+ hash
, key
);
239 bio_list_add(&cell
->bios
, inmate
);
244 * Allocate a new cell
246 spin_unlock_irqrestore(&prison
->lock
, flags
);
247 cell2
= mempool_alloc(prison
->cell_pool
, GFP_NOIO
);
248 spin_lock_irqsave(&prison
->lock
, flags
);
251 * We've been unlocked, so we have to double check that
252 * nobody else has inserted this cell in the meantime.
254 cell
= __search_bucket(prison
->cells
+ hash
, key
);
256 mempool_free(cell2
, prison
->cell_pool
);
257 bio_list_add(&cell
->bios
, inmate
);
266 cell
->prison
= prison
;
267 memcpy(&cell
->key
, key
, sizeof(cell
->key
));
268 cell
->holder
= inmate
;
269 bio_list_init(&cell
->bios
);
270 hlist_add_head(&cell
->list
, prison
->cells
+ hash
);
275 spin_unlock_irqrestore(&prison
->lock
, flags
);
283 * @inmates must have been initialised prior to this call
285 static void __cell_release(struct cell
*cell
, struct bio_list
*inmates
)
287 struct bio_prison
*prison
= cell
->prison
;
289 hlist_del(&cell
->list
);
291 bio_list_add(inmates
, cell
->holder
);
292 bio_list_merge(inmates
, &cell
->bios
);
294 mempool_free(cell
, prison
->cell_pool
);
297 static void cell_release(struct cell
*cell
, struct bio_list
*bios
)
300 struct bio_prison
*prison
= cell
->prison
;
302 spin_lock_irqsave(&prison
->lock
, flags
);
303 __cell_release(cell
, bios
);
304 spin_unlock_irqrestore(&prison
->lock
, flags
);
308 * There are a couple of places where we put a bio into a cell briefly
309 * before taking it out again. In these situations we know that no other
310 * bio may be in the cell. This function releases the cell, and also does
313 static void __cell_release_singleton(struct cell
*cell
, struct bio
*bio
)
315 hlist_del(&cell
->list
);
316 BUG_ON(cell
->holder
!= bio
);
317 BUG_ON(!bio_list_empty(&cell
->bios
));
320 static void cell_release_singleton(struct cell
*cell
, struct bio
*bio
)
323 struct bio_prison
*prison
= cell
->prison
;
325 spin_lock_irqsave(&prison
->lock
, flags
);
326 __cell_release_singleton(cell
, bio
);
327 spin_unlock_irqrestore(&prison
->lock
, flags
);
331 * Sometimes we don't want the holder, just the additional bios.
333 static void __cell_release_no_holder(struct cell
*cell
, struct bio_list
*inmates
)
335 struct bio_prison
*prison
= cell
->prison
;
337 hlist_del(&cell
->list
);
338 bio_list_merge(inmates
, &cell
->bios
);
340 mempool_free(cell
, prison
->cell_pool
);
343 static void cell_release_no_holder(struct cell
*cell
, struct bio_list
*inmates
)
346 struct bio_prison
*prison
= cell
->prison
;
348 spin_lock_irqsave(&prison
->lock
, flags
);
349 __cell_release_no_holder(cell
, inmates
);
350 spin_unlock_irqrestore(&prison
->lock
, flags
);
353 static void cell_error(struct cell
*cell
)
355 struct bio_prison
*prison
= cell
->prison
;
356 struct bio_list bios
;
360 bio_list_init(&bios
);
362 spin_lock_irqsave(&prison
->lock
, flags
);
363 __cell_release(cell
, &bios
);
364 spin_unlock_irqrestore(&prison
->lock
, flags
);
366 while ((bio
= bio_list_pop(&bios
)))
370 /*----------------------------------------------------------------*/
373 * We use the deferred set to keep track of pending reads to shared blocks.
374 * We do this to ensure the new mapping caused by a write isn't performed
375 * until these prior reads have completed. Otherwise the insertion of the
376 * new mapping could free the old block that the read bios are mapped to.
380 struct deferred_entry
{
381 struct deferred_set
*ds
;
383 struct list_head work_items
;
386 struct deferred_set
{
388 unsigned current_entry
;
390 struct deferred_entry entries
[DEFERRED_SET_SIZE
];
393 static void ds_init(struct deferred_set
*ds
)
397 spin_lock_init(&ds
->lock
);
398 ds
->current_entry
= 0;
400 for (i
= 0; i
< DEFERRED_SET_SIZE
; i
++) {
401 ds
->entries
[i
].ds
= ds
;
402 ds
->entries
[i
].count
= 0;
403 INIT_LIST_HEAD(&ds
->entries
[i
].work_items
);
407 static struct deferred_entry
*ds_inc(struct deferred_set
*ds
)
410 struct deferred_entry
*entry
;
412 spin_lock_irqsave(&ds
->lock
, flags
);
413 entry
= ds
->entries
+ ds
->current_entry
;
415 spin_unlock_irqrestore(&ds
->lock
, flags
);
420 static unsigned ds_next(unsigned index
)
422 return (index
+ 1) % DEFERRED_SET_SIZE
;
425 static void __sweep(struct deferred_set
*ds
, struct list_head
*head
)
427 while ((ds
->sweeper
!= ds
->current_entry
) &&
428 !ds
->entries
[ds
->sweeper
].count
) {
429 list_splice_init(&ds
->entries
[ds
->sweeper
].work_items
, head
);
430 ds
->sweeper
= ds_next(ds
->sweeper
);
433 if ((ds
->sweeper
== ds
->current_entry
) && !ds
->entries
[ds
->sweeper
].count
)
434 list_splice_init(&ds
->entries
[ds
->sweeper
].work_items
, head
);
437 static void ds_dec(struct deferred_entry
*entry
, struct list_head
*head
)
441 spin_lock_irqsave(&entry
->ds
->lock
, flags
);
442 BUG_ON(!entry
->count
);
444 __sweep(entry
->ds
, head
);
445 spin_unlock_irqrestore(&entry
->ds
->lock
, flags
);
449 * Returns 1 if deferred or 0 if no pending items to delay job.
