OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / net / ethernet / davicom / dm9000.c
blobf801754c71a7eac0754434e9077ab34092709b36
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
39 #include <asm/delay.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
43 #include "dm9000.h"
45 /* Board/System/Debug information/definition ---------------- */
47 #define DM9000_PHY 0x40 /* PHY address 0x01 */
49 #define CARDNAME "dm9000"
50 #define DRV_VERSION "1.31"
53 * Transmit timeout, default 5 seconds.
55 static int watchdog = 5000;
56 module_param(watchdog, int, 0400);
57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
60 * Debug messages level
62 static int debug;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
66 /* DM9000 register address locking.
68 * The DM9000 uses an address register to control where data written
69 * to the data register goes. This means that the address register
70 * must be preserved over interrupts or similar calls.
72 * During interrupt and other critical calls, a spinlock is used to
73 * protect the system, but the calls themselves save the address
74 * in the address register in case they are interrupting another
75 * access to the device.
77 * For general accesses a lock is provided so that calls which are
78 * allowed to sleep are serialised so that the address register does
79 * not need to be saved. This lock also serves to serialise access
80 * to the EEPROM and PHY access registers which are shared between
81 * these two devices.
84 /* The driver supports the original DM9000E, and now the two newer
85 * devices, DM9000A and DM9000B.
88 enum dm9000_type {
89 TYPE_DM9000E, /* original DM9000 */
90 TYPE_DM9000A,
91 TYPE_DM9000B
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info {
97 void __iomem *io_addr; /* Register I/O base address */
98 void __iomem *io_data; /* Data I/O address */
99 u16 irq; /* IRQ */
101 u16 tx_pkt_cnt;
102 u16 queue_pkt_len;
103 u16 queue_start_addr;
104 u16 queue_ip_summed;
105 u16 dbug_cnt;
106 u8 io_mode; /* 0:word, 2:byte */
107 u8 phy_addr;
108 u8 imr_all;
110 unsigned int flags;
111 unsigned int in_suspend :1;
112 unsigned int wake_supported :1;
114 enum dm9000_type type;
116 void (*inblk)(void __iomem *port, void *data, int length);
117 void (*outblk)(void __iomem *port, void *data, int length);
118 void (*dumpblk)(void __iomem *port, int length);
120 struct device *dev; /* parent device */
122 struct resource *addr_res; /* resources found */
123 struct resource *data_res;
124 struct resource *addr_req; /* resources requested */
125 struct resource *data_req;
126 struct resource *irq_res;
128 int irq_wake;
130 struct mutex addr_lock; /* phy and eeprom access lock */
132 struct delayed_work phy_poll;
133 struct net_device *ndev;
135 spinlock_t lock;
137 struct mii_if_info mii;
138 u32 msg_enable;
139 u32 wake_state;
141 int ip_summed;
142 } board_info_t;
144 /* debug code */
146 #define dm9000_dbg(db, lev, msg...) do { \
147 if ((lev) < debug) { \
148 dev_dbg(db->dev, msg); \
150 } while (0)
152 static inline board_info_t *to_dm9000_board(struct net_device *dev)
154 return netdev_priv(dev);
157 /* DM9000 network board routine ---------------------------- */
159 static void
160 dm9000_reset(board_info_t * db)
162 dev_dbg(db->dev, "resetting device\n");
164 /* RESET device */
165 writeb(DM9000_NCR, db->io_addr);
166 udelay(200);
167 writeb(NCR_RST, db->io_data);
168 udelay(200);
172 * Read a byte from I/O port
174 static u8
175 ior(board_info_t * db, int reg)
177 writeb(reg, db->io_addr);
178 return readb(db->io_data);
182 * Write a byte to I/O port
185 static void
186 iow(board_info_t * db, int reg, int value)
188 writeb(reg, db->io_addr);
189 writeb(value, db->io_data);
192 /* routines for sending block to chip */
194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
196 writesb(reg, data, count);
199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
201 writesw(reg, data, (count+1) >> 1);
204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
206 writesl(reg, data, (count+3) >> 2);
209 /* input block from chip to memory */
211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
213 readsb(reg, data, count);
217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
219 readsw(reg, data, (count+1) >> 1);
222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
224 readsl(reg, data, (count+3) >> 2);
227 /* dump block from chip to null */
229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
231 int i;
232 int tmp;
234 for (i = 0; i < count; i++)
235 tmp = readb(reg);
238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
240 int i;
241 int tmp;
243 count = (count + 1) >> 1;
245 for (i = 0; i < count; i++)
246 tmp = readw(reg);
249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
251 int i;
252 int tmp;
254 count = (count + 3) >> 2;
256 for (i = 0; i < count; i++)
257 tmp = readl(reg);
260 /* dm9000_set_io
262 * select the specified set of io routines to use with the
263 * device
266 static void dm9000_set_io(struct board_info *db, int byte_width)
268 /* use the size of the data resource to work out what IO
269 * routines we want to use
272 switch (byte_width) {
273 case 1:
274 db->dumpblk = dm9000_dumpblk_8bit;
275 db->outblk = dm9000_outblk_8bit;
276 db->inblk = dm9000_inblk_8bit;
277 break;
280 case 3:
281 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
282 case 2:
283 db->dumpblk = dm9000_dumpblk_16bit;
284 db->outblk = dm9000_outblk_16bit;
285 db->inblk = dm9000_inblk_16bit;
286 break;
288 case 4:
289 default:
290 db->dumpblk = dm9000_dumpblk_32bit;
291 db->outblk = dm9000_outblk_32bit;
292 db->inblk = dm9000_inblk_32bit;
293 break;
297 static void dm9000_schedule_poll(board_info_t *db)
299 if (db->type == TYPE_DM9000E)
300 schedule_delayed_work(&db->phy_poll, HZ * 2);
303 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
305 board_info_t *dm = to_dm9000_board(dev);
307 if (!netif_running(dev))
308 return -EINVAL;
310 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
313 static unsigned int
314 dm9000_read_locked(board_info_t *db, int reg)
316 unsigned long flags;
317 unsigned int ret;
319 spin_lock_irqsave(&db->lock, flags);
320 ret = ior(db, reg);
321 spin_unlock_irqrestore(&db->lock, flags);
323 return ret;
326 static int dm9000_wait_eeprom(board_info_t *db)
328 unsigned int status;
329 int timeout = 8; /* wait max 8msec */
331 /* The DM9000 data sheets say we should be able to
332 * poll the ERRE bit in EPCR to wait for the EEPROM
333 * operation. From testing several chips, this bit
334 * does not seem to work.
