OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
blobd963c1d57f71590afef3aabc94b81a686c8ed061
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
36 #include <linux/module.h>
37 #include <linux/moduleparam.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/debugfs.h>
44 #include <linux/ethtool.h>
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_msg.h"
53 * Generic information about the driver.
55 #define DRV_VERSION "1.0.0"
56 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
59 * Module Parameters.
60 * ==================
64 * Default ethtool "message level" for adapters.
66 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
67 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
68 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70 static int dflt_msg_enable = DFLT_MSG_ENABLE;
72 module_param(dflt_msg_enable, int, 0644);
73 MODULE_PARM_DESC(dflt_msg_enable,
74 "default adapter ethtool message level bitmap");
77 * The driver uses the best interrupt scheme available on a platform in the
78 * order MSI-X then MSI. This parameter determines which of these schemes the
79 * driver may consider as follows:
81 * msi = 2: choose from among MSI-X and MSI
82 * msi = 1: only consider MSI interrupts
84 * Note that unlike the Physical Function driver, this Virtual Function driver
85 * does _not_ support legacy INTx interrupts (this limitation is mandated by
86 * the PCI-E SR-IOV standard).
88 #define MSI_MSIX 2
89 #define MSI_MSI 1
90 #define MSI_DEFAULT MSI_MSIX
92 static int msi = MSI_DEFAULT;
94 module_param(msi, int, 0644);
95 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
98 * Fundamental constants.
99 * ======================
102 enum {
103 MAX_TXQ_ENTRIES = 16384,
104 MAX_RSPQ_ENTRIES = 16384,
105 MAX_RX_BUFFERS = 16384,
107 MIN_TXQ_ENTRIES = 32,
108 MIN_RSPQ_ENTRIES = 128,
109 MIN_FL_ENTRIES = 16,
112 * For purposes of manipulating the Free List size we need to
113 * recognize that Free Lists are actually Egress Queues (the host
114 * produces free buffers which the hardware consumes), Egress Queues
115 * indices are all in units of Egress Context Units bytes, and free
116 * list entries are 64-bit PCI DMA addresses. And since the state of
117 * the Producer Index == the Consumer Index implies an EMPTY list, we
118 * always have at least one Egress Unit's worth of Free List entries
119 * unused. See sge.c for more details ...
121 EQ_UNIT = SGE_EQ_IDXSIZE,
122 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
123 MIN_FL_RESID = FL_PER_EQ_UNIT,
127 * Global driver state.
128 * ====================
131 static struct dentry *cxgb4vf_debugfs_root;
134 * OS "Callback" functions.
135 * ========================
139 * The link status has changed on the indicated "port" (Virtual Interface).
141 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143 struct net_device *dev = adapter->port[pidx];
146 * If the port is disabled or the current recorded "link up"
147 * status matches the new status, just return.
149 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
150 return;
153 * Tell the OS that the link status has changed and print a short
154 * informative message on the console about the event.
156 if (link_ok) {
157 const char *s;
158 const char *fc;
159 const struct port_info *pi = netdev_priv(dev);
161 netif_carrier_on(dev);
163 switch (pi->link_cfg.speed) {
164 case SPEED_10000:
165 s = "10Gbps";
166 break;
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
172 case SPEED_100:
173 s = "100Mbps";
174 break;
176 default:
177 s = "unknown";
178 break;
181 switch (pi->link_cfg.fc) {
182 case PAUSE_RX:
183 fc = "RX";
184 break;
186 case PAUSE_TX:
187 fc = "TX";
188 break;
190 case PAUSE_RX|PAUSE_TX:
191 fc = "RX/TX";
192 break;
194 default:
195 fc = "no";
196 break;
199 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
200 dev->name, s, fc);
201 } else {
202 netif_carrier_off(dev);
203 printk(KERN_INFO "%s: link down\n", dev->name);
208 * Net device operations.
209 * ======================
216 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
217 * Interface).
219 static int link_start(struct net_device *dev)
221 int ret;
222 struct port_info *pi = netdev_priv(dev);
225 * We do not set address filters and promiscuity here, the stack does
226 * that step explicitly. Enable vlan accel.
228 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
229 true);
230 if (ret == 0) {
231 ret = t4vf_change_mac(pi->adapter, pi->viid,
232 pi->xact_addr_filt, dev->dev_addr, true);
233 if (ret >= 0) {
234 pi->xact_addr_filt = ret;
235 ret = 0;
240 * We don't need to actually "start the link" itself since the
241 * firmware will do that for us when the first Virtual Interface
242 * is enabled on a port.
244 if (ret == 0)
245 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
246 return ret;
250 * Name the MSI-X interrupts.
252 static void name_msix_vecs(struct adapter *adapter)
254 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
255 int pidx;
258 * Firmware events.
260 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
261 "%s-FWeventq", adapter->name);
262 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
265 * Ethernet queues.
267 for_each_port(adapter, pidx) {
268 struct net_device *dev = adapter->port[pidx];
269 const struct port_info *pi = netdev_priv(dev);
270 int qs, msi;
272 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
273 snprintf(adapter->msix_info[msi].desc, namelen,
274 "%s-%d", dev->name, qs);
275 adapter->msix_info[msi].desc[namelen] = 0;
281 * Request all of our MSI-X resources.
283 static int request_msix_queue_irqs(struct adapter *adapter)
285 struct sge *s = &adapter->sge;
286 int rxq, msi, err;
289 * Firmware events.
291 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
292 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
293 if (err)
294 return err;
297 * Ethernet queues.
299 msi = MSIX_IQFLINT;
300 for_each_ethrxq(s, rxq) {
301 err = request_irq(adapter->msix_info[msi].vec,
302 t4vf_sge_intr_msix, 0,
303 adapter->msix_info[msi].desc,
304 &s->ethrxq[rxq].rspq);
305 if (err)
306 goto err_free_irqs;
307 msi++;
309 return 0;
311 err_free_irqs:
312 while (--rxq >= 0)
313 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
314 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
315 return err;
319 * Free our MSI-X resources.
321 static void free_msix_queue_irqs(struct adapter *adapter)
323 struct sge *s = &adapter->sge;
324 int rxq, msi;
326 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
327 msi = MSIX_IQFLINT;
328 for_each_ethrxq(s, rxq)
329 free_irq(adapter->msix_info[msi++].vec,
330 &s->ethrxq[rxq].rspq);
334 * Turn on NAPI and start up interrupts on a response queue.
336 static void qenable(struct sge_rspq *rspq)
338 napi_enable(&rspq->napi);
341 * 0-increment the Going To Sleep register to start the timer and
342 * enable interrupts.
344 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
345 CIDXINC(0) |
346 SEINTARM(rspq->intr_params) |
347 INGRESSQID(rspq->cntxt_id));
351 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
353 static void enable_rx(struct adapter *adapter)
355 int rxq;
356 struct sge *s = &adapter->sge;
358 for_each_ethrxq(s, rxq)
359 qenable(&s->ethrxq[rxq].rspq);
360 qenable(&s->fw_evtq);
363 * The interrupt queue doesn't use NAPI so we do the 0-increment of
364 * its Going To Sleep register here to get it started.
366 if (adapter->flags & USING_MSI)
367 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
368 CIDXINC(0) |
369 SEINTARM(s->intrq.intr_params) |
370 INGRESSQID(s->intrq.cntxt_id));
375 * Wait until all NAPI handlers are descheduled.
377 static void quiesce_rx(struct adapter *adapter)
379 struct sge *s = &adapter->sge;
380 int rxq;
382 for_each_ethrxq(s, rxq)
383 napi_disable(&s->ethrxq[rxq].rspq.napi);
384 napi_disable(&s->fw_evtq.napi);
388 * Response queue handler for the firmware event queue.
390 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
391 const struct pkt_gl *gl)
394 * Extract response opcode and get pointer to CPL message body.
396 struct adapter *adapter = rspq->adapter;
397 u8 opcode = ((const struct rss_header *)rsp)->opcode;
398 void *cpl = (void *)(rsp + 1);
400 switch (opcode) {
401 case CPL_FW6_MSG: {
403 * We've received an asynchronous message from the firmware.
405 const struct cpl_fw6_msg *fw_msg = cpl;
406 if (fw_msg->type == FW6_TYPE_CMD_RPL)
407 t4vf_handle_fw_rpl(adapter, fw_msg->data);
408 break;
411 case CPL_SGE_EGR_UPDATE: {
413 * We've received an Egress Queue Status Update message. We
414 * get these, if the SGE is configured to send these when the
415 * firmware passes certain points in processing our TX
416 * Ethernet Queue or if we make an explicit request for one.
417 * We use these updates to determine when we may need to
418 * restart a TX Ethernet Queue which was stopped for lack of
419 * free TX Queue Descriptors ...
421 const struct cpl_sge_egr_update *p = (void *)cpl;
422 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
423 struct sge *s = &adapter->sge;
424 struct sge_txq *tq;
425 struct sge_eth_txq *txq;
426 unsigned int eq_idx;
429 * Perform sanity checking on the Queue ID to make sure it
430 * really refers to one of our TX Ethernet Egress Queues which
431 * is active and matches the queue's ID. None of these error
432 * conditions should ever happen so we may want to either make
433 * them fatal and/or conditionalized under DEBUG.