451 static int ds_add_work(struct deferred_set
*ds
, struct list_head
*work
)
457 spin_lock_irqsave(&ds
->lock
, flags
);
458 if ((ds
->sweeper
== ds
->current_entry
) &&
459 !ds
->entries
[ds
->current_entry
].count
)
462 list_add(work
, &ds
->entries
[ds
->current_entry
].work_items
);
463 next_entry
= ds_next(ds
->current_entry
);
464 if (!ds
->entries
[next_entry
].count
)
465 ds
->current_entry
= next_entry
;
467 spin_unlock_irqrestore(&ds
->lock
, flags
);
472 /*----------------------------------------------------------------*/
477 static void build_data_key(struct dm_thin_device
*td
,
478 dm_block_t b
, struct cell_key
*key
)
481 key
->dev
= dm_thin_dev_id(td
);
485 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
486 struct cell_key
*key
)
489 key
->dev
= dm_thin_dev_id(td
);
493 /*----------------------------------------------------------------*/
496 * A pool device ties together a metadata device and a data device. It
497 * also provides the interface for creating and destroying internal
502 struct list_head list
;
503 struct dm_target
*ti
; /* Only set if a pool target is bound */
505 struct mapped_device
*pool_md
;
506 struct block_device
*md_dev
;
507 struct dm_pool_metadata
*pmd
;
509 uint32_t sectors_per_block
;
510 unsigned block_shift
;
511 dm_block_t offset_mask
;
512 dm_block_t low_water_blocks
;
514 unsigned zero_new_blocks
:1;
515 unsigned low_water_triggered
:1; /* A dm event has been sent */
516 unsigned no_free_space
:1; /* A -ENOSPC warning has been issued */
518 struct bio_prison
*prison
;
519 struct dm_kcopyd_client
*copier
;
521 struct workqueue_struct
*wq
;
522 struct work_struct worker
;
527 struct bio_list deferred_bios
;
528 struct bio_list deferred_flush_bios
;
529 struct list_head prepared_mappings
;
531 struct bio_list retry_on_resume_list
;
533 struct deferred_set ds
; /* FIXME: move to thin_c */
535 struct new_mapping
*next_mapping
;
536 mempool_t
*mapping_pool
;
537 mempool_t
*endio_hook_pool
;
541 * Target context for a pool.
544 struct dm_target
*ti
;
546 struct dm_dev
*data_dev
;
547 struct dm_dev
*metadata_dev
;
548 struct dm_target_callbacks callbacks
;
550 dm_block_t low_water_blocks
;
551 unsigned zero_new_blocks
:1;
555 * Target context for a thin.
558 struct dm_dev
*pool_dev
;
562 struct dm_thin_device
*td
;
565 /*----------------------------------------------------------------*/
568 * A global list of pools that uses a struct mapped_device as a key.
570 static struct dm_thin_pool_table
{
572 struct list_head pools
;
573 } dm_thin_pool_table
;
575 static void pool_table_init(void)
577 mutex_init(&dm_thin_pool_table
.mutex
);
578 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
581 static void __pool_table_insert(struct pool
*pool
)
583 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
584 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
587 static void __pool_table_remove(struct pool
*pool
)
589 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
590 list_del(&pool
->list
);
593 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
595 struct pool
*pool
= NULL
, *tmp
;
597 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
599 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
600 if (tmp
->pool_md
== md
) {
609 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
611 struct pool
*pool
= NULL
, *tmp
;
613 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
615 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
616 if (tmp
->md_dev
== md_dev
) {
625 /*----------------------------------------------------------------*/
627 static void __requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
630 struct bio_list bios
;
632 bio_list_init(&bios
);
633 bio_list_merge(&bios
, master
);
634 bio_list_init(master
);
636 while ((bio
= bio_list_pop(&bios
))) {
637 if (dm_get_mapinfo(bio
)->ptr
== tc
)
638 bio_endio(bio
, DM_ENDIO_REQUEUE
);
640 bio_list_add(master
, bio
);
644 static void requeue_io(struct thin_c
*tc
)
646 struct pool
*pool
= tc
->pool
;
649 spin_lock_irqsave(&pool
->lock
, flags
);
650 __requeue_bio_list(tc
, &pool
->deferred_bios
);
651 __requeue_bio_list(tc
, &pool
->retry_on_resume_list
);
652 spin_unlock_irqrestore(&pool
->lock
, flags
);
656 * This section of code contains the logic for processing a thin device's IO.
657 * Much of the code depends on pool object resources (lists, workqueues, etc)
658 * but most is exclusively called from the thin target rather than the thin-pool
662 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
664 return bio
->bi_sector
>> tc
->pool
->block_shift
;
667 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
669 struct pool
*pool
= tc
->pool
;
671 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
672 bio
->bi_sector
= (block
<< pool
->block_shift
) +
673 (bio
->bi_sector
& pool
->offset_mask
);
676 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
679 struct pool
*pool
= tc
->pool
;
682 remap(tc
, bio
, block
);
685 * Batch together any FUA/FLUSH bios we find and then issue
686 * a single commit for them in process_deferred_bios().
688 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
689 spin_lock_irqsave(&pool
->lock
, flags
);
690 bio_list_add(&pool
->deferred_flush_bios
, bio
);
691 spin_unlock_irqrestore(&pool
->lock
, flags
);
693 generic_make_request(bio
);
697 * wake_worker() is used when new work is queued and when pool_resume is
698 * ready to continue deferred IO processing.
700 static void wake_worker(struct pool
*pool
)
702 queue_work(pool
->wq
, &pool
->worker
);
705 /*----------------------------------------------------------------*/
708 * Bio endio functions.
