2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
44 static struct workqueue_struct
*workqueue
;
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
52 module_param(use_spi_crc
, bool, 0);
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 bool mmc_assume_removable
;
63 bool mmc_assume_removable
= 1;
65 EXPORT_SYMBOL(mmc_assume_removable
);
66 module_param_named(removable
, mmc_assume_removable
, bool, 0644);
69 "MMC/SD cards are removable and may be removed during suspend");
72 * Internal function. Schedule delayed work in the MMC work queue.
74 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
77 return queue_delayed_work(workqueue
, work
, delay
);
81 * Internal function. Flush all scheduled work from the MMC work queue.
83 static void mmc_flush_scheduled_work(void)
85 flush_workqueue(workqueue
);
88 #ifdef CONFIG_FAIL_MMC_REQUEST
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
94 static void mmc_should_fail_request(struct mmc_host
*host
,
95 struct mmc_request
*mrq
)
97 struct mmc_command
*cmd
= mrq
->cmd
;
98 struct mmc_data
*data
= mrq
->data
;
99 static const int data_errors
[] = {
108 if (cmd
->error
|| data
->error
||
109 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
112 data
->error
= data_errors
[random32() % ARRAY_SIZE(data_errors
)];
113 data
->bytes_xfered
= (random32() % (data
->bytes_xfered
>> 9)) << 9;
116 #else /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_should_fail_request(struct mmc_host
*host
,
119 struct mmc_request
*mrq
)
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
130 * MMC drivers should call this function when they have completed
131 * their processing of a request.
133 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
135 struct mmc_command
*cmd
= mrq
->cmd
;
136 int err
= cmd
->error
;
138 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
139 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
143 if (err
&& cmd
->retries
&& !mmc_card_removed(host
->card
)) {
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
151 mmc_should_fail_request(host
, mrq
);
153 led_trigger_event(host
->led
, LED_OFF
);
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host
), cmd
->opcode
, err
,
157 cmd
->resp
[0], cmd
->resp
[1],
158 cmd
->resp
[2], cmd
->resp
[3]);
161 pr_debug("%s: %d bytes transferred: %d\n",
163 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host
), mrq
->stop
->opcode
,
170 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
171 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
177 mmc_host_clk_release(host
);
181 EXPORT_SYMBOL(mmc_request_done
);
184 mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
186 #ifdef CONFIG_MMC_DEBUG
188 struct scatterlist
*sg
;
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host
), mrq
->cmd
->opcode
,
193 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host
), mrq
->data
->blksz
,
199 mrq
->data
->blocks
, mrq
->data
->flags
,
200 mrq
->data
->timeout_ns
/ 1000000,
201 mrq
->data
->timeout_clks
);
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host
), mrq
->stop
->opcode
,
207 mrq
->stop
->arg
, mrq
->stop
->flags
);
210 WARN_ON(!host
->claimed
);
215 BUG_ON(mrq
->data
->blksz
> host
->max_blk_size
);
216 BUG_ON(mrq
->data
->blocks
> host
->max_blk_count
);
217 BUG_ON(mrq
->data
->blocks
* mrq
->data
->blksz
>
220 #ifdef CONFIG_MMC_DEBUG
222 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
224 BUG_ON(sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
);
227 mrq
->cmd
->data
= mrq
->data
;
228 mrq
->data
->error
= 0;
229 mrq
->data
->mrq
= mrq
;
231 mrq
->data
->stop
= mrq
->stop
;
232 mrq
->stop
->error
= 0;
233 mrq
->stop
->mrq
= mrq
;
236 mmc_host_clk_hold(host
);
237 led_trigger_event(host
->led
, LED_FULL
);
238 host
->ops
->request(host
, mrq
);
241 static void mmc_wait_done(struct mmc_request
*mrq
)
243 complete(&mrq
->completion
);
246 static void __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
248 init_completion(&mrq
->completion
);
249 mrq
->done
= mmc_wait_done
;
250 if (mmc_card_removed(host
->card
)) {
251 mrq
->cmd
->error
= -ENOMEDIUM
;
252 complete(&mrq
->completion
);
255 mmc_start_request(host
, mrq
);
258 static void mmc_wait_for_req_done(struct mmc_host
*host
,
259 struct mmc_request
*mrq
)
261 struct mmc_command
*cmd
;
264 wait_for_completion(&mrq
->completion
);
267 if (!cmd
->error
|| !cmd
->retries
||
268 mmc_card_removed(host
->card
))
271 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
272 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
275 host
->ops
->request(host
, mrq
);
280 * mmc_pre_req - Prepare for a new request
281 * @host: MMC host to prepare command
282 * @mrq: MMC request to prepare for
283 * @is_first_req: true if there is no previous started request
284 * that may run in parellel to this call, otherwise false
286 * mmc_pre_req() is called in prior to mmc_start_req() to let
287 * host prepare for the new request. Preparation of a request may be
288 * performed while another request is running on the host.
290 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
293 if (host
->ops
->pre_req
) {
294 mmc_host_clk_hold(host
);
295 host
->ops
->pre_req(host
, mrq
, is_first_req
);
296 mmc_host_clk_release(host
);
301 * mmc_post_req - Post process a completed request
302 * @host: MMC host to post process command
303 * @mrq: MMC request to post process for
304 * @err: Error, if non zero, clean up any resources made in pre_req
306 * Let the host post process a completed request. Post processing of
307 * a request may be performed while another reuqest is running.
309 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
312 if (host
->ops
->post_req
) {
313 mmc_host_clk_hold(host
);
314 host
->ops
->post_req(host
, mrq
, err
);
315 mmc_host_clk_release(host
);
320 * mmc_start_req - start a non-blocking request
321 * @host: MMC host to start command
322 * @areq: async request to start
323 * @error: out parameter returns 0 for success, otherwise non zero
325 * Start a new MMC custom command request for a host.
326 * If there is on ongoing async request wait for completion
327 * of that request and start the new one and return.
328 * Does not wait for the new request to complete.
330 * Returns the completed request, NULL in case of none completed.
331 * Wait for the an ongoing request (previoulsy started) to complete and
332 * return the completed request. If there is no ongoing request, NULL
333 * is returned without waiting. NULL is not an error condition.
335 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
336 struct mmc_async_req
*areq
, int *error
)
339 struct mmc_async_req
*data
= host
->areq
;
341 /* Prepare a new request */
343 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
346 mmc_wait_for_req_done(host
, host
->areq
->mrq
);
347 err
= host
->areq
->err_check(host
->card
, host
->areq
);
349 /* post process the completed failed request */
350 mmc_post_req(host
, host
->areq
->mrq
, 0);
353 * Cancel the new prepared request, because
354 * it can't run until the failed
355 * request has been properly handled.
357 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
365 __mmc_start_req(host
, areq
->mrq
);
368 mmc_post_req(host
, host
->areq
->mrq
, 0);
376 EXPORT_SYMBOL(mmc_start_req
);
379 * mmc_wait_for_req - start a request and wait for completion
380 * @host: MMC host to start command
381 * @mrq: MMC request to start
383 * Start a new MMC custom command request for a host, and wait
384 * for the command to complete. Does not attempt to parse the
387 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
389 __mmc_start_req(host
, mrq
);
390 mmc_wait_for_req_done(host
, mrq
);
392 EXPORT_SYMBOL(mmc_wait_for_req
);
395 * mmc_interrupt_hpi - Issue for High priority Interrupt
396 * @card: the MMC card associated with the HPI transfer
398 * Issued High Priority Interrupt, and check for card status
399 * util out-of prg-state.