336 * We attempt to use the bit, but fall back to the
337 * timeout (which is why we do not return an error
338 * on expiry) to say that the EEPROM operation has
339 * completed.
342 while (1) {
343 status = dm9000_read_locked(db, DM9000_EPCR);
345 if ((status & EPCR_ERRE) == 0)
346 break;
348 msleep(1);
350 if (timeout-- < 0) {
351 dev_dbg(db->dev, "timeout waiting EEPROM\n");
352 break;
356 return 0;
360 * Read a word data from EEPROM
362 static void
363 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
365 unsigned long flags;
367 if (db->flags & DM9000_PLATF_NO_EEPROM) {
368 to[0] = 0xff;
369 to[1] = 0xff;
370 return;
373 mutex_lock(&db->addr_lock);
375 spin_lock_irqsave(&db->lock, flags);
377 iow(db, DM9000_EPAR, offset);
378 iow(db, DM9000_EPCR, EPCR_ERPRR);
380 spin_unlock_irqrestore(&db->lock, flags);
382 dm9000_wait_eeprom(db);
384 /* delay for at-least 150uS */
385 msleep(1);
387 spin_lock_irqsave(&db->lock, flags);
389 iow(db, DM9000_EPCR, 0x0);
391 to[0] = ior(db, DM9000_EPDRL);
392 to[1] = ior(db, DM9000_EPDRH);
394 spin_unlock_irqrestore(&db->lock, flags);
396 mutex_unlock(&db->addr_lock);
400 * Write a word data to SROM
402 static void
403 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
405 unsigned long flags;
407 if (db->flags & DM9000_PLATF_NO_EEPROM)
408 return;
410 mutex_lock(&db->addr_lock);
412 spin_lock_irqsave(&db->lock, flags);
413 iow(db, DM9000_EPAR, offset);
414 iow(db, DM9000_EPDRH, data[1]);
415 iow(db, DM9000_EPDRL, data[0]);
416 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
417 spin_unlock_irqrestore(&db->lock, flags);
419 dm9000_wait_eeprom(db);
421 mdelay(1); /* wait at least 150uS to clear */
423 spin_lock_irqsave(&db->lock, flags);
424 iow(db, DM9000_EPCR, 0);
425 spin_unlock_irqrestore(&db->lock, flags);
427 mutex_unlock(&db->addr_lock);
430 /* ethtool ops */
432 static void dm9000_get_drvinfo(struct net_device *dev,
433 struct ethtool_drvinfo *info)
435 board_info_t *dm = to_dm9000_board(dev);
437 strcpy(info->driver, CARDNAME);
438 strcpy(info->version, DRV_VERSION);
439 strcpy(info->bus_info, to_platform_device(dm->dev)->name);
442 static u32 dm9000_get_msglevel(struct net_device *dev)
444 board_info_t *dm = to_dm9000_board(dev);
446 return dm->msg_enable;
449 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
451 board_info_t *dm = to_dm9000_board(dev);
453 dm->msg_enable = value;
456 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
458 board_info_t *dm = to_dm9000_board(dev);
460 mii_ethtool_gset(&dm->mii, cmd);
461 return 0;
464 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
466 board_info_t *dm = to_dm9000_board(dev);
468 return mii_ethtool_sset(&dm->mii, cmd);
471 static int dm9000_nway_reset(struct net_device *dev)
473 board_info_t *dm = to_dm9000_board(dev);
474 return mii_nway_restart(&dm->mii);
477 static int dm9000_set_features(struct net_device *dev,
478 netdev_features_t features)
480 board_info_t *dm = to_dm9000_board(dev);
481 netdev_features_t changed = dev->features ^ features;
482 unsigned long flags;
484 if (!(changed & NETIF_F_RXCSUM))
485 return 0;
487 spin_lock_irqsave(&dm->lock, flags);
488 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
489 spin_unlock_irqrestore(&dm->lock, flags);
491 return 0;
494 static u32 dm9000_get_link(struct net_device *dev)
496 board_info_t *dm = to_dm9000_board(dev);
497 u32 ret;
499 if (dm->flags & DM9000_PLATF_EXT_PHY)
500 ret = mii_link_ok(&dm->mii);
501 else
502 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
504 return ret;
507 #define DM_EEPROM_MAGIC (0x444D394B)
509 static int dm9000_get_eeprom_len(struct net_device *dev)
511 return 128;
514 static int dm9000_get_eeprom(struct net_device *dev,
515 struct ethtool_eeprom *ee, u8 *data)
517 board_info_t *dm = to_dm9000_board(dev);
518 int offset = ee->offset;
519 int len = ee->len;
520 int i;
522 /* EEPROM access is aligned to two bytes */
524 if ((len & 1) != 0 || (offset & 1) != 0)
525 return -EINVAL;
527 if (dm->flags & DM9000_PLATF_NO_EEPROM)
528 return -ENOENT;
530 ee->magic = DM_EEPROM_MAGIC;
532 for (i = 0; i < len; i += 2)
533 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
535 return 0;
538 static int dm9000_set_eeprom(struct net_device *dev,