712 bio_end_io_t
*saved_bi_end_io
;
713 struct deferred_entry
*entry
;
717 struct list_head list
;
722 dm_block_t virt_block
;
723 dm_block_t data_block
;
728 * If the bio covers the whole area of a block then we can avoid
729 * zeroing or copying. Instead this bio is hooked. The bio will
730 * still be in the cell, so care has to be taken to avoid issuing
734 bio_end_io_t
*saved_bi_end_io
;
737 static void __maybe_add_mapping(struct new_mapping
*m
)
739 struct pool
*pool
= m
->tc
->pool
;
741 if (list_empty(&m
->list
) && m
->prepared
) {
742 list_add(&m
->list
, &pool
->prepared_mappings
);
747 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
750 struct new_mapping
*m
= context
;
751 struct pool
*pool
= m
->tc
->pool
;
753 m
->err
= read_err
|| write_err
? -EIO
: 0;
755 spin_lock_irqsave(&pool
->lock
, flags
);
757 __maybe_add_mapping(m
);
758 spin_unlock_irqrestore(&pool
->lock
, flags
);
761 static void overwrite_endio(struct bio
*bio
, int err
)
764 struct new_mapping
*m
= dm_get_mapinfo(bio
)->ptr
;
765 struct pool
*pool
= m
->tc
->pool
;
769 spin_lock_irqsave(&pool
->lock
, flags
);
771 __maybe_add_mapping(m
);
772 spin_unlock_irqrestore(&pool
->lock
, flags
);
775 static void shared_read_endio(struct bio
*bio
, int err
)
777 struct list_head mappings
;
778 struct new_mapping
*m
, *tmp
;
779 struct endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
781 struct pool
*pool
= h
->tc
->pool
;
783 bio
->bi_end_io
= h
->saved_bi_end_io
;
786 INIT_LIST_HEAD(&mappings
);
787 ds_dec(h
->entry
, &mappings
);
789 spin_lock_irqsave(&pool
->lock
, flags
);
790 list_for_each_entry_safe(m
, tmp
, &mappings
, list
) {
792 INIT_LIST_HEAD(&m
->list
);
793 __maybe_add_mapping(m
);
795 spin_unlock_irqrestore(&pool
->lock
, flags
);
797 mempool_free(h
, pool
->endio_hook_pool
);
800 /*----------------------------------------------------------------*/
807 * Prepared mapping jobs.
811 * This sends the bios in the cell back to the deferred_bios list.
813 static void cell_defer(struct thin_c
*tc
, struct cell
*cell
,
814 dm_block_t data_block
)
816 struct pool
*pool
= tc
->pool
;
819 spin_lock_irqsave(&pool
->lock
, flags
);
820 cell_release(cell
, &pool
->deferred_bios
);
821 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
827 * Same as cell_defer above, except it omits one particular detainee,
828 * a write bio that covers the block and has already been processed.
830 static void cell_defer_except(struct thin_c
*tc
, struct cell
*cell
)
832 struct bio_list bios
;
833 struct pool
*pool
= tc
->pool
;
836 bio_list_init(&bios
);
838 spin_lock_irqsave(&pool
->lock
, flags
);
839 cell_release_no_holder(cell
, &pool
->deferred_bios
);
840 spin_unlock_irqrestore(&pool
->lock
, flags
);
845 static void process_prepared_mapping(struct new_mapping
*m
)
847 struct thin_c
*tc
= m
->tc
;
853 bio
->bi_end_io
= m
->saved_bi_end_io
;
861 * Commit the prepared block into the mapping btree.
862 * Any I/O for this block arriving after this point will get
863 * remapped to it directly.
865 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
867 DMERR("dm_thin_insert_block() failed");
873 * Release any bios held while the block was being provisioned.
874 * If we are processing a write bio that completely covers the block,
875 * we already processed it so can ignore it now when processing
876 * the bios in the cell.
879 cell_defer_except(tc
, m
->cell
);
882 cell_defer(tc
, m
->cell
, m
->data_block
);
885 mempool_free(m
, tc
->pool
->mapping_pool
);
888 static void process_prepared_mappings(struct pool
*pool
)
891 struct list_head maps
;
892 struct new_mapping
*m
, *tmp
;
894 INIT_LIST_HEAD(&maps
);
895 spin_lock_irqsave(&pool
->lock
, flags
);
896 list_splice_init(&pool
->prepared_mappings
, &maps
);
897 spin_unlock_irqrestore(&pool
->lock
, flags
);
899 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
900 process_prepared_mapping(m
);
906 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
908 return ((bio_data_dir(bio
) == WRITE
) &&
909 !(bio
->bi_sector
& pool
->offset_mask
)) &&
910 (bio
->bi_size
== (pool
->sectors_per_block
<< SECTOR_SHIFT
));
913 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
916 *save
= bio
->bi_end_io
;
920 static int ensure_next_mapping(struct pool
*pool
)
922 if (pool
->next_mapping
)
925 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
927 return pool
->next_mapping
? 0 : -ENOMEM
;
930 static struct new_mapping
*get_next_mapping(struct pool
*pool
)
932 struct new_mapping
*r
= pool
->next_mapping
;
934 BUG_ON(!pool
->next_mapping
);
936 pool
->next_mapping
= NULL
;
941 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
942 dm_block_t data_origin
, dm_block_t data_dest
,
943 struct cell
*cell
, struct bio
*bio
)
946 struct pool
*pool
= tc
->pool
;
947 struct new_mapping
*m
= get_next_mapping(pool
);
949 INIT_LIST_HEAD(&m
->list
);
952 m
->virt_block
= virt_block
;
953 m
->data_block
= data_dest
;
958 ds_add_work(&pool
->ds
, &m
->list
);
961 * IO to pool_dev remaps to the pool target's data_dev.
963 * If the whole block of data is being overwritten, we can issue the
964 * bio immediately. Otherwise we use kcopyd to clone the data first.
966 if (io_overwrites_block(pool
, bio
)) {
968 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
969 dm_get_mapinfo(bio
)->ptr
= m
;
970 remap_and_issue(tc
, bio
, data_dest
);
972 struct dm_io_region from
, to
;
974 from
.bdev
= tc
->pool_dev
->bdev
;
975 from
.sector
= data_origin
* pool
->sectors_per_block
;
976 from
.count
= pool
->sectors_per_block
;
978 to
.bdev
= tc
->pool_dev
->bdev
;
979 to
.sector
= data_dest
* pool
->sectors_per_block
;
980 to
.count
= pool
->sectors_per_block
;
982 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
983 0, copy_complete
, m
);
985 mempool_free(m
, pool
->mapping_pool
);
986 DMERR("dm_kcopyd_copy() failed");
992 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
993 dm_block_t data_block
, struct cell
*cell
,
996 struct pool
*pool
= tc
->pool
;
997 struct new_mapping
*m
= get_next_mapping(pool
);
999 INIT_LIST_HEAD(&m
->list
);
1002 m
->virt_block
= virt_block
;
1003 m
->data_block
= data_block
;
1009 * If the whole block of data is being overwritten or we are not
1010 * zeroing pre-existing data, we can issue the bio immediately.
