5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ECC support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8
= {
63 static struct nand_ecclayout nand_oob_16
= {
65 .eccpos
= {0, 1, 2, 3, 6, 7},
71 static struct nand_ecclayout nand_oob_64
= {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
82 static struct nand_ecclayout nand_oob_128
= {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
96 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
99 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
100 struct mtd_oob_ops
*ops
);
103 * For devices which display every fart in the system on a separate LED. Is
104 * compiled away when LED support is disabled.
106 DEFINE_LED_TRIGGER(nand_led_trigger
);
108 static int check_offs_len(struct mtd_info
*mtd
,
109 loff_t ofs
, uint64_t len
)
111 struct nand_chip
*chip
= mtd
->priv
;
114 /* Start address must align on block boundary */
115 if (ofs
& ((1 << chip
->phys_erase_shift
) - 1)) {
116 pr_debug("%s: unaligned address\n", __func__
);
120 /* Length must align on block boundary */
121 if (len
& ((1 << chip
->phys_erase_shift
) - 1)) {
122 pr_debug("%s: length not block aligned\n", __func__
);
126 /* Do not allow past end of device */
127 if (ofs
+ len
> mtd
->size
) {
128 pr_debug("%s: past end of device\n", __func__
);
136 * nand_release_device - [GENERIC] release chip
137 * @mtd: MTD device structure
139 * Deselect, release chip lock and wake up anyone waiting on the device.
141 static void nand_release_device(struct mtd_info
*mtd
)
143 struct nand_chip
*chip
= mtd
->priv
;
145 /* De-select the NAND device */
146 chip
->select_chip(mtd
, -1);
148 /* Release the controller and the chip */
149 spin_lock(&chip
->controller
->lock
);
150 chip
->controller
->active
= NULL
;
151 chip
->state
= FL_READY
;
152 wake_up(&chip
->controller
->wq
);
153 spin_unlock(&chip
->controller
->lock
);
157 * nand_read_byte - [DEFAULT] read one byte from the chip
158 * @mtd: MTD device structure
160 * Default read function for 8bit buswidth
162 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
164 struct nand_chip
*chip
= mtd
->priv
;
165 return readb(chip
->IO_ADDR_R
);
169 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
170 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
171 * @mtd: MTD device structure
173 * Default read function for 16bit buswidth with endianness conversion.
176 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
178 struct nand_chip
*chip
= mtd
->priv
;
179 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
183 * nand_read_word - [DEFAULT] read one word from the chip
184 * @mtd: MTD device structure
186 * Default read function for 16bit buswidth without endianness conversion.
188 static u16
nand_read_word(struct mtd_info
*mtd
)
190 struct nand_chip
*chip
= mtd
->priv
;
191 return readw(chip
->IO_ADDR_R
);
195 * nand_select_chip - [DEFAULT] control CE line
196 * @mtd: MTD device structure
197 * @chipnr: chipnumber to select, -1 for deselect
199 * Default select function for 1 chip devices.
201 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
203 struct nand_chip
*chip
= mtd
->priv
;
207 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
218 * nand_write_buf - [DEFAULT] write buffer to chip
219 * @mtd: MTD device structure
221 * @len: number of bytes to write
223 * Default write function for 8bit buswidth.
225 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
228 struct nand_chip
*chip
= mtd
->priv
;
230 for (i
= 0; i
< len
; i
++)
231 writeb(buf
[i
], chip
->IO_ADDR_W
);
235 * nand_read_buf - [DEFAULT] read chip data into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
240 * Default read function for 8bit buswidth.
242 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
245 struct nand_chip
*chip
= mtd
->priv
;
247 for (i
= 0; i
< len
; i
++)
248 buf
[i
] = readb(chip
->IO_ADDR_R
);
252 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
253 * @mtd: MTD device structure
254 * @buf: buffer containing the data to compare
255 * @len: number of bytes to compare
257 * Default verify function for 8bit buswidth.
259 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
262 struct nand_chip
*chip
= mtd
->priv
;
264 for (i
= 0; i
< len
; i
++)
265 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
271 * nand_write_buf16 - [DEFAULT] write buffer to chip
272 * @mtd: MTD device structure
274 * @len: number of bytes to write
276 * Default write function for 16bit buswidth.
278 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
281 struct nand_chip
*chip
= mtd
->priv
;
282 u16
*p
= (u16
*) buf
;
285 for (i
= 0; i
< len
; i
++)
286 writew(p
[i
], chip
->IO_ADDR_W
);
291 * nand_read_buf16 - [DEFAULT] read chip data into buffer
292 * @mtd: MTD device structure
293 * @buf: buffer to store date
294 * @len: number of bytes to read
296 * Default read function for 16bit buswidth.
298 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
301 struct nand_chip
*chip
= mtd
->priv
;
302 u16
*p
= (u16
*) buf
;
305 for (i
= 0; i
< len
; i
++)
306 p
[i
] = readw(chip
->IO_ADDR_R
);
310 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
311 * @mtd: MTD device structure
312 * @buf: buffer containing the data to compare
313 * @len: number of bytes to compare
315 * Default verify function for 16bit buswidth.
317 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
320 struct nand_chip
*chip
= mtd
->priv
;
321 u16
*p
= (u16
*) buf
;
324 for (i
= 0; i
< len
; i
++)
325 if (p
[i
] != readw(chip
->IO_ADDR_R
))
332 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
333 * @mtd: MTD device structure
334 * @ofs: offset from device start
335 * @getchip: 0, if the chip is already selected
337 * Check, if the block is bad.
339 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
341 int page
, chipnr
, res
= 0;
342 struct nand_chip
*chip
= mtd
->priv
;
345 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
346 ofs
+= mtd
->erasesize
- mtd
->writesize
;
348 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
351 chipnr
= (int)(ofs
>> chip
->chip_shift
);
353 nand_get_device(chip
, mtd
, FL_READING
);
355 /* Select the NAND device */
356 chip
->select_chip(mtd
, chipnr
);
359 if (chip
->options
& NAND_BUSWIDTH_16
) {
360 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
362 bad
= cpu_to_le16(chip
->read_word(mtd
));
363 if (chip
->badblockpos
& 0x1)
368 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
369 bad
= chip
->read_byte(mtd
);
372 if (likely(chip
->badblockbits
== 8))
375 res
= hweight8(bad
) < chip
->badblockbits
;
378 nand_release_device(mtd
);
384 * nand_default_block_markbad - [DEFAULT] mark a block bad
385 * @mtd: MTD device structure
386 * @ofs: offset from device start
388 * This is the default implementation, which can be overridden by a hardware
391 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
393 struct nand_chip
*chip
= mtd
->priv
;
394 uint8_t buf
[2] = { 0, 0 };
395 int block
, ret
, i
= 0;
397 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
398 ofs
+= mtd
->erasesize
- mtd
->writesize
;
400 /* Get block number */
401 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
403 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
405 /* Do we have a flash based bad block table? */
406 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
407 ret
= nand_update_bbt(mtd
, ofs
);
409 struct mtd_oob_ops ops
;
411 nand_get_device(chip
, mtd
, FL_WRITING
);
414 * Write to first two pages if necessary. If we write to more
415 * than one location, the first error encountered quits the
416 * procedure. We write two bytes per location, so we dont have
417 * to mess with 16 bit access.
419 ops
.len
= ops
.ooblen
= 2;
422 ops
.ooboffs
= chip
->badblockpos
& ~0x01;
423 ops
.mode
= MTD_OPS_PLACE_OOB
;
425 ret
= nand_do_write_oob(mtd
, ofs
, &ops
);
428 ofs
+= mtd
->writesize
;
429 } while (!ret
&& (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) &&
432 nand_release_device(mtd
);
435 mtd
->ecc_stats
.badblocks
++;
441 * nand_check_wp - [GENERIC] check if the chip is write protected
442 * @mtd: MTD device structure
444 * Check, if the device is write protected. The function expects, that the
445 * device is already selected.
447 static int nand_check_wp(struct mtd_info
*mtd
)
449 struct nand_chip
*chip
= mtd
->priv
;
451 /* Broken xD cards report WP despite being writable */
452 if (chip
->options
& NAND_BROKEN_XD
)
455 /* Check the WP bit */
456 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
457 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
461 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
462 * @mtd: MTD device structure
463 * @ofs: offset from device start
464 * @getchip: 0, if the chip is already selected
465 * @allowbbt: 1, if its allowed to access the bbt area
467 * Check, if the block is bad. Either by reading the bad block table or
468 * calling of the scan function.
470 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
473 struct nand_chip
*chip
= mtd
->priv
;
476 return chip
->block_bad(mtd
, ofs
, getchip
);
478 /* Return info from the table */
479 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
483 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
484 * @mtd: MTD device structure
487 * Helper function for nand_wait_ready used when needing to wait in interrupt
490 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
492 struct nand_chip
*chip
= mtd
->priv
;
495 /* Wait for the device to get ready */
496 for (i
= 0; i
< timeo
; i
++) {
497 if (chip
->dev_ready(mtd
))
499 touch_softlockup_watchdog();
504 /* Wait for the ready pin, after a command. The timeout is caught later. */
505 void nand_wait_ready(struct mtd_info
*mtd
)
507 struct nand_chip
*chip
= mtd
->priv
;
508 unsigned long timeo
= jiffies
+ 2;
511 if (in_interrupt() || oops_in_progress
)
512 return panic_nand_wait_ready(mtd
, 400);
514 led_trigger_event(nand_led_trigger
, LED_FULL
);
515 /* Wait until command is processed or timeout occurs */
517 if (chip
->dev_ready(mtd
))
519 touch_softlockup_watchdog();
520 } while (time_before(jiffies
, timeo
));
521 led_trigger_event(nand_led_trigger
, LED_OFF
);
523 EXPORT_SYMBOL_GPL(nand_wait_ready
);
526 * nand_command - [DEFAULT] Send command to NAND device
527 * @mtd: MTD device structure
528 * @command: the command to be sent
529 * @column: the column address for this command, -1 if none
530 * @page_addr: the page address for this command, -1 if none
532 * Send command to NAND device. This function is used for small page devices
533 * (256/512 Bytes per page).