435 eq_idx = EQ_IDX(s, qid);
436 if (unlikely(eq_idx >= MAX_EGRQ)) {
437 dev_err(adapter->pdev_dev,
438 "Egress Update QID %d out of range\n", qid);
439 break;
441 tq = s->egr_map[eq_idx];
442 if (unlikely(tq == NULL)) {
443 dev_err(adapter->pdev_dev,
444 "Egress Update QID %d TXQ=NULL\n", qid);
445 break;
447 txq = container_of(tq, struct sge_eth_txq, q);
448 if (unlikely(tq->abs_id != qid)) {
449 dev_err(adapter->pdev_dev,
450 "Egress Update QID %d refers to TXQ %d\n",
451 qid, tq->abs_id);
452 break;
456 * Restart a stopped TX Queue which has less than half of its
457 * TX ring in use ...
459 txq->q.restarts++;
460 netif_tx_wake_queue(txq->txq);
461 break;
464 default:
465 dev_err(adapter->pdev_dev,
466 "unexpected CPL %#x on FW event queue\n", opcode);
469 return 0;
473 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
474 * to use and initializes them. We support multiple "Queue Sets" per port if
475 * we have MSI-X, otherwise just one queue set per port.
477 static int setup_sge_queues(struct adapter *adapter)
479 struct sge *s = &adapter->sge;
480 int err, pidx, msix;
483 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
484 * state.
486 bitmap_zero(s->starving_fl, MAX_EGRQ);
489 * If we're using MSI interrupt mode we need to set up a "forwarded
490 * interrupt" queue which we'll set up with our MSI vector. The rest
491 * of the ingress queues will be set up to forward their interrupts to
492 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
493 * the intrq's queue ID as the interrupt forwarding queue for the
494 * subsequent calls ...
496 if (adapter->flags & USING_MSI) {
497 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
498 adapter->port[0], 0, NULL, NULL);
499 if (err)
500 goto err_free_queues;
504 * Allocate our ingress queue for asynchronous firmware messages.
506 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
507 MSIX_FW, NULL, fwevtq_handler);
508 if (err)
509 goto err_free_queues;
512 * Allocate each "port"'s initial Queue Sets. These can be changed
513 * later on ... up to the point where any interface on the adapter is
514 * brought up at which point lots of things get nailed down
515 * permanently ...
517 msix = MSIX_IQFLINT;
518 for_each_port(adapter, pidx) {
519 struct net_device *dev = adapter->port[pidx];
520 struct port_info *pi = netdev_priv(dev);
521 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
522 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
523 int qs;
525 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
526 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
527 dev, msix++,
528 &rxq->fl, t4vf_ethrx_handler);
529 if (err)
530 goto err_free_queues;
532 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
533 netdev_get_tx_queue(dev, qs),
534 s->fw_evtq.cntxt_id);
535 if (err)
536 goto err_free_queues;
538 rxq->rspq.idx = qs;
539 memset(&rxq->stats, 0, sizeof(rxq->stats));
544 * Create the reverse mappings for the queues.
546 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
547 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
548 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
549 for_each_port(adapter, pidx) {
550 struct net_device *dev = adapter->port[pidx];
551 struct port_info *pi = netdev_priv(dev);
552 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
553 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
554 int qs;
556 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
557 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
558 EQ_MAP(s, txq->q.abs_id) = &txq->q;
561 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
562 * for Free Lists but since all of the Egress Queues
563 * (including Free Lists) have Relative Queue IDs
564 * which are computed as Absolute - Base Queue ID, we
565 * can synthesize the Absolute Queue IDs for the Free
566 * Lists. This is useful for debugging purposes when
567 * we want to dump Queue Contexts via the PF Driver.
569 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
570 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
573 return 0;
575 err_free_queues:
576 t4vf_free_sge_resources(adapter);
577 return err;
581 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
582 * queues. We configure the RSS CPU lookup table to distribute to the number
583 * of HW receive queues, and the response queue lookup table to narrow that
584 * down to the response queues actually configured for each "port" (Virtual
585 * Interface). We always configure the RSS mapping for all ports since the
586 * mapping table has plenty of entries.
588 static int setup_rss(struct adapter *adapter)
590 int pidx;
592 for_each_port(adapter, pidx) {
593 struct port_info *pi = adap2pinfo(adapter, pidx);
594 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
595 u16 rss[MAX_PORT_QSETS];
596 int qs, err;
598 for (qs = 0; qs < pi->nqsets; qs++)
599 rss[qs] = rxq[qs].rspq.abs_id;
601 err = t4vf_config_rss_range(adapter, pi->viid,
602 0, pi->rss_size, rss, pi->nqsets);
603 if (err)
604 return err;
607 * Perform Global RSS Mode-specific initialization.
609 switch (adapter->params.rss.mode) {
610 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
612 * If Tunnel All Lookup isn't specified in the global
613 * RSS Configuration, then we need to specify a
614 * default Ingress Queue for any ingress packets which
615 * aren't hashed. We'll use our first ingress queue
616 * ...
618 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
619 union rss_vi_config config;
620 err = t4vf_read_rss_vi_config(adapter,
621 pi->viid,
622 &config);
623 if (err)
624 return err;
625 config.basicvirtual.defaultq =
626 rxq[0].rspq.abs_id;
627 err = t4vf_write_rss_vi_config(adapter,
628 pi->viid,
629 &config);
630 if (err)
631 return err;
633 break;
637 return 0;
641 * Bring the adapter up. Called whenever we go from no "ports" open to having
642 * one open. This function performs the actions necessary to make an adapter
643 * operational, such as completing the initialization of HW modules, and
644 * enabling interrupts. Must be called with the rtnl lock held. (Note that
645 * this is called "cxgb_up" in the PF Driver.)
647 static int adapter_up(struct adapter *adapter)
649 int err;
652 * If this is the first time we've been called, perform basic
653 * adapter setup. Once we've done this, many of our adapter
654 * parameters can no longer be changed ...
656 if ((adapter->flags & FULL_INIT_DONE) == 0) {
657 err = setup_sge_queues(adapter);
658 if (err)
659 return err;
660 err = setup_rss(adapter);
661 if (err) {
662 t4vf_free_sge_resources(adapter);
663 return err;
666 if (adapter->flags & USING_MSIX)
667 name_msix_vecs(adapter);
668 adapter->flags |= FULL_INIT_DONE;
672 * Acquire our interrupt resources. We only support MSI-X and MSI.
674 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
675 if (adapter->flags & USING_MSIX)
676 err = request_msix_queue_irqs(adapter);
677 else
678 err = request_irq(adapter->pdev->irq,
679 t4vf_intr_handler(adapter), 0,
680 adapter->name, adapter);
681 if (err) {
682 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
683 err);
684 return err;
688 * Enable NAPI ingress processing and return success.
690 enable_rx(adapter);
691 t4vf_sge_start(adapter);
692 return 0;
696 * Bring the adapter down. Called whenever the last "port" (Virtual
697 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
698 * Driver.)
700 static void adapter_down(struct adapter *adapter)
703 * Free interrupt resources.
705 if (adapter->flags & USING_MSIX)
706 free_msix_queue_irqs(adapter);
707 else
708 free_irq(adapter->pdev->irq, adapter);
711 * Wait for NAPI handlers to finish.
713 quiesce_rx(adapter);
717 * Start up a net device.
719 static int cxgb4vf_open(struct net_device *dev)
721 int err;
722 struct port_info *pi = netdev_priv(dev);
723 struct adapter *adapter = pi->adapter;
726 * If this is the first interface that we're opening on the "adapter",
727 * bring the "adapter" up now.
729 if (adapter->open_device_map == 0) {
730 err = adapter_up(adapter);
731 if (err)
732 return err;
736 * Note that this interface is up and start everything up ...
738 netif_set_real_num_tx_queues(dev, pi->nqsets);
739 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
740 if (err)
741 goto err_unwind;
742 err = link_start(dev);
743 if (err)
744 goto err_unwind;
746 netif_tx_start_all_queues(dev);
747 set_bit(pi->port_id, &adapter->open_device_map);
748 return 0;
750 err_unwind:
751 if (adapter->open_device_map == 0)
752 adapter_down(adapter);
753 return err;
757 * Shut down a net device. This routine is called "cxgb_close" in the PF
758 * Driver ...
760 static int cxgb4vf_stop(struct net_device *dev)
762 struct port_info *pi = netdev_priv(dev);
763 struct adapter *adapter = pi->adapter;
765 netif_tx_stop_all_queues(dev);
766 netif_carrier_off(dev);
767 t4vf_enable_vi(adapter, pi->viid, false, false);
768 pi->link_cfg.link_ok = 0;
770 clear_bit(pi->port_id, &adapter->open_device_map);
771 if (adapter->open_device_map == 0)
772 adapter_down(adapter);
773 return 0;
777 * Translate our basic statistics into the standard "ifconfig" statistics.
779 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
781 struct t4vf_port_stats stats;
782 struct port_info *pi = netdev2pinfo(dev);
783 struct adapter *adapter = pi->adapter;
784 struct net_device_stats *ns = &dev->stats;
785 int err;
787 spin_lock(&adapter->stats_lock);
788 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
789 spin_unlock(&adapter->stats_lock);
791 memset(ns, 0, sizeof(*ns));
792 if (err)
793 return ns;
795 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
796 stats.tx_ucast_bytes + stats.tx_offload_bytes);
797 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
798 stats.tx_ucast_frames + stats.tx_offload_frames);
799 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
800 stats.rx_ucast_bytes);
801 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
802 stats.rx_ucast_frames);
803 ns->multicast = stats.rx_mcast_frames;
804 ns->tx_errors = stats.tx_drop_frames;
805 ns->rx_errors = stats.rx_err_frames;
807 return ns;
811 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
812 * at a specified offset within the list, into an array of addrss pointers and
813 * return the number collected.