1011 * Otherwise we use kcopyd to zero the data first.
1013 if (!pool
->zero_new_blocks
)
1014 process_prepared_mapping(m
);
1016 else if (io_overwrites_block(pool
, bio
)) {
1018 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1019 dm_get_mapinfo(bio
)->ptr
= m
;
1020 remap_and_issue(tc
, bio
, data_block
);
1024 struct dm_io_region to
;
1026 to
.bdev
= tc
->pool_dev
->bdev
;
1027 to
.sector
= data_block
* pool
->sectors_per_block
;
1028 to
.count
= pool
->sectors_per_block
;
1030 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1032 mempool_free(m
, pool
->mapping_pool
);
1033 DMERR("dm_kcopyd_zero() failed");
1039 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1042 dm_block_t free_blocks
;
1043 unsigned long flags
;
1044 struct pool
*pool
= tc
->pool
;
1046 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1050 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1051 DMWARN("%s: reached low water mark, sending event.",
1052 dm_device_name(pool
->pool_md
));
1053 spin_lock_irqsave(&pool
->lock
, flags
);
1054 pool
->low_water_triggered
= 1;
1055 spin_unlock_irqrestore(&pool
->lock
, flags
);
1056 dm_table_event(pool
->ti
->table
);
1060 if (pool
->no_free_space
)
1064 * Try to commit to see if that will free up some
1067 r
= dm_pool_commit_metadata(pool
->pmd
);
1069 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1074 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1079 * If we still have no space we set a flag to avoid
1080 * doing all this checking and return -ENOSPC.
1083 DMWARN("%s: no free space available.",
1084 dm_device_name(pool
->pool_md
));
1085 spin_lock_irqsave(&pool
->lock
, flags
);
1086 pool
->no_free_space
= 1;
1087 spin_unlock_irqrestore(&pool
->lock
, flags
);
1093 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1101 * If we have run out of space, queue bios until the device is
1102 * resumed, presumably after having been reloaded with more space.
1104 static void retry_on_resume(struct bio
*bio
)
1106 struct thin_c
*tc
= dm_get_mapinfo(bio
)->ptr
;
1107 struct pool
*pool
= tc
->pool
;
1108 unsigned long flags
;
1110 spin_lock_irqsave(&pool
->lock
, flags
);
1111 bio_list_add(&pool
->retry_on_resume_list
, bio
);
1112 spin_unlock_irqrestore(&pool
->lock
, flags
);
1115 static void no_space(struct cell
*cell
)
1118 struct bio_list bios
;
1120 bio_list_init(&bios
);
1121 cell_release(cell
, &bios
);
1123 while ((bio
= bio_list_pop(&bios
)))
1124 retry_on_resume(bio
);
1127 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1128 struct cell_key
*key
,
1129 struct dm_thin_lookup_result
*lookup_result
,
1133 dm_block_t data_block
;
1135 r
= alloc_data_block(tc
, &data_block
);
1138 schedule_copy(tc
, block
, lookup_result
->block
,
1139 data_block
, cell
, bio
);
1147 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1153 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1155 struct dm_thin_lookup_result
*lookup_result
)
1158 struct pool
*pool
= tc
->pool
;
1159 struct cell_key key
;
1162 * If cell is already occupied, then sharing is already in the process
1163 * of being broken so we have nothing further to do here.
1165 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1166 if (bio_detain(pool
->prison
, &key
, bio
, &cell
))
1169 if (bio_data_dir(bio
) == WRITE
)
1170 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1172 struct endio_hook
*h
;
1173 h
= mempool_alloc(pool
->endio_hook_pool
, GFP_NOIO
);
1176 h
->entry
= ds_inc(&pool
->ds
);
1177 save_and_set_endio(bio
, &h
->saved_bi_end_io
, shared_read_endio
);
1178 dm_get_mapinfo(bio
)->ptr
= h
;
1180 cell_release_singleton(cell
, bio
);
1181 remap_and_issue(tc
, bio
, lookup_result
->block
);
1185 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1189 dm_block_t data_block
;
1192 * Remap empty bios (flushes) immediately, without provisioning.
1194 if (!bio
->bi_size
) {
1195 cell_release_singleton(cell
, bio
);
1196 remap_and_issue(tc
, bio
, 0);
1201 * Fill read bios with zeroes and complete them immediately.
1203 if (bio_data_dir(bio
) == READ
) {
1205 cell_release_singleton(cell
, bio
);
1210 r
= alloc_data_block(tc
, &data_block
);
1213 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1221 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1227 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1230 dm_block_t block
= get_bio_block(tc
, bio
);
1232 struct cell_key key
;
1233 struct dm_thin_lookup_result lookup_result
;
1236 * If cell is already occupied, then the block is already
1237 * being provisioned so we have nothing further to do here.
1239 build_virtual_key(tc
->td
, block
, &key
);
1240 if (bio_detain(tc
->pool
->prison
, &key
, bio
, &cell
))
1243 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1247 * We can release this cell now. This thread is the only
1248 * one that puts bios into a cell, and we know there were
1249 * no preceding bios.
1252 * TODO: this will probably have to change when discard goes
1255 cell_release_singleton(cell
, bio
);
1257 if (lookup_result
.shared
)
1258 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1260 remap_and_issue(tc
, bio
, lookup_result
.block
);
1264 provision_block(tc
, bio
, block
, cell
);
1268 DMERR("dm_thin_find_block() failed, error = %d", r
);
1274 static void process_deferred_bios(struct pool
*pool
)
1276 unsigned long flags
;
1278 struct bio_list bios
;
1281 bio_list_init(&bios
);
1283 spin_lock_irqsave(&pool
->lock
, flags
);
1284 bio_list_merge(&bios
, &pool
->deferred_bios
);
1285 bio_list_init(&pool
->deferred_bios
);
1286 spin_unlock_irqrestore(&pool
->lock
, flags
);
1288 while ((bio
= bio_list_pop(&bios
))) {
1289 struct thin_c
*tc
= dm_get_mapinfo(bio
)->ptr
;
1291 * If we've got no free new_mapping structs, and processing
1292 * this bio might require one, we pause until there are some
1293 * prepared mappings to process.
