OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
blobb54898737284199183c1c6708b184763c648f057
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
45 #include "qlge.h"
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
55 static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
62 /* NETIF_MSG_TX_QUEUED | */
63 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
67 static int debug = -1; /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
82 "Default is OFF - Do Not allocate memory. ");
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93 /* required last entry */
94 {0,}
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
102 /* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 u32 sem_bits = 0;
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137 return -EINVAL;
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 unsigned int wait_count = 30;
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
150 udelay(100);
151 } while (--wait_count);
152 return -ETIMEDOUT;
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
161 /* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 u32 temp;
169 int count = UDELAY_COUNT;
171 while (count) {
172 temp = ql_read32(qdev, reg);
174 /* check for errors */
175 if (temp & err_bit) {
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
187 return -ETIMEDOUT;
190 /* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 int count = UDELAY_COUNT;
196 u32 temp;
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
207 return -ETIMEDOUT;
211 /* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230 return -ENOMEM;
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
241 goto exit;
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
252 * Wait for the bit to clear after signaling hw.
254 status = ql_wait_cfg(qdev, bit);
255 exit:
256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
261 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
265 u32 offset = 0;
266 int status;
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
272 status =
273 ql_wait_reg_rdy(qdev,
274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311 MAC_ADDR_MR, 0);
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 break;
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
323 status = -EPERM;
325 exit:
326 return status;
329 /* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
335 u32 offset = 0;
336 int status = 0;
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
371 case MAC_ADDR_TYPE_CAM_MAC:
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
379 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
380 "Adding %s address %pM at index %d in the CAM.\n",
381 type == MAC_ADDR_TYPE_MULTI_MAC ?
382 "MULTICAST" : "UNICAST",
383 addr, index);
385 status =
386 ql_wait_reg_rdy(qdev,
387 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
388 if (status)
389 goto exit;
390 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
391 (index << MAC_ADDR_IDX_SHIFT) | /* index */
392 type); /* type */
393 ql_write32(qdev, MAC_ADDR_DATA, lower);
394 status =
395 ql_wait_reg_rdy(qdev,
396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
397 if (status)
398 goto exit;
399 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
401 type); /* type */
402 ql_write32(qdev, MAC_ADDR_DATA, upper);
403 status =
404 ql_wait_reg_rdy(qdev,
405 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
406 if (status)
407 goto exit;
408 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
409 (index << MAC_ADDR_IDX_SHIFT) | /* index */
410 type); /* type */
411 /* This field should also include the queue id
412 and possibly the function id. Right now we hardcode
413 the route field to NIC core.
415 cam_output = (CAM_OUT_ROUTE_NIC |
416 (qdev->
417 func << CAM_OUT_FUNC_SHIFT) |
418 (0 << CAM_OUT_CQ_ID_SHIFT));
419 if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
420 cam_output |= CAM_OUT_RV;
421 /* route to NIC core */
422 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
423 break;
425 case MAC_ADDR_TYPE_VLAN:
427 u32 enable_bit = *((u32 *) &addr[0]);
428 /* For VLAN, the addr actually holds a bit that
429 * either enables or disables the vlan id we are
430 * addressing. It's either MAC_ADDR_E on or off.
431 * That's bit-27 we're talking about.
433 netif_info(qdev, ifup, qdev->ndev,
434 "%s VLAN ID %d %s the CAM.\n",
435 enable_bit ? "Adding" : "Removing",
436 index,
437 enable_bit ? "to" : "from");
439 status =
440 ql_wait_reg_rdy(qdev,
441 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
442 if (status)
443 goto exit;
444 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
445 (index << MAC_ADDR_IDX_SHIFT) | /* index */
446 type | /* type */
447 enable_bit); /* enable/disable */
448 break;
450 case MAC_ADDR_TYPE_MULTI_FLTR:
451 default:
452 netif_crit(qdev, ifup, qdev->ndev,
453 "Address type %d not yet supported.\n", type);
454 status = -EPERM;
456 exit:
457 return status;
460 /* Set or clear MAC address in hardware. We sometimes
461 * have to clear it to prevent wrong frame routing
462 * especially in a bonding environment.