539 struct ethtool_eeprom *ee, u8 *data)
541 board_info_t *dm = to_dm9000_board(dev);
542 int offset = ee->offset;
543 int len = ee->len;
544 int done;
546 /* EEPROM access is aligned to two bytes */
548 if (dm->flags & DM9000_PLATF_NO_EEPROM)
549 return -ENOENT;
551 if (ee->magic != DM_EEPROM_MAGIC)
552 return -EINVAL;
554 while (len > 0) {
555 if (len & 1 || offset & 1) {
556 int which = offset & 1;
557 u8 tmp[2];
559 dm9000_read_eeprom(dm, offset / 2, tmp);
560 tmp[which] = *data;
561 dm9000_write_eeprom(dm, offset / 2, tmp);
563 done = 1;
564 } else {
565 dm9000_write_eeprom(dm, offset / 2, data);
566 done = 2;
569 data += done;
570 offset += done;
571 len -= done;
574 return 0;
577 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
579 board_info_t *dm = to_dm9000_board(dev);
581 memset(w, 0, sizeof(struct ethtool_wolinfo));
583 /* note, we could probably support wake-phy too */
584 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
585 w->wolopts = dm->wake_state;
588 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
590 board_info_t *dm = to_dm9000_board(dev);
591 unsigned long flags;
592 u32 opts = w->wolopts;
593 u32 wcr = 0;
595 if (!dm->wake_supported)
596 return -EOPNOTSUPP;
598 if (opts & ~WAKE_MAGIC)
599 return -EINVAL;
601 if (opts & WAKE_MAGIC)
602 wcr |= WCR_MAGICEN;
604 mutex_lock(&dm->addr_lock);
606 spin_lock_irqsave(&dm->lock, flags);
607 iow(dm, DM9000_WCR, wcr);
608 spin_unlock_irqrestore(&dm->lock, flags);
610 mutex_unlock(&dm->addr_lock);
612 if (dm->wake_state != opts) {
613 /* change in wol state, update IRQ state */
615 if (!dm->wake_state)
616 irq_set_irq_wake(dm->irq_wake, 1);
617 else if (dm->wake_state && !opts)
618 irq_set_irq_wake(dm->irq_wake, 0);
621 dm->wake_state = opts;
622 return 0;
625 static const struct ethtool_ops dm9000_ethtool_ops = {
626 .get_drvinfo = dm9000_get_drvinfo,
627 .get_settings = dm9000_get_settings,
628 .set_settings = dm9000_set_settings,
629 .get_msglevel = dm9000_get_msglevel,
630 .set_msglevel = dm9000_set_msglevel,
631 .nway_reset = dm9000_nway_reset,
632 .get_link = dm9000_get_link,
633 .get_wol = dm9000_get_wol,
634 .set_wol = dm9000_set_wol,
635 .get_eeprom_len = dm9000_get_eeprom_len,
636 .get_eeprom = dm9000_get_eeprom,
637 .set_eeprom = dm9000_set_eeprom,
640 static void dm9000_show_carrier(board_info_t *db,
641 unsigned carrier, unsigned nsr)
643 struct net_device *ndev = db->ndev;
644 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
646 if (carrier)
647 dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
648 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
649 (ncr & NCR_FDX) ? "full" : "half");
650 else
651 dev_info(db->dev, "%s: link down\n", ndev->name);
654 static void
655 dm9000_poll_work(struct work_struct *w)
657 struct delayed_work *dw = to_delayed_work(w);
658 board_info_t *db = container_of(dw, board_info_t, phy_poll);
659 struct net_device *ndev = db->ndev;
661 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
662 !(db->flags & DM9000_PLATF_EXT_PHY)) {
663 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
664 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
665 unsigned new_carrier;
667 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
669 if (old_carrier != new_carrier) {
670 if (netif_msg_link(db))
671 dm9000_show_carrier(db, new_carrier, nsr);
673 if (!new_carrier)
674 netif_carrier_off(ndev);
675 else
676 netif_carrier_on(ndev);
678 } else
679 mii_check_media(&db->mii, netif_msg_link(db), 0);
681 if (netif_running(ndev))
682 dm9000_schedule_poll(db);
685 /* dm9000_release_board
687 * release a board, and any mapped resources
690 static void
691 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
693 /* unmap our resources */
695 iounmap(db->io_addr);
696 iounmap(db->io_data);
698 /* release the resources */
700 release_resource(db->data_req);
701 kfree(db->data_req);
703 release_resource(db->addr_req);
704 kfree(db->addr_req);
707 static unsigned char dm9000_type_to_char(enum dm9000_type type)
709 switch (type) {
710 case TYPE_DM9000E: return 'e';
711 case TYPE_DM9000A: return 'a';
712 case TYPE_DM9000B: return 'b';
715 return '?';
719 * Set DM9000 multicast address
721 static void