1295 if (ensure_next_mapping(pool
)) {
1296 spin_lock_irqsave(&pool
->lock
, flags
);
1297 bio_list_merge(&pool
->deferred_bios
, &bios
);
1298 spin_unlock_irqrestore(&pool
->lock
, flags
);
1302 process_bio(tc
, bio
);
1306 * If there are any deferred flush bios, we must commit
1307 * the metadata before issuing them.
1309 bio_list_init(&bios
);
1310 spin_lock_irqsave(&pool
->lock
, flags
);
1311 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1312 bio_list_init(&pool
->deferred_flush_bios
);
1313 spin_unlock_irqrestore(&pool
->lock
, flags
);
1315 if (bio_list_empty(&bios
))
1318 r
= dm_pool_commit_metadata(pool
->pmd
);
1320 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1322 while ((bio
= bio_list_pop(&bios
)))
1327 while ((bio
= bio_list_pop(&bios
)))
1328 generic_make_request(bio
);
1331 static void do_worker(struct work_struct
*ws
)
1333 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1335 process_prepared_mappings(pool
);
1336 process_deferred_bios(pool
);
1339 /*----------------------------------------------------------------*/
1342 * Mapping functions.
1346 * Called only while mapping a thin bio to hand it over to the workqueue.
1348 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1350 unsigned long flags
;
1351 struct pool
*pool
= tc
->pool
;
1353 spin_lock_irqsave(&pool
->lock
, flags
);
1354 bio_list_add(&pool
->deferred_bios
, bio
);
1355 spin_unlock_irqrestore(&pool
->lock
, flags
);
1361 * Non-blocking function called from the thin target's map function.
1363 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
,
1364 union map_info
*map_context
)
1367 struct thin_c
*tc
= ti
->private;
1368 dm_block_t block
= get_bio_block(tc
, bio
);
1369 struct dm_thin_device
*td
= tc
->td
;
1370 struct dm_thin_lookup_result result
;
1373 * Save the thin context for easy access from the deferred bio later.
1375 map_context
->ptr
= tc
;
1377 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1378 thin_defer_bio(tc
, bio
);
1379 return DM_MAPIO_SUBMITTED
;
1382 r
= dm_thin_find_block(td
, block
, 0, &result
);
1385 * Note that we defer readahead too.
1389 if (unlikely(result
.shared
)) {
1391 * We have a race condition here between the
1392 * result.shared value returned by the lookup and
1393 * snapshot creation, which may cause new
1396 * To avoid this always quiesce the origin before
1397 * taking the snap. You want to do this anyway to
1398 * ensure a consistent application view
1401 * More distant ancestors are irrelevant. The
1402 * shared flag will be set in their case.
1404 thin_defer_bio(tc
, bio
);
1405 r
= DM_MAPIO_SUBMITTED
;
1407 remap(tc
, bio
, result
.block
);
1408 r
= DM_MAPIO_REMAPPED
;
1414 * In future, the failed dm_thin_find_block above could
1415 * provide the hint to load the metadata into cache.
1418 thin_defer_bio(tc
, bio
);
1419 r
= DM_MAPIO_SUBMITTED
;
1426 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1429 unsigned long flags
;
1430 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1432 spin_lock_irqsave(&pt
->pool
->lock
, flags
);
1433 r
= !bio_list_empty(&pt
->pool
->retry_on_resume_list
);
1434 spin_unlock_irqrestore(&pt
->pool
->lock
, flags
);
1437 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1438 r
= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1444 static void __requeue_bios(struct pool
*pool
)
1446 bio_list_merge(&pool
->deferred_bios
, &pool
->retry_on_resume_list
);
1447 bio_list_init(&pool
->retry_on_resume_list
);
1450 /*----------------------------------------------------------------
1451 * Binding of control targets to a pool object
1452 *--------------------------------------------------------------*/
1453 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1455 struct pool_c
*pt
= ti
->private;
1458 pool
->low_water_blocks
= pt
->low_water_blocks
;
1459 pool
->zero_new_blocks
= pt
->zero_new_blocks
;
1464 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1470 /*----------------------------------------------------------------
1472 *--------------------------------------------------------------*/
1473 static void __pool_destroy(struct pool
*pool
)
1475 __pool_table_remove(pool
);
1477 if (dm_pool_metadata_close(pool
->pmd
) < 0)
1478 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1480 prison_destroy(pool
->prison
);
1481 dm_kcopyd_client_destroy(pool
->copier
);
1484 destroy_workqueue(pool
->wq
);
1486 if (pool
->next_mapping
)
1487 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
1488 mempool_destroy(pool
->mapping_pool
);
1489 mempool_destroy(pool
->endio_hook_pool
);
1493 static struct pool
*pool_create(struct mapped_device
*pool_md
,
1494 struct block_device
*metadata_dev
,
1495 unsigned long block_size
, char **error
)
1500 struct dm_pool_metadata
*pmd
;
1502 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
);
1504 *error
= "Error creating metadata object";
1505 return (struct pool
*)pmd
;
1508 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
1510 *error
= "Error allocating memory for pool";
1511 err_p
= ERR_PTR(-ENOMEM
);
1516 pool
->sectors_per_block
= block_size
;
1517 pool
->block_shift
= ffs(block_size
) - 1;
1518 pool
->offset_mask
= block_size
- 1;
1519 pool
->low_water_blocks
= 0;
1520 pool
->zero_new_blocks
= 1;
1521 pool
->prison
= prison_create(PRISON_CELLS
);
1522 if (!pool
->prison
) {
1523 *error
= "Error creating pool's bio prison";
1524 err_p
= ERR_PTR(-ENOMEM
);
1528 pool
->copier
= dm_kcopyd_client_create();
1529 if (IS_ERR(pool
->copier
)) {
1530 r
= PTR_ERR(pool
->copier
);
1531 *error
= "Error creating pool's kcopyd client";
1533 goto bad_kcopyd_client
;
1537 * Create singlethreaded workqueue that will service all devices
1538 * that use this metadata.