401 int mmc_interrupt_hpi(struct mmc_card
*card
)
408 if (!card
->ext_csd
.hpi_en
) {
409 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
413 mmc_claim_host(card
->host
);
414 err
= mmc_send_status(card
, &status
);
416 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
421 * If the card status is in PRG-state, we can send the HPI command.
423 if (R1_CURRENT_STATE(status
) == R1_STATE_PRG
) {
426 * We don't know when the HPI command will finish
427 * processing, so we need to resend HPI until out
428 * of prg-state, and keep checking the card status
429 * with SEND_STATUS. If a timeout error occurs when
430 * sending the HPI command, we are already out of
433 err
= mmc_send_hpi_cmd(card
, &status
);
435 pr_debug("%s: abort HPI (%d error)\n",
436 mmc_hostname(card
->host
), err
);
438 err
= mmc_send_status(card
, &status
);
441 } while (R1_CURRENT_STATE(status
) == R1_STATE_PRG
);
443 pr_debug("%s: Left prg-state\n", mmc_hostname(card
->host
));
446 mmc_release_host(card
->host
);
449 EXPORT_SYMBOL(mmc_interrupt_hpi
);
452 * mmc_wait_for_cmd - start a command and wait for completion
453 * @host: MMC host to start command
454 * @cmd: MMC command to start
455 * @retries: maximum number of retries
457 * Start a new MMC command for a host, and wait for the command
458 * to complete. Return any error that occurred while the command
459 * was executing. Do not attempt to parse the response.
461 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
463 struct mmc_request mrq
= {NULL
};
465 WARN_ON(!host
->claimed
);
467 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
468 cmd
->retries
= retries
;
473 mmc_wait_for_req(host
, &mrq
);
478 EXPORT_SYMBOL(mmc_wait_for_cmd
);
481 * mmc_set_data_timeout - set the timeout for a data command
482 * @data: data phase for command
483 * @card: the MMC card associated with the data transfer
485 * Computes the data timeout parameters according to the
486 * correct algorithm given the card type.
488 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
493 * SDIO cards only define an upper 1 s limit on access.
495 if (mmc_card_sdio(card
)) {
496 data
->timeout_ns
= 1000000000;
497 data
->timeout_clks
= 0;
502 * SD cards use a 100 multiplier rather than 10
504 mult
= mmc_card_sd(card
) ? 100 : 10;
507 * Scale up the multiplier (and therefore the timeout) by
508 * the r2w factor for writes.
510 if (data
->flags
& MMC_DATA_WRITE
)
511 mult
<<= card
->csd
.r2w_factor
;
513 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
514 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
517 * SD cards also have an upper limit on the timeout.
519 if (mmc_card_sd(card
)) {
520 unsigned int timeout_us
, limit_us
;
522 timeout_us
= data
->timeout_ns
/ 1000;
523 if (mmc_host_clk_rate(card
->host
))
524 timeout_us
+= data
->timeout_clks
* 1000 /
525 (mmc_host_clk_rate(card
->host
) / 1000);
527 if (data
->flags
& MMC_DATA_WRITE
)
529 * The limit is really 250 ms, but that is
530 * insufficient for some crappy cards.
537 * SDHC cards always use these fixed values.
539 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
540 data
->timeout_ns
= limit_us
* 1000;
541 data
->timeout_clks
= 0;
546 * Some cards require longer data read timeout than indicated in CSD.
547 * Address this by setting the read timeout to a "reasonably high"
548 * value. For the cards tested, 300ms has proven enough. If necessary,
549 * this value can be increased if other problematic cards require this.
551 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
552 data
->timeout_ns
= 300000000;
553 data
->timeout_clks
= 0;
557 * Some cards need very high timeouts if driven in SPI mode.
558 * The worst observed timeout was 900ms after writing a
559 * continuous stream of data until the internal logic
562 if (mmc_host_is_spi(card
->host
)) {
563 if (data
->flags
& MMC_DATA_WRITE
) {
564 if (data
->timeout_ns
< 1000000000)
565 data
->timeout_ns
= 1000000000; /* 1s */
567 if (data
->timeout_ns
< 100000000)
568 data
->timeout_ns
= 100000000; /* 100ms */
572 EXPORT_SYMBOL(mmc_set_data_timeout
);
575 * mmc_align_data_size - pads a transfer size to a more optimal value
576 * @card: the MMC card associated with the data transfer
577 * @sz: original transfer size
579 * Pads the original data size with a number of extra bytes in
580 * order to avoid controller bugs and/or performance hits
581 * (e.g. some controllers revert to PIO for certain sizes).
583 * Returns the improved size, which might be unmodified.
585 * Note that this function is only relevant when issuing a
586 * single scatter gather entry.
588 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
591 * FIXME: We don't have a system for the controller to tell
592 * the core about its problems yet, so for now we just 32-bit
595 sz
= ((sz
+ 3) / 4) * 4;
599 EXPORT_SYMBOL(mmc_align_data_size
);
602 * mmc_host_enable - enable a host.
603 * @host: mmc host to enable
605 * Hosts that support power saving can use the 'enable' and 'disable'
606 * methods to exit and enter power saving states. For more information
607 * see comments for struct mmc_host_ops.
609 int mmc_host_enable(struct mmc_host
*host
)
611 if (!(host
->caps
& MMC_CAP_DISABLE
))
614 if (host
->en_dis_recurs
)
617 if (host
->nesting_cnt
++)
620 cancel_delayed_work_sync(&host
->disable
);
625 if (host
->ops
->enable
) {
628 host
->en_dis_recurs
= 1;
629 mmc_host_clk_hold(host
);
630 err
= host
->ops
->enable(host
);
631 mmc_host_clk_release(host
);
632 host
->en_dis_recurs
= 0;
635 pr_debug("%s: enable error %d\n",
636 mmc_hostname(host
), err
);
643 EXPORT_SYMBOL(mmc_host_enable
);
645 static int mmc_host_do_disable(struct mmc_host
*host
, int lazy
)
647 if (host
->ops
->disable
) {
650 host
->en_dis_recurs
= 1;
651 mmc_host_clk_hold(host
);
652 err
= host
->ops
->disable(host
, lazy
);
653 mmc_host_clk_release(host
);
654 host
->en_dis_recurs
= 0;
657 pr_debug("%s: disable error %d\n",
658 mmc_hostname(host
), err
);
662 unsigned long delay
= msecs_to_jiffies(err
);
664 mmc_schedule_delayed_work(&host
->disable
, delay
);
672 * mmc_host_disable - disable a host.
673 * @host: mmc host to disable
675 * Hosts that support power saving can use the 'enable' and 'disable'
676 * methods to exit and enter power saving states. For more information
677 * see comments for struct mmc_host_ops.
679 int mmc_host_disable(struct mmc_host
*host
)
683 if (!(host
->caps
& MMC_CAP_DISABLE
))
686 if (host
->en_dis_recurs
)
689 if (--host
->nesting_cnt
)
695 err
= mmc_host_do_disable(host
, 0);
698 EXPORT_SYMBOL(mmc_host_disable
);
701 * __mmc_claim_host - exclusively claim a host
702 * @host: mmc host to claim
703 * @abort: whether or not the operation should be aborted
705 * Claim a host for a set of operations. If @abort is non null and
706 * dereference a non-zero value then this will return prematurely with
707 * that non-zero value without acquiring the lock. Returns zero
708 * with the lock held otherwise.