464 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
466 int status;
467 char zero_mac_addr[ETH_ALEN];
468 char *addr;
470 if (set) {
471 addr = &qdev->current_mac_addr[0];
472 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
473 "Set Mac addr %pM\n", addr);
474 } else {
475 memset(zero_mac_addr, 0, ETH_ALEN);
476 addr = &zero_mac_addr[0];
477 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
478 "Clearing MAC address\n");
480 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
481 if (status)
482 return status;
483 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
484 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
485 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
486 if (status)
487 netif_err(qdev, ifup, qdev->ndev,
488 "Failed to init mac address.\n");
489 return status;
492 void ql_link_on(struct ql_adapter *qdev)
494 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
495 netif_carrier_on(qdev->ndev);
496 ql_set_mac_addr(qdev, 1);
499 void ql_link_off(struct ql_adapter *qdev)
501 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
502 netif_carrier_off(qdev->ndev);
503 ql_set_mac_addr(qdev, 0);
506 /* Get a specific frame routing value from the CAM.
507 * Used for debug and reg dump.
509 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
511 int status = 0;
513 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
514 if (status)
515 goto exit;
517 ql_write32(qdev, RT_IDX,
518 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
519 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
520 if (status)
521 goto exit;
522 *value = ql_read32(qdev, RT_DATA);
523 exit:
524 return status;
527 /* The NIC function for this chip has 16 routing indexes. Each one can be used
528 * to route different frame types to various inbound queues. We send broadcast/
529 * multicast/error frames to the default queue for slow handling,
530 * and CAM hit/RSS frames to the fast handling queues.
532 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
533 int enable)
535 int status = -EINVAL; /* Return error if no mask match. */
536 u32 value = 0;
538 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
539 "%s %s mask %s the routing reg.\n",
540 enable ? "Adding" : "Removing",
541 index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
542 index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
543 index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
544 index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
545 index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
546 index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
547 index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
548 index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
549 index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
550 index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
551 index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
552 index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
553 index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
554 index == RT_IDX_UNUSED013 ? "UNUSED13" :
555 index == RT_IDX_UNUSED014 ? "UNUSED14" :
556 index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
557 "(Bad index != RT_IDX)",
558 enable ? "to" : "from");
560 switch (mask) {
561 case RT_IDX_CAM_HIT:
563 value = RT_IDX_DST_CAM_Q | /* dest */
564 RT_IDX_TYPE_NICQ | /* type */
565 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
566 break;
568 case RT_IDX_VALID: /* Promiscuous Mode frames. */
570 value = RT_IDX_DST_DFLT_Q | /* dest */
571 RT_IDX_TYPE_NICQ | /* type */
572 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
573 break;
575 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
577 value = RT_IDX_DST_DFLT_Q | /* dest */
578 RT_IDX_TYPE_NICQ | /* type */
579 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
580 break;
582 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
584 value = RT_IDX_DST_DFLT_Q | /* dest */
585 RT_IDX_TYPE_NICQ | /* type */
586 (RT_IDX_IP_CSUM_ERR_SLOT <<
587 RT_IDX_IDX_SHIFT); /* index */
588 break;
590 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
592 value = RT_IDX_DST_DFLT_Q | /* dest */
593 RT_IDX_TYPE_NICQ | /* type */
594 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
595 RT_IDX_IDX_SHIFT); /* index */
596 break;
598 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
600 value = RT_IDX_DST_DFLT_Q | /* dest */
601 RT_IDX_TYPE_NICQ | /* type */
602 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
603 break;
605 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
607 value = RT_IDX_DST_DFLT_Q | /* dest */
608 RT_IDX_TYPE_NICQ | /* type */
609 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
610 break;
612 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
614 value = RT_IDX_DST_DFLT_Q | /* dest */
615 RT_IDX_TYPE_NICQ | /* type */
616 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
617 break;
619 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
621 value = RT_IDX_DST_RSS | /* dest */
622 RT_IDX_TYPE_NICQ | /* type */
623 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
624 break;
626 case 0: /* Clear the E-bit on an entry. */
628 value = RT_IDX_DST_DFLT_Q | /* dest */
629 RT_IDX_TYPE_NICQ | /* type */
630 (index << RT_IDX_IDX_SHIFT);/* index */
631 break;
633 default:
634 netif_err(qdev, ifup, qdev->ndev,
635 "Mask type %d not yet supported.\n", mask);
636 status = -EPERM;
637 goto exit;
640 if (value) {
641 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
642 if (status)
643 goto exit;
644 value |= (enable ? RT_IDX_E : 0);
645 ql_write32(qdev, RT_IDX, value);
646 ql_write32(qdev, RT_DATA, enable ? mask : 0);
648 exit:
649 return status;
652 static void ql_enable_interrupts(struct ql_adapter *qdev)
654 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
657 static void ql_disable_interrupts(struct ql_adapter *qdev)
659 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
662 /* If we're running with multiple MSI-X vectors then we enable on the fly.