535 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
536 int column
, int page_addr
)
538 register struct nand_chip
*chip
= mtd
->priv
;
539 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
541 /* Write out the command to the device */
542 if (command
== NAND_CMD_SEQIN
) {
545 if (column
>= mtd
->writesize
) {
547 column
-= mtd
->writesize
;
548 readcmd
= NAND_CMD_READOOB
;
549 } else if (column
< 256) {
550 /* First 256 bytes --> READ0 */
551 readcmd
= NAND_CMD_READ0
;
554 readcmd
= NAND_CMD_READ1
;
556 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
557 ctrl
&= ~NAND_CTRL_CHANGE
;
559 chip
->cmd_ctrl(mtd
, command
, ctrl
);
561 /* Address cycle, when necessary */
562 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
563 /* Serially input address */
565 /* Adjust columns for 16 bit buswidth */
566 if (chip
->options
& NAND_BUSWIDTH_16
)
568 chip
->cmd_ctrl(mtd
, column
, ctrl
);
569 ctrl
&= ~NAND_CTRL_CHANGE
;
571 if (page_addr
!= -1) {
572 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
573 ctrl
&= ~NAND_CTRL_CHANGE
;
574 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
575 /* One more address cycle for devices > 32MiB */
576 if (chip
->chipsize
> (32 << 20))
577 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
579 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
582 * Program and erase have their own busy handlers status and sequential
587 case NAND_CMD_PAGEPROG
:
588 case NAND_CMD_ERASE1
:
589 case NAND_CMD_ERASE2
:
591 case NAND_CMD_STATUS
:
597 udelay(chip
->chip_delay
);
598 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
599 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
601 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
602 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
606 /* This applies to read commands */
609 * If we don't have access to the busy pin, we apply the given
612 if (!chip
->dev_ready
) {
613 udelay(chip
->chip_delay
);
618 * Apply this short delay always to ensure that we do wait tWB in
619 * any case on any machine.
623 nand_wait_ready(mtd
);
627 * nand_command_lp - [DEFAULT] Send command to NAND large page device
628 * @mtd: MTD device structure
629 * @command: the command to be sent
630 * @column: the column address for this command, -1 if none
631 * @page_addr: the page address for this command, -1 if none
633 * Send command to NAND device. This is the version for the new large page
634 * devices. We don't have the separate regions as we have in the small page
635 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
637 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
638 int column
, int page_addr
)
640 register struct nand_chip
*chip
= mtd
->priv
;
642 /* Emulate NAND_CMD_READOOB */
643 if (command
== NAND_CMD_READOOB
) {
644 column
+= mtd
->writesize
;
645 command
= NAND_CMD_READ0
;
648 /* Command latch cycle */
649 chip
->cmd_ctrl(mtd
, command
& 0xff,
650 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
652 if (column
!= -1 || page_addr
!= -1) {
653 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
655 /* Serially input address */
657 /* Adjust columns for 16 bit buswidth */
658 if (chip
->options
& NAND_BUSWIDTH_16
)
660 chip
->cmd_ctrl(mtd
, column
, ctrl
);
661 ctrl
&= ~NAND_CTRL_CHANGE
;
662 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
664 if (page_addr
!= -1) {
665 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
666 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
667 NAND_NCE
| NAND_ALE
);
668 /* One more address cycle for devices > 128MiB */
669 if (chip
->chipsize
> (128 << 20))
670 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
671 NAND_NCE
| NAND_ALE
);
674 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
677 * Program and erase have their own busy handlers status, sequential
678 * in, and deplete1 need no delay.
682 case NAND_CMD_CACHEDPROG
:
683 case NAND_CMD_PAGEPROG
:
684 case NAND_CMD_ERASE1
:
685 case NAND_CMD_ERASE2
:
688 case NAND_CMD_STATUS
:
689 case NAND_CMD_DEPLETE1
:
692 case NAND_CMD_STATUS_ERROR
:
693 case NAND_CMD_STATUS_ERROR0
:
694 case NAND_CMD_STATUS_ERROR1
:
695 case NAND_CMD_STATUS_ERROR2
:
696 case NAND_CMD_STATUS_ERROR3
:
697 /* Read error status commands require only a short delay */
698 udelay(chip
->chip_delay
);
704 udelay(chip
->chip_delay
);
705 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
706 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
707 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
708 NAND_NCE
| NAND_CTRL_CHANGE
);
709 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
713 case NAND_CMD_RNDOUT
:
714 /* No ready / busy check necessary */
715 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
716 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
717 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
718 NAND_NCE
| NAND_CTRL_CHANGE
);
722 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
723 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
724 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
725 NAND_NCE
| NAND_CTRL_CHANGE
);
727 /* This applies to read commands */
730 * If we don't have access to the busy pin, we apply the given
733 if (!chip
->dev_ready
) {
734 udelay(chip
->chip_delay
);
740 * Apply this short delay always to ensure that we do wait tWB in
741 * any case on any machine.
745 nand_wait_ready(mtd
);
749 * panic_nand_get_device - [GENERIC] Get chip for selected access
750 * @chip: the nand chip descriptor
751 * @mtd: MTD device structure
752 * @new_state: the state which is requested
754 * Used when in panic, no locks are taken.
756 static void panic_nand_get_device(struct nand_chip
*chip
,
757 struct mtd_info
*mtd
, int new_state
)
759 /* Hardware controller shared among independent devices */
760 chip
->controller
->active
= chip
;
761 chip
->state
= new_state
;
765 * nand_get_device - [GENERIC] Get chip for selected access
766 * @chip: the nand chip descriptor
767 * @mtd: MTD device structure
768 * @new_state: the state which is requested
770 * Get the device and lock it for exclusive access
773 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
775 spinlock_t
*lock
= &chip
->controller
->lock
;
776 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
777 DECLARE_WAITQUEUE(wait
, current
);
781 /* Hardware controller shared among independent devices */
782 if (!chip
->controller
->active
)
783 chip
->controller
->active
= chip
;
785 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
786 chip
->state
= new_state
;
790 if (new_state
== FL_PM_SUSPENDED
) {
791 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
792 chip
->state
= FL_PM_SUSPENDED
;
797 set_current_state(TASK_UNINTERRUPTIBLE
);
798 add_wait_queue(wq
, &wait
);
801 remove_wait_queue(wq
, &wait
);
806 * panic_nand_wait - [GENERIC] wait until the command is done
807 * @mtd: MTD device structure
808 * @chip: NAND chip structure
811 * Wait for command done. This is a helper function for nand_wait used when
812 * we are in interrupt context. May happen when in panic and trying to write
813 * an oops through mtdoops.
815 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
819 for (i
= 0; i
< timeo
; i
++) {
820 if (chip
->dev_ready
) {
821 if (chip
->dev_ready(mtd
))
824 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
832 * nand_wait - [DEFAULT] wait until the command is done
833 * @mtd: MTD device structure
834 * @chip: NAND chip structure
836 * Wait for command done. This applies to erase and program only. Erase can
837 * take up to 400ms and program up to 20ms according to general NAND and
840 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
843 unsigned long timeo
= jiffies
;
844 int status
, state
= chip
->state
;
846 if (state
== FL_ERASING
)
847 timeo
+= (HZ
* 400) / 1000;
849 timeo
+= (HZ
* 20) / 1000;
851 led_trigger_event(nand_led_trigger
, LED_FULL
);
854 * Apply this short delay always to ensure that we do wait tWB in any
855 * case on any machine.
859 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
860 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
862 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
864 if (in_interrupt() || oops_in_progress
)
865 panic_nand_wait(mtd
, chip
, timeo
);
867 while (time_before(jiffies
, timeo
)) {
868 if (chip
->dev_ready
) {
869 if (chip
->dev_ready(mtd
))
872 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
878 led_trigger_event(nand_led_trigger
, LED_OFF
);
880 status
= (int)chip
->read_byte(mtd
);
885 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
887 * @ofs: offset to start unlock from
888 * @len: length to unlock
889 * @invert: when = 0, unlock the range of blocks within the lower and
890 * upper boundary address
891 * when = 1, unlock the range of blocks outside the boundaries
892 * of the lower and upper boundary address
894 * Returs unlock status.
896 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
897 uint64_t len
, int invert
)
901 struct nand_chip
*chip
= mtd
->priv
;
903 /* Submit address of first page to unlock */
904 page
= ofs
>> chip
->page_shift
;
905 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
907 /* Submit address of last page to unlock */
908 page
= (ofs
+ len
) >> chip
->page_shift
;
909 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
910 (page
| invert
) & chip
->pagemask
);
912 /* Call wait ready function */
913 status
= chip
->waitfunc(mtd
, chip
);
914 /* See if device thinks it succeeded */
916 pr_debug("%s: error status = 0x%08x\n",
925 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
927 * @ofs: offset to start unlock from
928 * @len: length to unlock
930 * Returns unlock status.
932 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
936 struct nand_chip
*chip
= mtd
->priv
;
938 pr_debug("%s: start = 0x%012llx, len = %llu\n",
939 __func__
, (unsigned long long)ofs
, len
);
941 if (check_offs_len(mtd
, ofs
, len
))
944 /* Align to last block address if size addresses end of the device */
945 if (ofs
+ len
== mtd
->size
)
946 len
-= mtd
->erasesize
;
948 nand_get_device(chip
, mtd
, FL_UNLOCKING
);
950 /* Shift to get chip number */
951 chipnr
= ofs
>> chip
->chip_shift
;
953 chip
->select_chip(mtd
, chipnr
);
955 /* Check, if it is write protected */
956 if (nand_check_wp(mtd
)) {
957 pr_debug("%s: device is write protected!\n",
963 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
966 nand_release_device(mtd
);
970 EXPORT_SYMBOL(nand_unlock
);
973 * nand_lock - [REPLACEABLE] locks all blocks present in the device
975 * @ofs: offset to start unlock from
976 * @len: length to unlock
978 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
979 * have this feature, but it allows only to lock all blocks, not for specified
980 * range for block. Implementing 'lock' feature by making use of 'unlock', for
983 * Returns lock status.