710 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
712 DECLARE_WAITQUEUE(wait
, current
);
718 add_wait_queue(&host
->wq
, &wait
);
719 spin_lock_irqsave(&host
->lock
, flags
);
721 set_current_state(TASK_UNINTERRUPTIBLE
);
722 stop
= abort
? atomic_read(abort
) : 0;
723 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
725 spin_unlock_irqrestore(&host
->lock
, flags
);
727 spin_lock_irqsave(&host
->lock
, flags
);
729 set_current_state(TASK_RUNNING
);
732 host
->claimer
= current
;
733 host
->claim_cnt
+= 1;
736 spin_unlock_irqrestore(&host
->lock
, flags
);
737 remove_wait_queue(&host
->wq
, &wait
);
739 mmc_host_enable(host
);
743 EXPORT_SYMBOL(__mmc_claim_host
);
746 * mmc_try_claim_host - try exclusively to claim a host
747 * @host: mmc host to claim
749 * Returns %1 if the host is claimed, %0 otherwise.
751 int mmc_try_claim_host(struct mmc_host
*host
)
753 int claimed_host
= 0;
756 spin_lock_irqsave(&host
->lock
, flags
);
757 if (!host
->claimed
|| host
->claimer
== current
) {
759 host
->claimer
= current
;
760 host
->claim_cnt
+= 1;
763 spin_unlock_irqrestore(&host
->lock
, flags
);
766 EXPORT_SYMBOL(mmc_try_claim_host
);
769 * mmc_do_release_host - release a claimed host
770 * @host: mmc host to release
772 * If you successfully claimed a host, this function will
775 void mmc_do_release_host(struct mmc_host
*host
)
779 spin_lock_irqsave(&host
->lock
, flags
);
780 if (--host
->claim_cnt
) {
781 /* Release for nested claim */
782 spin_unlock_irqrestore(&host
->lock
, flags
);
785 host
->claimer
= NULL
;
786 spin_unlock_irqrestore(&host
->lock
, flags
);
790 EXPORT_SYMBOL(mmc_do_release_host
);
792 void mmc_host_deeper_disable(struct work_struct
*work
)
794 struct mmc_host
*host
=
795 container_of(work
, struct mmc_host
, disable
.work
);
797 /* If the host is claimed then we do not want to disable it anymore */
798 if (!mmc_try_claim_host(host
))
800 mmc_host_do_disable(host
, 1);
801 mmc_do_release_host(host
);
805 * mmc_host_lazy_disable - lazily disable a host.
806 * @host: mmc host to disable
808 * Hosts that support power saving can use the 'enable' and 'disable'
809 * methods to exit and enter power saving states. For more information
810 * see comments for struct mmc_host_ops.
812 int mmc_host_lazy_disable(struct mmc_host
*host
)
814 if (!(host
->caps
& MMC_CAP_DISABLE
))
817 if (host
->en_dis_recurs
)
820 if (--host
->nesting_cnt
)
826 if (host
->disable_delay
) {
827 mmc_schedule_delayed_work(&host
->disable
,
828 msecs_to_jiffies(host
->disable_delay
));
831 return mmc_host_do_disable(host
, 1);
833 EXPORT_SYMBOL(mmc_host_lazy_disable
);
836 * mmc_release_host - release a host
837 * @host: mmc host to release
839 * Release a MMC host, allowing others to claim the host
840 * for their operations.
842 void mmc_release_host(struct mmc_host
*host
)
844 WARN_ON(!host
->claimed
);
846 mmc_host_lazy_disable(host
);
848 mmc_do_release_host(host
);
851 EXPORT_SYMBOL(mmc_release_host
);
854 * Internal function that does the actual ios call to the host driver,
855 * optionally printing some debug output.
857 static inline void mmc_set_ios(struct mmc_host
*host
)
859 struct mmc_ios
*ios
= &host
->ios
;
861 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
862 "width %u timing %u\n",
863 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
864 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
865 ios
->bus_width
, ios
->timing
);
868 mmc_set_ungated(host
);
869 host
->ops
->set_ios(host
, ios
);
873 * Control chip select pin on a host.
875 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
877 mmc_host_clk_hold(host
);
878 host
->ios
.chip_select
= mode
;
880 mmc_host_clk_release(host
);
884 * Sets the host clock to the highest possible frequency that
887 static void __mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
889 WARN_ON(hz
< host
->f_min
);
891 if (hz
> host
->f_max
)
894 host
->ios
.clock
= hz
;
898 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
900 mmc_host_clk_hold(host
);
901 __mmc_set_clock(host
, hz
);
902 mmc_host_clk_release(host
);
905 #ifdef CONFIG_MMC_CLKGATE
907 * This gates the clock by setting it to 0 Hz.
909 void mmc_gate_clock(struct mmc_host
*host
)
913 spin_lock_irqsave(&host
->clk_lock
, flags
);
914 host
->clk_old
= host
->ios
.clock
;
916 host
->clk_gated
= true;
917 spin_unlock_irqrestore(&host
->clk_lock
, flags
);
922 * This restores the clock from gating by using the cached
925 void mmc_ungate_clock(struct mmc_host
*host
)
928 * We should previously have gated the clock, so the clock shall
929 * be 0 here! The clock may however be 0 during initialization,
930 * when some request operations are performed before setting
931 * the frequency. When ungate is requested in that situation
932 * we just ignore the call.
935 BUG_ON(host
->ios
.clock
);
936 /* This call will also set host->clk_gated to false */
937 __mmc_set_clock(host
, host
->clk_old
);
941 void mmc_set_ungated(struct mmc_host
*host
)
946 * We've been given a new frequency while the clock is gated,
947 * so make sure we regard this as ungating it.
949 spin_lock_irqsave(&host
->clk_lock
, flags
);
950 host
->clk_gated
= false;
951 spin_unlock_irqrestore(&host
->clk_lock
, flags
);
955 void mmc_set_ungated(struct mmc_host
*host
)
961 * Change the bus mode (open drain/push-pull) of a host.
963 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
965 mmc_host_clk_hold(host
);
966 host
->ios
.bus_mode
= mode
;
968 mmc_host_clk_release(host
);
972 * Change data bus width of a host.
974 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
976 mmc_host_clk_hold(host
);
977 host
->ios
.bus_width
= width
;
979 mmc_host_clk_release(host
);
983 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
985 * @low_bits: prefer low bits in boundary cases
987 * This function returns the OCR bit number according to the provided @vdd
988 * value. If conversion is not possible a negative errno value returned.
990 * Depending on the @low_bits flag the function prefers low or high OCR bits
991 * on boundary voltages. For example,
992 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
993 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
995 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
997 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
999 const int max_bit
= ilog2(MMC_VDD_35_36
);
1002 if (vdd
< 1650 || vdd
> 3600)
1005 if (vdd
>= 1650 && vdd
<= 1950)
1006 return ilog2(MMC_VDD_165_195
);
1011 /* Base 2000 mV, step 100 mV, bit's base 8. */
1012 bit
= (vdd
- 2000) / 100 + 8;
1019 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1020 * @vdd_min: minimum voltage value (mV)
1021 * @vdd_max: maximum voltage value (mV)
1023 * This function returns the OCR mask bits according to the provided @vdd_min
1024 * and @vdd_max values. If conversion is not possible the function returns 0.
