OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / net / dsa / mv88e6xxx.c
bloba2c62c2f30ee40f7ecb11d460958cae0f5c94e80
1 /*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 */
11 #include <linux/list.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/phy.h>
15 #include <net/dsa.h>
16 #include "mv88e6xxx.h"
19 * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
20 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
21 * will be directly accessible on some {device address,register address}
22 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
23 * will only respond to SMI transactions to that specific address, and
24 * an indirect addressing mechanism needs to be used to access its
25 * registers.
27 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
29 int ret;
30 int i;
32 for (i = 0; i < 16; i++) {
33 ret = mdiobus_read(bus, sw_addr, 0);
34 if (ret < 0)
35 return ret;
37 if ((ret & 0x8000) == 0)
38 return 0;
41 return -ETIMEDOUT;
44 int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
46 int ret;
48 if (sw_addr == 0)
49 return mdiobus_read(bus, addr, reg);
52 * Wait for the bus to become free.
54 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
55 if (ret < 0)
56 return ret;
59 * Transmit the read command.
61 ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
62 if (ret < 0)
63 return ret;
66 * Wait for the read command to complete.
68 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
69 if (ret < 0)
70 return ret;
73 * Read the data.
75 ret = mdiobus_read(bus, sw_addr, 1);
76 if (ret < 0)
77 return ret;
79 return ret & 0xffff;
82 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
84 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
85 int ret;
87 mutex_lock(&ps->smi_mutex);
88 ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
89 ds->pd->sw_addr, addr, reg);
90 mutex_unlock(&ps->smi_mutex);
92 return ret;
95 int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
96 int reg, u16 val)
98 int ret;
100 if (sw_addr == 0)
101 return mdiobus_write(bus, addr, reg, val);
104 * Wait for the bus to become free.
106 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
107 if (ret < 0)
108 return ret;
111 * Transmit the data to write.
113 ret = mdiobus_write(bus, sw_addr, 1, val);
114 if (ret < 0)
115 return ret;
118 * Transmit the write command.
120 ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
121 if (ret < 0)
122 return ret;
125 * Wait for the write command to complete.
127 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
128 if (ret < 0)
129 return ret;
131 return 0;
134 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
136 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
137 int ret;
139 mutex_lock(&ps->smi_mutex);
140 ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
141 ds->pd->sw_addr, addr, reg, val);
142 mutex_unlock(&ps->smi_mutex);
144 return ret;
147 int mv88e6xxx_config_prio(struct dsa_switch *ds)
150 * Configure the IP ToS mapping registers.
152 REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
153 REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
154 REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
155 REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
156 REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
157 REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
158 REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
159 REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
162 * Configure the IEEE 802.1p priority mapping register.
164 REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
166 return 0;
169 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
171 REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
172 REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
173 REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
175 return 0;
178 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
180 int i;
181 int ret;
183 for (i = 0; i < 6; i++) {
184 int j;
187 * Write the MAC address byte.
189 REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
192 * Wait for the write to complete.
194 for (j = 0; j < 16; j++) {
195 ret = REG_READ(REG_GLOBAL2, 0x0d);
196 if ((ret & 0x8000) == 0)
197 break;
199 if (j == 16)
200 return -ETIMEDOUT;
203 return 0;
206 int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
208 if (addr >= 0)
209 return mv88e6xxx_reg_read(ds, addr, regnum);
210 return 0xffff;
213 int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
215 if (addr >= 0)
216 return mv88e6xxx_reg_write(ds, addr, regnum, val);
217 return 0;
220 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
221 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
223 int ret;
224 int i;
226 ret = REG_READ(REG_GLOBAL, 0x04);
227 REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
229 for (i = 0; i < 1000; i++) {
230 ret = REG_READ(REG_GLOBAL, 0x00);
231 msleep(1);
232 if ((ret & 0xc000) != 0xc000)
233 return 0;
236 return -ETIMEDOUT;
239 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
241 int ret;
242 int i;
244 ret = REG_READ(REG_GLOBAL, 0x04);
245 REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
247 for (i = 0; i < 1000; i++) {
248 ret = REG_READ(REG_GLOBAL, 0x00);
249 msleep(1);
250 if ((ret & 0xc000) == 0xc000)
251 return 0;
254 return -ETIMEDOUT;
257 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
259 struct mv88e6xxx_priv_state *ps;
261 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
262 if (mutex_trylock(&ps->ppu_mutex)) {
263 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
265 if (mv88e6xxx_ppu_enable(ds) == 0)
266 ps->ppu_disabled = 0;
267 mutex_unlock(&ps->ppu_mutex);
271 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
273 struct mv88e6xxx_priv_state *ps = (void *)_ps;
275 schedule_work(&ps->ppu_work);
278 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
280 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
281 int ret;
283 mutex_lock(&ps->ppu_mutex);
286 * If the PHY polling unit is enabled, disable it so that
287 * we can access the PHY registers. If it was already
288 * disabled, cancel the timer that is going to re-enable
289 * it.
291 if (!ps->ppu_disabled) {
292 ret = mv88e6xxx_ppu_disable(ds);
293 if (ret < 0) {
294 mutex_unlock(&ps->ppu_mutex);
295 return ret;
297 ps->ppu_disabled = 1;
298 } else {
299 del_timer(&ps->ppu_timer);
300 ret = 0;
303 return ret;
306 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
308 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
311 * Schedule a timer to re-enable the PHY polling unit.