985 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
988 int chipnr
, status
, page
;
989 struct nand_chip
*chip
= mtd
->priv
;
991 pr_debug("%s: start = 0x%012llx, len = %llu\n",
992 __func__
, (unsigned long long)ofs
, len
);
994 if (check_offs_len(mtd
, ofs
, len
))
997 nand_get_device(chip
, mtd
, FL_LOCKING
);
999 /* Shift to get chip number */
1000 chipnr
= ofs
>> chip
->chip_shift
;
1002 chip
->select_chip(mtd
, chipnr
);
1004 /* Check, if it is write protected */
1005 if (nand_check_wp(mtd
)) {
1006 pr_debug("%s: device is write protected!\n",
1008 status
= MTD_ERASE_FAILED
;
1013 /* Submit address of first page to lock */
1014 page
= ofs
>> chip
->page_shift
;
1015 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1017 /* Call wait ready function */
1018 status
= chip
->waitfunc(mtd
, chip
);
1019 /* See if device thinks it succeeded */
1020 if (status
& 0x01) {
1021 pr_debug("%s: error status = 0x%08x\n",
1027 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1030 nand_release_device(mtd
);
1034 EXPORT_SYMBOL(nand_lock
);
1037 * nand_read_page_raw - [INTERN] read raw page data without ecc
1038 * @mtd: mtd info structure
1039 * @chip: nand chip info structure
1040 * @buf: buffer to store read data
1041 * @page: page number to read
1043 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1045 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1046 uint8_t *buf
, int page
)
1048 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1049 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1054 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
1058 * @page: page number to read
1060 * We need a special oob layout and handling even when OOB isn't used.
1062 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1063 struct nand_chip
*chip
,
1064 uint8_t *buf
, int page
)
1066 int eccsize
= chip
->ecc
.size
;
1067 int eccbytes
= chip
->ecc
.bytes
;
1068 uint8_t *oob
= chip
->oob_poi
;
1071 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1072 chip
->read_buf(mtd
, buf
, eccsize
);
1075 if (chip
->ecc
.prepad
) {
1076 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1077 oob
+= chip
->ecc
.prepad
;
1080 chip
->read_buf(mtd
, oob
, eccbytes
);
1083 if (chip
->ecc
.postpad
) {
1084 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1085 oob
+= chip
->ecc
.postpad
;
1089 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1091 chip
->read_buf(mtd
, oob
, size
);
1097 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1098 * @mtd: mtd info structure
1099 * @chip: nand chip info structure
1100 * @buf: buffer to store read data
1101 * @page: page number to read
1103 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1104 uint8_t *buf
, int page
)
1106 int i
, eccsize
= chip
->ecc
.size
;
1107 int eccbytes
= chip
->ecc
.bytes
;
1108 int eccsteps
= chip
->ecc
.steps
;
1110 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1111 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1112 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1114 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
1116 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1117 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1119 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1120 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1122 eccsteps
= chip
->ecc
.steps
;
1125 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1128 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1130 mtd
->ecc_stats
.failed
++;
1132 mtd
->ecc_stats
.corrected
+= stat
;
1138 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1139 * @mtd: mtd info structure
1140 * @chip: nand chip info structure
1141 * @data_offs: offset of requested data within the page
1142 * @readlen: data length
1143 * @bufpoi: buffer to store read data
1145 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1146 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
1148 int start_step
, end_step
, num_steps
;
1149 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1151 int data_col_addr
, i
, gaps
= 0;
1152 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1153 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1156 /* Column address within the page aligned to ECC size (256bytes) */
1157 start_step
= data_offs
/ chip
->ecc
.size
;
1158 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1159 num_steps
= end_step
- start_step
+ 1;
1161 /* Data size aligned to ECC ecc.size */
1162 datafrag_len
= num_steps
* chip
->ecc
.size
;
1163 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1165 data_col_addr
= start_step
* chip
->ecc
.size
;
1166 /* If we read not a page aligned data */
1167 if (data_col_addr
!= 0)
1168 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1170 p
= bufpoi
+ data_col_addr
;
1171 chip
->read_buf(mtd
, p
, datafrag_len
);
1174 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1175 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1178 * The performance is faster if we position offsets according to
1179 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1181 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1182 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
1183 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
1189 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1190 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1193 * Send the command to read the particular ECC bytes take care
1194 * about buswidth alignment in read_buf.
1196 index
= start_step
* chip
->ecc
.bytes
;
1198 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1199 aligned_len
= eccfrag_len
;
1200 if (eccpos
[index
] & (busw
- 1))
1202 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1205 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1206 mtd
->writesize
+ aligned_pos
, -1);
1207 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1210 for (i
= 0; i
< eccfrag_len
; i
++)
1211 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1213 p
= bufpoi
+ data_col_addr
;
1214 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1217 stat
= chip
->ecc
.correct(mtd
, p
,
1218 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1220 mtd
->ecc_stats
.failed
++;
1222 mtd
->ecc_stats
.corrected
+= stat
;
1228 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @buf: buffer to store read data
1232 * @page: page number to read
1234 * Not for syndrome calculating ECC controllers which need a special oob layout.
1236 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1237 uint8_t *buf
, int page
)
1239 int i
, eccsize
= chip
->ecc
.size
;
1240 int eccbytes
= chip
->ecc
.bytes
;
1241 int eccsteps
= chip
->ecc
.steps
;
1243 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1244 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1245 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1247 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1248 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1249 chip
->read_buf(mtd
, p
, eccsize
);
1250 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1252 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1254 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1255 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1257 eccsteps
= chip
->ecc
.steps
;
1260 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1263 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1265 mtd
->ecc_stats
.failed
++;
1267 mtd
->ecc_stats
.corrected
+= stat
;
1273 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1274 * @mtd: mtd info structure
1275 * @chip: nand chip info structure
1276 * @buf: buffer to store read data
1277 * @page: page number to read
1279 * Hardware ECC for large page chips, require OOB to be read first. For this
1280 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283 * the data area, by overwriting the NAND manufacturer bad block markings.
1285 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1286 struct nand_chip
*chip
, uint8_t *buf
, int page
)
1288 int i
, eccsize
= chip
->ecc
.size
;
1289 int eccbytes
= chip
->ecc
.bytes
;
1290 int eccsteps
= chip
->ecc
.steps
;
1292 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1293 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1294 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1296 /* Read the OOB area first */
1297 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1298 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1299 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1301 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1302 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1304 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1307 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1308 chip
->read_buf(mtd
, p
, eccsize
);
1309 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1311 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1313 mtd
->ecc_stats
.failed
++;
1315 mtd
->ecc_stats
.corrected
+= stat
;
1321 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1322 * @mtd: mtd info structure
1323 * @chip: nand chip info structure
1324 * @buf: buffer to store read data
1325 * @page: page number to read
1327 * The hw generator calculates the error syndrome automatically. Therefore we
1328 * need a special oob layout and handling.
1330 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1331 uint8_t *buf
, int page
)
1333 int i
, eccsize
= chip
->ecc
.size
;
1334 int eccbytes
= chip
->ecc
.bytes
;
1335 int eccsteps
= chip
->ecc
.steps
;
1337 uint8_t *oob
= chip
->oob_poi
;
1339 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1342 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1343 chip
->read_buf(mtd
, p
, eccsize
);
1345 if (chip
->ecc
.prepad
) {
1346 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1347 oob
+= chip
->ecc
.prepad
;
1350 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1351 chip
->read_buf(mtd
, oob
, eccbytes
);
1352 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1355 mtd
->ecc_stats
.failed
++;
1357 mtd
->ecc_stats
.corrected
+= stat
;
1361 if (chip
->ecc
.postpad
) {
1362 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1363 oob
+= chip
->ecc
.postpad
;
1367 /* Calculate remaining oob bytes */
1368 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1370 chip
->read_buf(mtd
, oob
, i
);
1376 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1377 * @chip: nand chip structure
1378 * @oob: oob destination address
1379 * @ops: oob ops structure
1380 * @len: size of oob to transfer
1382 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1383 struct mtd_oob_ops
*ops
, size_t len
)
1385 switch (ops
->mode
) {
1387 case MTD_OPS_PLACE_OOB
:
1389 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1392 case MTD_OPS_AUTO_OOB
: {
1393 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1394 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1397 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1398 /* Read request not from offset 0? */
1399 if (unlikely(roffs
)) {
1400 if (roffs
>= free
->length
) {
1401 roffs
-= free
->length
;
1404 boffs
= free
->offset
+ roffs
;
1405 bytes
= min_t(size_t, len
,
1406 (free
->length
- roffs
));
1409 bytes
= min_t(size_t, len
, free
->length
);
1410 boffs
= free
->offset
;
1412 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1424 * nand_do_read_ops - [INTERN] Read data with ECC
1425 * @mtd: MTD device structure
1426 * @from: offset to read from
1427 * @ops: oob ops structure
1429 * Internal function. Called with chip held.
1431 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1432 struct mtd_oob_ops
*ops
)
1434 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1435 struct nand_chip
*chip
= mtd
->priv
;
1436 struct mtd_ecc_stats stats
;
1437 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1440 uint32_t readlen
= ops
->len
;
1441 uint32_t oobreadlen
= ops
->ooblen
;
1442 uint32_t max_oobsize
= ops
->mode
== MTD_OPS_AUTO_OOB
?
