OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / media / dvb / frontends / nxt6000.c
blob90ae6c72c0e3c085f792820dfbc995e831a588c9
1 /*
2 NxtWave Communications - NXT6000 demodulator driver
4 Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5 Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
34 struct nxt6000_state {
35 struct i2c_adapter* i2c;
36 /* configuration settings */
37 const struct nxt6000_config* config;
38 struct dvb_frontend frontend;
41 static int debug;
42 #define dprintk if (debug) printk
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
46 u8 buf[] = { reg, data };
47 struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48 int ret;
50 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
53 return (ret != 1) ? -EIO : 0;
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
58 int ret;
59 u8 b0[] = { reg };
60 u8 b1[] = { 0 };
61 struct i2c_msg msgs[] = {
62 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
66 ret = i2c_transfer(state->i2c, msgs, 2);
68 if (ret != 2)
69 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
71 return b1[0];
74 static void nxt6000_reset(struct nxt6000_state* state)
76 u8 val;
78 val = nxt6000_readreg(state, OFDM_COR_CTL);
80 nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81 nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
84 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
86 u16 nominal_rate;
87 int result;
89 switch (bandwidth) {
90 case 6000000:
91 nominal_rate = 0x55B7;
92 break;
94 case 7000000:
95 nominal_rate = 0x6400;
96 break;
98 case 8000000:
99 nominal_rate = 0x7249;
100 break;
102 default:
103 return -EINVAL;
106 if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
107 return result;
109 return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
112 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
114 switch (guard_interval) {
116 case GUARD_INTERVAL_1_32:
117 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
119 case GUARD_INTERVAL_1_16:
120 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
122 case GUARD_INTERVAL_AUTO:
123 case GUARD_INTERVAL_1_8:
124 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
126 case GUARD_INTERVAL_1_4:
127 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
129 default:
130 return -EINVAL;
134 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
136 switch (inversion) {
138 case INVERSION_OFF:
139 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
141 case INVERSION_ON:
142 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
144 default:
145 return -EINVAL;
150 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
152 int result;
154 switch (transmission_mode) {
156 case TRANSMISSION_MODE_2K:
157 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
158 return result;
160 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
162 case TRANSMISSION_MODE_8K:
163 case TRANSMISSION_MODE_AUTO:
164 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
165 return result;
167 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
169 default:
170 return -EINVAL;
175 static void nxt6000_setup(struct dvb_frontend* fe)
177 struct nxt6000_state* state = fe->demodulator_priv;
179 nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
180 nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
181 nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
182 nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
183 nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
184 nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
185 nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
186 nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
187 nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
188 nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
189 nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
190 nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
191 nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
192 nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
193 nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
194 nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
195 nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
196 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
197 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
198 nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
199 nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
200 nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
202 if (state->config->clock_inversion)
203 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
