OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / mtd / nand / nand_bcm_umi.h
blob198b304d6f7298ce61b049af9d382fcb744b92ca
1 /*****************************************************************************
2 * Copyright 2003 - 2009 Broadcom Corporation. All rights reserved.
4 * Unless you and Broadcom execute a separate written software license
5 * agreement governing use of this software, this software is licensed to you
6 * under the terms of the GNU General Public License version 2, available at
7 * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
9 * Notwithstanding the above, under no circumstances may you combine this
10 * software in any way with any other Broadcom software provided under a
11 * license other than the GPL, without Broadcom's express prior written
12 * consent.
13 *****************************************************************************/
14 #ifndef NAND_BCM_UMI_H
15 #define NAND_BCM_UMI_H
17 /* ---- Include Files ---------------------------------------------------- */
18 #include <mach/reg_umi.h>
19 #include <mach/reg_nand.h>
20 #include <cfg_global.h>
22 /* ---- Constants and Types ---------------------------------------------- */
23 #if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
24 #define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
25 #else
26 #define NAND_ECC_BCH 0
27 #endif
29 #define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13
31 #if NAND_ECC_BCH
32 #ifdef BOOT0_BUILD
33 #define NAND_ECC_NUM_BYTES 13
34 #else
35 #define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES
36 #endif
37 #else
38 #define NAND_ECC_NUM_BYTES 3
39 #endif
41 #define NAND_DATA_ACCESS_SIZE 512
43 /* ---- Variable Externs ------------------------------------------ */
44 /* ---- Function Prototypes --------------------------------------- */
45 int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
46 int numEccBytes);
48 /* Check in device is ready */
49 static inline int nand_bcm_umi_dev_ready(void)
51 return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY;
54 /* Wait until device is ready */
55 static inline void nand_bcm_umi_wait_till_ready(void)
57 while (nand_bcm_umi_dev_ready() == 0)
61 /* Enable Hamming ECC */
62 static inline void nand_bcm_umi_hamming_enable_hwecc(void)
64 /* disable and reset ECC, 512 byte page */
65 REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
66 REG_UMI_NAND_ECC_CSR_256BYTE);
67 /* enable ECC */
68 REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE;
71 #if NAND_ECC_BCH
72 /* BCH ECC specifics */
73 #define ECC_BITS_PER_CORRECTABLE_BIT 13
75 /* Enable BCH Read ECC */
76 static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
78 /* disable and reset ECC */
79 REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
80 /* Turn on ECC */
81 REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
84 /* Enable BCH Write ECC */
85 static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
87 /* disable and reset ECC */
88 REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
89 /* Turn on ECC */
90 REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
93 /* Config number of BCH ECC bytes */
94 static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
96 uint32_t nValue;
97 uint32_t tValue;
98 uint32_t kValue;
99 uint32_t numBits = numEccBytes * 8;
101 /* disable and reset ECC */
102 REG_UMI_BCH_CTRL_STATUS =
103 REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
104 REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
106 /* Every correctible bit requires 13 ECC bits */
107 tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);
109 /* Total data in number of bits for generating and computing BCH ECC */
110 nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
112 /* K parameter is used internally. K = N - (T * 13) */
113 kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);
115 /* Write the settings */
116 REG_UMI_BCH_N = nValue;
117 REG_UMI_BCH_T = tValue;
118 REG_UMI_BCH_K = kValue;
121 /* Pause during ECC read calculation to skip bytes in OOB */
122 static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
124 REG_UMI_BCH_CTRL_STATUS =
125 REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
126 REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
129 /* Resume during ECC read calculation after skipping bytes in OOB */
130 static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
132 REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
135 /* Poll read ECC calc to check when hardware completes */
136 static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
138 uint32_t regVal;
140 do {
141 /* wait for ECC to be valid */
142 regVal = REG_UMI_BCH_CTRL_STATUS;
143 } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
145 return regVal;
148 /* Poll write ECC calc to check when hardware completes */
149 static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
151 /* wait for ECC to be valid */
152 while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
153 == 0)
157 /* Read the OOB and ECC, for kernel write OOB to a buffer */