1443 mtd
->oobavail
: mtd
->oobsize
;
1445 uint8_t *bufpoi
, *oob
, *buf
;
1447 stats
= mtd
->ecc_stats
;
1449 chipnr
= (int)(from
>> chip
->chip_shift
);
1450 chip
->select_chip(mtd
, chipnr
);
1452 realpage
= (int)(from
>> chip
->page_shift
);
1453 page
= realpage
& chip
->pagemask
;
1455 col
= (int)(from
& (mtd
->writesize
- 1));
1461 bytes
= min(mtd
->writesize
- col
, readlen
);
1462 aligned
= (bytes
== mtd
->writesize
);
1464 /* Is the current page in the buffer? */
1465 if (realpage
!= chip
->pagebuf
|| oob
) {
1466 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1468 if (likely(sndcmd
)) {
1469 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1473 /* Now read the page into the buffer */
1474 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
1475 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1477 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1478 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1479 col
, bytes
, bufpoi
);
1481 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1485 /* Invalidate page cache */
1490 /* Transfer not aligned data */
1492 if (!NAND_SUBPAGE_READ(chip
) && !oob
&&
1493 !(mtd
->ecc_stats
.failed
- stats
.failed
) &&
1494 (ops
->mode
!= MTD_OPS_RAW
))
1495 chip
->pagebuf
= realpage
;
1497 /* Invalidate page cache */
1499 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1504 if (unlikely(oob
)) {
1506 int toread
= min(oobreadlen
, max_oobsize
);
1509 oob
= nand_transfer_oob(chip
,
1511 oobreadlen
-= toread
;
1515 if (!(chip
->options
& NAND_NO_READRDY
)) {
1517 * Apply delay or wait for ready/busy pin. Do
1518 * this before the AUTOINCR check, so no
1519 * problems arise if a chip which does auto
1520 * increment is marked as NOAUTOINCR by the
1523 if (!chip
->dev_ready
)
1524 udelay(chip
->chip_delay
);
1526 nand_wait_ready(mtd
);
1529 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1538 /* For subsequent reads align to page boundary */
1540 /* Increment page address */
1543 page
= realpage
& chip
->pagemask
;
1544 /* Check, if we cross a chip boundary */
1547 chip
->select_chip(mtd
, -1);
1548 chip
->select_chip(mtd
, chipnr
);
1552 * Check, if the chip supports auto page increment or if we
1553 * have hit a block boundary.
1555 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1559 ops
->retlen
= ops
->len
- (size_t) readlen
;
1561 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1566 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1569 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1573 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1574 * @mtd: MTD device structure
1575 * @from: offset to read from
1576 * @len: number of bytes to read
1577 * @retlen: pointer to variable to store the number of read bytes
1578 * @buf: the databuffer to put data
1580 * Get hold of the chip and call nand_do_read.
1582 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1583 size_t *retlen
, uint8_t *buf
)
1585 struct nand_chip
*chip
= mtd
->priv
;
1586 struct mtd_oob_ops ops
;
1589 /* Do not allow reads past end of device */
1590 if ((from
+ len
) > mtd
->size
)
1595 nand_get_device(chip
, mtd
, FL_READING
);
1602 ret
= nand_do_read_ops(mtd
, from
, &ops
);
1604 *retlen
= ops
.retlen
;
1606 nand_release_device(mtd
);
1612 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1613 * @mtd: mtd info structure
1614 * @chip: nand chip info structure
1615 * @page: page number to read
1616 * @sndcmd: flag whether to issue read command or not
1618 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1619 int page
, int sndcmd
)
1622 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1625 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1630 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1632 * @mtd: mtd info structure
1633 * @chip: nand chip info structure
1634 * @page: page number to read
1635 * @sndcmd: flag whether to issue read command or not
1637 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1638 int page
, int sndcmd
)
1640 uint8_t *buf
= chip
->oob_poi
;
1641 int length
= mtd
->oobsize
;
1642 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1643 int eccsize
= chip
->ecc
.size
;
1644 uint8_t *bufpoi
= buf
;
1645 int i
, toread
, sndrnd
= 0, pos
;
1647 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1648 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1650 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1651 if (mtd
->writesize
> 512)
1652 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1654 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1657 toread
= min_t(int, length
, chunk
);
1658 chip
->read_buf(mtd
, bufpoi
, toread
);
1663 chip
->read_buf(mtd
, bufpoi
, length
);
1669 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1670 * @mtd: mtd info structure
1671 * @chip: nand chip info structure
1672 * @page: page number to write
1674 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1678 const uint8_t *buf
= chip
->oob_poi
;
1679 int length
= mtd
->oobsize
;
1681 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1682 chip
->write_buf(mtd
, buf
, length
);
1683 /* Send command to program the OOB data */
1684 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1686 status
= chip
->waitfunc(mtd
, chip
);
1688 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1692 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1693 * with syndrome - only for large page flash
1694 * @mtd: mtd info structure
1695 * @chip: nand chip info structure
1696 * @page: page number to write
1698 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1699 struct nand_chip
*chip
, int page
)
1701 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1702 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1703 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1704 const uint8_t *bufpoi
= chip
->oob_poi
;
1707 * data-ecc-data-ecc ... ecc-oob
1709 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1711 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1712 pos
= steps
* (eccsize
+ chunk
);
1717 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1718 for (i
= 0; i
< steps
; i
++) {
1720 if (mtd
->writesize
<= 512) {
1721 uint32_t fill
= 0xFFFFFFFF;
1725 int num
= min_t(int, len
, 4);
1726 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1731 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1732 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1736 len
= min_t(int, length
, chunk
);
1737 chip
->write_buf(mtd
, bufpoi
, len
);
1742 chip
->write_buf(mtd
, bufpoi
, length
);
1744 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1745 status
= chip
->waitfunc(mtd
, chip
);
1747 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1751 * nand_do_read_oob - [INTERN] NAND read out-of-band
1752 * @mtd: MTD device structure
1753 * @from: offset to read from
1754 * @ops: oob operations description structure
1756 * NAND read out-of-band data from the spare area.
1758 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1759 struct mtd_oob_ops
*ops
)
1761 int page
, realpage
, chipnr
, sndcmd
= 1;
1762 struct nand_chip
*chip
= mtd
->priv
;
1763 struct mtd_ecc_stats stats
;
1764 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1765 int readlen
= ops
->ooblen
;
1767 uint8_t *buf
= ops
->oobbuf
;
1769 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1770 __func__
, (unsigned long long)from
, readlen
);
1772 stats
= mtd
->ecc_stats
;
1774 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1775 len
= chip
->ecc
.layout
->oobavail
;
1779 if (unlikely(ops
->ooboffs
>= len
)) {
1780 pr_debug("%s: attempt to start read outside oob\n",
1785 /* Do not allow reads past end of device */
1786 if (unlikely(from
>= mtd
->size
||
1787 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1788 (from
>> chip
->page_shift
)) * len
)) {
1789 pr_debug("%s: attempt to read beyond end of device\n",
1794 chipnr
= (int)(from
>> chip
->chip_shift
);
1795 chip
->select_chip(mtd
, chipnr
);
1797 /* Shift to get page */
1798 realpage
= (int)(from
>> chip
->page_shift
);
1799 page
= realpage
& chip
->pagemask
;
1802 if (ops
->mode
== MTD_OPS_RAW
)
1803 sndcmd
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
, sndcmd
);
1805 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1807 len
= min(len
, readlen
);
1808 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1810 if (!(chip
->options
& NAND_NO_READRDY
)) {
1812 * Apply delay or wait for ready/busy pin. Do this
1813 * before the AUTOINCR check, so no problems arise if a
1814 * chip which does auto increment is marked as
1815 * NOAUTOINCR by the board driver.
1817 if (!chip
->dev_ready
)
1818 udelay(chip
->chip_delay
);
1820 nand_wait_ready(mtd
);
1827 /* Increment page address */
1830 page
= realpage
& chip
->pagemask
;
1831 /* Check, if we cross a chip boundary */
1834 chip
->select_chip(mtd
, -1);
1835 chip
->select_chip(mtd
, chipnr
);
1839 * Check, if the chip supports auto page increment or if we
1840 * have hit a block boundary.
1842 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1846 ops
->oobretlen
= ops
->ooblen
;
1848 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1851 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1855 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1856 * @mtd: MTD device structure
1857 * @from: offset to read from
1858 * @ops: oob operation description structure
1860 * NAND read data and/or out-of-band data.
1862 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1863 struct mtd_oob_ops
*ops
)
1865 struct nand_chip
*chip
= mtd
->priv
;
1866 int ret
= -ENOTSUPP
;
1870 /* Do not allow reads past end of device */
1871 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1872 pr_debug("%s: attempt to read beyond end of device\n",
1877 nand_get_device(chip
, mtd
, FL_READING
);
1879 switch (ops
->mode
) {
1880 case MTD_OPS_PLACE_OOB
:
1881 case MTD_OPS_AUTO_OOB
:
1890 ret
= nand_do_read_oob(mtd
, from
, ops
);
1892 ret
= nand_do_read_ops(mtd
, from
, ops
);
1895 nand_release_device(mtd
);
1901 * nand_write_page_raw - [INTERN] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1906 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1908 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1911 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1912 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1916 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1917 * @mtd: mtd info structure
1918 * @chip: nand chip info structure
1921 * We need a special oob layout and handling even when ECC isn't checked.