815 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
816 const u8 **addr,
817 unsigned int offset,
818 unsigned int maxaddrs)
820 unsigned int index = 0;
821 unsigned int naddr = 0;
822 const struct netdev_hw_addr *ha;
824 for_each_dev_addr(dev, ha)
825 if (index++ >= offset) {
826 addr[naddr++] = ha->addr;
827 if (naddr >= maxaddrs)
828 break;
830 return naddr;
834 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
835 * at a specified offset within the list, into an array of addrss pointers and
836 * return the number collected.
838 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
839 const u8 **addr,
840 unsigned int offset,
841 unsigned int maxaddrs)
843 unsigned int index = 0;
844 unsigned int naddr = 0;
845 const struct netdev_hw_addr *ha;
847 netdev_for_each_mc_addr(ha, dev)
848 if (index++ >= offset) {
849 addr[naddr++] = ha->addr;
850 if (naddr >= maxaddrs)
851 break;
853 return naddr;
857 * Configure the exact and hash address filters to handle a port's multicast
858 * and secondary unicast MAC addresses.
860 static int set_addr_filters(const struct net_device *dev, bool sleep)
862 u64 mhash = 0;
863 u64 uhash = 0;
864 bool free = true;
865 unsigned int offset, naddr;
866 const u8 *addr[7];
867 int ret;
868 const struct port_info *pi = netdev_priv(dev);
870 /* first do the secondary unicast addresses */
871 for (offset = 0; ; offset += naddr) {
872 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
873 ARRAY_SIZE(addr));
874 if (naddr == 0)
875 break;
877 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
878 naddr, addr, NULL, &uhash, sleep);
879 if (ret < 0)
880 return ret;
882 free = false;
885 /* next set up the multicast addresses */
886 for (offset = 0; ; offset += naddr) {
887 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
888 ARRAY_SIZE(addr));
889 if (naddr == 0)
890 break;
892 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
893 naddr, addr, NULL, &mhash, sleep);
894 if (ret < 0)
895 return ret;
896 free = false;
899 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
900 uhash | mhash, sleep);
904 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
905 * If @mtu is -1 it is left unchanged.
907 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
909 int ret;
910 struct port_info *pi = netdev_priv(dev);
912 ret = set_addr_filters(dev, sleep_ok);
913 if (ret == 0)
914 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
915 (dev->flags & IFF_PROMISC) != 0,
916 (dev->flags & IFF_ALLMULTI) != 0,
917 1, -1, sleep_ok);
918 return ret;
922 * Set the current receive modes on the device.
924 static void cxgb4vf_set_rxmode(struct net_device *dev)
926 /* unfortunately we can't return errors to the stack */
927 set_rxmode(dev, -1, false);
931 * Find the entry in the interrupt holdoff timer value array which comes
932 * closest to the specified interrupt holdoff value.
934 static int closest_timer(const struct sge *s, int us)
936 int i, timer_idx = 0, min_delta = INT_MAX;
938 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
939 int delta = us - s->timer_val[i];
940 if (delta < 0)
941 delta = -delta;
942 if (delta < min_delta) {
943 min_delta = delta;
944 timer_idx = i;
947 return timer_idx;
950 static int closest_thres(const struct sge *s, int thres)
952 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
954 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
955 delta = thres - s->counter_val[i];
956 if (delta < 0)
957 delta = -delta;
958 if (delta < min_delta) {
959 min_delta = delta;
960 pktcnt_idx = i;
963 return pktcnt_idx;
967 * Return a queue's interrupt hold-off time in us. 0 means no timer.
969 static unsigned int qtimer_val(const struct adapter *adapter,
970 const struct sge_rspq *rspq)
972 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
974 return timer_idx < SGE_NTIMERS
975 ? adapter->sge.timer_val[timer_idx]
976 : 0;
980 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
981 * @adapter: the adapter
982 * @rspq: the RX response queue
983 * @us: the hold-off time in us, or 0 to disable timer
984 * @cnt: the hold-off packet count, or 0 to disable counter
986 * Sets an RX response queue's interrupt hold-off time and packet count.
987 * At least one of the two needs to be enabled for the queue to generate
988 * interrupts.
990 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
991 unsigned int us, unsigned int cnt)
993 unsigned int timer_idx;
996 * If both the interrupt holdoff timer and count are specified as
997 * zero, default to a holdoff count of 1 ...
999 if ((us | cnt) == 0)
1000 cnt = 1;
1003 * If an interrupt holdoff count has been specified, then find the
1004 * closest configured holdoff count and use that. If the response
1005 * queue has already been created, then update its queue context
1006 * parameters ...
1008 if (cnt) {
1009 int err;
1010 u32 v, pktcnt_idx;
1012 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1013 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1014 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1015 FW_PARAMS_PARAM_X(
1016 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1017 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1018 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1019 if (err)
1020 return err;
1022 rspq->pktcnt_idx = pktcnt_idx;
1026 * Compute the closest holdoff timer index from the supplied holdoff
1027 * timer value.
1029 timer_idx = (us == 0
1030 ? SGE_TIMER_RSTRT_CNTR
1031 : closest_timer(&adapter->sge, us));
1034 * Update the response queue's interrupt coalescing parameters and
1035 * return success.
1037 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1038 (cnt > 0 ? QINTR_CNT_EN : 0));
1039 return 0;
1043 * Return a version number to identify the type of adapter. The scheme is:
1044 * - bits 0..9: chip version
1045 * - bits 10..15: chip revision
1047 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1050 * Chip version 4, revision 0x3f (cxgb4vf).
1052 return 4 | (0x3f << 10);
1056 * Execute the specified ioctl command.
1058 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1060 int ret = 0;
1062 switch (cmd) {
1064 * The VF Driver doesn't have access to any of the other
1065 * common Ethernet device ioctl()'s (like reading/writing
1066 * PHY registers, etc.
1069 default:
1070 ret = -EOPNOTSUPP;
1071 break;
1073 return ret;
1077 * Change the device's MTU.
1079 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1081 int ret;
1082 struct port_info *pi = netdev_priv(dev);
1084 /* accommodate SACK */
1085 if (new_mtu < 81)
1086 return -EINVAL;
1088 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1089 -1, -1, -1, -1, true);
1090 if (!ret)
1091 dev->mtu = new_mtu;
1092 return ret;
1095 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1096 netdev_features_t features)
1099 * Since there is no support for separate rx/tx vlan accel
1100 * enable/disable make sure tx flag is always in same state as rx.
1102 if (features & NETIF_F_HW_VLAN_RX)
1103 features |= NETIF_F_HW_VLAN_TX;
1104 else
1105 features &= ~NETIF_F_HW_VLAN_TX;
1107 return features;
1110 static int cxgb4vf_set_features(struct net_device *dev,
1111 netdev_features_t features)
1113 struct port_info *pi = netdev_priv(dev);
1114 netdev_features_t changed = dev->features ^ features;
1116 if (changed & NETIF_F_HW_VLAN_RX)
1117 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1118 features & NETIF_F_HW_VLAN_TX, 0);
1120 return 0;
1124 * Change the devices MAC address.
1126 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1128 int ret;
1129 struct sockaddr *addr = _addr;
1130 struct port_info *pi = netdev_priv(dev);
1132 if (!is_valid_ether_addr(addr->sa_data))
1133 return -EINVAL;
1135 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1136 addr->sa_data, true);
1137 if (ret < 0)
1138 return ret;
1140 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1141 pi->xact_addr_filt = ret;
1142 return 0;
1145 #ifdef CONFIG_NET_POLL_CONTROLLER
1147 * Poll all of our receive queues. This is called outside of normal interrupt
1148 * context.
1150 static void cxgb4vf_poll_controller(struct net_device *dev)
1152 struct port_info *pi = netdev_priv(dev);
1153 struct adapter *adapter = pi->adapter;
1155 if (adapter->flags & USING_MSIX) {
1156 struct sge_eth_rxq *rxq;
1157 int nqsets;
1159 rxq = &adapter->sge.ethrxq[pi->first_qset];
1160 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1161 t4vf_sge_intr_msix(0, &rxq->rspq);
1162 rxq++;
1164 } else
1165 t4vf_intr_handler(adapter)(0, adapter);
1167 #endif
1170 * Ethtool operations.
1171 * ===================
1173 * Note that we don't support any ethtool operations which change the physical
1174 * state of the port to which we're linked.
1178 * Return current port link settings.
1180 static int cxgb4vf_get_settings(struct net_device *dev,
1181 struct ethtool_cmd *cmd)
1183 const struct port_info *pi = netdev_priv(dev);
1185 cmd->supported = pi->link_cfg.supported;
1186 cmd->advertising = pi->link_cfg.advertising;
1187 ethtool_cmd_speed_set(cmd,
1188 netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1189 cmd->duplex = DUPLEX_FULL;
1191 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1192 cmd->phy_address = pi->port_id;
1193 cmd->transceiver = XCVR_EXTERNAL;
1194 cmd->autoneg = pi->link_cfg.autoneg;
1195 cmd->maxtxpkt = 0;
1196 cmd->maxrxpkt = 0;
1197 return 0;
1201 * Return our driver information.
1203 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1204 struct ethtool_drvinfo *drvinfo)
1206 struct adapter *adapter = netdev2adap(dev);
1208 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1209 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1210 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1211 sizeof(drvinfo->bus_info));
1212 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1213 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1214 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1215 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1216 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1217 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1218 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1219 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1220 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1221 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1225 * Return current adapter message level.