1540 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
1542 *error
= "Error creating pool's workqueue";
1543 err_p
= ERR_PTR(-ENOMEM
);
1547 INIT_WORK(&pool
->worker
, do_worker
);
1548 spin_lock_init(&pool
->lock
);
1549 bio_list_init(&pool
->deferred_bios
);
1550 bio_list_init(&pool
->deferred_flush_bios
);
1551 INIT_LIST_HEAD(&pool
->prepared_mappings
);
1552 pool
->low_water_triggered
= 0;
1553 pool
->no_free_space
= 0;
1554 bio_list_init(&pool
->retry_on_resume_list
);
1557 pool
->next_mapping
= NULL
;
1558 pool
->mapping_pool
=
1559 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE
, sizeof(struct new_mapping
));
1560 if (!pool
->mapping_pool
) {
1561 *error
= "Error creating pool's mapping mempool";
1562 err_p
= ERR_PTR(-ENOMEM
);
1563 goto bad_mapping_pool
;
1566 pool
->endio_hook_pool
=
1567 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE
, sizeof(struct endio_hook
));
1568 if (!pool
->endio_hook_pool
) {
1569 *error
= "Error creating pool's endio_hook mempool";
1570 err_p
= ERR_PTR(-ENOMEM
);
1571 goto bad_endio_hook_pool
;
1573 pool
->ref_count
= 1;
1574 pool
->pool_md
= pool_md
;
1575 pool
->md_dev
= metadata_dev
;
1576 __pool_table_insert(pool
);
1580 bad_endio_hook_pool
:
1581 mempool_destroy(pool
->mapping_pool
);
1583 destroy_workqueue(pool
->wq
);
1585 dm_kcopyd_client_destroy(pool
->copier
);
1587 prison_destroy(pool
->prison
);
1591 if (dm_pool_metadata_close(pmd
))
1592 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1597 static void __pool_inc(struct pool
*pool
)
1599 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1603 static void __pool_dec(struct pool
*pool
)
1605 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1606 BUG_ON(!pool
->ref_count
);
1607 if (!--pool
->ref_count
)
1608 __pool_destroy(pool
);
1611 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
1612 struct block_device
*metadata_dev
,
1613 unsigned long block_size
, char **error
)
1615 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
1618 if (pool
->pool_md
!= pool_md
)
1619 return ERR_PTR(-EBUSY
);
1623 pool
= __pool_table_lookup(pool_md
);
1625 if (pool
->md_dev
!= metadata_dev
)
1626 return ERR_PTR(-EINVAL
);
1630 pool
= pool_create(pool_md
, metadata_dev
, block_size
, error
);
1636 /*----------------------------------------------------------------
1637 * Pool target methods
1638 *--------------------------------------------------------------*/
1639 static void pool_dtr(struct dm_target
*ti
)
1641 struct pool_c
*pt
= ti
->private;
1643 mutex_lock(&dm_thin_pool_table
.mutex
);
1645 unbind_control_target(pt
->pool
, ti
);
1646 __pool_dec(pt
->pool
);
1647 dm_put_device(ti
, pt
->metadata_dev
);
1648 dm_put_device(ti
, pt
->data_dev
);
1651 mutex_unlock(&dm_thin_pool_table
.mutex
);
1654 struct pool_features
{
1655 unsigned zero_new_blocks
:1;
1658 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
1659 struct dm_target
*ti
)
1663 const char *arg_name
;
1665 static struct dm_arg _args
[] = {
1666 {0, 1, "Invalid number of pool feature arguments"},
1670 * No feature arguments supplied.
1675 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
1679 while (argc
&& !r
) {
1680 arg_name
= dm_shift_arg(as
);
1683 if (!strcasecmp(arg_name
, "skip_block_zeroing")) {
1684 pf
->zero_new_blocks
= 0;
1688 ti
->error
= "Unrecognised pool feature requested";
1696 * thin-pool <metadata dev> <data dev>
1697 * <data block size (sectors)>
1698 * <low water mark (blocks)>
1699 * [<#feature args> [<arg>]*]
1701 * Optional feature arguments are:
1702 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1704 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
1709 struct pool_features pf
;
1710 struct dm_arg_set as
;
1711 struct dm_dev
*data_dev
;
1712 unsigned long block_size
;
1713 dm_block_t low_water_blocks
;
1714 struct dm_dev
*metadata_dev
;
1715 sector_t metadata_dev_size
;
1718 * FIXME Remove validation from scope of lock.
1720 mutex_lock(&dm_thin_pool_table
.mutex
);
1723 ti
->error
= "Invalid argument count";
1730 r
= dm_get_device(ti
, argv
[0], FMODE_READ
| FMODE_WRITE
, &metadata_dev
);
1732 ti
->error
= "Error opening metadata block device";
1736 metadata_dev_size
= i_size_read(metadata_dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
1737 if (metadata_dev_size
> METADATA_DEV_MAX_SECTORS
) {
1738 ti
->error
= "Metadata device is too large";
1743 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
1745 ti
->error
= "Error getting data device";
1749 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
1750 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
1751 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
1752 !is_power_of_2(block_size
)) {
1753 ti
->error
= "Invalid block size";
1758 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
1759 ti
->error
= "Invalid low water mark";
1765 * Set default pool features.
1767 memset(&pf
, 0, sizeof(pf
));
1768 pf
.zero_new_blocks
= 1;
1770 dm_consume_args(&as
, 4);
1771 r
= parse_pool_features(&as
, &pf
, ti
);
1775 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
1781 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
1782 block_size
, &ti
->error
);
1790 pt
->metadata_dev
= metadata_dev
;
1791 pt
->data_dev
= data_dev
;
1792 pt
->low_water_blocks
= low_water_blocks
;
1793 pt
->zero_new_blocks
= pf
.zero_new_blocks
;
1794 ti
->num_flush_requests
= 1;
1795 ti
->num_discard_requests
= 0;
1798 pt
->callbacks
.congested_fn
= pool_is_congested
;
1799 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
1801 mutex_unlock(&dm_thin_pool_table
.mutex
);
1808 dm_put_device(ti
, data_dev
);
1810 dm_put_device(ti
, metadata_dev
);
1812 mutex_unlock(&dm_thin_pool_table
.mutex
);
1817 static int pool_map(struct dm_target
*ti
, struct bio
*bio
,
1818 union map_info
*map_context
)
1821 struct pool_c
*pt
= ti
->private;
1822 struct pool
*pool
= pt
->pool
;
1823 unsigned long flags
;
1826 * As this is a singleton target, ti->begin is always zero.