1923 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
1924 struct nand_chip
*chip
,
1927 int eccsize
= chip
->ecc
.size
;
1928 int eccbytes
= chip
->ecc
.bytes
;
1929 uint8_t *oob
= chip
->oob_poi
;
1932 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1933 chip
->write_buf(mtd
, buf
, eccsize
);
1936 if (chip
->ecc
.prepad
) {
1937 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1938 oob
+= chip
->ecc
.prepad
;
1941 chip
->read_buf(mtd
, oob
, eccbytes
);
1944 if (chip
->ecc
.postpad
) {
1945 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1946 oob
+= chip
->ecc
.postpad
;
1950 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1952 chip
->write_buf(mtd
, oob
, size
);
1955 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1956 * @mtd: mtd info structure
1957 * @chip: nand chip info structure
1960 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1963 int i
, eccsize
= chip
->ecc
.size
;
1964 int eccbytes
= chip
->ecc
.bytes
;
1965 int eccsteps
= chip
->ecc
.steps
;
1966 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1967 const uint8_t *p
= buf
;
1968 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1970 /* Software ECC calculation */
1971 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1972 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1974 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1975 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1977 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1981 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1982 * @mtd: mtd info structure
1983 * @chip: nand chip info structure
1986 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1989 int i
, eccsize
= chip
->ecc
.size
;
1990 int eccbytes
= chip
->ecc
.bytes
;
1991 int eccsteps
= chip
->ecc
.steps
;
1992 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1993 const uint8_t *p
= buf
;
1994 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1996 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1997 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1998 chip
->write_buf(mtd
, p
, eccsize
);
1999 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2002 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2003 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2005 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2009 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2010 * @mtd: mtd info structure
2011 * @chip: nand chip info structure
2014 * The hw generator calculates the error syndrome automatically. Therefore we
2015 * need a special oob layout and handling.
2017 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
2018 struct nand_chip
*chip
, const uint8_t *buf
)
2020 int i
, eccsize
= chip
->ecc
.size
;
2021 int eccbytes
= chip
->ecc
.bytes
;
2022 int eccsteps
= chip
->ecc
.steps
;
2023 const uint8_t *p
= buf
;
2024 uint8_t *oob
= chip
->oob_poi
;
2026 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2028 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2029 chip
->write_buf(mtd
, p
, eccsize
);
2031 if (chip
->ecc
.prepad
) {
2032 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2033 oob
+= chip
->ecc
.prepad
;
2036 chip
->ecc
.calculate(mtd
, p
, oob
);
2037 chip
->write_buf(mtd
, oob
, eccbytes
);
2040 if (chip
->ecc
.postpad
) {
2041 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2042 oob
+= chip
->ecc
.postpad
;
2046 /* Calculate remaining oob bytes */
2047 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2049 chip
->write_buf(mtd
, oob
, i
);
2053 * nand_write_page - [REPLACEABLE] write one page
2054 * @mtd: MTD device structure
2055 * @chip: NAND chip descriptor
2056 * @buf: the data to write
2057 * @page: page number to write
2058 * @cached: cached programming
2059 * @raw: use _raw version of write_page
2061 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2062 const uint8_t *buf
, int page
, int cached
, int raw
)
2066 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2069 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
2071 chip
->ecc
.write_page(mtd
, chip
, buf
);
2074 * Cached progamming disabled for now. Not sure if it's worth the
2075 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2079 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
2081 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2082 status
= chip
->waitfunc(mtd
, chip
);
2084 * See if operation failed and additional status checks are
2087 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2088 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2091 if (status
& NAND_STATUS_FAIL
)
2094 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2095 status
= chip
->waitfunc(mtd
, chip
);
2098 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2099 /* Send command to read back the data */
2100 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
2102 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
2109 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2110 * @mtd: MTD device structure
2111 * @oob: oob data buffer
2112 * @len: oob data write length
2113 * @ops: oob ops structure
2115 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2116 struct mtd_oob_ops
*ops
)
2118 struct nand_chip
*chip
= mtd
->priv
;
2121 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2122 * data from a previous OOB read.
2124 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2126 switch (ops
->mode
) {
2128 case MTD_OPS_PLACE_OOB
:
2130 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2133 case MTD_OPS_AUTO_OOB
: {
2134 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2135 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2138 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2139 /* Write request not from offset 0? */
2140 if (unlikely(woffs
)) {
2141 if (woffs
>= free
->length
) {
2142 woffs
-= free
->length
;
2145 boffs
= free
->offset
+ woffs
;
2146 bytes
= min_t(size_t, len
,
2147 (free
->length
- woffs
));
2150 bytes
= min_t(size_t, len
, free
->length
);
2151 boffs
= free
->offset
;
2153 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2164 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2167 * nand_do_write_ops - [INTERN] NAND write with ECC
2168 * @mtd: MTD device structure
2169 * @to: offset to write to
2170 * @ops: oob operations description structure
2172 * NAND write with ECC.
2174 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2175 struct mtd_oob_ops
*ops
)
2177 int chipnr
, realpage
, page
, blockmask
, column
;
2178 struct nand_chip
*chip
= mtd
->priv
;
2179 uint32_t writelen
= ops
->len
;
2181 uint32_t oobwritelen
= ops
->ooblen
;
2182 uint32_t oobmaxlen
= ops
->mode
== MTD_OPS_AUTO_OOB
?
2183 mtd
->oobavail
: mtd
->oobsize
;
2185 uint8_t *oob
= ops
->oobbuf
;
2186 uint8_t *buf
= ops
->datbuf
;
2193 /* Reject writes, which are not page aligned */
2194 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2195 pr_notice("%s: attempt to write non page aligned data\n",
2200 column
= to
& (mtd
->writesize
- 1);
2201 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
2206 chipnr
= (int)(to
>> chip
->chip_shift
);
2207 chip
->select_chip(mtd
, chipnr
);
2209 /* Check, if it is write protected */
2210 if (nand_check_wp(mtd
))
2213 realpage
= (int)(to
>> chip
->page_shift
);
2214 page
= realpage
& chip
->pagemask
;
2215 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2217 /* Invalidate the page cache, when we write to the cached page */
2218 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2219 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2222 /* Don't allow multipage oob writes with offset */
2223 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
))
2227 int bytes
= mtd
->writesize
;
2228 int cached
= writelen
> bytes
&& page
!= blockmask
;
2229 uint8_t *wbuf
= buf
;
2231 /* Partial page write? */
2232 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
2234 bytes
= min_t(int, bytes
- column
, (int) writelen
);
2236 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2237 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2238 wbuf
= chip
->buffers
->databuf
;
2241 if (unlikely(oob
)) {
2242 size_t len
= min(oobwritelen
, oobmaxlen
);
2243 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2246 /* We still need to erase leftover OOB data */
2247 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2250 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
2251 (ops
->mode
== MTD_OPS_RAW
));
2263 page
= realpage
& chip
->pagemask
;
2264 /* Check, if we cross a chip boundary */
2267 chip
->select_chip(mtd
, -1);
2268 chip
->select_chip(mtd
, chipnr
);
2272 ops
->retlen
= ops
->len
- writelen
;
2274 ops
->oobretlen
= ops
->ooblen
;
2279 * panic_nand_write - [MTD Interface] NAND write with ECC
2280 * @mtd: MTD device structure
2281 * @to: offset to write to
2282 * @len: number of bytes to write
2283 * @retlen: pointer to variable to store the number of written bytes
2284 * @buf: the data to write
2286 * NAND write with ECC. Used when performing writes in interrupt context, this
2287 * may for example be called by mtdoops when writing an oops while in panic.
2289 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2290 size_t *retlen
, const uint8_t *buf
)
2292 struct nand_chip
*chip
= mtd
->priv
;
2293 struct mtd_oob_ops ops
;
2296 /* Do not allow reads past end of device */
2297 if ((to
+ len
) > mtd
->size
)
2302 /* Wait for the device to get ready */
2303 panic_nand_wait(mtd
, chip
, 400);
2305 /* Grab the device */
2306 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2309 ops
.datbuf
= (uint8_t *)buf
;
2313 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2315 *retlen
= ops
.retlen
;
2320 * nand_write - [MTD Interface] NAND write with ECC
2321 * @mtd: MTD device structure
2322 * @to: offset to write to
2323 * @len: number of bytes to write
2324 * @retlen: pointer to variable to store the number of written bytes
2325 * @buf: the data to write
2327 * NAND write with ECC.
2329 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2330 size_t *retlen
, const uint8_t *buf
)
2332 struct nand_chip
*chip
= mtd
->priv
;
2333 struct mtd_oob_ops ops
;
2336 /* Do not allow reads past end of device */
2337 if ((to
+ len
) > mtd
->size
)
2342 nand_get_device(chip
, mtd
, FL_WRITING
);
2345 ops
.datbuf
= (uint8_t *)buf
;
2349 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2351 *retlen
= ops
.retlen
;
2353 nand_release_device(mtd
);
2359 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2360 * @mtd: MTD device structure
2361 * @to: offset to write to
2362 * @ops: oob operation description structure
2364 * NAND write out-of-band.
2366 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2367 struct mtd_oob_ops
*ops
)
2369 int chipnr
, page
, status
, len
;
2370 struct nand_chip
*chip
= mtd
->priv
;
2372 pr_debug("%s: to = 0x%08x, len = %i\n",
2373 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2375 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
2376 len
= chip
->ecc
.layout
->oobavail
;
2380 /* Do not allow write past end of page */
2381 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2382 pr_debug("%s: attempt to write past end of page\n",
2387 if (unlikely(ops
->ooboffs
>= len
)) {
2388 pr_debug("%s: attempt to start write outside oob\n",
2393 /* Do not allow write past end of device */
2394 if (unlikely(to
>= mtd
->size
||
2395 ops
->ooboffs
+ ops
->ooblen
>
2396 ((mtd
->size
>> chip
->page_shift
) -
2397 (to
>> chip
->page_shift
)) * len
)) {
2398 pr_debug("%s: attempt to write beyond end of device\n",
2403 chipnr
= (int)(to
>> chip
->chip_shift
);
2404 chip
->select_chip(mtd
, chipnr
);
2406 /* Shift to get page */
2407 page
= (int)(to
>> chip
->page_shift
);
2410 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2411 * of my DiskOnChip 2000 test units) will clear the whole data page too
2412 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2413 * it in the doc2000 driver in August 1999. dwmw2.