722 dm9000_hash_table_unlocked(struct net_device *dev)
724 board_info_t *db = netdev_priv(dev);
725 struct netdev_hw_addr *ha;
726 int i, oft;
727 u32 hash_val;
728 u16 hash_table[4];
729 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
731 dm9000_dbg(db, 1, "entering %s\n", __func__);
733 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
734 iow(db, oft, dev->dev_addr[i]);
736 /* Clear Hash Table */
737 for (i = 0; i < 4; i++)
738 hash_table[i] = 0x0;
740 /* broadcast address */
741 hash_table[3] = 0x8000;
743 if (dev->flags & IFF_PROMISC)
744 rcr |= RCR_PRMSC;
746 if (dev->flags & IFF_ALLMULTI)
747 rcr |= RCR_ALL;
749 /* the multicast address in Hash Table : 64 bits */
750 netdev_for_each_mc_addr(ha, dev) {
751 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
752 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
755 /* Write the hash table to MAC MD table */
756 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
757 iow(db, oft++, hash_table[i]);
758 iow(db, oft++, hash_table[i] >> 8);
761 iow(db, DM9000_RCR, rcr);
764 static void
765 dm9000_hash_table(struct net_device *dev)
767 board_info_t *db = netdev_priv(dev);
768 unsigned long flags;
770 spin_lock_irqsave(&db->lock, flags);
771 dm9000_hash_table_unlocked(dev);
772 spin_unlock_irqrestore(&db->lock, flags);
776 * Initialize dm9000 board
778 static void
779 dm9000_init_dm9000(struct net_device *dev)
781 board_info_t *db = netdev_priv(dev);
782 unsigned int imr;
783 unsigned int ncr;
785 dm9000_dbg(db, 1, "entering %s\n", __func__);
787 /* I/O mode */
788 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
790 /* Checksum mode */
791 if (dev->hw_features & NETIF_F_RXCSUM)
792 iow(db, DM9000_RCSR,
793 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
795 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
797 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
799 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
800 * up dumping the wake events if we disable this. There is already
801 * a wake-mask in DM9000_WCR */
802 if (db->wake_supported)
803 ncr |= NCR_WAKEEN;
805 iow(db, DM9000_NCR, ncr);
807 /* Program operating register */
808 iow(db, DM9000_TCR, 0); /* TX Polling clear */
809 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
810 iow(db, DM9000_FCR, 0xff); /* Flow Control */
811 iow(db, DM9000_SMCR, 0); /* Special Mode */
812 /* clear TX status */
813 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
814 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
816 /* Set address filter table */
817 dm9000_hash_table_unlocked(dev);
819 imr = IMR_PAR | IMR_PTM | IMR_PRM;
820 if (db->type != TYPE_DM9000E)
821 imr |= IMR_LNKCHNG;
823 db->imr_all = imr;
825 /* Enable TX/RX interrupt mask */
826 iow(db, DM9000_IMR, imr);
828 /* Init Driver variable */
829 db->tx_pkt_cnt = 0;
830 db->queue_pkt_len = 0;
831 dev->trans_start = jiffies;
834 /* Our watchdog timed out. Called by the networking layer */
835 static void dm9000_timeout(struct net_device *dev)
837 board_info_t *db = netdev_priv(dev);
838 u8 reg_save;
839 unsigned long flags;
841 /* Save previous register address */
842 spin_lock_irqsave(&db->lock, flags);
843 reg_save = readb(db->io_addr);
845 netif_stop_queue(dev);
846 dm9000_reset(db);
847 dm9000_init_dm9000(dev);
848 /* We can accept TX packets again */
849 dev->trans_start = jiffies; /* prevent tx timeout */
850 netif_wake_queue(dev);
852 /* Restore previous register address */
853 writeb(reg_save, db->io_addr);
854 spin_unlock_irqrestore(&db->lock, flags);
857 static void dm9000_send_packet(struct net_device *dev,
858 int ip_summed,
859 u16 pkt_len)
861 board_info_t *dm = to_dm9000_board(dev);
863 /* The DM9000 is not smart enough to leave fragmented packets alone. */
864 if (dm->ip_summed != ip_summed) {
865 if (ip_summed == CHECKSUM_NONE)
866 iow(dm, DM9000_TCCR, 0);
867 else
868 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
869 dm->ip_summed = ip_summed;
872 /* Set TX length to DM9000 */
873 iow(dm, DM9000_TXPLL, pkt_len);
874 iow(dm, DM9000_TXPLH, pkt_len >> 8);
876 /* Issue TX polling command */
877 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
881 * Hardware start transmission.
882 * Send a packet to media from the upper layer.