1026 * Notes wrt boundary cases:
1027 * This function sets the OCR bits for all boundary voltages, for example
1028 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1029 * MMC_VDD_34_35 mask.
1031 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1035 if (vdd_max
< vdd_min
)
1038 /* Prefer high bits for the boundary vdd_max values. */
1039 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1043 /* Prefer low bits for the boundary vdd_min values. */
1044 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1048 /* Fill the mask, from max bit to min bit. */
1049 while (vdd_max
>= vdd_min
)
1050 mask
|= 1 << vdd_max
--;
1054 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1056 #ifdef CONFIG_REGULATOR
1059 * mmc_regulator_get_ocrmask - return mask of supported voltages
1060 * @supply: regulator to use
1062 * This returns either a negative errno, or a mask of voltages that
1063 * can be provided to MMC/SD/SDIO devices using the specified voltage
1064 * regulator. This would normally be called before registering the
1067 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1073 count
= regulator_count_voltages(supply
);
1077 for (i
= 0; i
< count
; i
++) {
1081 vdd_uV
= regulator_list_voltage(supply
, i
);
1085 vdd_mV
= vdd_uV
/ 1000;
1086 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1091 EXPORT_SYMBOL(mmc_regulator_get_ocrmask
);
1094 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1095 * @mmc: the host to regulate
1096 * @supply: regulator to use
1097 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1099 * Returns zero on success, else negative errno.
1101 * MMC host drivers may use this to enable or disable a regulator using
1102 * a particular supply voltage. This would normally be called from the
1105 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1106 struct regulator
*supply
,
1107 unsigned short vdd_bit
)
1116 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1117 * bits this regulator doesn't quite support ... don't
1118 * be too picky, most cards and regulators are OK with
1119 * a 0.1V range goof (it's a small error percentage).
1121 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1123 min_uV
= 1650 * 1000;
1124 max_uV
= 1950 * 1000;
1126 min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1127 max_uV
= min_uV
+ 100 * 1000;
1130 /* avoid needless changes to this voltage; the regulator
1131 * might not allow this operation
1133 voltage
= regulator_get_voltage(supply
);
1135 if (mmc
->caps2
& MMC_CAP2_BROKEN_VOLTAGE
)
1136 min_uV
= max_uV
= voltage
;
1140 else if (voltage
< min_uV
|| voltage
> max_uV
)
1141 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1145 if (result
== 0 && !mmc
->regulator_enabled
) {
1146 result
= regulator_enable(supply
);
1148 mmc
->regulator_enabled
= true;
1150 } else if (mmc
->regulator_enabled
) {
1151 result
= regulator_disable(supply
);
1153 mmc
->regulator_enabled
= false;
1157 dev_err(mmc_dev(mmc
),
1158 "could not set regulator OCR (%d)\n", result
);
1161 EXPORT_SYMBOL(mmc_regulator_set_ocr
);
1163 #endif /* CONFIG_REGULATOR */
1166 * Mask off any voltages we don't support and select
1167 * the lowest voltage
1169 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1173 ocr
&= host
->ocr_avail
;
1181 mmc_host_clk_hold(host
);
1182 host
->ios
.vdd
= bit
;
1184 mmc_host_clk_release(host
);
1186 pr_warning("%s: host doesn't support card's voltages\n",
1187 mmc_hostname(host
));
1194 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
, bool cmd11
)
1196 struct mmc_command cmd
= {0};
1202 * Send CMD11 only if the request is to switch the card to
1205 if ((signal_voltage
!= MMC_SIGNAL_VOLTAGE_330
) && cmd11
) {
1206 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1208 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1210 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1214 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1218 host
->ios
.signal_voltage
= signal_voltage
;
1220 if (host
->ops
->start_signal_voltage_switch
) {
1221 mmc_host_clk_hold(host
);
1222 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1223 mmc_host_clk_release(host
);
1230 * Select timing parameters for host.
1232 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1234 mmc_host_clk_hold(host
);
1235 host
->ios
.timing
= timing
;
1237 mmc_host_clk_release(host
);
1241 * Select appropriate driver type for host.
1243 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1245 mmc_host_clk_hold(host
);
1246 host
->ios
.drv_type
= drv_type
;
1248 mmc_host_clk_release(host
);
1251 static void mmc_poweroff_notify(struct mmc_host
*host
)
1253 struct mmc_card
*card
;
1254 unsigned int timeout
;
1255 unsigned int notify_type
= EXT_CSD_NO_POWER_NOTIFICATION
;
1259 mmc_claim_host(host
);
1262 * Send power notify command only if card
1263 * is mmc and notify state is powered ON
1265 if (card
&& mmc_card_mmc(card
) &&
1266 (card
->poweroff_notify_state
== MMC_POWERED_ON
)) {
1268 if (host
->power_notify_type
== MMC_HOST_PW_NOTIFY_SHORT
) {
1269 notify_type
= EXT_CSD_POWER_OFF_SHORT
;
1270 timeout
= card
->ext_csd
.generic_cmd6_time
;
1271 card
->poweroff_notify_state
= MMC_POWEROFF_SHORT
;
1273 notify_type
= EXT_CSD_POWER_OFF_LONG
;
1274 timeout
= card
->ext_csd
.power_off_longtime
;
1275 card
->poweroff_notify_state
= MMC_POWEROFF_LONG
;
1278 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1279 EXT_CSD_POWER_OFF_NOTIFICATION
,
1280 notify_type
, timeout
);
1282 if (err
&& err
!= -EBADMSG
)
1283 pr_err("Device failed to respond within %d poweroff "
1284 "time. Forcefully powering down the device\n",
1287 /* Set the card state to no notification after the poweroff */
1288 card
->poweroff_notify_state
= MMC_NO_POWER_NOTIFICATION
;
1290 mmc_release_host(host
);
1294 * Apply power to the MMC stack. This is a two-stage process.
1295 * First, we enable power to the card without the clock running.
1296 * We then wait a bit for the power to stabilise. Finally,
1297 * enable the bus drivers and clock to the card.
1299 * We must _NOT_ enable the clock prior to power stablising.
1301 * If a host does all the power sequencing itself, ignore the
1302 * initial MMC_POWER_UP stage.
1304 static void mmc_power_up(struct mmc_host
*host
)
1308 mmc_host_clk_hold(host
);
1310 /* If ocr is set, we use it */
1312 bit
= ffs(host
->ocr
) - 1;
1314 bit
= fls(host
->ocr_avail
) - 1;
1316 host
->ios
.vdd
= bit
;
1317 if (mmc_host_is_spi(host
))
1318 host
->ios
.chip_select
= MMC_CS_HIGH
;
1320 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1321 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1322 host
->ios
.power_mode
= MMC_POWER_UP
;
1323 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1324 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1328 * This delay should be sufficient to allow the power supply
1329 * to reach the minimum voltage.
1333 host
->ios
.clock
= host
->f_init
;
1335 host
->ios
.power_mode
= MMC_POWER_ON
;
1339 * This delay must be at least 74 clock sizes, or 1 ms, or the
1340 * time required to reach a stable voltage.