2415 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2417 /* Check, if it is write protected */
2418 if (nand_check_wp(mtd
))
2421 /* Invalidate the page cache, if we write to the cached page */
2422 if (page
== chip
->pagebuf
)
2425 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2427 if (ops
->mode
== MTD_OPS_RAW
)
2428 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
2430 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2435 ops
->oobretlen
= ops
->ooblen
;
2441 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2442 * @mtd: MTD device structure
2443 * @to: offset to write to
2444 * @ops: oob operation description structure
2446 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2447 struct mtd_oob_ops
*ops
)
2449 struct nand_chip
*chip
= mtd
->priv
;
2450 int ret
= -ENOTSUPP
;
2454 /* Do not allow writes past end of device */
2455 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2456 pr_debug("%s: attempt to write beyond end of device\n",
2461 nand_get_device(chip
, mtd
, FL_WRITING
);
2463 switch (ops
->mode
) {
2464 case MTD_OPS_PLACE_OOB
:
2465 case MTD_OPS_AUTO_OOB
:
2474 ret
= nand_do_write_oob(mtd
, to
, ops
);
2476 ret
= nand_do_write_ops(mtd
, to
, ops
);
2479 nand_release_device(mtd
);
2484 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2485 * @mtd: MTD device structure
2486 * @page: the page address of the block which will be erased
2488 * Standard erase command for NAND chips.
2490 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2492 struct nand_chip
*chip
= mtd
->priv
;
2493 /* Send commands to erase a block */
2494 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2495 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2499 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2500 * @mtd: MTD device structure
2501 * @page: the page address of the block which will be erased
2503 * AND multi block erase command function. Erase 4 consecutive blocks.
2505 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2507 struct nand_chip
*chip
= mtd
->priv
;
2508 /* Send commands to erase a block */
2509 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2510 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2511 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2512 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2513 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2517 * nand_erase - [MTD Interface] erase block(s)
2518 * @mtd: MTD device structure
2519 * @instr: erase instruction
2521 * Erase one ore more blocks.
2523 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2525 return nand_erase_nand(mtd
, instr
, 0);
2528 #define BBT_PAGE_MASK 0xffffff3f
2530 * nand_erase_nand - [INTERN] erase block(s)
2531 * @mtd: MTD device structure
2532 * @instr: erase instruction
2533 * @allowbbt: allow erasing the bbt area
2535 * Erase one ore more blocks.
2537 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2540 int page
, status
, pages_per_block
, ret
, chipnr
;
2541 struct nand_chip
*chip
= mtd
->priv
;
2542 loff_t rewrite_bbt
[NAND_MAX_CHIPS
] = {0};
2543 unsigned int bbt_masked_page
= 0xffffffff;
2546 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2547 __func__
, (unsigned long long)instr
->addr
,
2548 (unsigned long long)instr
->len
);
2550 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2553 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2555 /* Grab the lock and see if the device is available */
2556 nand_get_device(chip
, mtd
, FL_ERASING
);
2558 /* Shift to get first page */
2559 page
= (int)(instr
->addr
>> chip
->page_shift
);
2560 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2562 /* Calculate pages in each block */
2563 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2565 /* Select the NAND device */
2566 chip
->select_chip(mtd
, chipnr
);
2568 /* Check, if it is write protected */
2569 if (nand_check_wp(mtd
)) {
2570 pr_debug("%s: device is write protected!\n",
2572 instr
->state
= MTD_ERASE_FAILED
;
2577 * If BBT requires refresh, set the BBT page mask to see if the BBT
2578 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2579 * can not be matched. This is also done when the bbt is actually
2580 * erased to avoid recursive updates.
2582 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2583 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2585 /* Loop through the pages */
2588 instr
->state
= MTD_ERASING
;
2591 /* Check if we have a bad block, we do not erase bad blocks! */
2592 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2593 chip
->page_shift
, 0, allowbbt
)) {
2594 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2596 instr
->state
= MTD_ERASE_FAILED
;
2601 * Invalidate the page cache, if we erase the block which
2602 * contains the current cached page.
2604 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2605 (page
+ pages_per_block
))
2608 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2610 status
= chip
->waitfunc(mtd
, chip
);
2613 * See if operation failed and additional status checks are
2616 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2617 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2620 /* See if block erase succeeded */
2621 if (status
& NAND_STATUS_FAIL
) {
2622 pr_debug("%s: failed erase, page 0x%08x\n",
2624 instr
->state
= MTD_ERASE_FAILED
;
2626 ((loff_t
)page
<< chip
->page_shift
);
2631 * If BBT requires refresh, set the BBT rewrite flag to the
2632 * page being erased.
2634 if (bbt_masked_page
!= 0xffffffff &&
2635 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2636 rewrite_bbt
[chipnr
] =
2637 ((loff_t
)page
<< chip
->page_shift
);
2639 /* Increment page address and decrement length */
2640 len
-= (1 << chip
->phys_erase_shift
);
2641 page
+= pages_per_block
;
2643 /* Check, if we cross a chip boundary */
2644 if (len
&& !(page
& chip
->pagemask
)) {
2646 chip
->select_chip(mtd
, -1);
2647 chip
->select_chip(mtd
, chipnr
);
2650 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2651 * page mask to see if this BBT should be rewritten.
2653 if (bbt_masked_page
!= 0xffffffff &&
2654 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2655 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2659 instr
->state
= MTD_ERASE_DONE
;
2663 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2665 /* Deselect and wake up anyone waiting on the device */
2666 nand_release_device(mtd
);
2668 /* Do call back function */
2670 mtd_erase_callback(instr
);
2673 * If BBT requires refresh and erase was successful, rewrite any
2674 * selected bad block tables.
2676 if (bbt_masked_page
== 0xffffffff || ret
)
2679 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2680 if (!rewrite_bbt
[chipnr
])
2682 /* Update the BBT for chip */
2683 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2684 __func__
, chipnr
, rewrite_bbt
[chipnr
],
2685 chip
->bbt_td
->pages
[chipnr
]);
2686 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2689 /* Return more or less happy */
2694 * nand_sync - [MTD Interface] sync
2695 * @mtd: MTD device structure
2697 * Sync is actually a wait for chip ready function.
2699 static void nand_sync(struct mtd_info
*mtd
)
2701 struct nand_chip
*chip
= mtd
->priv
;
2703 pr_debug("%s: called\n", __func__
);
2705 /* Grab the lock and see if the device is available */
2706 nand_get_device(chip
, mtd
, FL_SYNCING
);
2707 /* Release it and go back */
2708 nand_release_device(mtd
);
2712 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2713 * @mtd: MTD device structure
2714 * @offs: offset relative to mtd start
2716 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2718 /* Check for invalid offset */
2719 if (offs
> mtd
->size
)
2722 return nand_block_checkbad(mtd
, offs
, 1, 0);
2726 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2727 * @mtd: MTD device structure
2728 * @ofs: offset relative to mtd start
2730 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2732 struct nand_chip
*chip
= mtd
->priv
;
2735 ret
= nand_block_isbad(mtd
, ofs
);
2737 /* If it was bad already, return success and do nothing */
2743 return chip
->block_markbad(mtd
, ofs
);
2747 * nand_suspend - [MTD Interface] Suspend the NAND flash
2748 * @mtd: MTD device structure
2750 static int nand_suspend(struct mtd_info
*mtd
)
2752 struct nand_chip
*chip
= mtd
->priv
;
2754 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2758 * nand_resume - [MTD Interface] Resume the NAND flash
2759 * @mtd: MTD device structure
2761 static void nand_resume(struct mtd_info
*mtd
)
2763 struct nand_chip
*chip
= mtd
->priv
;
2765 if (chip
->state
== FL_PM_SUSPENDED
)
2766 nand_release_device(mtd
);
2768 pr_err("%s called for a chip which is not in suspended state\n",
2772 /* Set default functions */
2773 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2775 /* check for proper chip_delay setup, set 20us if not */
2776 if (!chip
->chip_delay
)
2777 chip
->chip_delay
= 20;
2779 /* check, if a user supplied command function given */
2780 if (chip
->cmdfunc
== NULL
)
2781 chip
->cmdfunc
= nand_command
;
2783 /* check, if a user supplied wait function given */
2784 if (chip
->waitfunc
== NULL
)
2785 chip
->waitfunc
= nand_wait
;
2787 if (!chip
->select_chip
)
2788 chip
->select_chip
= nand_select_chip
;
2789 if (!chip
->read_byte
)
2790 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2791 if (!chip
->read_word
)
2792 chip
->read_word
= nand_read_word
;
2793 if (!chip
->block_bad
)
2794 chip
->block_bad
= nand_block_bad
;
2795 if (!chip
->block_markbad
)
2796 chip
->block_markbad
= nand_default_block_markbad
;
2797 if (!chip
->write_buf
)
2798 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2799 if (!chip
->read_buf
)
2800 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2801 if (!chip
->verify_buf
)
2802 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2803 if (!chip
->scan_bbt
)
2804 chip
->scan_bbt
= nand_default_bbt
;
2806 if (!chip
->controller
) {
2807 chip
->controller
= &chip
->hwcontrol
;
2808 spin_lock_init(&chip
->controller
->lock
);
2809 init_waitqueue_head(&chip
->controller
->wq
);
2814 /* Sanitize ONFI strings so we can safely print them */
2815 static void sanitize_string(uint8_t *s
, size_t len
)
2819 /* Null terminate */
2822 /* Remove non printable chars */
2823 for (i
= 0; i
< len
- 1; i
++) {
2824 if (s
[i
] < ' ' || s
[i
] > 127)
2828 /* Remove trailing spaces */
2832 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
2837 for (i
= 0; i
< 8; i
++)
2838 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
2845 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2847 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2850 struct nand_onfi_params
*p
= &chip
->onfi_params
;
2854 /* Try ONFI for unknown chip or LP */
2855 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
2856 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
2857 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
2860 pr_info("ONFI flash detected\n");
2861 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
2862 for (i
= 0; i
< 3; i
++) {
2863 chip
->read_buf(mtd
, (uint8_t *)p
, sizeof(*p
));
2864 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
2865 le16_to_cpu(p
->crc
)) {
2866 pr_info("ONFI param page %d valid\n", i
);
2875 val
= le16_to_cpu(p
->revision
);
2877 chip
->onfi_version
= 23;
2878 else if (val
& (1 << 4))
2879 chip
->onfi_version
= 22;
2880 else if (val
& (1 << 3))
2881 chip
->onfi_version
= 21;
2882 else if (val
& (1 << 2))
2883 chip
->onfi_version
= 20;
2884 else if (val
& (1 << 1))
2885 chip
->onfi_version
= 10;
2887 chip
->onfi_version
= 0;
2889 if (!chip
->onfi_version
) {
2890 pr_info("%s: unsupported ONFI version: %d\n", __func__
, val
);
2894 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
2895 sanitize_string(p
->model
, sizeof(p
->model
));
2897 mtd
->name
= p
->model
;
2898 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
2899 mtd
->erasesize
= le32_to_cpu(p
->pages_per_block
) * mtd
->writesize
;
2900 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
2901 chip
->chipsize
= (uint64_t)le32_to_cpu(p
->blocks_per_lun
) * mtd
->erasesize
;
2903 if (le16_to_cpu(p
->features
) & 1)
2904 *busw
= NAND_BUSWIDTH_16
;
2906 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2907 chip
->options
|= (NAND_NO_READRDY
|
2908 NAND_NO_AUTOINCR
) & NAND_CHIPOPTIONS_MSK
;
2914 * Get the flash and manufacturer id and lookup if the type is supported.