1828 spin_lock_irqsave(&pool
->lock
, flags
);
1829 bio
->bi_bdev
= pt
->data_dev
->bdev
;
1830 r
= DM_MAPIO_REMAPPED
;
1831 spin_unlock_irqrestore(&pool
->lock
, flags
);
1837 * Retrieves the number of blocks of the data device from
1838 * the superblock and compares it to the actual device size,
1839 * thus resizing the data device in case it has grown.
1841 * This both copes with opening preallocated data devices in the ctr
1842 * being followed by a resume
1844 * calling the resume method individually after userspace has
1845 * grown the data device in reaction to a table event.
1847 static int pool_preresume(struct dm_target
*ti
)
1850 struct pool_c
*pt
= ti
->private;
1851 struct pool
*pool
= pt
->pool
;
1852 dm_block_t data_size
, sb_data_size
;
1855 * Take control of the pool object.
1857 r
= bind_control_target(pool
, ti
);
1861 data_size
= ti
->len
>> pool
->block_shift
;
1862 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
1864 DMERR("failed to retrieve data device size");
1868 if (data_size
< sb_data_size
) {
1869 DMERR("pool target too small, is %llu blocks (expected %llu)",
1870 data_size
, sb_data_size
);
1873 } else if (data_size
> sb_data_size
) {
1874 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
1876 DMERR("failed to resize data device");
1880 r
= dm_pool_commit_metadata(pool
->pmd
);
1882 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1891 static void pool_resume(struct dm_target
*ti
)
1893 struct pool_c
*pt
= ti
->private;
1894 struct pool
*pool
= pt
->pool
;
1895 unsigned long flags
;
1897 spin_lock_irqsave(&pool
->lock
, flags
);
1898 pool
->low_water_triggered
= 0;
1899 pool
->no_free_space
= 0;
1900 __requeue_bios(pool
);
1901 spin_unlock_irqrestore(&pool
->lock
, flags
);
1906 static void pool_postsuspend(struct dm_target
*ti
)
1909 struct pool_c
*pt
= ti
->private;
1910 struct pool
*pool
= pt
->pool
;
1912 flush_workqueue(pool
->wq
);
1914 r
= dm_pool_commit_metadata(pool
->pmd
);
1916 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1918 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
1922 static int check_arg_count(unsigned argc
, unsigned args_required
)
1924 if (argc
!= args_required
) {
1925 DMWARN("Message received with %u arguments instead of %u.",
1926 argc
, args_required
);
1933 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
1935 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
1936 *dev_id
<= MAX_DEV_ID
)
1940 DMWARN("Message received with invalid device id: %s", arg
);
1945 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
1950 r
= check_arg_count(argc
, 2);
1954 r
= read_dev_id(argv
[1], &dev_id
, 1);
1958 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
1960 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
1968 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
1971 dm_thin_id origin_dev_id
;
1974 r
= check_arg_count(argc
, 3);
1978 r
= read_dev_id(argv
[1], &dev_id
, 1);
1982 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
1986 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
1988 DMWARN("Creation of new snapshot %s of device %s failed.",
1996 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2001 r
= check_arg_count(argc
, 2);
2005 r
= read_dev_id(argv
[1], &dev_id
, 1);
2009 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
2011 DMWARN("Deletion of thin device %s failed.", argv
[1]);
2016 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2018 dm_thin_id old_id
, new_id
;
2021 r
= check_arg_count(argc
, 3);
2025 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2026 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2030 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2031 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2035 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2037 DMWARN("Failed to change transaction id from %s to %s.",
2046 * Messages supported:
2047 * create_thin <dev_id>
2048 * create_snap <dev_id> <origin_id>
2050 * trim <dev_id> <new_size_in_sectors>
2051 * set_transaction_id <current_trans_id> <new_trans_id>
2053 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2056 struct pool_c
*pt
= ti
->private;
2057 struct pool
*pool
= pt
->pool
;
2059 if (!strcasecmp(argv
[0], "create_thin"))
2060 r
= process_create_thin_mesg(argc
, argv
, pool
);
2062 else if (!strcasecmp(argv
[0], "create_snap"))
2063 r
= process_create_snap_mesg(argc
, argv
, pool
);
2065 else if (!strcasecmp(argv
[0], "delete"))
2066 r
= process_delete_mesg(argc
, argv
, pool
);
2068 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2069 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2072 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2075 r
= dm_pool_commit_metadata(pool
->pmd
);
2077 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2086 * <transaction id> <used metadata sectors>/<total metadata sectors>
2087 * <used data sectors>/<total data sectors> <held metadata root>
2089 static int pool_status(struct dm_target
*ti
, status_type_t type
,
2090 char *result
, unsigned maxlen
)
2094 uint64_t transaction_id
;
2095 dm_block_t nr_free_blocks_data
;
2096 dm_block_t nr_free_blocks_metadata
;
2097 dm_block_t nr_blocks_data
;
2098 dm_block_t nr_blocks_metadata
;
2099 dm_block_t held_root
;
2100 char buf
[BDEVNAME_SIZE
];
2101 char buf2
[BDEVNAME_SIZE
];
2102 struct pool_c
*pt
= ti
->private;
2103 struct pool
*pool
= pt
->pool
;
2106 case STATUSTYPE_INFO
:
2107 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
,
2112 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
,
2113 &nr_free_blocks_metadata
);
2117 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2121 r
= dm_pool_get_free_block_count(pool
->pmd
,
2122 &nr_free_blocks_data
);
2126 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
2130 r
= dm_pool_get_held_metadata_root(pool
->pmd
, &held_root
);
2134 DMEMIT("%llu %llu/%llu %llu/%llu ",
2135 (unsigned long long)transaction_id
,
2136 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
2137 (unsigned long long)nr_blocks_metadata
,
2138 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
2139 (unsigned long long)nr_blocks_data
);