1227 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1229 return netdev2adap(dev)->msg_enable;
1233 * Set current adapter message level.
1235 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1237 netdev2adap(dev)->msg_enable = msglevel;
1241 * Return the device's current Queue Set ring size parameters along with the
1242 * allowed maximum values. Since ethtool doesn't understand the concept of
1243 * multi-queue devices, we just return the current values associated with the
1244 * first Queue Set.
1246 static void cxgb4vf_get_ringparam(struct net_device *dev,
1247 struct ethtool_ringparam *rp)
1249 const struct port_info *pi = netdev_priv(dev);
1250 const struct sge *s = &pi->adapter->sge;
1252 rp->rx_max_pending = MAX_RX_BUFFERS;
1253 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1254 rp->rx_jumbo_max_pending = 0;
1255 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1257 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1258 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1259 rp->rx_jumbo_pending = 0;
1260 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1264 * Set the Queue Set ring size parameters for the device. Again, since
1265 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1266 * apply these new values across all of the Queue Sets associated with the
1267 * device -- after vetting them of course!
1269 static int cxgb4vf_set_ringparam(struct net_device *dev,
1270 struct ethtool_ringparam *rp)
1272 const struct port_info *pi = netdev_priv(dev);
1273 struct adapter *adapter = pi->adapter;
1274 struct sge *s = &adapter->sge;
1275 int qs;
1277 if (rp->rx_pending > MAX_RX_BUFFERS ||
1278 rp->rx_jumbo_pending ||
1279 rp->tx_pending > MAX_TXQ_ENTRIES ||
1280 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1281 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1282 rp->rx_pending < MIN_FL_ENTRIES ||
1283 rp->tx_pending < MIN_TXQ_ENTRIES)
1284 return -EINVAL;
1286 if (adapter->flags & FULL_INIT_DONE)
1287 return -EBUSY;
1289 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1290 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1291 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1292 s->ethtxq[qs].q.size = rp->tx_pending;
1294 return 0;
1298 * Return the interrupt holdoff timer and count for the first Queue Set on the
1299 * device. Our extension ioctl() (the cxgbtool interface) allows the
1300 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1302 static int cxgb4vf_get_coalesce(struct net_device *dev,
1303 struct ethtool_coalesce *coalesce)
1305 const struct port_info *pi = netdev_priv(dev);
1306 const struct adapter *adapter = pi->adapter;
1307 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1309 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1310 coalesce->rx_max_coalesced_frames =
1311 ((rspq->intr_params & QINTR_CNT_EN)
1312 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1313 : 0);
1314 return 0;
1318 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1319 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1320 * the interrupt holdoff timer on any of the device's Queue Sets.
1322 static int cxgb4vf_set_coalesce(struct net_device *dev,
1323 struct ethtool_coalesce *coalesce)
1325 const struct port_info *pi = netdev_priv(dev);
1326 struct adapter *adapter = pi->adapter;
1328 return set_rxq_intr_params(adapter,
1329 &adapter->sge.ethrxq[pi->first_qset].rspq,
1330 coalesce->rx_coalesce_usecs,
1331 coalesce->rx_max_coalesced_frames);
1335 * Report current port link pause parameter settings.
1337 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1338 struct ethtool_pauseparam *pauseparam)
1340 struct port_info *pi = netdev_priv(dev);
1342 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1343 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1344 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1348 * Identify the port by blinking the port's LED.
1350 static int cxgb4vf_phys_id(struct net_device *dev,
1351 enum ethtool_phys_id_state state)
1353 unsigned int val;
1354 struct port_info *pi = netdev_priv(dev);
1356 if (state == ETHTOOL_ID_ACTIVE)
1357 val = 0xffff;
1358 else if (state == ETHTOOL_ID_INACTIVE)
1359 val = 0;
1360 else
1361 return -EINVAL;
1363 return t4vf_identify_port(pi->adapter, pi->viid, val);
1367 * Port stats maintained per queue of the port.
1369 struct queue_port_stats {
1370 u64 tso;
1371 u64 tx_csum;
1372 u64 rx_csum;
1373 u64 vlan_ex;
1374 u64 vlan_ins;
1375 u64 lro_pkts;
1376 u64 lro_merged;
1380 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1381 * these need to match the order of statistics returned by
1382 * t4vf_get_port_stats().
1384 static const char stats_strings[][ETH_GSTRING_LEN] = {
1386 * These must match the layout of the t4vf_port_stats structure.
1388 "TxBroadcastBytes ",
1389 "TxBroadcastFrames ",
1390 "TxMulticastBytes ",
1391 "TxMulticastFrames ",
1392 "TxUnicastBytes ",
1393 "TxUnicastFrames ",
1394 "TxDroppedFrames ",
1395 "TxOffloadBytes ",
1396 "TxOffloadFrames ",
1397 "RxBroadcastBytes ",
1398 "RxBroadcastFrames ",
1399 "RxMulticastBytes ",
1400 "RxMulticastFrames ",
1401 "RxUnicastBytes ",
1402 "RxUnicastFrames ",
1403 "RxErrorFrames ",
1406 * These are accumulated per-queue statistics and must match the
1407 * order of the fields in the queue_port_stats structure.
1409 "TSO ",
1410 "TxCsumOffload ",
1411 "RxCsumGood ",
1412 "VLANextractions ",
1413 "VLANinsertions ",
1414 "GROPackets ",
1415 "GROMerged ",
1419 * Return the number of statistics in the specified statistics set.
1421 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1423 switch (sset) {
1424 case ETH_SS_STATS:
1425 return ARRAY_SIZE(stats_strings);
1426 default:
1427 return -EOPNOTSUPP;
1429 /*NOTREACHED*/
1433 * Return the strings for the specified statistics set.
1435 static void cxgb4vf_get_strings(struct net_device *dev,
1436 u32 sset,
1437 u8 *data)
1439 switch (sset) {
1440 case ETH_SS_STATS:
1441 memcpy(data, stats_strings, sizeof(stats_strings));
1442 break;
1447 * Small utility routine to accumulate queue statistics across the queues of
1448 * a "port".
1450 static void collect_sge_port_stats(const struct adapter *adapter,
1451 const struct port_info *pi,
1452 struct queue_port_stats *stats)
1454 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1455 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1456 int qs;
1458 memset(stats, 0, sizeof(*stats));
1459 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1460 stats->tso += txq->tso;
1461 stats->tx_csum += txq->tx_cso;
1462 stats->rx_csum += rxq->stats.rx_cso;
1463 stats->vlan_ex += rxq->stats.vlan_ex;
1464 stats->vlan_ins += txq->vlan_ins;
1465 stats->lro_pkts += rxq->stats.lro_pkts;
1466 stats->lro_merged += rxq->stats.lro_merged;
1471 * Return the ETH_SS_STATS statistics set.
1473 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1474 struct ethtool_stats *stats,
1475 u64 *data)
1477 struct port_info *pi = netdev2pinfo(dev);
1478 struct adapter *adapter = pi->adapter;
1479 int err = t4vf_get_port_stats(adapter, pi->pidx,
1480 (struct t4vf_port_stats *)data);
1481 if (err)
1482 memset(data, 0, sizeof(struct t4vf_port_stats));
1484 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1485 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1489 * Return the size of our register map.
1491 static int cxgb4vf_get_regs_len(struct net_device *dev)
1493 return T4VF_REGMAP_SIZE;
1497 * Dump a block of registers, start to end inclusive, into a buffer.
1499 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1500 unsigned int start, unsigned int end)
1502 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1504 for ( ; start <= end; start += sizeof(u32)) {
1506 * Avoid reading the Mailbox Control register since that
1507 * can trigger a Mailbox Ownership Arbitration cycle and
1508 * interfere with communication with the firmware.
1510 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1511 *bp++ = 0xffff;
1512 else
1513 *bp++ = t4_read_reg(adapter, start);
1518 * Copy our entire register map into the provided buffer.
1520 static void cxgb4vf_get_regs(struct net_device *dev,
1521 struct ethtool_regs *regs,
1522 void *regbuf)
1524 struct adapter *adapter = netdev2adap(dev);
1526 regs->version = mk_adap_vers(adapter);
1529 * Fill in register buffer with our register map.
1531 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1533 reg_block_dump(adapter, regbuf,
1534 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1535 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1536 reg_block_dump(adapter, regbuf,
1537 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1538 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1539 reg_block_dump(adapter, regbuf,
1540 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1541 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1542 reg_block_dump(adapter, regbuf,
1543 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1544 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1546 reg_block_dump(adapter, regbuf,
1547 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1548 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1552 * Report current Wake On LAN settings.
1554 static void cxgb4vf_get_wol(struct net_device *dev,
1555 struct ethtool_wolinfo *wol)
1557 wol->supported = 0;
1558 wol->wolopts = 0;
1559 memset(&wol->sopass, 0, sizeof(wol->sopass));
1563 * TCP Segmentation Offload flags which we support.
1565 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1567 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1568 .get_settings = cxgb4vf_get_settings,
1569 .get_drvinfo = cxgb4vf_get_drvinfo,
1570 .get_msglevel = cxgb4vf_get_msglevel,
1571 .set_msglevel = cxgb4vf_set_msglevel,
1572 .get_ringparam = cxgb4vf_get_ringparam,
1573 .set_ringparam = cxgb4vf_set_ringparam,
1574 .get_coalesce = cxgb4vf_get_coalesce,
1575 .set_coalesce = cxgb4vf_set_coalesce,
1576 .get_pauseparam = cxgb4vf_get_pauseparam,
1577 .get_link = ethtool_op_get_link,
1578 .get_strings = cxgb4vf_get_strings,
1579 .set_phys_id = cxgb4vf_phys_id,
1580 .get_sset_count = cxgb4vf_get_sset_count,
1581 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1582 .get_regs_len = cxgb4vf_get_regs_len,
1583 .get_regs = cxgb4vf_get_regs,
1584 .get_wol = cxgb4vf_get_wol,
1588 * /sys/kernel/debug/cxgb4vf support code and data.