2916 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2917 struct nand_chip
*chip
,
2919 int *maf_id
, int *dev_id
,
2920 struct nand_flash_dev
*type
)
2926 /* Select the device */
2927 chip
->select_chip(mtd
, 0);
2930 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2933 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2935 /* Send the command for reading device ID */
2936 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2938 /* Read manufacturer and device IDs */
2939 *maf_id
= chip
->read_byte(mtd
);
2940 *dev_id
= chip
->read_byte(mtd
);
2943 * Try again to make sure, as some systems the bus-hold or other
2944 * interface concerns can cause random data which looks like a
2945 * possibly credible NAND flash to appear. If the two results do
2946 * not match, ignore the device completely.
2949 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2951 for (i
= 0; i
< 2; i
++)
2952 id_data
[i
] = chip
->read_byte(mtd
);
2954 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
2955 pr_info("%s: second ID read did not match "
2956 "%02x,%02x against %02x,%02x\n", __func__
,
2957 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
2958 return ERR_PTR(-ENODEV
);
2962 type
= nand_flash_ids
;
2964 for (; type
->name
!= NULL
; type
++)
2965 if (*dev_id
== type
->id
)
2968 chip
->onfi_version
= 0;
2969 if (!type
->name
|| !type
->pagesize
) {
2970 /* Check is chip is ONFI compliant */
2971 ret
= nand_flash_detect_onfi(mtd
, chip
, &busw
);
2976 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2978 /* Read entire ID string */
2980 for (i
= 0; i
< 8; i
++)
2981 id_data
[i
] = chip
->read_byte(mtd
);
2984 return ERR_PTR(-ENODEV
);
2987 mtd
->name
= type
->name
;
2989 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2991 if (!type
->pagesize
&& chip
->init_size
) {
2992 /* Set the pagesize, oobsize, erasesize by the driver */
2993 busw
= chip
->init_size(mtd
, chip
, id_data
);
2994 } else if (!type
->pagesize
) {
2996 /* The 3rd id byte holds MLC / multichip data */
2997 chip
->cellinfo
= id_data
[2];
2998 /* The 4th id byte is the important one */
3002 * Field definitions are in the following datasheets:
3003 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3004 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
3006 * Check for wraparound + Samsung ID + nonzero 6th byte
3007 * to decide what to do.
3009 if (id_data
[0] == id_data
[6] && id_data
[1] == id_data
[7] &&
3010 id_data
[0] == NAND_MFR_SAMSUNG
&&
3011 (chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3012 id_data
[5] != 0x00) {
3014 mtd
->writesize
= 2048 << (extid
& 0x03);
3017 switch (extid
& 0x03) {
3032 /* Calc blocksize */
3033 mtd
->erasesize
= (128 * 1024) <<
3034 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3038 mtd
->writesize
= 1024 << (extid
& 0x03);
3041 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3042 (mtd
->writesize
>> 9);
3044 /* Calc blocksize. Blocksize is multiples of 64KiB */
3045 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3047 /* Get buswidth information */
3048 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3052 * Old devices have chip data hardcoded in the device id table.
3054 mtd
->erasesize
= type
->erasesize
;
3055 mtd
->writesize
= type
->pagesize
;
3056 mtd
->oobsize
= mtd
->writesize
/ 32;
3057 busw
= type
->options
& NAND_BUSWIDTH_16
;
3060 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3061 * some Spansion chips have erasesize that conflicts with size
3062 * listed in nand_ids table.
3063 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3065 if (*maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 &&
3066 id_data
[5] == 0x00 && id_data
[6] == 0x00 &&
3067 id_data
[7] == 0x00 && mtd
->writesize
== 512) {
3068 mtd
->erasesize
= 128 * 1024;
3069 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3072 /* Get chip options, preserve non chip based options */
3073 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
3074 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
3077 * Check if chip is not a Samsung device. Do not clear the
3078 * options for chips which do not have an extended id.
3080 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3081 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3085 * Set chip as a default. Board drivers can override it, if necessary.
3087 chip
->options
|= NAND_NO_AUTOINCR
;
3089 /* Try to identify manufacturer */
3090 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3091 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3096 * Check, if buswidth is correct. Hardware drivers should set
3099 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3100 pr_info("NAND device: Manufacturer ID:"
3101 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
3102 *dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3103 pr_warn("NAND bus width %d instead %d bit\n",
3104 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3106 return ERR_PTR(-EINVAL
);
3109 /* Calculate the address shift from the page size */
3110 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3111 /* Convert chipsize to number of pages per chip -1 */
3112 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3114 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3115 ffs(mtd
->erasesize
) - 1;
3116 if (chip
->chipsize
& 0xffffffff)
3117 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3119 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3120 chip
->chip_shift
+= 32 - 1;
3123 chip
->badblockbits
= 8;
3125 /* Set the bad block position */
3126 if (mtd
->writesize
> 512 || (busw
& NAND_BUSWIDTH_16
))
3127 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3129 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3132 * Bad block marker is stored in the last page of each block
3133 * on Samsung and Hynix MLC devices; stored in first two pages
3134 * of each block on Micron devices with 2KiB pages and on
3135 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3136 * All others scan only the first page.
3138 if ((chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3139 (*maf_id
== NAND_MFR_SAMSUNG
||
3140 *maf_id
== NAND_MFR_HYNIX
))
3141 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3142 else if ((!(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3143 (*maf_id
== NAND_MFR_SAMSUNG
||
3144 *maf_id
== NAND_MFR_HYNIX
||
3145 *maf_id
== NAND_MFR_TOSHIBA
||
3146 *maf_id
== NAND_MFR_AMD
||
3147 *maf_id
== NAND_MFR_MACRONIX
)) ||
3148 (mtd
->writesize
== 2048 &&
3149 *maf_id
== NAND_MFR_MICRON
))
3150 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3152 /* Check for AND chips with 4 page planes */
3153 if (chip
->options
& NAND_4PAGE_ARRAY
)
3154 chip
->erase_cmd
= multi_erase_cmd
;
3156 chip
->erase_cmd
= single_erase_cmd
;
3158 /* Do not replace user supplied command function! */
3159 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3160 chip
->cmdfunc
= nand_command_lp
;
3162 pr_info("NAND device: Manufacturer ID:"
3163 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, *dev_id
,
3164 nand_manuf_ids
[maf_idx
].name
,
3165 chip
->onfi_version
? chip
->onfi_params
.model
: type
->name
);
3171 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3172 * @mtd: MTD device structure
3173 * @maxchips: number of chips to scan for
3174 * @table: alternative NAND ID table
3176 * This is the first phase of the normal nand_scan() function. It reads the
3177 * flash ID and sets up MTD fields accordingly.
3179 * The mtd->owner field must be set to the module of the caller.
3181 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3182 struct nand_flash_dev
*table
)
3184 int i
, busw
, nand_maf_id
, nand_dev_id
;
3185 struct nand_chip
*chip
= mtd
->priv
;
3186 struct nand_flash_dev
*type
;
3188 /* Get buswidth to select the correct functions */
3189 busw
= chip
->options
& NAND_BUSWIDTH_16
;
3190 /* Set the default functions */
3191 nand_set_defaults(chip
, busw
);
3193 /* Read the flash type */
3194 type
= nand_get_flash_type(mtd
, chip
, busw
,
3195 &nand_maf_id
, &nand_dev_id
, table
);
3198 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3199 pr_warn("No NAND device found\n");
3200 chip
->select_chip(mtd
, -1);
3201 return PTR_ERR(type
);
3204 /* Check for a chip array */
3205 for (i
= 1; i
< maxchips
; i
++) {
3206 chip
->select_chip(mtd
, i
);
3207 /* See comment in nand_get_flash_type for reset */
3208 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3209 /* Send the command for reading device ID */
3210 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3211 /* Read manufacturer and device IDs */
3212 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3213 nand_dev_id
!= chip
->read_byte(mtd
))
3217 pr_info("%d NAND chips detected\n", i
);
3219 /* Store the number of chips and calc total size for mtd */
3221 mtd
->size
= i
* chip
->chipsize
;
3225 EXPORT_SYMBOL(nand_scan_ident
);
3229 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3230 * @mtd: MTD device structure
3232 * This is the second phase of the normal nand_scan() function. It fills out
3233 * all the uninitialized function pointers with the defaults and scans for a
3234 * bad block table if appropriate.
3236 int nand_scan_tail(struct mtd_info
*mtd
)
3239 struct nand_chip
*chip
= mtd
->priv
;
3241 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3242 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
3246 /* Set the internal oob buffer location, just after the page data */
3247 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3250 * If no default placement scheme is given, select an appropriate one.