2142 DMEMIT("%llu", held_root
);
2148 case STATUSTYPE_TABLE
:
2149 DMEMIT("%s %s %lu %llu ",
2150 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
2151 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
2152 (unsigned long)pool
->sectors_per_block
,
2153 (unsigned long long)pt
->low_water_blocks
);
2155 DMEMIT("%u ", !pool
->zero_new_blocks
);
2157 if (!pool
->zero_new_blocks
)
2158 DMEMIT("skip_block_zeroing ");
2165 static int pool_iterate_devices(struct dm_target
*ti
,
2166 iterate_devices_callout_fn fn
, void *data
)
2168 struct pool_c
*pt
= ti
->private;
2170 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
2173 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
2174 struct bio_vec
*biovec
, int max_size
)
2176 struct pool_c
*pt
= ti
->private;
2177 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2179 if (!q
->merge_bvec_fn
)
2182 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
2184 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
2187 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2189 struct pool_c
*pt
= ti
->private;
2190 struct pool
*pool
= pt
->pool
;
2192 blk_limits_io_min(limits
, 0);
2193 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
2196 static struct target_type pool_target
= {
2197 .name
= "thin-pool",
2198 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
2199 DM_TARGET_IMMUTABLE
,
2200 .version
= {1, 0, 0},
2201 .module
= THIS_MODULE
,
2205 .postsuspend
= pool_postsuspend
,
2206 .preresume
= pool_preresume
,
2207 .resume
= pool_resume
,
2208 .message
= pool_message
,
2209 .status
= pool_status
,
2210 .merge
= pool_merge
,
2211 .iterate_devices
= pool_iterate_devices
,
2212 .io_hints
= pool_io_hints
,
2215 /*----------------------------------------------------------------
2216 * Thin target methods
2217 *--------------------------------------------------------------*/
2218 static void thin_dtr(struct dm_target
*ti
)
2220 struct thin_c
*tc
= ti
->private;
2222 mutex_lock(&dm_thin_pool_table
.mutex
);
2224 __pool_dec(tc
->pool
);
2225 dm_pool_close_thin_device(tc
->td
);
2226 dm_put_device(ti
, tc
->pool_dev
);
2229 mutex_unlock(&dm_thin_pool_table
.mutex
);
2233 * Thin target parameters:
2235 * <pool_dev> <dev_id>
2237 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2238 * dev_id: the internal device identifier
2240 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2244 struct dm_dev
*pool_dev
;
2245 struct mapped_device
*pool_md
;
2247 mutex_lock(&dm_thin_pool_table
.mutex
);
2250 ti
->error
= "Invalid argument count";
2255 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
2257 ti
->error
= "Out of memory";
2262 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
2264 ti
->error
= "Error opening pool device";
2267 tc
->pool_dev
= pool_dev
;
2269 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
2270 ti
->error
= "Invalid device id";
2275 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
2277 ti
->error
= "Couldn't get pool mapped device";
2282 tc
->pool
= __pool_table_lookup(pool_md
);
2284 ti
->error
= "Couldn't find pool object";
2286 goto bad_pool_lookup
;
2288 __pool_inc(tc
->pool
);
2290 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
2292 ti
->error
= "Couldn't open thin internal device";
2296 ti
->split_io
= tc
->pool
->sectors_per_block
;
2297 ti
->num_flush_requests
= 1;
2298 ti
->num_discard_requests
= 0;
2299 ti
->discards_supported
= 0;
2303 mutex_unlock(&dm_thin_pool_table
.mutex
);
2308 __pool_dec(tc
->pool
);
2312 dm_put_device(ti
, tc
->pool_dev
);
2316 mutex_unlock(&dm_thin_pool_table
.mutex
);
2321 static int thin_map(struct dm_target
*ti
, struct bio
*bio
,
2322 union map_info
*map_context
)
2324 bio
->bi_sector
-= ti
->begin
;
2326 return thin_bio_map(ti
, bio
, map_context
);
2329 static void thin_postsuspend(struct dm_target
*ti
)
2331 if (dm_noflush_suspending(ti
))
2332 requeue_io((struct thin_c
*)ti
->private);
2336 * <nr mapped sectors> <highest mapped sector>
2338 static int thin_status(struct dm_target
*ti
, status_type_t type
,
2339 char *result
, unsigned maxlen
)
2343 dm_block_t mapped
, highest
;
2344 char buf
[BDEVNAME_SIZE
];
2345 struct thin_c
*tc
= ti
->private;
2351 case STATUSTYPE_INFO
:
2352 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
2356 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
2360 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
2362 DMEMIT("%llu", ((highest
+ 1) *
2363 tc
->pool
->sectors_per_block
) - 1);
2368 case STATUSTYPE_TABLE
:
2370 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
2371 (unsigned long) tc
->dev_id
);
2379 static int thin_iterate_devices(struct dm_target
*ti
,
2380 iterate_devices_callout_fn fn
, void *data
)
2383 struct thin_c
*tc
= ti
->private;
2386 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2387 * we follow a more convoluted path through to the pool's target.
2390 return 0; /* nothing is bound */
2392 blocks
= tc
->pool
->ti
->len
>> tc
->pool
->block_shift
;
2394 return fn(ti
, tc
->pool_dev
, 0, tc
->pool
->sectors_per_block
* blocks
, data
);
2399 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2401 struct thin_c
*tc
= ti
->private;
2403 blk_limits_io_min(limits
, 0);
2404 blk_limits_io_opt(limits
, tc
->pool
->sectors_per_block
<< SECTOR_SHIFT
);
2407 static struct target_type thin_target
= {
2409 .version
= {1, 0, 0},
2410 .module
= THIS_MODULE
,
2414 .postsuspend
= thin_postsuspend
,
2415 .status
= thin_status
,
2416 .iterate_devices
= thin_iterate_devices
,
2417 .io_hints
= thin_io_hints
,
2420 /*----------------------------------------------------------------*/
2422 static int __init
dm_thin_init(void)
2428 r
= dm_register_target(&thin_target
);
2432 r
= dm_register_target(&pool_target
);
2434 dm_unregister_target(&thin_target
);
2439 static void dm_thin_exit(void)
2441 dm_unregister_target(&thin_target
);
2442 dm_unregister_target(&pool_target
);
2445 module_init(dm_thin_init
);
2446 module_exit(dm_thin_exit
);
2448 MODULE_DESCRIPTION(DM_NAME
"device-mapper thin provisioning target");
2449 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2450 MODULE_LICENSE("GPL");