663 * Otherwise, we may have multiple outstanding workers and don't want to
664 * enable until the last one finishes. In this case, the irq_cnt gets
665 * incremented every time we queue a worker and decremented every time
666 * a worker finishes. Once it hits zero we enable the interrupt.
668 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
670 u32 var = 0;
671 unsigned long hw_flags = 0;
672 struct intr_context *ctx = qdev->intr_context + intr;
674 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
675 /* Always enable if we're MSIX multi interrupts and
676 * it's not the default (zeroeth) interrupt.
678 ql_write32(qdev, INTR_EN,
679 ctx->intr_en_mask);
680 var = ql_read32(qdev, STS);
681 return var;
684 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
685 if (atomic_dec_and_test(&ctx->irq_cnt)) {
686 ql_write32(qdev, INTR_EN,
687 ctx->intr_en_mask);
688 var = ql_read32(qdev, STS);
690 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
691 return var;
694 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
696 u32 var = 0;
697 struct intr_context *ctx;
699 /* HW disables for us if we're MSIX multi interrupts and
700 * it's not the default (zeroeth) interrupt.
702 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
703 return 0;
705 ctx = qdev->intr_context + intr;
706 spin_lock(&qdev->hw_lock);
707 if (!atomic_read(&ctx->irq_cnt)) {
708 ql_write32(qdev, INTR_EN,
709 ctx->intr_dis_mask);
710 var = ql_read32(qdev, STS);
712 atomic_inc(&ctx->irq_cnt);
713 spin_unlock(&qdev->hw_lock);
714 return var;
717 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
719 int i;
720 for (i = 0; i < qdev->intr_count; i++) {
721 /* The enable call does a atomic_dec_and_test
722 * and enables only if the result is zero.
723 * So we precharge it here.
725 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
726 i == 0))
727 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
728 ql_enable_completion_interrupt(qdev, i);
733 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
735 int status, i;
736 u16 csum = 0;
737 __le16 *flash = (__le16 *)&qdev->flash;
739 status = strncmp((char *)&qdev->flash, str, 4);
740 if (status) {
741 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
742 return status;
745 for (i = 0; i < size; i++)
746 csum += le16_to_cpu(*flash++);
748 if (csum)
749 netif_err(qdev, ifup, qdev->ndev,
750 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
752 return csum;
755 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
757 int status = 0;
758 /* wait for reg to come ready */
759 status = ql_wait_reg_rdy(qdev,
760 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
761 if (status)
762 goto exit;
763 /* set up for reg read */
764 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
765 /* wait for reg to come ready */
766 status = ql_wait_reg_rdy(qdev,
767 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
768 if (status)
769 goto exit;
770 /* This data is stored on flash as an array of
771 * __le32. Since ql_read32() returns cpu endian
772 * we need to swap it back.
774 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
775 exit:
776 return status;
779 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
781 u32 i, size;
782 int status;
783 __le32 *p = (__le32 *)&qdev->flash;
784 u32 offset;
785 u8 mac_addr[6];
787 /* Get flash offset for function and adjust
788 * for dword access.
790 if (!qdev->port)
791 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
792 else
793 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
795 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
796 return -ETIMEDOUT;
798 size = sizeof(struct flash_params_8000) / sizeof(u32);
799 for (i = 0; i < size; i++, p++) {
800 status = ql_read_flash_word(qdev, i+offset, p);
801 if (status) {
802 netif_err(qdev, ifup, qdev->ndev,
803 "Error reading flash.\n");
804 goto exit;
808 status = ql_validate_flash(qdev,
809 sizeof(struct flash_params_8000) / sizeof(u16),
810 "8000");
811 if (status) {
812 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
813 status = -EINVAL;
814 goto exit;
817 /* Extract either manufacturer or BOFM modified
818 * MAC address.