3252 if (!chip
->ecc
.layout
&& (chip
->ecc
.mode
!= NAND_ECC_SOFT_BCH
)) {
3253 switch (mtd
->oobsize
) {
3255 chip
->ecc
.layout
= &nand_oob_8
;
3258 chip
->ecc
.layout
= &nand_oob_16
;
3261 chip
->ecc
.layout
= &nand_oob_64
;
3264 chip
->ecc
.layout
= &nand_oob_128
;
3267 pr_warn("No oob scheme defined for oobsize %d\n",
3273 if (!chip
->write_page
)
3274 chip
->write_page
= nand_write_page
;
3277 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3278 * selected and we have 256 byte pagesize fallback to software ECC
3281 switch (chip
->ecc
.mode
) {
3282 case NAND_ECC_HW_OOB_FIRST
:
3283 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3284 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3286 pr_warn("No ECC functions supplied; "
3287 "hardware ECC not possible\n");
3290 if (!chip
->ecc
.read_page
)
3291 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
3294 /* Use standard hwecc read page function? */
3295 if (!chip
->ecc
.read_page
)
3296 chip
->ecc
.read_page
= nand_read_page_hwecc
;
3297 if (!chip
->ecc
.write_page
)
3298 chip
->ecc
.write_page
= nand_write_page_hwecc
;
3299 if (!chip
->ecc
.read_page_raw
)
3300 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3301 if (!chip
->ecc
.write_page_raw
)
3302 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3303 if (!chip
->ecc
.read_oob
)
3304 chip
->ecc
.read_oob
= nand_read_oob_std
;
3305 if (!chip
->ecc
.write_oob
)
3306 chip
->ecc
.write_oob
= nand_write_oob_std
;
3308 case NAND_ECC_HW_SYNDROME
:
3309 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3310 !chip
->ecc
.hwctl
) &&
3311 (!chip
->ecc
.read_page
||
3312 chip
->ecc
.read_page
== nand_read_page_hwecc
||
3313 !chip
->ecc
.write_page
||
3314 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
3315 pr_warn("No ECC functions supplied; "
3316 "hardware ECC not possible\n");
3319 /* Use standard syndrome read/write page function? */
3320 if (!chip
->ecc
.read_page
)
3321 chip
->ecc
.read_page
= nand_read_page_syndrome
;
3322 if (!chip
->ecc
.write_page
)
3323 chip
->ecc
.write_page
= nand_write_page_syndrome
;
3324 if (!chip
->ecc
.read_page_raw
)
3325 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
3326 if (!chip
->ecc
.write_page_raw
)
3327 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
3328 if (!chip
->ecc
.read_oob
)
3329 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
3330 if (!chip
->ecc
.write_oob
)
3331 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
3333 if (mtd
->writesize
>= chip
->ecc
.size
)
3335 pr_warn("%d byte HW ECC not possible on "
3336 "%d byte page size, fallback to SW ECC\n",
3337 chip
->ecc
.size
, mtd
->writesize
);
3338 chip
->ecc
.mode
= NAND_ECC_SOFT
;
3341 chip
->ecc
.calculate
= nand_calculate_ecc
;
3342 chip
->ecc
.correct
= nand_correct_data
;
3343 chip
->ecc
.read_page
= nand_read_page_swecc
;
3344 chip
->ecc
.read_subpage
= nand_read_subpage
;
3345 chip
->ecc
.write_page
= nand_write_page_swecc
;
3346 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3347 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3348 chip
->ecc
.read_oob
= nand_read_oob_std
;
3349 chip
->ecc
.write_oob
= nand_write_oob_std
;
3350 if (!chip
->ecc
.size
)
3351 chip
->ecc
.size
= 256;
3352 chip
->ecc
.bytes
= 3;
3355 case NAND_ECC_SOFT_BCH
:
3356 if (!mtd_nand_has_bch()) {
3357 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3360 chip
->ecc
.calculate
= nand_bch_calculate_ecc
;
3361 chip
->ecc
.correct
= nand_bch_correct_data
;
3362 chip
->ecc
.read_page
= nand_read_page_swecc
;
3363 chip
->ecc
.read_subpage
= nand_read_subpage
;
3364 chip
->ecc
.write_page
= nand_write_page_swecc
;
3365 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3366 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3367 chip
->ecc
.read_oob
= nand_read_oob_std
;
3368 chip
->ecc
.write_oob
= nand_write_oob_std
;
3370 * Board driver should supply ecc.size and ecc.bytes values to
3371 * select how many bits are correctable; see nand_bch_init()
3372 * for details. Otherwise, default to 4 bits for large page
3375 if (!chip
->ecc
.size
&& (mtd
->oobsize
>= 64)) {
3376 chip
->ecc
.size
= 512;
3377 chip
->ecc
.bytes
= 7;
3379 chip
->ecc
.priv
= nand_bch_init(mtd
,
3383 if (!chip
->ecc
.priv
) {
3384 pr_warn("BCH ECC initialization failed!\n");
3390 pr_warn("NAND_ECC_NONE selected by board driver. "
3391 "This is not recommended!\n");
3392 chip
->ecc
.read_page
= nand_read_page_raw
;
3393 chip
->ecc
.write_page
= nand_write_page_raw
;
3394 chip
->ecc
.read_oob
= nand_read_oob_std
;
3395 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3396 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3397 chip
->ecc
.write_oob
= nand_write_oob_std
;
3398 chip
->ecc
.size
= mtd
->writesize
;
3399 chip
->ecc
.bytes
= 0;
3403 pr_warn("Invalid NAND_ECC_MODE %d\n", chip
->ecc
.mode
);
3407 /* For many systems, the standard OOB write also works for raw */
3408 if (!chip
->ecc
.read_oob_raw
)
3409 chip
->ecc
.read_oob_raw
= chip
->ecc
.read_oob
;
3410 if (!chip
->ecc
.write_oob_raw
)
3411 chip
->ecc
.write_oob_raw
= chip
->ecc
.write_oob
;
3414 * The number of bytes available for a client to place data into
3415 * the out of band area.
3417 chip
->ecc
.layout
->oobavail
= 0;
3418 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
3419 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
3420 chip
->ecc
.layout
->oobavail
+=
3421 chip
->ecc
.layout
->oobfree
[i
].length
;
3422 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
3425 * Set the number of read / write steps for one page depending on ECC
3428 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
3429 if (chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
3430 pr_warn("Invalid ECC parameters\n");
3433 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
3435 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3436 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
3437 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
3438 switch (chip
->ecc
.steps
) {
3440 mtd
->subpage_sft
= 1;
3445 mtd
->subpage_sft
= 2;
3449 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3451 /* Initialize state */
3452 chip
->state
= FL_READY
;
3454 /* De-select the device */
3455 chip
->select_chip(mtd
, -1);
3457 /* Invalidate the pagebuffer reference */
3460 /* Fill in remaining MTD driver data */
3461 mtd
->type
= MTD_NANDFLASH
;
3462 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
3464 mtd
->erase
= nand_erase
;
3466 mtd
->unpoint
= NULL
;
3467 mtd
->read
= nand_read
;
3468 mtd
->write
= nand_write
;
3469 mtd
->panic_write
= panic_nand_write
;
3470 mtd
->read_oob
= nand_read_oob
;
3471 mtd
->write_oob
= nand_write_oob
;
3472 mtd
->sync
= nand_sync
;
3475 mtd
->suspend
= nand_suspend
;
3476 mtd
->resume
= nand_resume
;
3477 mtd
->block_isbad
= nand_block_isbad
;
3478 mtd
->block_markbad
= nand_block_markbad
;
3479 mtd
->writebufsize
= mtd
->writesize
;
3481 /* propagate ecc.layout to mtd_info */
3482 mtd
->ecclayout
= chip
->ecc
.layout
;
3484 /* Check, if we should skip the bad block table scan */
3485 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3488 /* Build bad block table */
3489 return chip
->scan_bbt(mtd
);
3491 EXPORT_SYMBOL(nand_scan_tail
);
3494 * is_module_text_address() isn't exported, and it's mostly a pointless
3495 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3496 * to call us from in-kernel code if the core NAND support is modular.
3499 #define caller_is_module() (1)
3501 #define caller_is_module() \
3502 is_module_text_address((unsigned long)__builtin_return_address(0))
3506 * nand_scan - [NAND Interface] Scan for the NAND device
3507 * @mtd: MTD device structure
3508 * @maxchips: number of chips to scan for
3510 * This fills out all the uninitialized function pointers with the defaults.
3511 * The flash ID is read and the mtd/chip structures are filled with the
3512 * appropriate values. The mtd->owner field must be set to the module of the
3515 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3519 /* Many callers got this wrong, so check for it for a while... */
3520 if (!mtd
->owner
&& caller_is_module()) {
3521 pr_crit("%s called with NULL mtd->owner!\n", __func__
);
3525 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
3527 ret
= nand_scan_tail(mtd
);
3530 EXPORT_SYMBOL(nand_scan
);
3533 * nand_release - [NAND Interface] Free resources held by the NAND device
3534 * @mtd: MTD device structure
3536 void nand_release(struct mtd_info
*mtd
)
3538 struct nand_chip
*chip
= mtd
->priv
;
3540 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
3541 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
3543 mtd_device_unregister(mtd
);
3545 /* Free bad block table memory */
3547 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3548 kfree(chip
->buffers
);
3550 /* Free bad block descriptor memory */
3551 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
3552 & NAND_BBT_DYNAMICSTRUCT
)
3553 kfree(chip
->badblock_pattern
);
3555 EXPORT_SYMBOL_GPL(nand_release
);
3557 static int __init
nand_base_init(void)
3559 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
3563 static void __exit
nand_base_exit(void)
3565 led_trigger_unregister_simple(nand_led_trigger
);
3568 module_init(nand_base_init
);
3569 module_exit(nand_base_exit
);
3571 MODULE_LICENSE("GPL");
3572 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3573 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3574 MODULE_DESCRIPTION("Generic NAND flash driver code");