1344 mmc_host_clk_release(host
);
1347 void mmc_power_off(struct mmc_host
*host
)
1350 mmc_host_clk_hold(host
);
1352 host
->ios
.clock
= 0;
1356 * For eMMC 4.5 device send AWAKE command before
1357 * POWER_OFF_NOTIFY command, because in sleep state
1358 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1360 if (host
->card
&& mmc_card_is_sleep(host
->card
) &&
1361 host
->bus_ops
->resume
) {
1362 err
= host
->bus_ops
->resume(host
);
1365 mmc_poweroff_notify(host
);
1367 pr_warning("%s: error %d during resume "
1368 "(continue with poweroff sequence)\n",
1369 mmc_hostname(host
), err
);
1373 * Reset ocr mask to be the highest possible voltage supported for
1374 * this mmc host. This value will be used at next power up.
1376 host
->ocr
= 1 << (fls(host
->ocr_avail
) - 1);
1378 if (!mmc_host_is_spi(host
)) {
1379 host
->ios
.bus_mode
= MMC_BUSMODE_OPENDRAIN
;
1380 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1382 host
->ios
.power_mode
= MMC_POWER_OFF
;
1383 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1384 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1388 * Some configurations, such as the 802.11 SDIO card in the OLPC
1389 * XO-1.5, require a short delay after poweroff before the card
1390 * can be successfully turned on again.
1394 mmc_host_clk_release(host
);
1398 * Cleanup when the last reference to the bus operator is dropped.
1400 static void __mmc_release_bus(struct mmc_host
*host
)
1403 BUG_ON(host
->bus_refs
);
1404 BUG_ON(!host
->bus_dead
);
1406 host
->bus_ops
= NULL
;
1410 * Increase reference count of bus operator
1412 static inline void mmc_bus_get(struct mmc_host
*host
)
1414 unsigned long flags
;
1416 spin_lock_irqsave(&host
->lock
, flags
);
1418 spin_unlock_irqrestore(&host
->lock
, flags
);
1422 * Decrease reference count of bus operator and free it if
1423 * it is the last reference.
1425 static inline void mmc_bus_put(struct mmc_host
*host
)
1427 unsigned long flags
;
1429 spin_lock_irqsave(&host
->lock
, flags
);
1431 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1432 __mmc_release_bus(host
);
1433 spin_unlock_irqrestore(&host
->lock
, flags
);
1437 * Assign a mmc bus handler to a host. Only one bus handler may control a
1438 * host at any given time.
1440 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1442 unsigned long flags
;
1447 WARN_ON(!host
->claimed
);
1449 spin_lock_irqsave(&host
->lock
, flags
);
1451 BUG_ON(host
->bus_ops
);
1452 BUG_ON(host
->bus_refs
);
1454 host
->bus_ops
= ops
;
1458 spin_unlock_irqrestore(&host
->lock
, flags
);
1462 * Remove the current bus handler from a host.
1464 void mmc_detach_bus(struct mmc_host
*host
)
1466 unsigned long flags
;
1470 WARN_ON(!host
->claimed
);
1471 WARN_ON(!host
->bus_ops
);
1473 spin_lock_irqsave(&host
->lock
, flags
);
1477 spin_unlock_irqrestore(&host
->lock
, flags
);
1483 * mmc_detect_change - process change of state on a MMC socket
1484 * @host: host which changed state.
1485 * @delay: optional delay to wait before detection (jiffies)
1487 * MMC drivers should call this when they detect a card has been
1488 * inserted or removed. The MMC layer will confirm that any
1489 * present card is still functional, and initialize any newly
1492 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1494 #ifdef CONFIG_MMC_DEBUG
1495 unsigned long flags
;
1496 spin_lock_irqsave(&host
->lock
, flags
);
1497 WARN_ON(host
->removed
);
1498 spin_unlock_irqrestore(&host
->lock
, flags
);
1500 host
->detect_change
= 1;
1501 mmc_schedule_delayed_work(&host
->detect
, delay
);
1504 EXPORT_SYMBOL(mmc_detect_change
);
1506 void mmc_init_erase(struct mmc_card
*card
)
1510 if (is_power_of_2(card
->erase_size
))
1511 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1513 card
->erase_shift
= 0;
1516 * It is possible to erase an arbitrarily large area of an SD or MMC
1517 * card. That is not desirable because it can take a long time
1518 * (minutes) potentially delaying more important I/O, and also the
1519 * timeout calculations become increasingly hugely over-estimated.
1520 * Consequently, 'pref_erase' is defined as a guide to limit erases
1521 * to that size and alignment.
1523 * For SD cards that define Allocation Unit size, limit erases to one
1524 * Allocation Unit at a time. For MMC cards that define High Capacity
1525 * Erase Size, whether it is switched on or not, limit to that size.
1526 * Otherwise just have a stab at a good value. For modern cards it
1527 * will end up being 4MiB. Note that if the value is too small, it
1528 * can end up taking longer to erase.
1530 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1531 card
->pref_erase
= card
->ssr
.au
;
1532 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1533 } else if (card
->ext_csd
.hc_erase_size
) {
1534 card
->pref_erase
= card
->ext_csd
.hc_erase_size
;
1536 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1538 card
->pref_erase
= 512 * 1024 / 512;
1540 card
->pref_erase
= 1024 * 1024 / 512;
1542 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1544 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1545 if (card
->pref_erase
< card
->erase_size
)
1546 card
->pref_erase
= card
->erase_size
;
1548 sz
= card
->pref_erase
% card
->erase_size
;
1550 card
->pref_erase
+= card
->erase_size
- sz
;
1555 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1556 unsigned int arg
, unsigned int qty
)
1558 unsigned int erase_timeout
;
1560 if (arg
== MMC_DISCARD_ARG
||
1561 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1562 erase_timeout
= card
->ext_csd
.trim_timeout
;
1563 } else if (card
->ext_csd
.erase_group_def
& 1) {
1564 /* High Capacity Erase Group Size uses HC timeouts */
1565 if (arg
== MMC_TRIM_ARG
)
1566 erase_timeout
= card
->ext_csd
.trim_timeout
;
1568 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1570 /* CSD Erase Group Size uses write timeout */
1571 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1572 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
1573 unsigned int timeout_us
;
1575 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1576 if (card
->csd
.tacc_ns
< 1000000)
1577 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
1579 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
1582 * ios.clock is only a target. The real clock rate might be
1583 * less but not that much less, so fudge it by multiplying by 2.
1586 timeout_us
+= (timeout_clks
* 1000) /
1587 (mmc_host_clk_rate(card
->host
) / 1000);
1589 erase_timeout
= timeout_us
/ 1000;
1592 * Theoretically, the calculation could underflow so round up
1593 * to 1ms in that case.
1599 /* Multiplier for secure operations */
1600 if (arg
& MMC_SECURE_ARGS
) {
1601 if (arg
== MMC_SECURE_ERASE_ARG
)
1602 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1604 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1607 erase_timeout
*= qty
;
1610 * Ensure at least a 1 second timeout for SPI as per
1611 * 'mmc_set_data_timeout()'
1613 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1614 erase_timeout
= 1000;
1616 return erase_timeout
;
1619 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1623 unsigned int erase_timeout
;
1625 if (card
->ssr
.erase_timeout
) {
1626 /* Erase timeout specified in SD Status Register (SSR) */
1627 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1628 card
->ssr
.erase_offset
;
1631 * Erase timeout not specified in SD Status Register (SSR) so
1632 * use 250ms per write block.