884 static int
885 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
887 unsigned long flags;
888 board_info_t *db = netdev_priv(dev);
890 dm9000_dbg(db, 3, "%s:\n", __func__);
892 if (db->tx_pkt_cnt > 1)
893 return NETDEV_TX_BUSY;
895 spin_lock_irqsave(&db->lock, flags);
897 /* Move data to DM9000 TX RAM */
898 writeb(DM9000_MWCMD, db->io_addr);
900 (db->outblk)(db->io_data, skb->data, skb->len);
901 dev->stats.tx_bytes += skb->len;
903 db->tx_pkt_cnt++;
904 /* TX control: First packet immediately send, second packet queue */
905 if (db->tx_pkt_cnt == 1) {
906 dm9000_send_packet(dev, skb->ip_summed, skb->len);
907 } else {
908 /* Second packet */
909 db->queue_pkt_len = skb->len;
910 db->queue_ip_summed = skb->ip_summed;
911 netif_stop_queue(dev);
914 spin_unlock_irqrestore(&db->lock, flags);
916 /* free this SKB */
917 dev_kfree_skb(skb);
919 return NETDEV_TX_OK;
923 * DM9000 interrupt handler
924 * receive the packet to upper layer, free the transmitted packet
927 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
929 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
931 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
932 /* One packet sent complete */
933 db->tx_pkt_cnt--;
934 dev->stats.tx_packets++;
936 if (netif_msg_tx_done(db))
937 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
939 /* Queue packet check & send */
940 if (db->tx_pkt_cnt > 0)
941 dm9000_send_packet(dev, db->queue_ip_summed,
942 db->queue_pkt_len);
943 netif_wake_queue(dev);
947 struct dm9000_rxhdr {
948 u8 RxPktReady;
949 u8 RxStatus;
950 __le16 RxLen;
951 } __packed;
954 * Received a packet and pass to upper layer
956 static void
957 dm9000_rx(struct net_device *dev)
959 board_info_t *db = netdev_priv(dev);
960 struct dm9000_rxhdr rxhdr;
961 struct sk_buff *skb;
962 u8 rxbyte, *rdptr;
963 bool GoodPacket;
964 int RxLen;
966 /* Check packet ready or not */
967 do {
968 ior(db, DM9000_MRCMDX); /* Dummy read */
970 /* Get most updated data */
971 rxbyte = readb(db->io_data);
973 /* Status check: this byte must be 0 or 1 */
974 if (rxbyte & DM9000_PKT_ERR) {
975 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
976 iow(db, DM9000_RCR, 0x00); /* Stop Device */
977 iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
978 return;
981 if (!(rxbyte & DM9000_PKT_RDY))
982 return;
984 /* A packet ready now & Get status/length */
985 GoodPacket = true;
986 writeb(DM9000_MRCMD, db->io_addr);
988 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
990 RxLen = le16_to_cpu(rxhdr.RxLen);
992 if (netif_msg_rx_status(db))
993 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
994 rxhdr.RxStatus, RxLen);
996 /* Packet Status check */
997 if (RxLen < 0x40) {
998 GoodPacket = false;
999 if (netif_msg_rx_err(db))
1000 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1003 if (RxLen > DM9000_PKT_MAX) {
1004 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1007 /* rxhdr.RxStatus is identical to RSR register. */
1008 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1009 RSR_PLE | RSR_RWTO |
1010 RSR_LCS | RSR_RF)) {
1011 GoodPacket = false;
1012 if (rxhdr.RxStatus & RSR_FOE) {
1013 if (netif_msg_rx_err(db))
1014 dev_dbg(db->dev, "fifo error\n");
1015 dev->stats.rx_fifo_errors++;
1017 if (rxhdr.RxStatus & RSR_CE) {
1018 if (netif_msg_rx_err(db))
1019 dev_dbg(db->dev, "crc error\n");
1020 dev->stats.rx_crc_errors++;
1022 if (rxhdr.RxStatus & RSR_RF) {
1023 if (netif_msg_rx_err(db))
1024 dev_dbg(db->dev, "length error\n");
1025 dev->stats.rx_length_errors++;
1029 /* Move data from DM9000 */
1030 if (GoodPacket &&
1031 ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1032 skb_reserve(skb, 2);
1033 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1035 /* Read received packet from RX SRAM */
1037 (db->inblk)(db->io_data, rdptr, RxLen);
1038 dev->stats.rx_bytes += RxLen;
1040 /* Pass to upper layer */
1041 skb->protocol = eth_type_trans(skb, dev);
1042 if (dev->features & NETIF_F_RXCSUM) {
1043 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1044 skb->ip_summed = CHECKSUM_UNNECESSARY;
1045 else
1046 skb_checksum_none_assert(skb);
1048 netif_rx(skb);
1049 dev->stats.rx_packets++;
1051 } else {
1052 /* need to dump the packet's data */
1054 (db->dumpblk)(db->io_data, RxLen);
1056 } while (rxbyte & DM9000_PKT_RDY);
1059 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1061 struct net_device *dev = dev_id;
1062 board_info_t *db = netdev_priv(dev);
1063 int int_status;
1064 unsigned long flags;
1065 u8 reg_save;
1067 dm9000_dbg(db, 3, "entering %s\n", __func__);
1069 /* A real interrupt coming */
1071 /* holders of db->lock must always block IRQs */
1072 spin_lock_irqsave(&db->lock, flags);
1074 /* Save previous register address */
1075 reg_save = readb(db->io_addr);
1077 /* Disable all interrupts */
1078 iow(db, DM9000_IMR, IMR_PAR);
1080 /* Got DM9000 interrupt status */
1081 int_status = ior(db, DM9000_ISR); /* Got ISR */
1082 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1084 if (netif_msg_intr(db))
1085 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1087 /* Received the coming packet */
1088 if (int_status & ISR_PRS)
1089 dm9000_rx(dev);
1091 /* Trnasmit Interrupt check */
1092 if (int_status & ISR_PTS)
1093 dm9000_tx_done(dev, db);
1095 if (db->type != TYPE_DM9000E) {
1096 if (int_status & ISR_LNKCHNG) {
1097 /* fire a link-change request */
1098 schedule_delayed_work(&db->phy_poll, 1);
1102 /* Re-enable interrupt mask */