1589 * ================================================
1593 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1595 #define QPL 4
1597 static int sge_qinfo_show(struct seq_file *seq, void *v)
1599 struct adapter *adapter = seq->private;
1600 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1601 int qs, r = (uintptr_t)v - 1;
1603 if (r)
1604 seq_putc(seq, '\n');
1606 #define S3(fmt_spec, s, v) \
1607 do {\
1608 seq_printf(seq, "%-12s", s); \
1609 for (qs = 0; qs < n; ++qs) \
1610 seq_printf(seq, " %16" fmt_spec, v); \
1611 seq_putc(seq, '\n'); \
1612 } while (0)
1613 #define S(s, v) S3("s", s, v)
1614 #define T(s, v) S3("u", s, txq[qs].v)
1615 #define R(s, v) S3("u", s, rxq[qs].v)
1617 if (r < eth_entries) {
1618 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1619 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1620 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1622 S("QType:", "Ethernet");
1623 S("Interface:",
1624 (rxq[qs].rspq.netdev
1625 ? rxq[qs].rspq.netdev->name
1626 : "N/A"));
1627 S3("d", "Port:",
1628 (rxq[qs].rspq.netdev
1629 ? ((struct port_info *)
1630 netdev_priv(rxq[qs].rspq.netdev))->port_id
1631 : -1));
1632 T("TxQ ID:", q.abs_id);
1633 T("TxQ size:", q.size);
1634 T("TxQ inuse:", q.in_use);
1635 T("TxQ PIdx:", q.pidx);
1636 T("TxQ CIdx:", q.cidx);
1637 R("RspQ ID:", rspq.abs_id);
1638 R("RspQ size:", rspq.size);
1639 R("RspQE size:", rspq.iqe_len);
1640 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1641 S3("u", "Intr pktcnt:",
1642 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1643 R("RspQ CIdx:", rspq.cidx);
1644 R("RspQ Gen:", rspq.gen);
1645 R("FL ID:", fl.abs_id);
1646 R("FL size:", fl.size - MIN_FL_RESID);
1647 R("FL avail:", fl.avail);
1648 R("FL PIdx:", fl.pidx);
1649 R("FL CIdx:", fl.cidx);
1650 return 0;
1653 r -= eth_entries;
1654 if (r == 0) {
1655 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1657 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1658 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1659 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1660 qtimer_val(adapter, evtq));
1661 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1662 adapter->sge.counter_val[evtq->pktcnt_idx]);
1663 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1664 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1665 } else if (r == 1) {
1666 const struct sge_rspq *intrq = &adapter->sge.intrq;
1668 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1669 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1670 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1671 qtimer_val(adapter, intrq));
1672 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1673 adapter->sge.counter_val[intrq->pktcnt_idx]);
1674 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1675 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1678 #undef R
1679 #undef T
1680 #undef S
1681 #undef S3
1683 return 0;
1687 * Return the number of "entries" in our "file". We group the multi-Queue
1688 * sections with QPL Queue Sets per "entry". The sections of the output are:
1690 * Ethernet RX/TX Queue Sets
1691 * Firmware Event Queue
1692 * Forwarded Interrupt Queue (if in MSI mode)
1694 static int sge_queue_entries(const struct adapter *adapter)
1696 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1697 ((adapter->flags & USING_MSI) != 0);
1700 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1702 int entries = sge_queue_entries(seq->private);
1704 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1707 static void sge_queue_stop(struct seq_file *seq, void *v)
1711 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1713 int entries = sge_queue_entries(seq->private);
1715 ++*pos;
1716 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1719 static const struct seq_operations sge_qinfo_seq_ops = {
1720 .start = sge_queue_start,
1721 .next = sge_queue_next,
1722 .stop = sge_queue_stop,
1723 .show = sge_qinfo_show
1726 static int sge_qinfo_open(struct inode *inode, struct file *file)
1728 int res = seq_open(file, &sge_qinfo_seq_ops);
1730 if (!res) {
1731 struct seq_file *seq = file->private_data;
1732 seq->private = inode->i_private;
1734 return res;
1737 static const struct file_operations sge_qinfo_debugfs_fops = {
1738 .owner = THIS_MODULE,
1739 .open = sge_qinfo_open,
1740 .read = seq_read,
1741 .llseek = seq_lseek,
1742 .release = seq_release,
1746 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1748 #define QPL 4
1750 static int sge_qstats_show(struct seq_file *seq, void *v)
1752 struct adapter *adapter = seq->private;
1753 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1754 int qs, r = (uintptr_t)v - 1;
1756 if (r)
1757 seq_putc(seq, '\n');
1759 #define S3(fmt, s, v) \
1760 do { \
1761 seq_printf(seq, "%-16s", s); \
1762 for (qs = 0; qs < n; ++qs) \
1763 seq_printf(seq, " %8" fmt, v); \
1764 seq_putc(seq, '\n'); \
1765 } while (0)
1766 #define S(s, v) S3("s", s, v)
1768 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1769 #define T(s, v) T3("lu", s, v)
1771 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1772 #define R(s, v) R3("lu", s, v)
1774 if (r < eth_entries) {
1775 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1776 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1777 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1779 S("QType:", "Ethernet");
1780 S("Interface:",
1781 (rxq[qs].rspq.netdev
1782 ? rxq[qs].rspq.netdev->name
1783 : "N/A"));
1784 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1785 R("RxPackets:", stats.pkts);
1786 R("RxCSO:", stats.rx_cso);
1787 R("VLANxtract:", stats.vlan_ex);
1788 R("LROmerged:", stats.lro_merged);
1789 R("LROpackets:", stats.lro_pkts);
1790 R("RxDrops:", stats.rx_drops);
1791 T("TSO:", tso);
1792 T("TxCSO:", tx_cso);
1793 T("VLANins:", vlan_ins);
1794 T("TxQFull:", q.stops);
1795 T("TxQRestarts:", q.restarts);
1796 T("TxMapErr:", mapping_err);
1797 R("FLAllocErr:", fl.alloc_failed);
1798 R("FLLrgAlcErr:", fl.large_alloc_failed);
1799 R("FLStarving:", fl.starving);
1800 return 0;
1803 r -= eth_entries;
1804 if (r == 0) {
1805 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1807 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1808 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1809 evtq->unhandled_irqs);
1810 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1811 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1812 } else if (r == 1) {
1813 const struct sge_rspq *intrq = &adapter->sge.intrq;
1815 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1816 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1817 intrq->unhandled_irqs);
1818 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1819 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1822 #undef R
1823 #undef T
1824 #undef S
1825 #undef R3
1826 #undef T3
1827 #undef S3
1829 return 0;
1833 * Return the number of "entries" in our "file". We group the multi-Queue
1834 * sections with QPL Queue Sets per "entry". The sections of the output are:
1836 * Ethernet RX/TX Queue Sets
1837 * Firmware Event Queue
1838 * Forwarded Interrupt Queue (if in MSI mode)
1840 static int sge_qstats_entries(const struct adapter *adapter)
1842 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1843 ((adapter->flags & USING_MSI) != 0);
1846 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1848 int entries = sge_qstats_entries(seq->private);
1850 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1853 static void sge_qstats_stop(struct seq_file *seq, void *v)
1857 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1859 int entries = sge_qstats_entries(seq->private);
1861 (*pos)++;
1862 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1865 static const struct seq_operations sge_qstats_seq_ops = {
1866 .start = sge_qstats_start,
1867 .next = sge_qstats_next,
1868 .stop = sge_qstats_stop,
1869 .show = sge_qstats_show
1872 static int sge_qstats_open(struct inode *inode, struct file *file)
1874 int res = seq_open(file, &sge_qstats_seq_ops);
1876 if (res == 0) {
1877 struct seq_file *seq = file->private_data;
1878 seq->private = inode->i_private;
1880 return res;
1883 static const struct file_operations sge_qstats_proc_fops = {
1884 .owner = THIS_MODULE,
1885 .open = sge_qstats_open,
1886 .read = seq_read,
1887 .llseek = seq_lseek,
1888 .release = seq_release,
1892 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1894 static int resources_show(struct seq_file *seq, void *v)
1896 struct adapter *adapter = seq->private;
1897 struct vf_resources *vfres = &adapter->params.vfres;
1899 #define S(desc, fmt, var) \
1900 seq_printf(seq, "%-60s " fmt "\n", \
1901 desc " (" #var "):", vfres->var)
1903 S("Virtual Interfaces", "%d", nvi);
1904 S("Egress Queues", "%d", neq);
1905 S("Ethernet Control", "%d", nethctrl);
1906 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1907 S("Ingress Queues", "%d", niq);
1908 S("Traffic Class", "%d", tc);
1909 S("Port Access Rights Mask", "%#x", pmask);
1910 S("MAC Address Filters", "%d", nexactf);
1911 S("Firmware Command Read Capabilities", "%#x", r_caps);
1912 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1914 #undef S
1916 return 0;
1919 static int resources_open(struct inode *inode, struct file *file)
1921 return single_open(file, resources_show, inode->i_private);
1924 static const struct file_operations resources_proc_fops = {
1925 .owner = THIS_MODULE,
1926 .open = resources_open,
1927 .read = seq_read,
1928 .llseek = seq_lseek,
1929 .release = single_release,
1933 * Show Virtual Interfaces.