1634 erase_timeout
= 250 * qty
;
1637 /* Must not be less than 1 second */
1638 if (erase_timeout
< 1000)
1639 erase_timeout
= 1000;
1641 return erase_timeout
;
1644 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1648 if (mmc_card_sd(card
))
1649 return mmc_sd_erase_timeout(card
, arg
, qty
);
1651 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1654 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1655 unsigned int to
, unsigned int arg
)
1657 struct mmc_command cmd
= {0};
1658 unsigned int qty
= 0;
1662 * qty is used to calculate the erase timeout which depends on how many
1663 * erase groups (or allocation units in SD terminology) are affected.
1664 * We count erasing part of an erase group as one erase group.
1665 * For SD, the allocation units are always a power of 2. For MMC, the
1666 * erase group size is almost certainly also power of 2, but it does not
1667 * seem to insist on that in the JEDEC standard, so we fall back to
1668 * division in that case. SD may not specify an allocation unit size,
1669 * in which case the timeout is based on the number of write blocks.
1671 * Note that the timeout for secure trim 2 will only be correct if the
1672 * number of erase groups specified is the same as the total of all
1673 * preceding secure trim 1 commands. Since the power may have been
1674 * lost since the secure trim 1 commands occurred, it is generally
1675 * impossible to calculate the secure trim 2 timeout correctly.
1677 if (card
->erase_shift
)
1678 qty
+= ((to
>> card
->erase_shift
) -
1679 (from
>> card
->erase_shift
)) + 1;
1680 else if (mmc_card_sd(card
))
1681 qty
+= to
- from
+ 1;
1683 qty
+= ((to
/ card
->erase_size
) -
1684 (from
/ card
->erase_size
)) + 1;
1686 if (!mmc_card_blockaddr(card
)) {
1691 if (mmc_card_sd(card
))
1692 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1694 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1696 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1697 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1699 pr_err("mmc_erase: group start error %d, "
1700 "status %#x\n", err
, cmd
.resp
[0]);
1705 memset(&cmd
, 0, sizeof(struct mmc_command
));
1706 if (mmc_card_sd(card
))
1707 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1709 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1711 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1712 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1714 pr_err("mmc_erase: group end error %d, status %#x\n",
1720 memset(&cmd
, 0, sizeof(struct mmc_command
));
1721 cmd
.opcode
= MMC_ERASE
;
1723 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1724 cmd
.cmd_timeout_ms
= mmc_erase_timeout(card
, arg
, qty
);
1725 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1727 pr_err("mmc_erase: erase error %d, status %#x\n",
1733 if (mmc_host_is_spi(card
->host
))
1737 memset(&cmd
, 0, sizeof(struct mmc_command
));
1738 cmd
.opcode
= MMC_SEND_STATUS
;
1739 cmd
.arg
= card
->rca
<< 16;
1740 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1741 /* Do not retry else we can't see errors */
1742 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1743 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
1744 pr_err("error %d requesting status %#x\n",
1749 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
1750 R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
);
1756 * mmc_erase - erase sectors.
1757 * @card: card to erase
1758 * @from: first sector to erase
1759 * @nr: number of sectors to erase
1760 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1762 * Caller must claim host before calling this function.
1764 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
1767 unsigned int rem
, to
= from
+ nr
;
1769 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
1770 !(card
->csd
.cmdclass
& CCC_ERASE
))
1773 if (!card
->erase_size
)
1776 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
1779 if ((arg
& MMC_SECURE_ARGS
) &&
1780 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1783 if ((arg
& MMC_TRIM_ARGS
) &&
1784 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
1787 if (arg
== MMC_SECURE_ERASE_ARG
) {
1788 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1792 if (arg
== MMC_ERASE_ARG
) {
1793 rem
= from
% card
->erase_size
;
1795 rem
= card
->erase_size
- rem
;
1802 rem
= nr
% card
->erase_size
;
1815 /* 'from' and 'to' are inclusive */
1818 return mmc_do_erase(card
, from
, to
, arg
);
1820 EXPORT_SYMBOL(mmc_erase
);
1822 int mmc_can_erase(struct mmc_card
*card
)
1824 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
1825 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
1829 EXPORT_SYMBOL(mmc_can_erase
);
1831 int mmc_can_trim(struct mmc_card
*card
)
1833 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
)
1837 EXPORT_SYMBOL(mmc_can_trim
);
1839 int mmc_can_discard(struct mmc_card
*card
)
1842 * As there's no way to detect the discard support bit at v4.5
1843 * use the s/w feature support filed.
1845 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
1849 EXPORT_SYMBOL(mmc_can_discard
);
1851 int mmc_can_sanitize(struct mmc_card
*card
)
1853 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
1855 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
1859 EXPORT_SYMBOL(mmc_can_sanitize
);
1861 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
1863 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
)
1867 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
1869 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
1872 if (!card
->erase_size
)
1874 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1878 EXPORT_SYMBOL(mmc_erase_group_aligned
);
1880 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
1883 struct mmc_host
*host
= card
->host
;
1884 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, timeout
;
1885 unsigned int last_timeout
= 0;
1887 if (card
->erase_shift
)
1888 max_qty
= UINT_MAX
>> card
->erase_shift
;
1889 else if (mmc_card_sd(card
))
1892 max_qty
= UINT_MAX
/ card
->erase_size
;
1894 /* Find the largest qty with an OK timeout */
1897 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
1898 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
1899 if (timeout
> host
->max_discard_to
)
1901 if (timeout
< last_timeout
)
1903 last_timeout
= timeout
;
1915 /* Convert qty to sectors */
1916 if (card
->erase_shift
)
1917 max_discard
= --qty
<< card
->erase_shift
;
1918 else if (mmc_card_sd(card
))
1921 max_discard
= --qty
* card
->erase_size
;
1926 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
1928 struct mmc_host
*host
= card
->host
;
1929 unsigned int max_discard
, max_trim
;
1931 if (!host
->max_discard_to
)
1935 * Without erase_group_def set, MMC erase timeout depends on clock
1936 * frequence which can change. In that case, the best choice is
1937 * just the preferred erase size.