1103 iow(db, DM9000_IMR, db->imr_all);
1105 /* Restore previous register address */
1106 writeb(reg_save, db->io_addr);
1108 spin_unlock_irqrestore(&db->lock, flags);
1110 return IRQ_HANDLED;
1113 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1115 struct net_device *dev = dev_id;
1116 board_info_t *db = netdev_priv(dev);
1117 unsigned long flags;
1118 unsigned nsr, wcr;
1120 spin_lock_irqsave(&db->lock, flags);
1122 nsr = ior(db, DM9000_NSR);
1123 wcr = ior(db, DM9000_WCR);
1125 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1127 if (nsr & NSR_WAKEST) {
1128 /* clear, so we can avoid */
1129 iow(db, DM9000_NSR, NSR_WAKEST);
1131 if (wcr & WCR_LINKST)
1132 dev_info(db->dev, "wake by link status change\n");
1133 if (wcr & WCR_SAMPLEST)
1134 dev_info(db->dev, "wake by sample packet\n");
1135 if (wcr & WCR_MAGICST )
1136 dev_info(db->dev, "wake by magic packet\n");
1137 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1138 dev_err(db->dev, "wake signalled with no reason? "
1139 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1143 spin_unlock_irqrestore(&db->lock, flags);
1145 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1148 #ifdef CONFIG_NET_POLL_CONTROLLER
1150 *Used by netconsole
1152 static void dm9000_poll_controller(struct net_device *dev)
1154 disable_irq(dev->irq);
1155 dm9000_interrupt(dev->irq, dev);
1156 enable_irq(dev->irq);
1158 #endif
1161 * Open the interface.
1162 * The interface is opened whenever "ifconfig" actives it.
1164 static int
1165 dm9000_open(struct net_device *dev)
1167 board_info_t *db = netdev_priv(dev);
1168 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1170 if (netif_msg_ifup(db))
1171 dev_dbg(db->dev, "enabling %s\n", dev->name);
1173 /* If there is no IRQ type specified, default to something that
1174 * may work, and tell the user that this is a problem */
1176 if (irqflags == IRQF_TRIGGER_NONE)
1177 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1179 irqflags |= IRQF_SHARED;
1181 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1182 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1183 mdelay(1); /* delay needs by DM9000B */
1185 /* Initialize DM9000 board */
1186 dm9000_reset(db);
1187 dm9000_init_dm9000(dev);
1189 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1190 return -EAGAIN;
1192 /* Init driver variable */
1193 db->dbug_cnt = 0;
1195 mii_check_media(&db->mii, netif_msg_link(db), 1);
1196 netif_start_queue(dev);
1198 dm9000_schedule_poll(db);
1200 return 0;
1204 * Sleep, either by using msleep() or if we are suspending, then
1205 * use mdelay() to sleep.
1207 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1209 if (db->in_suspend)
1210 mdelay(ms);
1211 else
1212 msleep(ms);
1216 * Read a word from phyxcer
1218 static int
1219 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1221 board_info_t *db = netdev_priv(dev);
1222 unsigned long flags;
1223 unsigned int reg_save;
1224 int ret;
1226 mutex_lock(&db->addr_lock);
1228 spin_lock_irqsave(&db->lock,flags);
1230 /* Save previous register address */
1231 reg_save = readb(db->io_addr);
1233 /* Fill the phyxcer register into REG_0C */
1234 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1236 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
1238 writeb(reg_save, db->io_addr);
1239 spin_unlock_irqrestore(&db->lock,flags);
1241 dm9000_msleep(db, 1); /* Wait read complete */
1243 spin_lock_irqsave(&db->lock,flags);
1244 reg_save = readb(db->io_addr);
1246 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
1248 /* The read data keeps on REG_0D & REG_0E */
1249 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1251 /* restore the previous address */
1252 writeb(reg_save, db->io_addr);
1253 spin_unlock_irqrestore(&db->lock,flags);
1255 mutex_unlock(&db->addr_lock);
1257 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1258 return ret;
1262 * Write a word to phyxcer
1264 static void
1265 dm9000_phy_write(struct net_device *dev,
1266 int phyaddr_unused, int reg, int value)
1268 board_info_t *db = netdev_priv(dev);
1269 unsigned long flags;
1270 unsigned long reg_save;
1272 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1273 mutex_lock(&db->addr_lock);
1275 spin_lock_irqsave(&db->lock,flags);
1277 /* Save previous register address */
1278 reg_save = readb(db->io_addr);
1280 /* Fill the phyxcer register into REG_0C */
1281 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1283 /* Fill the written data into REG_0D & REG_0E */
1284 iow(db, DM9000_EPDRL, value);
1285 iow(db, DM9000_EPDRH, value >> 8);
1287 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
1289 writeb(reg_save, db->io_addr);
1290 spin_unlock_irqrestore(&db->lock, flags);
1292 dm9000_msleep(db, 1); /* Wait write complete */
1294 spin_lock_irqsave(&db->lock,flags);
1295 reg_save = readb(db->io_addr);
1297 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
1299 /* restore the previous address */
1300 writeb(reg_save, db->io_addr);
1302 spin_unlock_irqrestore(&db->lock, flags);
1303 mutex_unlock(&db->addr_lock);
1306 static void
1307 dm9000_shutdown(struct net_device *dev)
1309 board_info_t *db = netdev_priv(dev);
1311 /* RESET device */
1312 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1313 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1314 iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
1315 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1319 * Stop the interface.