1935 static int interfaces_show(struct seq_file *seq, void *v)
1937 if (v == SEQ_START_TOKEN) {
1938 seq_puts(seq, "Interface Port VIID\n");
1939 } else {
1940 struct adapter *adapter = seq->private;
1941 int pidx = (uintptr_t)v - 2;
1942 struct net_device *dev = adapter->port[pidx];
1943 struct port_info *pi = netdev_priv(dev);
1945 seq_printf(seq, "%9s %4d %#5x\n",
1946 dev->name, pi->port_id, pi->viid);
1948 return 0;
1951 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1953 return pos <= adapter->params.nports
1954 ? (void *)(uintptr_t)(pos + 1)
1955 : NULL;
1958 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1960 return *pos
1961 ? interfaces_get_idx(seq->private, *pos)
1962 : SEQ_START_TOKEN;
1965 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1967 (*pos)++;
1968 return interfaces_get_idx(seq->private, *pos);
1971 static void interfaces_stop(struct seq_file *seq, void *v)
1975 static const struct seq_operations interfaces_seq_ops = {
1976 .start = interfaces_start,
1977 .next = interfaces_next,
1978 .stop = interfaces_stop,
1979 .show = interfaces_show
1982 static int interfaces_open(struct inode *inode, struct file *file)
1984 int res = seq_open(file, &interfaces_seq_ops);
1986 if (res == 0) {
1987 struct seq_file *seq = file->private_data;
1988 seq->private = inode->i_private;
1990 return res;
1993 static const struct file_operations interfaces_proc_fops = {
1994 .owner = THIS_MODULE,
1995 .open = interfaces_open,
1996 .read = seq_read,
1997 .llseek = seq_lseek,
1998 .release = seq_release,
2002 * /sys/kernel/debugfs/cxgb4vf/ files list.
2004 struct cxgb4vf_debugfs_entry {
2005 const char *name; /* name of debugfs node */
2006 umode_t mode; /* file system mode */
2007 const struct file_operations *fops;
2010 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2011 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2012 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2013 { "resources", S_IRUGO, &resources_proc_fops },
2014 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2018 * Module and device initialization and cleanup code.
2019 * ==================================================
2023 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2024 * directory (debugfs_root) has already been set up.
2026 static int __devinit setup_debugfs(struct adapter *adapter)
2028 int i;
2030 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2033 * Debugfs support is best effort.
2035 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2036 (void)debugfs_create_file(debugfs_files[i].name,
2037 debugfs_files[i].mode,
2038 adapter->debugfs_root,
2039 (void *)adapter,
2040 debugfs_files[i].fops);
2042 return 0;
2046 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2047 * it to our caller to tear down the directory (debugfs_root).
2049 static void cleanup_debugfs(struct adapter *adapter)
2051 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2054 * Unlike our sister routine cleanup_proc(), we don't need to remove
2055 * individual entries because a call will be made to
2056 * debugfs_remove_recursive(). We just need to clean up any ancillary
2057 * persistent state.
2059 /* nothing to do */
2063 * Perform early "adapter" initialization. This is where we discover what
2064 * adapter parameters we're going to be using and initialize basic adapter
2065 * hardware support.
2067 static int __devinit adap_init0(struct adapter *adapter)
2069 struct vf_resources *vfres = &adapter->params.vfres;
2070 struct sge_params *sge_params = &adapter->params.sge;
2071 struct sge *s = &adapter->sge;
2072 unsigned int ethqsets;
2073 int err;
2076 * Wait for the device to become ready before proceeding ...
2078 err = t4vf_wait_dev_ready(adapter);
2079 if (err) {
2080 dev_err(adapter->pdev_dev, "device didn't become ready:"
2081 " err=%d\n", err);
2082 return err;
2086 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2087 * 2.6.31 and later we can't call pci_reset_function() in order to
2088 * issue an FLR because of a self- deadlock on the device semaphore.
2089 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2090 * cases where they're needed -- for instance, some versions of KVM
2091 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2092 * use the firmware based reset in order to reset any per function
2093 * state.
2095 err = t4vf_fw_reset(adapter);
2096 if (err < 0) {
2097 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2098 return err;
2102 * Grab basic operational parameters. These will predominantly have
2103 * been set up by the Physical Function Driver or will be hard coded
2104 * into the adapter. We just have to live with them ... Note that
2105 * we _must_ get our VPD parameters before our SGE parameters because
2106 * we need to know the adapter's core clock from the VPD in order to
2107 * properly decode the SGE Timer Values.
2109 err = t4vf_get_dev_params(adapter);
2110 if (err) {
2111 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2112 " device parameters: err=%d\n", err);
2113 return err;
2115 err = t4vf_get_vpd_params(adapter);
2116 if (err) {
2117 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2118 " VPD parameters: err=%d\n", err);
2119 return err;
2121 err = t4vf_get_sge_params(adapter);
2122 if (err) {
2123 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2124 " SGE parameters: err=%d\n", err);
2125 return err;
2127 err = t4vf_get_rss_glb_config(adapter);
2128 if (err) {
2129 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2130 " RSS parameters: err=%d\n", err);
2131 return err;
2133 if (adapter->params.rss.mode !=
2134 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2135 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2136 " mode %d\n", adapter->params.rss.mode);
2137 return -EINVAL;
2139 err = t4vf_sge_init(adapter);
2140 if (err) {
2141 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2142 " err=%d\n", err);
2143 return err;
2147 * Retrieve our RX interrupt holdoff timer values and counter
2148 * threshold values from the SGE parameters.
2150 s->timer_val[0] = core_ticks_to_us(adapter,
2151 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2152 s->timer_val[1] = core_ticks_to_us(adapter,
2153 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2154 s->timer_val[2] = core_ticks_to_us(adapter,
2155 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2156 s->timer_val[3] = core_ticks_to_us(adapter,
2157 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2158 s->timer_val[4] = core_ticks_to_us(adapter,
2159 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2160 s->timer_val[5] = core_ticks_to_us(adapter,
2161 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2163 s->counter_val[0] =
2164 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2165 s->counter_val[1] =
2166 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2167 s->counter_val[2] =
2168 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2169 s->counter_val[3] =
2170 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2173 * Grab our Virtual Interface resource allocation, extract the
2174 * features that we're interested in and do a bit of sanity testing on
2175 * what we discover.
2177 err = t4vf_get_vfres(adapter);
2178 if (err) {
2179 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2180 " resources: err=%d\n", err);
2181 return err;
2185 * The number of "ports" which we support is equal to the number of
2186 * Virtual Interfaces with which we've been provisioned.
2188 adapter->params.nports = vfres->nvi;
2189 if (adapter->params.nports > MAX_NPORTS) {
2190 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2191 " virtual interfaces\n", MAX_NPORTS,
2192 adapter->params.nports);
2193 adapter->params.nports = MAX_NPORTS;
2197 * We need to reserve a number of the ingress queues with Free List
2198 * and Interrupt capabilities for special interrupt purposes (like
2199 * asynchronous firmware messages, or forwarded interrupts if we're
2200 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2201 * matched up one-for-one with Ethernet/Control egress queues in order
2202 * to form "Queue Sets" which will be aportioned between the "ports".
2203 * For each Queue Set, we'll need the ability to allocate two Egress
2204 * Contexts -- one for the Ingress Queue Free List and one for the TX
2205 * Ethernet Queue.
2207 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2208 if (vfres->nethctrl != ethqsets) {
2209 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2210 " ingress/egress queues (%d/%d); using minimum for"
2211 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2212 ethqsets = min(vfres->nethctrl, ethqsets);
2214 if (vfres->neq < ethqsets*2) {
2215 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2216 " to support Queue Sets (%d); reducing allowed Queue"
2217 " Sets\n", vfres->neq, ethqsets);
2218 ethqsets = vfres->neq/2;
2220 if (ethqsets > MAX_ETH_QSETS) {
2221 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2222 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2223 ethqsets = MAX_ETH_QSETS;
2225 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2226 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2227 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2229 adapter->sge.max_ethqsets = ethqsets;
2232 * Check for various parameter sanity issues. Most checks simply
2233 * result in us using fewer resources than our provissioning but we
2234 * do need at least one "port" with which to work ...
2236 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2237 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2238 " virtual interfaces (too few Queue Sets)\n",
2239 adapter->sge.max_ethqsets, adapter->params.nports);
2240 adapter->params.nports = adapter->sge.max_ethqsets;
2242 if (adapter->params.nports == 0) {
2243 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2244 "usable!\n");
2245 return -EINVAL;
2247 return 0;
2250 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2251 u8 pkt_cnt_idx, unsigned int size,
2252 unsigned int iqe_size)
2254 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2255 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2256 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2257 ? pkt_cnt_idx
2258 : 0);
2259 rspq->iqe_len = iqe_size;
2260 rspq->size = size;
2264 * Perform default configuration of DMA queues depending on the number and
2265 * type of ports we found and the number of available CPUs. Most settings can
2266 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2267 * being brought up for the first time.
2269 static void __devinit cfg_queues(struct adapter *adapter)
2271 struct sge *s = &adapter->sge;
2272 int q10g, n10g, qidx, pidx, qs;
2273 size_t iqe_size;
2276 * We should not be called till we know how many Queue Sets we can
2277 * support. In particular, this means that we need to know what kind
2278 * of interrupts we'll be using ...