820 if (qdev->flash.flash_params_8000.data_type1 == 2)
821 memcpy(mac_addr,
822 qdev->flash.flash_params_8000.mac_addr1,
823 qdev->ndev->addr_len);
824 else
825 memcpy(mac_addr,
826 qdev->flash.flash_params_8000.mac_addr,
827 qdev->ndev->addr_len);
829 if (!is_valid_ether_addr(mac_addr)) {
830 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
831 status = -EINVAL;
832 goto exit;
835 memcpy(qdev->ndev->dev_addr,
836 mac_addr,
837 qdev->ndev->addr_len);
839 exit:
840 ql_sem_unlock(qdev, SEM_FLASH_MASK);
841 return status;
844 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
846 int i;
847 int status;
848 __le32 *p = (__le32 *)&qdev->flash;
849 u32 offset = 0;
850 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
852 /* Second function's parameters follow the first
853 * function's.
855 if (qdev->port)
856 offset = size;
858 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
859 return -ETIMEDOUT;
861 for (i = 0; i < size; i++, p++) {
862 status = ql_read_flash_word(qdev, i+offset, p);
863 if (status) {
864 netif_err(qdev, ifup, qdev->ndev,
865 "Error reading flash.\n");
866 goto exit;
871 status = ql_validate_flash(qdev,
872 sizeof(struct flash_params_8012) / sizeof(u16),
873 "8012");
874 if (status) {
875 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
876 status = -EINVAL;
877 goto exit;
880 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
881 status = -EINVAL;
882 goto exit;
885 memcpy(qdev->ndev->dev_addr,
886 qdev->flash.flash_params_8012.mac_addr,
887 qdev->ndev->addr_len);
889 exit:
890 ql_sem_unlock(qdev, SEM_FLASH_MASK);
891 return status;
894 /* xgmac register are located behind the xgmac_addr and xgmac_data
895 * register pair. Each read/write requires us to wait for the ready
896 * bit before reading/writing the data.
898 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
900 int status;
901 /* wait for reg to come ready */
902 status = ql_wait_reg_rdy(qdev,
903 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
904 if (status)
905 return status;
906 /* write the data to the data reg */
907 ql_write32(qdev, XGMAC_DATA, data);
908 /* trigger the write */
909 ql_write32(qdev, XGMAC_ADDR, reg);
910 return status;
913 /* xgmac register are located behind the xgmac_addr and xgmac_data
914 * register pair. Each read/write requires us to wait for the ready
915 * bit before reading/writing the data.
917 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
919 int status = 0;
920 /* wait for reg to come ready */
921 status = ql_wait_reg_rdy(qdev,
922 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
923 if (status)
924 goto exit;
925 /* set up for reg read */
926 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
927 /* wait for reg to come ready */
928 status = ql_wait_reg_rdy(qdev,
929 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
930 if (status)
931 goto exit;
932 /* get the data */
933 *data = ql_read32(qdev, XGMAC_DATA);
934 exit:
935 return status;
938 /* This is used for reading the 64-bit statistics regs. */
939 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
941 int status = 0;
942 u32 hi = 0;
943 u32 lo = 0;
945 status = ql_read_xgmac_reg(qdev, reg, &lo);
946 if (status)
947 goto exit;
949 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
950 if (status)
951 goto exit;
953 *data = (u64) lo | ((u64) hi << 32);
955 exit:
956 return status;
959 static int ql_8000_port_initialize(struct ql_adapter *qdev)
961 int status;
963 * Get MPI firmware version for driver banner
964 * and ethool info.
966 status = ql_mb_about_fw(qdev);
967 if (status)
968 goto exit;
969 status = ql_mb_get_fw_state(qdev);
970 if (status)
971 goto exit;
972 /* Wake up a worker to get/set the TX/RX frame sizes. */
973 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
974 exit:
975 return status;
978 /* Take the MAC Core out of reset.
979 * Enable statistics counting.
980 * Take the transmitter/receiver out of reset.
981 * This functionality may be done in the MPI firmware at a
982 * later date.
984 static int ql_8012_port_initialize(struct ql_adapter *qdev)
986 int status = 0;
987 u32 data;
989 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
990 /* Another function has the semaphore, so
991 * wait for the port init bit to come ready.