1320 * The interface is stopped when it is brought.
1322 static int
1323 dm9000_stop(struct net_device *ndev)
1325 board_info_t *db = netdev_priv(ndev);
1327 if (netif_msg_ifdown(db))
1328 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1330 cancel_delayed_work_sync(&db->phy_poll);
1332 netif_stop_queue(ndev);
1333 netif_carrier_off(ndev);
1335 /* free interrupt */
1336 free_irq(ndev->irq, ndev);
1338 dm9000_shutdown(ndev);
1340 return 0;
1343 static const struct net_device_ops dm9000_netdev_ops = {
1344 .ndo_open = dm9000_open,
1345 .ndo_stop = dm9000_stop,
1346 .ndo_start_xmit = dm9000_start_xmit,
1347 .ndo_tx_timeout = dm9000_timeout,
1348 .ndo_set_rx_mode = dm9000_hash_table,
1349 .ndo_do_ioctl = dm9000_ioctl,
1350 .ndo_change_mtu = eth_change_mtu,
1351 .ndo_set_features = dm9000_set_features,
1352 .ndo_validate_addr = eth_validate_addr,
1353 .ndo_set_mac_address = eth_mac_addr,
1354 #ifdef CONFIG_NET_POLL_CONTROLLER
1355 .ndo_poll_controller = dm9000_poll_controller,
1356 #endif
1360 * Search DM9000 board, allocate space and register it
1362 static int __devinit
1363 dm9000_probe(struct platform_device *pdev)
1365 struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1366 struct board_info *db; /* Point a board information structure */
1367 struct net_device *ndev;
1368 const unsigned char *mac_src;
1369 int ret = 0;
1370 int iosize;
1371 int i;
1372 u32 id_val;
1374 /* Init network device */
1375 ndev = alloc_etherdev(sizeof(struct board_info));
1376 if (!ndev) {
1377 dev_err(&pdev->dev, "could not allocate device.\n");
1378 return -ENOMEM;
1381 SET_NETDEV_DEV(ndev, &pdev->dev);
1383 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1385 /* setup board info structure */
1386 db = netdev_priv(ndev);
1388 db->dev = &pdev->dev;
1389 db->ndev = ndev;
1391 spin_lock_init(&db->lock);
1392 mutex_init(&db->addr_lock);
1394 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1396 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1398 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1400 if (db->addr_res == NULL || db->data_res == NULL ||
1401 db->irq_res == NULL) {
1402 dev_err(db->dev, "insufficient resources\n");
1403 ret = -ENOENT;
1404 goto out;
1407 db->irq_wake = platform_get_irq(pdev, 1);
1408 if (db->irq_wake >= 0) {
1409 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1411 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1412 IRQF_SHARED, dev_name(db->dev), ndev);
1413 if (ret) {
1414 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1415 } else {
1417 /* test to see if irq is really wakeup capable */
1418 ret = irq_set_irq_wake(db->irq_wake, 1);
1419 if (ret) {
1420 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1421 db->irq_wake, ret);
1422 ret = 0;
1423 } else {
1424 irq_set_irq_wake(db->irq_wake, 0);
1425 db->wake_supported = 1;
1430 iosize = resource_size(db->addr_res);
1431 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1432 pdev->name);
1434 if (db->addr_req == NULL) {
1435 dev_err(db->dev, "cannot claim address reg area\n");
1436 ret = -EIO;
1437 goto out;
1440 db->io_addr = ioremap(db->addr_res->start, iosize);
1442 if (db->io_addr == NULL) {
1443 dev_err(db->dev, "failed to ioremap address reg\n");
1444 ret = -EINVAL;
1445 goto out;
1448 iosize = resource_size(db->data_res);
1449 db->data_req = request_mem_region(db->data_res->start, iosize,
1450 pdev->name);
1452 if (db->data_req == NULL) {
1453 dev_err(db->dev, "cannot claim data reg area\n");
1454 ret = -EIO;
1455 goto out;
1458 db->io_data = ioremap(db->data_res->start, iosize);
1460 if (db->io_data == NULL) {
1461 dev_err(db->dev, "failed to ioremap data reg\n");
1462 ret = -EINVAL;
1463 goto out;
1466 /* fill in parameters for net-dev structure */
1467 ndev->base_addr = (unsigned long)db->io_addr;
1468 ndev->irq = db->irq_res->start;
1470 /* ensure at least we have a default set of IO routines */
1471 dm9000_set_io(db, iosize);
1473 /* check to see if anything is being over-ridden */
1474 if (pdata != NULL) {
1475 /* check to see if the driver wants to over-ride the
1476 * default IO width */
1478 if (pdata->flags & DM9000_PLATF_8BITONLY)
1479 dm9000_set_io(db, 1);
1481 if (pdata->flags & DM9000_PLATF_16BITONLY)
1482 dm9000_set_io(db, 2);
1484 if (pdata->flags & DM9000_PLATF_32BITONLY)
1485 dm9000_set_io(db, 4);
1487 /* check to see if there are any IO routine
1488 * over-rides */
1490 if (pdata->inblk != NULL)
1491 db->inblk = pdata->inblk;
1493 if (pdata->outblk != NULL)
1494 db->outblk = pdata->outblk;
1496 if (pdata->dumpblk != NULL)
1497 db->dumpblk = pdata->dumpblk;
1499 db->flags = pdata->flags;
1502 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1503 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1504 #endif
1506 dm9000_reset(db);
1508 /* try multiple times, DM9000 sometimes gets the read wrong */
1509 for (i = 0; i < 8; i++) {
1510 id_val = ior(db, DM9000_VIDL);