313 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
314 mutex_unlock(&ps->ppu_mutex);
317 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
319 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
321 mutex_init(&ps->ppu_mutex);
322 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
323 init_timer(&ps->ppu_timer);
324 ps->ppu_timer.data = (unsigned long)ps;
325 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
328 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
330 int ret;
332 ret = mv88e6xxx_ppu_access_get(ds);
333 if (ret >= 0) {
334 ret = mv88e6xxx_reg_read(ds, addr, regnum);
335 mv88e6xxx_ppu_access_put(ds);
338 return ret;
341 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
342 int regnum, u16 val)
344 int ret;
346 ret = mv88e6xxx_ppu_access_get(ds);
347 if (ret >= 0) {
348 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
349 mv88e6xxx_ppu_access_put(ds);
352 return ret;
354 #endif
356 void mv88e6xxx_poll_link(struct dsa_switch *ds)
358 int i;
360 for (i = 0; i < DSA_MAX_PORTS; i++) {
361 struct net_device *dev;
362 int uninitialized_var(port_status);
363 int link;
364 int speed;
365 int duplex;
366 int fc;
368 dev = ds->ports[i];
369 if (dev == NULL)
370 continue;
372 link = 0;
373 if (dev->flags & IFF_UP) {
374 port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
375 if (port_status < 0)
376 continue;
378 link = !!(port_status & 0x0800);
381 if (!link) {
382 if (netif_carrier_ok(dev)) {
383 printk(KERN_INFO "%s: link down\n", dev->name);
384 netif_carrier_off(dev);
386 continue;
389 switch (port_status & 0x0300) {
390 case 0x0000:
391 speed = 10;
392 break;
393 case 0x0100:
394 speed = 100;
395 break;
396 case 0x0200:
397 speed = 1000;
398 break;
399 default:
400 speed = -1;
401 break;
403 duplex = (port_status & 0x0400) ? 1 : 0;
404 fc = (port_status & 0x8000) ? 1 : 0;
406 if (!netif_carrier_ok(dev)) {
407 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
408 "flow control %sabled\n", dev->name,
409 speed, duplex ? "full" : "half",
410 fc ? "en" : "dis");
411 netif_carrier_on(dev);
416 static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
418 int ret;
419 int i;
421 for (i = 0; i < 10; i++) {
422 ret = REG_READ(REG_GLOBAL, 0x1d);
423 if ((ret & 0x8000) == 0)
424 return 0;
427 return -ETIMEDOUT;
430 static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
432 int ret;
435 * Snapshot the hardware statistics counters for this port.
437 REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
440 * Wait for the snapshotting to complete.
442 ret = mv88e6xxx_stats_wait(ds);
443 if (ret < 0)
444 return ret;
446 return 0;
449 static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
451 u32 _val;
452 int ret;
454 *val = 0;
456 ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
457 if (ret < 0)
458 return;
460 ret = mv88e6xxx_stats_wait(ds);
461 if (ret < 0)
462 return;
464 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
465 if (ret < 0)
466 return;
468 _val = ret << 16;
470 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
471 if (ret < 0)
472 return;
474 *val = _val | ret;
477 void mv88e6xxx_get_strings(struct dsa_switch *ds,
478 int nr_stats, struct mv88e6xxx_hw_stat *stats,
479 int port, uint8_t *data)
481 int i;
483 for (i = 0; i < nr_stats; i++) {
484 memcpy(data + i * ETH_GSTRING_LEN,
485 stats[i].string, ETH_GSTRING_LEN);
489 void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
490 int nr_stats, struct mv88e6xxx_hw_stat *stats,
491 int port, uint64_t *data)
493 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
494 int ret;
495 int i;
497 mutex_lock(&ps->stats_mutex);
499 ret = mv88e6xxx_stats_snapshot(ds, port);
500 if (ret < 0) {
501 mutex_unlock(&ps->stats_mutex);
502 return;
506 * Read each of the counters.
508 for (i = 0; i < nr_stats; i++) {
509 struct mv88e6xxx_hw_stat *s = stats + i;
510 u32 low;
511 u32 high;
513 mv88e6xxx_stats_read(ds, s->reg, &low);
514 if (s->sizeof_stat == 8)
515 mv88e6xxx_stats_read(ds, s->reg + 1, &high);
516 else
517 high = 0;
519 data[i] = (((u64)high) << 32) | low;
522 mutex_unlock(&ps->stats_mutex);
525 static int __init mv88e6xxx_init(void)
527 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
528 register_switch_driver(&mv88e6131_switch_driver);
529 #endif
530 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
531 register_switch_driver(&mv88e6123_61_65_switch_driver);
532 #endif
533 return 0;
535 module_init(mv88e6xxx_init);
537 static void __exit mv88e6xxx_cleanup(void)
539 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
540 unregister_switch_driver(&mv88e6123_61_65_switch_driver);
541 #endif
542 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
543 unregister_switch_driver(&mv88e6131_switch_driver);
544 #endif
546 module_exit(mv88e6xxx_cleanup);
548 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
549 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
550 MODULE_LICENSE("GPL");