993 netif_info(qdev, link, qdev->ndev,
994 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
995 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
996 if (status) {
997 netif_crit(qdev, link, qdev->ndev,
998 "Port initialize timed out.\n");
1000 return status;
1003 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
1004 /* Set the core reset. */
1005 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
1006 if (status)
1007 goto end;
1008 data |= GLOBAL_CFG_RESET;
1009 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1010 if (status)
1011 goto end;
1013 /* Clear the core reset and turn on jumbo for receiver. */
1014 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
1015 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
1016 data |= GLOBAL_CFG_TX_STAT_EN;
1017 data |= GLOBAL_CFG_RX_STAT_EN;
1018 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1019 if (status)
1020 goto end;
1022 /* Enable transmitter, and clear it's reset. */
1023 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
1024 if (status)
1025 goto end;
1026 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
1027 data |= TX_CFG_EN; /* Enable the transmitter. */
1028 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
1029 if (status)
1030 goto end;
1032 /* Enable receiver and clear it's reset. */
1033 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1034 if (status)
1035 goto end;
1036 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1037 data |= RX_CFG_EN; /* Enable the receiver. */
1038 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1039 if (status)
1040 goto end;
1042 /* Turn on jumbo. */
1043 status =
1044 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1045 if (status)
1046 goto end;
1047 status =
1048 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1049 if (status)
1050 goto end;
1052 /* Signal to the world that the port is enabled. */
1053 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1054 end:
1055 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1056 return status;
1059 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1061 return PAGE_SIZE << qdev->lbq_buf_order;
1064 /* Get the next large buffer. */
1065 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1067 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1068 rx_ring->lbq_curr_idx++;
1069 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1070 rx_ring->lbq_curr_idx = 0;
1071 rx_ring->lbq_free_cnt++;
1072 return lbq_desc;
1075 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1076 struct rx_ring *rx_ring)
1078 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1080 pci_dma_sync_single_for_cpu(qdev->pdev,
1081 dma_unmap_addr(lbq_desc, mapaddr),
1082 rx_ring->lbq_buf_size,
1083 PCI_DMA_FROMDEVICE);
1085 /* If it's the last chunk of our master page then
1086 * we unmap it.
1088 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1089 == ql_lbq_block_size(qdev))
1090 pci_unmap_page(qdev->pdev,
1091 lbq_desc->p.pg_chunk.map,
1092 ql_lbq_block_size(qdev),
1093 PCI_DMA_FROMDEVICE);
1094 return lbq_desc;
1097 /* Get the next small buffer. */
1098 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1100 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1101 rx_ring->sbq_curr_idx++;
1102 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1103 rx_ring->sbq_curr_idx = 0;
1104 rx_ring->sbq_free_cnt++;
1105 return sbq_desc;
1108 /* Update an rx ring index. */
1109 static void ql_update_cq(struct rx_ring *rx_ring)
1111 rx_ring->cnsmr_idx++;
1112 rx_ring->curr_entry++;
1113 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1114 rx_ring->cnsmr_idx = 0;
1115 rx_ring->curr_entry = rx_ring->cq_base;
1119 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1121 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1124 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1125 struct bq_desc *lbq_desc)
1127 if (!rx_ring->pg_chunk.page) {
1128 u64 map;
1129 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1130 GFP_ATOMIC,
1131 qdev->lbq_buf_order);
1132 if (unlikely(!rx_ring->pg_chunk.page)) {
1133 netif_err(qdev, drv, qdev->ndev,
1134 "page allocation failed.\n");
1135 return -ENOMEM;
1137 rx_ring->pg_chunk.offset = 0;
1138 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1139 0, ql_lbq_block_size(qdev),
1140 PCI_DMA_FROMDEVICE);
1141 if (pci_dma_mapping_error(qdev->pdev, map)) {
1142 __free_pages(rx_ring->pg_chunk.page,
1143 qdev->lbq_buf_order);
1144 netif_err(qdev, drv, qdev->ndev,
1145 "PCI mapping failed.\n");
1146 return -ENOMEM;
1148 rx_ring->pg_chunk.map = map;
1149 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1152 /* Copy the current master pg_chunk info
1153 * to the current descriptor.
1155 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1157 /* Adjust the master page chunk for next
1158 * buffer get.