2280 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2283 * Count the number of 10GbE Virtual Interfaces that we have.
2285 n10g = 0;
2286 for_each_port(adapter, pidx)
2287 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2290 * We default to 1 queue per non-10G port and up to # of cores queues
2291 * per 10G port.
2293 if (n10g == 0)
2294 q10g = 0;
2295 else {
2296 int n1g = (adapter->params.nports - n10g);
2297 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2298 if (q10g > num_online_cpus())
2299 q10g = num_online_cpus();
2303 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2304 * The layout will be established in setup_sge_queues() when the
2305 * adapter is brough up for the first time.
2307 qidx = 0;
2308 for_each_port(adapter, pidx) {
2309 struct port_info *pi = adap2pinfo(adapter, pidx);
2311 pi->first_qset = qidx;
2312 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2313 qidx += pi->nqsets;
2315 s->ethqsets = qidx;
2318 * The Ingress Queue Entry Size for our various Response Queues needs
2319 * to be big enough to accommodate the largest message we can receive
2320 * from the chip/firmware; which is 64 bytes ...
2322 iqe_size = 64;
2325 * Set up default Queue Set parameters ... Start off with the
2326 * shortest interrupt holdoff timer.
2328 for (qs = 0; qs < s->max_ethqsets; qs++) {
2329 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2330 struct sge_eth_txq *txq = &s->ethtxq[qs];
2332 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2333 rxq->fl.size = 72;
2334 txq->q.size = 1024;
2338 * The firmware event queue is used for link state changes and
2339 * notifications of TX DMA completions.
2341 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2344 * The forwarded interrupt queue is used when we're in MSI interrupt
2345 * mode. In this mode all interrupts associated with RX queues will
2346 * be forwarded to a single queue which we'll associate with our MSI
2347 * interrupt vector. The messages dropped in the forwarded interrupt
2348 * queue will indicate which ingress queue needs servicing ... This
2349 * queue needs to be large enough to accommodate all of the ingress
2350 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2351 * from equalling the CIDX if every ingress queue has an outstanding
2352 * interrupt). The queue doesn't need to be any larger because no
2353 * ingress queue will ever have more than one outstanding interrupt at
2354 * any time ...
2356 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2357 iqe_size);
2361 * Reduce the number of Ethernet queues across all ports to at most n.
2362 * n provides at least one queue per port.
2364 static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2366 int i;
2367 struct port_info *pi;
2370 * While we have too many active Ether Queue Sets, interate across the
2371 * "ports" and reduce their individual Queue Set allocations.
2373 BUG_ON(n < adapter->params.nports);
2374 while (n < adapter->sge.ethqsets)
2375 for_each_port(adapter, i) {
2376 pi = adap2pinfo(adapter, i);
2377 if (pi->nqsets > 1) {
2378 pi->nqsets--;
2379 adapter->sge.ethqsets--;
2380 if (adapter->sge.ethqsets <= n)
2381 break;
2386 * Reassign the starting Queue Sets for each of the "ports" ...
2388 n = 0;
2389 for_each_port(adapter, i) {
2390 pi = adap2pinfo(adapter, i);
2391 pi->first_qset = n;
2392 n += pi->nqsets;
2397 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2398 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2399 * need. Minimally we need one for every Virtual Interface plus those needed
2400 * for our "extras". Note that this process may lower the maximum number of
2401 * allowed Queue Sets ...
2403 static int __devinit enable_msix(struct adapter *adapter)
2405 int i, err, want, need;
2406 struct msix_entry entries[MSIX_ENTRIES];
2407 struct sge *s = &adapter->sge;
2409 for (i = 0; i < MSIX_ENTRIES; ++i)
2410 entries[i].entry = i;
2413 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2414 * plus those needed for our "extras" (for example, the firmware
2415 * message queue). We _need_ at least one "Queue Set" per Virtual
2416 * Interface plus those needed for our "extras". So now we get to see
2417 * if the song is right ...
2419 want = s->max_ethqsets + MSIX_EXTRAS;
2420 need = adapter->params.nports + MSIX_EXTRAS;
2421 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2422 want = err;
2424 if (err == 0) {
2425 int nqsets = want - MSIX_EXTRAS;
2426 if (nqsets < s->max_ethqsets) {
2427 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2428 " for %d Queue Sets\n", nqsets);
2429 s->max_ethqsets = nqsets;
2430 if (nqsets < s->ethqsets)
2431 reduce_ethqs(adapter, nqsets);
2433 for (i = 0; i < want; ++i)
2434 adapter->msix_info[i].vec = entries[i].vector;
2435 } else if (err > 0) {
2436 pci_disable_msix(adapter->pdev);
2437 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2438 " not using MSI-X\n", err);
2440 return err;
2443 static const struct net_device_ops cxgb4vf_netdev_ops = {
2444 .ndo_open = cxgb4vf_open,
2445 .ndo_stop = cxgb4vf_stop,
2446 .ndo_start_xmit = t4vf_eth_xmit,
2447 .ndo_get_stats = cxgb4vf_get_stats,
2448 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2449 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2450 .ndo_validate_addr = eth_validate_addr,
2451 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2452 .ndo_change_mtu = cxgb4vf_change_mtu,
2453 .ndo_fix_features = cxgb4vf_fix_features,
2454 .ndo_set_features = cxgb4vf_set_features,
2455 #ifdef CONFIG_NET_POLL_CONTROLLER
2456 .ndo_poll_controller = cxgb4vf_poll_controller,
2457 #endif
2461 * "Probe" a device: initialize a device and construct all kernel and driver
2462 * state needed to manage the device. This routine is called "init_one" in
2463 * the PF Driver ...
2465 static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2466 const struct pci_device_id *ent)
2468 static int version_printed;
2470 int pci_using_dac;
2471 int err, pidx;
2472 unsigned int pmask;
2473 struct adapter *adapter;
2474 struct port_info *pi;
2475 struct net_device *netdev;
2478 * Print our driver banner the first time we're called to initialize a
2479 * device.
2481 if (version_printed == 0) {
2482 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2483 version_printed = 1;
2487 * Initialize generic PCI device state.
2489 err = pci_enable_device(pdev);
2490 if (err) {
2491 dev_err(&pdev->dev, "cannot enable PCI device\n");
2492 return err;
2496 * Reserve PCI resources for the device. If we can't get them some
2497 * other driver may have already claimed the device ...
2499 err = pci_request_regions(pdev, KBUILD_MODNAME);
2500 if (err) {
2501 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2502 goto err_disable_device;
2506 * Set up our DMA mask: try for 64-bit address masking first and
2507 * fall back to 32-bit if we can't get 64 bits ...
2509 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2510 if (err == 0) {
2511 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2512 if (err) {
2513 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2514 " coherent allocations\n");
2515 goto err_release_regions;
2517 pci_using_dac = 1;
2518 } else {
2519 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2520 if (err != 0) {
2521 dev_err(&pdev->dev, "no usable DMA configuration\n");
2522 goto err_release_regions;
2524 pci_using_dac = 0;
2528 * Enable bus mastering for the device ...
2530 pci_set_master(pdev);
2533 * Allocate our adapter data structure and attach it to the device.
2535 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2536 if (!adapter) {
2537 err = -ENOMEM;
2538 goto err_release_regions;
2540 pci_set_drvdata(pdev, adapter);
2541 adapter->pdev = pdev;
2542 adapter->pdev_dev = &pdev->dev;
2545 * Initialize SMP data synchronization resources.
2547 spin_lock_init(&adapter->stats_lock);
2550 * Map our I/O registers in BAR0.
2552 adapter->regs = pci_ioremap_bar(pdev, 0);
2553 if (!adapter->regs) {
2554 dev_err(&pdev->dev, "cannot map device registers\n");
2555 err = -ENOMEM;
2556 goto err_free_adapter;
2560 * Initialize adapter level features.
2562 adapter->name = pci_name(pdev);
2563 adapter->msg_enable = dflt_msg_enable;
2564 err = adap_init0(adapter);
2565 if (err)
2566 goto err_unmap_bar;
2569 * Allocate our "adapter ports" and stitch everything together.
2571 pmask = adapter->params.vfres.pmask;
2572 for_each_port(adapter, pidx) {
2573 int port_id, viid;
2576 * We simplistically allocate our virtual interfaces
2577 * sequentially across the port numbers to which we have
2578 * access rights. This should be configurable in some manner
2579 * ...
2581 if (pmask == 0)
2582 break;
2583 port_id = ffs(pmask) - 1;
2584 pmask &= ~(1 << port_id);
2585 viid = t4vf_alloc_vi(adapter, port_id);
2586 if (viid < 0) {
2587 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2588 " err=%d\n", port_id, viid);
2589 err = viid;
2590 goto err_free_dev;
2594 * Allocate our network device and stitch things together.
2596 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2597 MAX_PORT_QSETS);
2598 if (netdev == NULL) {
2599 dev_err(&pdev->dev, "cannot allocate netdev for"
2600 " port %d\n", port_id);
2601 t4vf_free_vi(adapter, viid);
2602 err = -ENOMEM;
2603 goto err_free_dev;
2605 adapter->port[pidx] = netdev;
2606 SET_NETDEV_DEV(netdev, &pdev->dev);
2607 pi = netdev_priv(netdev);
2608 pi->adapter = adapter;
2609 pi->pidx = pidx;
2610 pi->port_id = port_id;
2611 pi->viid = viid;
2614 * Initialize the starting state of our "port" and register
2615 * it.