204 else
205 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
207 nxt6000_writereg(state, TS_FORMAT, 0);
210 static void nxt6000_dump_status(struct nxt6000_state *state)
212 u8 val;
215 printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
216 printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
217 printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
218 printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
219 printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
220 printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
221 printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
222 printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
223 printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
224 printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
226 printk("NXT6000 status:");
228 val = nxt6000_readreg(state, RS_COR_STAT);
230 printk(" DATA DESCR LOCK: %d,", val & 0x01);
231 printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
233 val = nxt6000_readreg(state, VIT_SYNC_STATUS);
235 printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
237 switch ((val >> 4) & 0x07) {
239 case 0x00:
240 printk(" VITERBI CODERATE: 1/2,");
241 break;
243 case 0x01:
244 printk(" VITERBI CODERATE: 2/3,");
245 break;
247 case 0x02:
248 printk(" VITERBI CODERATE: 3/4,");
249 break;
251 case 0x03:
252 printk(" VITERBI CODERATE: 5/6,");
253 break;
255 case 0x04:
256 printk(" VITERBI CODERATE: 7/8,");
257 break;
259 default:
260 printk(" VITERBI CODERATE: Reserved,");
264 val = nxt6000_readreg(state, OFDM_COR_STAT);
266 printk(" CHCTrack: %d,", (val >> 7) & 0x01);
267 printk(" TPSLock: %d,", (val >> 6) & 0x01);
268 printk(" SYRLock: %d,", (val >> 5) & 0x01);
269 printk(" AGCLock: %d,", (val >> 4) & 0x01);
271 switch (val & 0x0F) {
273 case 0x00:
274 printk(" CoreState: IDLE,");
275 break;
277 case 0x02:
278 printk(" CoreState: WAIT_AGC,");
279 break;
281 case 0x03:
282 printk(" CoreState: WAIT_SYR,");
283 break;
285 case 0x04:
286 printk(" CoreState: WAIT_PPM,");
287 break;
289 case 0x01:
290 printk(" CoreState: WAIT_TRL,");
291 break;
293 case 0x05:
294 printk(" CoreState: WAIT_TPS,");
295 break;
297 case 0x06:
298 printk(" CoreState: MONITOR_TPS,");
299 break;
301 default:
302 printk(" CoreState: Reserved,");
306 val = nxt6000_readreg(state, OFDM_SYR_STAT);
308 printk(" SYRLock: %d,", (val >> 4) & 0x01);
309 printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
311 switch ((val >> 4) & 0x03) {
313 case 0x00:
314 printk(" SYRGuard: 1/32,");
315 break;
317 case 0x01:
318 printk(" SYRGuard: 1/16,");
319 break;
321 case 0x02:
322 printk(" SYRGuard: 1/8,");
323 break;
325 case 0x03:
326 printk(" SYRGuard: 1/4,");
327 break;
330 val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
332 switch ((val >> 4) & 0x07) {
334 case 0x00:
335 printk(" TPSLP: 1/2,");
336 break;
338 case 0x01:
339 printk(" TPSLP: 2/3,");
340 break;
342 case 0x02:
343 printk(" TPSLP: 3/4,");
344 break;
346 case 0x03:
347 printk(" TPSLP: 5/6,");
348 break;
350 case 0x04:
351 printk(" TPSLP: 7/8,");
352 break;
354 default:
355 printk(" TPSLP: Reserved,");
359 switch (val & 0x07) {
361 case 0x00:
362 printk(" TPSHP: 1/2,");
363 break;
365 case 0x01:
366 printk(" TPSHP: 2/3,");
367 break;
369 case 0x02:
370 printk(" TPSHP: 3/4,");
371 break;
373 case 0x03:
374 printk(" TPSHP: 5/6,");
375 break;
377 case 0x04:
378 printk(" TPSHP: 7/8,");
379 break;
381 default:
382 printk(" TPSHP: Reserved,");
386 val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
388 printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
390 switch ((val >> 4) & 0x03) {
392 case 0x00:
393 printk(" TPSGuard: 1/32,");
394 break;
396 case 0x01:
397 printk(" TPSGuard: 1/16,");
398 break;
400 case 0x02:
401 printk(" TPSGuard: 1/8,");
402 break;
404 case 0x03:
405 printk(" TPSGuard: 1/4,");
406 break;
410 /* Strange magic required to gain access to RF_AGC_STATUS */
411 nxt6000_readreg(state, RF_AGC_VAL_1);
412 val = nxt6000_readreg(state, RF_AGC_STATUS);
413 val = nxt6000_readreg(state, RF_AGC_STATUS);
415 printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
416 printk("\n");
419 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
421 u8 core_status;
422 struct nxt6000_state* state = fe->demodulator_priv;
424 *status = 0;
426 core_status = nxt6000_readreg(state, OFDM_COR_STAT);
428 if (core_status & AGCLOCKED)
429 *status |= FE_HAS_SIGNAL;
431 if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
432 *status |= FE_HAS_CARRIER;
434 if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