1160 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1161 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1162 rx_ring->pg_chunk.page = NULL;
1163 lbq_desc->p.pg_chunk.last_flag = 1;
1164 } else {
1165 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1166 get_page(rx_ring->pg_chunk.page);
1167 lbq_desc->p.pg_chunk.last_flag = 0;
1169 return 0;
1171 /* Process (refill) a large buffer queue. */
1172 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1174 u32 clean_idx = rx_ring->lbq_clean_idx;
1175 u32 start_idx = clean_idx;
1176 struct bq_desc *lbq_desc;
1177 u64 map;
1178 int i;
1180 while (rx_ring->lbq_free_cnt > 32) {
1181 for (i = 0; i < 16; i++) {
1182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1183 "lbq: try cleaning clean_idx = %d.\n",
1184 clean_idx);
1185 lbq_desc = &rx_ring->lbq[clean_idx];
1186 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1187 netif_err(qdev, ifup, qdev->ndev,
1188 "Could not get a page chunk.\n");
1189 return;
1192 map = lbq_desc->p.pg_chunk.map +
1193 lbq_desc->p.pg_chunk.offset;
1194 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1195 dma_unmap_len_set(lbq_desc, maplen,
1196 rx_ring->lbq_buf_size);
1197 *lbq_desc->addr = cpu_to_le64(map);
1199 pci_dma_sync_single_for_device(qdev->pdev, map,
1200 rx_ring->lbq_buf_size,
1201 PCI_DMA_FROMDEVICE);
1202 clean_idx++;
1203 if (clean_idx == rx_ring->lbq_len)
1204 clean_idx = 0;
1207 rx_ring->lbq_clean_idx = clean_idx;
1208 rx_ring->lbq_prod_idx += 16;
1209 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1210 rx_ring->lbq_prod_idx = 0;
1211 rx_ring->lbq_free_cnt -= 16;
1214 if (start_idx != clean_idx) {
1215 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1216 "lbq: updating prod idx = %d.\n",
1217 rx_ring->lbq_prod_idx);
1218 ql_write_db_reg(rx_ring->lbq_prod_idx,
1219 rx_ring->lbq_prod_idx_db_reg);
1223 /* Process (refill) a small buffer queue. */
1224 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1226 u32 clean_idx = rx_ring->sbq_clean_idx;
1227 u32 start_idx = clean_idx;
1228 struct bq_desc *sbq_desc;
1229 u64 map;
1230 int i;
1232 while (rx_ring->sbq_free_cnt > 16) {
1233 for (i = 0; i < 16; i++) {
1234 sbq_desc = &rx_ring->sbq[clean_idx];
1235 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1236 "sbq: try cleaning clean_idx = %d.\n",
1237 clean_idx);
1238 if (sbq_desc->p.skb == NULL) {
1239 netif_printk(qdev, rx_status, KERN_DEBUG,
1240 qdev->ndev,
1241 "sbq: getting new skb for index %d.\n",
1242 sbq_desc->index);
1243 sbq_desc->p.skb =
1244 netdev_alloc_skb(qdev->ndev,
1245 SMALL_BUFFER_SIZE);
1246 if (sbq_desc->p.skb == NULL) {
1247 netif_err(qdev, probe, qdev->ndev,
1248 "Couldn't get an skb.\n");
1249 rx_ring->sbq_clean_idx = clean_idx;
1250 return;
1252 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1253 map = pci_map_single(qdev->pdev,
1254 sbq_desc->p.skb->data,
1255 rx_ring->sbq_buf_size,
1256 PCI_DMA_FROMDEVICE);
1257 if (pci_dma_mapping_error(qdev->pdev, map)) {
1258 netif_err(qdev, ifup, qdev->ndev,
1259 "PCI mapping failed.\n");
1260 rx_ring->sbq_clean_idx = clean_idx;
1261 dev_kfree_skb_any(sbq_desc->p.skb);
1262 sbq_desc->p.skb = NULL;
1263 return;
1265 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1266 dma_unmap_len_set(sbq_desc, maplen,
1267 rx_ring->sbq_buf_size);
1268 *sbq_desc->addr = cpu_to_le64(map);
1271 clean_idx++;
1272 if (clean_idx == rx_ring->sbq_len)
1273 clean_idx = 0;
1275 rx_ring->sbq_clean_idx = clean_idx;
1276 rx_ring->sbq_prod_idx += 16;
1277 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1278 rx_ring->sbq_prod_idx = 0;
1279 rx_ring->sbq_free_cnt -= 16;
1282 if (start_idx != clean_idx) {
1283 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1284 "sbq: updating prod idx = %d.\n",
1285 rx_ring->sbq_prod_idx);
1286 ql_write_db_reg(rx_ring->sbq_prod_idx,
1287 rx_ring->sbq_prod_idx_db_reg);
1291 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1292 struct rx_ring *rx_ring)
1294 ql_update_sbq(qdev, rx_ring);
1295 ql_update_lbq(qdev, rx_ring);
1298 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1299 * fails at some stage, or from the interrupt when a tx completes.