1511 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1512 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1513 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1515 if (id_val == DM9000_ID)
1516 break;
1517 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1520 if (id_val != DM9000_ID) {
1521 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1522 ret = -ENODEV;
1523 goto out;
1526 /* Identify what type of DM9000 we are working on */
1528 id_val = ior(db, DM9000_CHIPR);
1529 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1531 switch (id_val) {
1532 case CHIPR_DM9000A:
1533 db->type = TYPE_DM9000A;
1534 break;
1535 case CHIPR_DM9000B:
1536 db->type = TYPE_DM9000B;
1537 break;
1538 default:
1539 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1540 db->type = TYPE_DM9000E;
1543 /* dm9000a/b are capable of hardware checksum offload */
1544 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1545 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1546 ndev->features |= ndev->hw_features;
1549 /* from this point we assume that we have found a DM9000 */
1551 /* driver system function */
1552 ether_setup(ndev);
1554 ndev->netdev_ops = &dm9000_netdev_ops;
1555 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1556 ndev->ethtool_ops = &dm9000_ethtool_ops;
1558 db->msg_enable = NETIF_MSG_LINK;
1559 db->mii.phy_id_mask = 0x1f;
1560 db->mii.reg_num_mask = 0x1f;
1561 db->mii.force_media = 0;
1562 db->mii.full_duplex = 0;
1563 db->mii.dev = ndev;
1564 db->mii.mdio_read = dm9000_phy_read;
1565 db->mii.mdio_write = dm9000_phy_write;
1567 mac_src = "eeprom";
1569 /* try reading the node address from the attached EEPROM */
1570 for (i = 0; i < 6; i += 2)
1571 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1573 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1574 mac_src = "platform data";
1575 memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1578 if (!is_valid_ether_addr(ndev->dev_addr)) {
1579 /* try reading from mac */
1581 mac_src = "chip";
1582 for (i = 0; i < 6; i++)
1583 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1586 if (!is_valid_ether_addr(ndev->dev_addr)) {
1587 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1588 "set using ifconfig\n", ndev->name);
1590 random_ether_addr(ndev->dev_addr);
1591 mac_src = "random";
1595 platform_set_drvdata(pdev, ndev);
1596 ret = register_netdev(ndev);
1598 if (ret == 0)
1599 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1600 ndev->name, dm9000_type_to_char(db->type),
1601 db->io_addr, db->io_data, ndev->irq,
1602 ndev->dev_addr, mac_src);
1603 return 0;
1605 out:
1606 dev_err(db->dev, "not found (%d).\n", ret);
1608 dm9000_release_board(pdev, db);
1609 free_netdev(ndev);
1611 return ret;
1614 static int
1615 dm9000_drv_suspend(struct device *dev)
1617 struct platform_device *pdev = to_platform_device(dev);
1618 struct net_device *ndev = platform_get_drvdata(pdev);
1619 board_info_t *db;
1621 if (ndev) {
1622 db = netdev_priv(ndev);
1623 db->in_suspend = 1;
1625 if (!netif_running(ndev))
1626 return 0;
1628 netif_device_detach(ndev);
1630 /* only shutdown if not using WoL */
1631 if (!db->wake_state)
1632 dm9000_shutdown(ndev);
1634 return 0;
1637 static int
1638 dm9000_drv_resume(struct device *dev)
1640 struct platform_device *pdev = to_platform_device(dev);
1641 struct net_device *ndev = platform_get_drvdata(pdev);
1642 board_info_t *db = netdev_priv(ndev);
1644 if (ndev) {
1645 if (netif_running(ndev)) {
1646 /* reset if we were not in wake mode to ensure if
1647 * the device was powered off it is in a known state */
1648 if (!db->wake_state) {
1649 dm9000_reset(db);
1650 dm9000_init_dm9000(ndev);
1653 netif_device_attach(ndev);
1656 db->in_suspend = 0;
1658 return 0;
1661 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1662 .suspend = dm9000_drv_suspend,
1663 .resume = dm9000_drv_resume,
1666 static int __devexit
1667 dm9000_drv_remove(struct platform_device *pdev)
1669 struct net_device *ndev = platform_get_drvdata(pdev);
1671 platform_set_drvdata(pdev, NULL);
1673 unregister_netdev(ndev);
1674 dm9000_release_board(pdev, netdev_priv(ndev));
1675 free_netdev(ndev); /* free device structure */
1677 dev_dbg(&pdev->dev, "released and freed device\n");
1678 return 0;
1681 static struct platform_driver dm9000_driver = {
1682 .driver = {
1683 .name = "dm9000",
1684 .owner = THIS_MODULE,
1685 .pm = &dm9000_drv_pm_ops,
1687 .probe = dm9000_probe,
1688 .remove = __devexit_p(dm9000_drv_remove),
1691 static int __init
1692 dm9000_init(void)
1694 printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1696 return platform_driver_register(&dm9000_driver);
1699 static void __exit
1700 dm9000_cleanup(void)
1702 platform_driver_unregister(&dm9000_driver);
1705 module_init(dm9000_init);
1706 module_exit(dm9000_cleanup);
1708 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1709 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1710 MODULE_LICENSE("GPL");
1711 MODULE_ALIAS("platform:dm9000");