1939 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
1940 return card
->pref_erase
;
1942 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
1943 if (mmc_can_trim(card
)) {
1944 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
1945 if (max_trim
< max_discard
)
1946 max_discard
= max_trim
;
1947 } else if (max_discard
< card
->erase_size
) {
1950 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1951 mmc_hostname(host
), max_discard
, host
->max_discard_to
);
1954 EXPORT_SYMBOL(mmc_calc_max_discard
);
1956 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
1958 struct mmc_command cmd
= {0};
1960 if (mmc_card_blockaddr(card
) || mmc_card_ddr_mode(card
))
1963 cmd
.opcode
= MMC_SET_BLOCKLEN
;
1965 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1966 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
1968 EXPORT_SYMBOL(mmc_set_blocklen
);
1970 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
1972 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
1974 mmc_host_clk_hold(host
);
1975 host
->ops
->hw_reset(host
);
1976 mmc_host_clk_release(host
);
1979 int mmc_can_reset(struct mmc_card
*card
)
1983 if (!mmc_card_mmc(card
))
1985 rst_n_function
= card
->ext_csd
.rst_n_function
;
1986 if ((rst_n_function
& EXT_CSD_RST_N_EN_MASK
) != EXT_CSD_RST_N_ENABLED
)
1990 EXPORT_SYMBOL(mmc_can_reset
);
1992 static int mmc_do_hw_reset(struct mmc_host
*host
, int check
)
1994 struct mmc_card
*card
= host
->card
;
1996 if (!host
->bus_ops
->power_restore
)
1999 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2005 if (!mmc_can_reset(card
))
2008 mmc_host_clk_hold(host
);
2009 mmc_set_clock(host
, host
->f_init
);
2011 host
->ops
->hw_reset(host
);
2013 /* If the reset has happened, then a status command will fail */
2015 struct mmc_command cmd
= {0};
2018 cmd
.opcode
= MMC_SEND_STATUS
;
2019 if (!mmc_host_is_spi(card
->host
))
2020 cmd
.arg
= card
->rca
<< 16;
2021 cmd
.flags
= MMC_RSP_SPI_R2
| MMC_RSP_R1
| MMC_CMD_AC
;
2022 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2024 mmc_host_clk_release(host
);
2029 host
->card
->state
&= ~(MMC_STATE_HIGHSPEED
| MMC_STATE_HIGHSPEED_DDR
);
2030 if (mmc_host_is_spi(host
)) {
2031 host
->ios
.chip_select
= MMC_CS_HIGH
;
2032 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
2034 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
2035 host
->ios
.bus_mode
= MMC_BUSMODE_OPENDRAIN
;
2037 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
2038 host
->ios
.timing
= MMC_TIMING_LEGACY
;
2041 mmc_host_clk_release(host
);
2043 return host
->bus_ops
->power_restore(host
);
2046 int mmc_hw_reset(struct mmc_host
*host
)
2048 return mmc_do_hw_reset(host
, 0);
2050 EXPORT_SYMBOL(mmc_hw_reset
);
2052 int mmc_hw_reset_check(struct mmc_host
*host
)
2054 return mmc_do_hw_reset(host
, 1);
2056 EXPORT_SYMBOL(mmc_hw_reset_check
);
2058 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2060 host
->f_init
= freq
;
2062 #ifdef CONFIG_MMC_DEBUG
2063 pr_info("%s: %s: trying to init card at %u Hz\n",
2064 mmc_hostname(host
), __func__
, host
->f_init
);
2069 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2070 * do a hardware reset if possible.
2072 mmc_hw_reset_for_init(host
);
2074 /* Initialization should be done at 3.3 V I/O voltage. */
2075 mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
, 0);
2078 * sdio_reset sends CMD52 to reset card. Since we do not know
2079 * if the card is being re-initialized, just send it. CMD52
2080 * should be ignored by SD/eMMC cards.
2085 mmc_send_if_cond(host
, host
->ocr_avail
);
2087 /* Order's important: probe SDIO, then SD, then MMC */
2088 if (!mmc_attach_sdio(host
))
2090 if (!mmc_attach_sd(host
))
2092 if (!mmc_attach_mmc(host
))
2095 mmc_power_off(host
);
2099 int _mmc_detect_card_removed(struct mmc_host
*host
)
2103 if ((host
->caps
& MMC_CAP_NONREMOVABLE
) || !host
->bus_ops
->alive
)
2106 if (!host
->card
|| mmc_card_removed(host
->card
))
2109 ret
= host
->bus_ops
->alive(host
);
2111 mmc_card_set_removed(host
->card
);
2112 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2118 int mmc_detect_card_removed(struct mmc_host
*host
)
2120 struct mmc_card
*card
= host
->card
;
2122 WARN_ON(!host
->claimed
);
2124 * The card will be considered unchanged unless we have been asked to
2125 * detect a change or host requires polling to provide card detection.
2127 if (card
&& !host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2128 return mmc_card_removed(card
);
2130 host
->detect_change
= 0;
2132 return _mmc_detect_card_removed(host
);
2134 EXPORT_SYMBOL(mmc_detect_card_removed
);
2136 void mmc_rescan(struct work_struct
*work
)
2138 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
2139 struct mmc_host
*host
=
2140 container_of(work
, struct mmc_host
, detect
.work
);
2143 if (host
->rescan_disable
)
2149 * if there is a _removable_ card registered, check whether it is
2152 if (host
->bus_ops
&& host
->bus_ops
->detect
&& !host
->bus_dead
2153 && !(host
->caps
& MMC_CAP_NONREMOVABLE
))
2154 host
->bus_ops
->detect(host
);
2156 host
->detect_change
= 0;
2159 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2160 * the card is no longer present.
2165 /* if there still is a card present, stop here */
2166 if (host
->bus_ops
!= NULL
) {
2172 * Only we can add a new handler, so it's safe to
2173 * release the lock here.
2177 if (host
->ops
->get_cd
&& host
->ops
->get_cd(host
) == 0)
2180 mmc_claim_host(host
);
2181 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2182 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2184 if (freqs
[i
] <= host
->f_min
)
2187 mmc_release_host(host
);
2190 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2191 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2194 void mmc_start_host(struct mmc_host
*host
)
2196 mmc_power_off(host
);
2197 mmc_detect_change(host
, 0);
2200 void mmc_stop_host(struct mmc_host
*host
)
2202 #ifdef CONFIG_MMC_DEBUG
2203 unsigned long flags
;
2204 spin_lock_irqsave(&host
->lock
, flags
);
2206 spin_unlock_irqrestore(&host
->lock
, flags
);
2209 if (host
->caps
& MMC_CAP_DISABLE
)
2210 cancel_delayed_work(&host
->disable
);
2211 cancel_delayed_work_sync(&host
->detect
);
2212 mmc_flush_scheduled_work();
2214 /* clear pm flags now and let card drivers set them as needed */
2218 if (host
->bus_ops
&& !host
->bus_dead
) {
2219 /* Calling bus_ops->remove() with a claimed host can deadlock */
2220 if (host
->bus_ops
->remove
)
2221 host
->bus_ops
->remove(host
);
2223 mmc_claim_host(host
);
2224 mmc_detach_bus(host
);
2225 mmc_power_off(host
);
2226 mmc_release_host(host
);
2234 mmc_power_off(host
);
2237 int mmc_power_save_host(struct mmc_host
*host
)
2241 #ifdef CONFIG_MMC_DEBUG
2242 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2247 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->power_restore
) {
2252 if (host
->bus_ops
->power_save
)
2253 ret
= host
->bus_ops
->power_save(host
);
2257 mmc_power_off(host
);
2261 EXPORT_SYMBOL(mmc_power_save_host
);
2263 int mmc_power_restore_host(struct mmc_host
*host
)
2267 #ifdef CONFIG_MMC_DEBUG
2268 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2273 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->power_restore
) {
2279 ret
= host
->bus_ops
->power_restore(host
);
2285 EXPORT_SYMBOL(mmc_power_restore_host
);
2287 int mmc_card_awake(struct mmc_host
*host
)
2291 if (host
->caps2
& MMC_CAP2_NO_SLEEP_CMD
)
2296 if (host
->bus_ops
&& !host
->bus_dead
&& host
->bus_ops
->awake
)
2297 err
= host
->bus_ops
->awake(host
);
2303 EXPORT_SYMBOL(mmc_card_awake
);
2305 int mmc_card_sleep(struct mmc_host
*host
)
2309 if (host
->caps2
& MMC_CAP2_NO_SLEEP_CMD
)
2314 if (host
->bus_ops
&& !host
->bus_dead
&& host
->bus_ops
->sleep
)
2315 err
= host
->bus_ops
->sleep(host
);
2321 EXPORT_SYMBOL(mmc_card_sleep
);
2323 int mmc_card_can_sleep(struct mmc_host
*host
)
2325 struct mmc_card
*card
= host
->card
;
2327 if (card
&& mmc_card_mmc(card
) && card
->ext_csd
.rev
>= 3)
2331 EXPORT_SYMBOL(mmc_card_can_sleep
);
2334 * Flush the cache to the non-volatile storage.