435 *status |= FE_HAS_VITERBI;
437 if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
438 *status |= FE_HAS_SYNC;
440 if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
441 *status |= FE_HAS_LOCK;
443 if (debug)
444 nxt6000_dump_status(state);
446 return 0;
449 static int nxt6000_init(struct dvb_frontend* fe)
451 struct nxt6000_state* state = fe->demodulator_priv;
453 nxt6000_reset(state);
454 nxt6000_setup(fe);
456 return 0;
459 static int nxt6000_set_frontend(struct dvb_frontend *fe)
461 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
462 struct nxt6000_state* state = fe->demodulator_priv;
463 int result;
465 if (fe->ops.tuner_ops.set_params) {
466 fe->ops.tuner_ops.set_params(fe);
467 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
470 result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
471 if (result < 0)
472 return result;
474 result = nxt6000_set_guard_interval(state, p->guard_interval);
475 if (result < 0)
476 return result;
478 result = nxt6000_set_transmission_mode(state, p->transmission_mode);
479 if (result < 0)
480 return result;
482 result = nxt6000_set_inversion(state, p->inversion);
483 if (result < 0)
484 return result;
486 msleep(500);
487 return 0;
490 static void nxt6000_release(struct dvb_frontend* fe)
492 struct nxt6000_state* state = fe->demodulator_priv;
493 kfree(state);
496 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
498 struct nxt6000_state* state = fe->demodulator_priv;
500 *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
502 return 0;
505 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
507 struct nxt6000_state* state = fe->demodulator_priv;
509 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
511 *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
512 nxt6000_readreg( state, VIT_BER_0 );
514 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
516 return 0;
519 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
521 struct nxt6000_state* state = fe->demodulator_priv;
523 *signal_strength = (short) (511 -
524 (nxt6000_readreg(state, AGC_GAIN_1) +
525 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
527 return 0;
530 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
532 tune->min_delay_ms = 500;
533 return 0;
536 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
538 struct nxt6000_state* state = fe->demodulator_priv;
540 if (enable) {
541 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
542 } else {
543 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
547 static struct dvb_frontend_ops nxt6000_ops;
549 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
550 struct i2c_adapter* i2c)
552 struct nxt6000_state* state = NULL;
554 /* allocate memory for the internal state */
555 state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
556 if (state == NULL) goto error;
558 /* setup the state */
559 state->config = config;
560 state->i2c = i2c;
562 /* check if the demod is there */
563 if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
565 /* create dvb_frontend */
566 memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
567 state->frontend.demodulator_priv = state;
568 return &state->frontend;
570 error:
571 kfree(state);
572 return NULL;
575 static struct dvb_frontend_ops nxt6000_ops = {
576 .delsys = { SYS_DVBT },
577 .info = {
578 .name = "NxtWave NXT6000 DVB-T",
579 .frequency_min = 0,
580 .frequency_max = 863250000,
581 .frequency_stepsize = 62500,
582 /*.frequency_tolerance = *//* FIXME: 12% of SR */
583 .symbol_rate_min = 0, /* FIXME */
584 .symbol_rate_max = 9360000, /* FIXME */
585 .symbol_rate_tolerance = 4000,
586 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
587 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
588 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
589 FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
590 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
591 FE_CAN_HIERARCHY_AUTO,
594 .release = nxt6000_release,
596 .init = nxt6000_init,
597 .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
599 .get_tune_settings = nxt6000_fe_get_tune_settings,
601 .set_frontend = nxt6000_set_frontend,
603 .read_status = nxt6000_read_status,
604 .read_ber = nxt6000_read_ber,
605 .read_signal_strength = nxt6000_read_signal_strength,
606 .read_snr = nxt6000_read_snr,
609 module_param(debug, int, 0644);
610 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
612 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
613 MODULE_AUTHOR("Florian Schirmer");
614 MODULE_LICENSE("GPL");
616 EXPORT_SYMBOL(nxt6000_attach);