2617 pi->xact_addr_filt = -1;
2618 netif_carrier_off(netdev);
2619 netdev->irq = pdev->irq;
2621 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2622 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2623 NETIF_F_HW_VLAN_RX | NETIF_F_RXCSUM;
2624 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2625 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2626 NETIF_F_HIGHDMA;
2627 netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_TX;
2628 if (pci_using_dac)
2629 netdev->features |= NETIF_F_HIGHDMA;
2631 netdev->priv_flags |= IFF_UNICAST_FLT;
2633 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2634 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2637 * Initialize the hardware/software state for the port.
2639 err = t4vf_port_init(adapter, pidx);
2640 if (err) {
2641 dev_err(&pdev->dev, "cannot initialize port %d\n",
2642 pidx);
2643 goto err_free_dev;
2648 * The "card" is now ready to go. If any errors occur during device
2649 * registration we do not fail the whole "card" but rather proceed
2650 * only with the ports we manage to register successfully. However we
2651 * must register at least one net device.
2653 for_each_port(adapter, pidx) {
2654 netdev = adapter->port[pidx];
2655 if (netdev == NULL)
2656 continue;
2658 err = register_netdev(netdev);
2659 if (err) {
2660 dev_warn(&pdev->dev, "cannot register net device %s,"
2661 " skipping\n", netdev->name);
2662 continue;
2665 set_bit(pidx, &adapter->registered_device_map);
2667 if (adapter->registered_device_map == 0) {
2668 dev_err(&pdev->dev, "could not register any net devices\n");
2669 goto err_free_dev;
2673 * Set up our debugfs entries.
2675 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2676 adapter->debugfs_root =
2677 debugfs_create_dir(pci_name(pdev),
2678 cxgb4vf_debugfs_root);
2679 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2680 dev_warn(&pdev->dev, "could not create debugfs"
2681 " directory");
2682 else
2683 setup_debugfs(adapter);
2687 * See what interrupts we'll be using. If we've been configured to
2688 * use MSI-X interrupts, try to enable them but fall back to using
2689 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2690 * get MSI interrupts we bail with the error.
2692 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2693 adapter->flags |= USING_MSIX;
2694 else {
2695 err = pci_enable_msi(pdev);
2696 if (err) {
2697 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2698 " err=%d\n",
2699 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2700 goto err_free_debugfs;
2702 adapter->flags |= USING_MSI;
2706 * Now that we know how many "ports" we have and what their types are,
2707 * and how many Queue Sets we can support, we can configure our queue
2708 * resources.
2710 cfg_queues(adapter);
2713 * Print a short notice on the existence and configuration of the new
2714 * VF network device ...
2716 for_each_port(adapter, pidx) {
2717 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2718 adapter->port[pidx]->name,
2719 (adapter->flags & USING_MSIX) ? "MSI-X" :
2720 (adapter->flags & USING_MSI) ? "MSI" : "");
2724 * Return success!
2726 return 0;
2729 * Error recovery and exit code. Unwind state that's been created
2730 * so far and return the error.
2733 err_free_debugfs:
2734 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2735 cleanup_debugfs(adapter);
2736 debugfs_remove_recursive(adapter->debugfs_root);
2739 err_free_dev:
2740 for_each_port(adapter, pidx) {
2741 netdev = adapter->port[pidx];
2742 if (netdev == NULL)
2743 continue;
2744 pi = netdev_priv(netdev);
2745 t4vf_free_vi(adapter, pi->viid);
2746 if (test_bit(pidx, &adapter->registered_device_map))
2747 unregister_netdev(netdev);
2748 free_netdev(netdev);
2751 err_unmap_bar:
2752 iounmap(adapter->regs);
2754 err_free_adapter:
2755 kfree(adapter);
2756 pci_set_drvdata(pdev, NULL);
2758 err_release_regions:
2759 pci_release_regions(pdev);
2760 pci_set_drvdata(pdev, NULL);
2761 pci_clear_master(pdev);
2763 err_disable_device:
2764 pci_disable_device(pdev);
2766 return err;
2770 * "Remove" a device: tear down all kernel and driver state created in the
2771 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2772 * that this is called "remove_one" in the PF Driver.)
2774 static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2776 struct adapter *adapter = pci_get_drvdata(pdev);
2779 * Tear down driver state associated with device.
2781 if (adapter) {
2782 int pidx;
2785 * Stop all of our activity. Unregister network port,
2786 * disable interrupts, etc.
2788 for_each_port(adapter, pidx)
2789 if (test_bit(pidx, &adapter->registered_device_map))
2790 unregister_netdev(adapter->port[pidx]);
2791 t4vf_sge_stop(adapter);
2792 if (adapter->flags & USING_MSIX) {
2793 pci_disable_msix(adapter->pdev);
2794 adapter->flags &= ~USING_MSIX;
2795 } else if (adapter->flags & USING_MSI) {
2796 pci_disable_msi(adapter->pdev);
2797 adapter->flags &= ~USING_MSI;
2801 * Tear down our debugfs entries.
2803 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2804 cleanup_debugfs(adapter);
2805 debugfs_remove_recursive(adapter->debugfs_root);
2809 * Free all of the various resources which we've acquired ...
2811 t4vf_free_sge_resources(adapter);
2812 for_each_port(adapter, pidx) {
2813 struct net_device *netdev = adapter->port[pidx];
2814 struct port_info *pi;
2816 if (netdev == NULL)
2817 continue;
2819 pi = netdev_priv(netdev);
2820 t4vf_free_vi(adapter, pi->viid);
2821 free_netdev(netdev);
2823 iounmap(adapter->regs);
2824 kfree(adapter);
2825 pci_set_drvdata(pdev, NULL);
2829 * Disable the device and release its PCI resources.
2831 pci_disable_device(pdev);
2832 pci_clear_master(pdev);
2833 pci_release_regions(pdev);
2837 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2838 * delivery.
2840 static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2842 struct adapter *adapter;
2843 int pidx;
2845 adapter = pci_get_drvdata(pdev);
2846 if (!adapter)
2847 return;
2850 * Disable all Virtual Interfaces. This will shut down the
2851 * delivery of all ingress packets into the chip for these
2852 * Virtual Interfaces.
2854 for_each_port(adapter, pidx) {
2855 struct net_device *netdev;
2856 struct port_info *pi;
2858 if (!test_bit(pidx, &adapter->registered_device_map))
2859 continue;
2861 netdev = adapter->port[pidx];
2862 if (!netdev)
2863 continue;
2865 pi = netdev_priv(netdev);
2866 t4vf_enable_vi(adapter, pi->viid, false, false);
2870 * Free up all Queues which will prevent further DMA and
2871 * Interrupts allowing various internal pathways to drain.
2873 t4vf_free_sge_resources(adapter);
2877 * PCI Device registration data structures.
2879 #define CH_DEVICE(devid, idx) \
2880 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2882 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2883 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2884 CH_DEVICE(0x4800, 0), /* T440-dbg */
2885 CH_DEVICE(0x4801, 0), /* T420-cr */
2886 CH_DEVICE(0x4802, 0), /* T422-cr */
2887 CH_DEVICE(0x4803, 0), /* T440-cr */
2888 CH_DEVICE(0x4804, 0), /* T420-bch */
2889 CH_DEVICE(0x4805, 0), /* T440-bch */
2890 CH_DEVICE(0x4806, 0), /* T460-ch */
2891 CH_DEVICE(0x4807, 0), /* T420-so */
2892 CH_DEVICE(0x4808, 0), /* T420-cx */
2893 CH_DEVICE(0x4809, 0), /* T420-bt */
2894 CH_DEVICE(0x480a, 0), /* T404-bt */
2895 CH_DEVICE(0x480d, 0), /* T480-cr */
2896 CH_DEVICE(0x480e, 0), /* T440-lp-cr */
2897 { 0, }
2900 MODULE_DESCRIPTION(DRV_DESC);
2901 MODULE_AUTHOR("Chelsio Communications");
2902 MODULE_LICENSE("Dual BSD/GPL");
2903 MODULE_VERSION(DRV_VERSION);
2904 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2906 static struct pci_driver cxgb4vf_driver = {
2907 .name = KBUILD_MODNAME,
2908 .id_table = cxgb4vf_pci_tbl,
2909 .probe = cxgb4vf_pci_probe,
2910 .remove = __devexit_p(cxgb4vf_pci_remove),
2911 .shutdown = __devexit_p(cxgb4vf_pci_shutdown),
2915 * Initialize global driver state.
2917 static int __init cxgb4vf_module_init(void)
2919 int ret;
2922 * Vet our module parameters.
2924 if (msi != MSI_MSIX && msi != MSI_MSI) {
2925 printk(KERN_WARNING KBUILD_MODNAME
2926 ": bad module parameter msi=%d; must be %d"
2927 " (MSI-X or MSI) or %d (MSI)\n",
2928 msi, MSI_MSIX, MSI_MSI);
2929 return -EINVAL;
2932 /* Debugfs support is optional, just warn if this fails */
2933 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2934 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2935 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2936 " debugfs entry, continuing\n");
2938 ret = pci_register_driver(&cxgb4vf_driver);
2939 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2940 debugfs_remove(cxgb4vf_debugfs_root);
2941 return ret;
2945 * Tear down global driver state.
2947 static void __exit cxgb4vf_module_exit(void)
2949 pci_unregister_driver(&cxgb4vf_driver);
2950 debugfs_remove(cxgb4vf_debugfs_root);
2953 module_init(cxgb4vf_module_init);
2954 module_exit(cxgb4vf_module_exit);