158 #if defined(__KERNEL__) && !defined(STANDALONE)
159 static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
160 uint8_t *eccCalc, int numEccBytes, uint8_t *oobp)
161 #else
162 static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
163 uint8_t *eccCalc, int numEccBytes)
164 #endif
166 int eccPos = 0;
167 int numToRead = 16; /* There are 16 bytes per sector in the OOB */
169 /* ECC is already paused when this function is called */
170 if (pageSize != NAND_DATA_ACCESS_SIZE) {
171 /* skip BI */
172 #if defined(__KERNEL__) && !defined(STANDALONE)
173 *oobp++ = REG_NAND_DATA8;
174 #else
175 REG_NAND_DATA8;
176 #endif
177 numToRead--;
180 while (numToRead > numEccBytes) {
181 /* skip free oob region */
182 #if defined(__KERNEL__) && !defined(STANDALONE)
183 *oobp++ = REG_NAND_DATA8;
184 #else
185 REG_NAND_DATA8;
186 #endif
187 numToRead--;
190 if (pageSize == NAND_DATA_ACCESS_SIZE) {
191 /* read ECC bytes before BI */
192 nand_bcm_umi_bch_resume_read_ecc_calc();
194 while (numToRead > 11) {
195 #if defined(__KERNEL__) && !defined(STANDALONE)
196 *oobp = REG_NAND_DATA8;
197 eccCalc[eccPos++] = *oobp;
198 oobp++;
199 #else
200 eccCalc[eccPos++] = REG_NAND_DATA8;
201 #endif
202 numToRead--;
205 nand_bcm_umi_bch_pause_read_ecc_calc();
207 if (numToRead == 11) {
208 /* read BI */
209 #if defined(__KERNEL__) && !defined(STANDALONE)
210 *oobp++ = REG_NAND_DATA8;
211 #else
212 REG_NAND_DATA8;
213 #endif
214 numToRead--;
218 /* read ECC bytes */
219 nand_bcm_umi_bch_resume_read_ecc_calc();
220 while (numToRead) {
221 #if defined(__KERNEL__) && !defined(STANDALONE)
222 *oobp = REG_NAND_DATA8;
223 eccCalc[eccPos++] = *oobp;
224 oobp++;
225 #else
226 eccCalc[eccPos++] = REG_NAND_DATA8;
227 #endif
228 numToRead--;
232 /* Helper function to write ECC */
233 static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos,
234 uint8_t *oobp, uint8_t eccVal)
236 if (eccBytePos <= numEccBytes)
237 *oobp = eccVal;
240 /* Write OOB with ECC */
241 static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
242 uint8_t *oobp, int numEccBytes)
244 uint32_t eccVal = 0xffffffff;
246 /* wait for write ECC to be valid */
247 nand_bcm_umi_bch_poll_write_ecc_calc();
250 ** Get the hardware ecc from the 32-bit result registers.
251 ** Read after 512 byte accesses. Format B3B2B1B0
252 ** where B3 = ecc3, etc.
255 if (pageSize == NAND_DATA_ACCESS_SIZE) {
256 /* Now fill in the ECC bytes */
257 if (numEccBytes >= 13)
258 eccVal = REG_UMI_BCH_WR_ECC_3;
260 /* Usually we skip CM in oob[0,1] */
261 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
262 (eccVal >> 16) & 0xff);
263 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1],
264 (eccVal >> 8) & 0xff);
266 /* Write ECC in oob[2,3,4] */
267 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2],
268 eccVal & 0xff); /* ECC 12 */
270 if (numEccBytes >= 9)
271 eccVal = REG_UMI_BCH_WR_ECC_2;
273 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
274 (eccVal >> 24) & 0xff); /* ECC11 */
275 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4],
276 (eccVal >> 16) & 0xff); /* ECC10 */
278 /* Always Skip BI in oob[5] */
279 } else {
280 /* Always Skip BI in oob[0] */
282 /* Now fill in the ECC bytes */
283 if (numEccBytes >= 13)
284 eccVal = REG_UMI_BCH_WR_ECC_3;
286 /* Usually skip CM in oob[1,2] */
287 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
288 (eccVal >> 16) & 0xff);
289 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2],
290 (eccVal >> 8) & 0xff);
292 /* Write ECC in oob[3-15] */
293 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3],
294 eccVal & 0xff); /* ECC12 */
296 if (numEccBytes >= 9)
297 eccVal = REG_UMI_BCH_WR_ECC_2;
299 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
300 (eccVal >> 24) & 0xff); /* ECC11 */
301 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5],
302 (eccVal >> 16) & 0xff); /* ECC10 */
305 /* Fill in the remainder of ECC locations */
306 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6],
307 (eccVal >> 8) & 0xff); /* ECC9 */
308 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7],
309 eccVal & 0xff); /* ECC8 */
311 if (numEccBytes >= 5)
312 eccVal = REG_UMI_BCH_WR_ECC_1;
314 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
315 (eccVal >> 24) & 0xff); /* ECC7 */
316 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9],
317 (eccVal >> 16) & 0xff); /* ECC6 */
318 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10],
319 (eccVal >> 8) & 0xff); /* ECC5 */
320 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11],
321 eccVal & 0xff); /* ECC4 */
323 if (numEccBytes >= 1)
324 eccVal = REG_UMI_BCH_WR_ECC_0;
326 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
327 (eccVal >> 24) & 0xff); /* ECC3 */
328 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13],
329 (eccVal >> 16) & 0xff); /* ECC2 */
330 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14],
331 (eccVal >> 8) & 0xff); /* ECC1 */
332 NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15],
333 eccVal & 0xff); /* ECC0 */
335 #endif
337 #endif /* NAND_BCM_UMI_H */