2336 int mmc_flush_cache(struct mmc_card
*card
)
2338 struct mmc_host
*host
= card
->host
;
2341 if (!(host
->caps2
& MMC_CAP2_CACHE_CTRL
))
2344 if (mmc_card_mmc(card
) &&
2345 (card
->ext_csd
.cache_size
> 0) &&
2346 (card
->ext_csd
.cache_ctrl
& 1)) {
2347 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2348 EXT_CSD_FLUSH_CACHE
, 1, 0);
2350 pr_err("%s: cache flush error %d\n",
2351 mmc_hostname(card
->host
), err
);
2356 EXPORT_SYMBOL(mmc_flush_cache
);
2359 * Turn the cache ON/OFF.
2360 * Turning the cache OFF shall trigger flushing of the data
2361 * to the non-volatile storage.
2363 int mmc_cache_ctrl(struct mmc_host
*host
, u8 enable
)
2365 struct mmc_card
*card
= host
->card
;
2366 unsigned int timeout
;
2369 if (!(host
->caps2
& MMC_CAP2_CACHE_CTRL
) ||
2370 mmc_card_is_removable(host
))
2373 if (card
&& mmc_card_mmc(card
) &&
2374 (card
->ext_csd
.cache_size
> 0)) {
2377 if (card
->ext_csd
.cache_ctrl
^ enable
) {
2378 timeout
= enable
? card
->ext_csd
.generic_cmd6_time
: 0;
2379 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2380 EXT_CSD_CACHE_CTRL
, enable
, timeout
);
2382 pr_err("%s: cache %s error %d\n",
2383 mmc_hostname(card
->host
),
2384 enable
? "on" : "off",
2387 card
->ext_csd
.cache_ctrl
= enable
;
2393 EXPORT_SYMBOL(mmc_cache_ctrl
);
2398 * mmc_suspend_host - suspend a host
2401 int mmc_suspend_host(struct mmc_host
*host
)
2405 if (host
->caps
& MMC_CAP_DISABLE
)
2406 cancel_delayed_work(&host
->disable
);
2407 cancel_delayed_work(&host
->detect
);
2408 mmc_flush_scheduled_work();
2409 if (mmc_try_claim_host(host
)) {
2410 err
= mmc_cache_ctrl(host
, 0);
2411 mmc_do_release_host(host
);
2420 if (host
->bus_ops
&& !host
->bus_dead
) {
2423 * A long response time is not acceptable for device drivers
2424 * when doing suspend. Prevent mmc_claim_host in the suspend
2425 * sequence, to potentially wait "forever" by trying to
2426 * pre-claim the host.
2428 if (mmc_try_claim_host(host
)) {
2429 if (host
->bus_ops
->suspend
) {
2430 err
= host
->bus_ops
->suspend(host
);
2432 mmc_do_release_host(host
);
2434 if (err
== -ENOSYS
|| !host
->bus_ops
->resume
) {
2436 * We simply "remove" the card in this case.
2437 * It will be redetected on resume. (Calling
2438 * bus_ops->remove() with a claimed host can
2441 if (host
->bus_ops
->remove
)
2442 host
->bus_ops
->remove(host
);
2443 mmc_claim_host(host
);
2444 mmc_detach_bus(host
);
2445 mmc_power_off(host
);
2446 mmc_release_host(host
);
2456 if (!err
&& !mmc_card_keep_power(host
))
2457 mmc_power_off(host
);
2463 EXPORT_SYMBOL(mmc_suspend_host
);
2466 * mmc_resume_host - resume a previously suspended host
2469 int mmc_resume_host(struct mmc_host
*host
)
2474 if (host
->bus_ops
&& !host
->bus_dead
) {
2475 if (!mmc_card_keep_power(host
)) {
2477 mmc_select_voltage(host
, host
->ocr
);
2479 * Tell runtime PM core we just powered up the card,
2480 * since it still believes the card is powered off.
2481 * Note that currently runtime PM is only enabled
2482 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2484 if (mmc_card_sdio(host
->card
) &&
2485 (host
->caps
& MMC_CAP_POWER_OFF_CARD
)) {
2486 pm_runtime_disable(&host
->card
->dev
);
2487 pm_runtime_set_active(&host
->card
->dev
);
2488 pm_runtime_enable(&host
->card
->dev
);
2491 BUG_ON(!host
->bus_ops
->resume
);
2492 err
= host
->bus_ops
->resume(host
);
2494 pr_warning("%s: error %d during resume "
2495 "(card was removed?)\n",
2496 mmc_hostname(host
), err
);
2500 host
->pm_flags
&= ~MMC_PM_KEEP_POWER
;
2505 EXPORT_SYMBOL(mmc_resume_host
);
2507 /* Do the card removal on suspend if card is assumed removeable
2508 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2511 int mmc_pm_notify(struct notifier_block
*notify_block
,
2512 unsigned long mode
, void *unused
)
2514 struct mmc_host
*host
= container_of(
2515 notify_block
, struct mmc_host
, pm_notify
);
2516 unsigned long flags
;
2520 case PM_HIBERNATION_PREPARE
:
2521 case PM_SUSPEND_PREPARE
:
2523 spin_lock_irqsave(&host
->lock
, flags
);
2524 host
->rescan_disable
= 1;
2525 host
->power_notify_type
= MMC_HOST_PW_NOTIFY_SHORT
;
2526 spin_unlock_irqrestore(&host
->lock
, flags
);
2527 cancel_delayed_work_sync(&host
->detect
);
2529 if (!host
->bus_ops
|| host
->bus_ops
->suspend
)
2532 /* Calling bus_ops->remove() with a claimed host can deadlock */
2533 if (host
->bus_ops
->remove
)
2534 host
->bus_ops
->remove(host
);
2536 mmc_claim_host(host
);
2537 mmc_detach_bus(host
);
2538 mmc_power_off(host
);
2539 mmc_release_host(host
);
2543 case PM_POST_SUSPEND
:
2544 case PM_POST_HIBERNATION
:
2545 case PM_POST_RESTORE
:
2547 spin_lock_irqsave(&host
->lock
, flags
);
2548 host
->rescan_disable
= 0;
2549 host
->power_notify_type
= MMC_HOST_PW_NOTIFY_LONG
;
2550 spin_unlock_irqrestore(&host
->lock
, flags
);
2551 mmc_detect_change(host
, 0);
2559 static int __init
mmc_init(void)
2563 workqueue
= alloc_ordered_workqueue("kmmcd", 0);
2567 ret
= mmc_register_bus();
2569 goto destroy_workqueue
;
2571 ret
= mmc_register_host_class();
2573 goto unregister_bus
;
2575 ret
= sdio_register_bus();
2577 goto unregister_host_class
;
2581 unregister_host_class
:
2582 mmc_unregister_host_class();
2584 mmc_unregister_bus();
2586 destroy_workqueue(workqueue
);
2591 static void __exit
mmc_exit(void)
2593 sdio_unregister_bus();
2594 mmc_unregister_host_class();
2595 mmc_unregister_bus();
2596 destroy_workqueue(workqueue
);
2599 subsys_initcall(mmc_init
);
2600 module_exit(mmc_exit
);
2602 MODULE_LICENSE("GPL");