1301 static void ql_unmap_send(struct ql_adapter *qdev,
1302 struct tx_ring_desc *tx_ring_desc, int mapped)
1304 int i;
1305 for (i = 0; i < mapped; i++) {
1306 if (i == 0 || (i == 7 && mapped > 7)) {
1308 * Unmap the skb->data area, or the
1309 * external sglist (AKA the Outbound
1310 * Address List (OAL)).
1311 * If its the zeroeth element, then it's
1312 * the skb->data area. If it's the 7th
1313 * element and there is more than 6 frags,
1314 * then its an OAL.
1316 if (i == 7) {
1317 netif_printk(qdev, tx_done, KERN_DEBUG,
1318 qdev->ndev,
1319 "unmapping OAL area.\n");
1321 pci_unmap_single(qdev->pdev,
1322 dma_unmap_addr(&tx_ring_desc->map[i],
1323 mapaddr),
1324 dma_unmap_len(&tx_ring_desc->map[i],
1325 maplen),
1326 PCI_DMA_TODEVICE);
1327 } else {
1328 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1329 "unmapping frag %d.\n", i);
1330 pci_unmap_page(qdev->pdev,
1331 dma_unmap_addr(&tx_ring_desc->map[i],
1332 mapaddr),
1333 dma_unmap_len(&tx_ring_desc->map[i],
1334 maplen), PCI_DMA_TODEVICE);
1340 /* Map the buffers for this transmit. This will return
1341 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1343 static int ql_map_send(struct ql_adapter *qdev,
1344 struct ob_mac_iocb_req *mac_iocb_ptr,
1345 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1347 int len = skb_headlen(skb);
1348 dma_addr_t map;
1349 int frag_idx, err, map_idx = 0;
1350 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1351 int frag_cnt = skb_shinfo(skb)->nr_frags;
1353 if (frag_cnt) {
1354 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1355 "frag_cnt = %d.\n", frag_cnt);
1358 * Map the skb buffer first.
1360 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1362 err = pci_dma_mapping_error(qdev->pdev, map);
1363 if (err) {
1364 netif_err(qdev, tx_queued, qdev->ndev,
1365 "PCI mapping failed with error: %d\n", err);
1367 return NETDEV_TX_BUSY;
1370 tbd->len = cpu_to_le32(len);
1371 tbd->addr = cpu_to_le64(map);
1372 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1373 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1374 map_idx++;
1377 * This loop fills the remainder of the 8 address descriptors
1378 * in the IOCB. If there are more than 7 fragments, then the
1379 * eighth address desc will point to an external list (OAL).
1380 * When this happens, the remainder of the frags will be stored
1381 * in this list.
1383 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1384 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1385 tbd++;
1386 if (frag_idx == 6 && frag_cnt > 7) {
1387 /* Let's tack on an sglist.
1388 * Our control block will now
1389 * look like this:
1390 * iocb->seg[0] = skb->data
1391 * iocb->seg[1] = frag[0]
1392 * iocb->seg[2] = frag[1]
1393 * iocb->seg[3] = frag[2]
1394 * iocb->seg[4] = frag[3]
1395 * iocb->seg[5] = frag[4]
1396 * iocb->seg[6] = frag[5]
1397 * iocb->seg[7] = ptr to OAL (external sglist)
1398 * oal->seg[0] = frag[6]
1399 * oal->seg[1] = frag[7]
1400 * oal->seg[2] = frag[8]
1401 * oal->seg[3] = frag[9]
1402 * oal->seg[4] = frag[10]
1403 * etc...
1405 /* Tack on the OAL in the eighth segment of IOCB. */
1406 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1407 sizeof(struct oal),
1408 PCI_DMA_TODEVICE);
1409 err = pci_dma_mapping_error(qdev->pdev, map);
1410 if (err) {
1411 netif_err(qdev, tx_queued, qdev->ndev,
1412 "PCI mapping outbound address list with error: %d\n",
1413 err);
1414 goto map_error;
1417 tbd->addr = cpu_to_le64(map);
1419 * The length is the number of fragments
1420 * that remain to be mapped times the length
1421 * of our sglist (OAL).
1423 tbd->len =
1424 cpu_to_le32((sizeof(struct tx_buf_desc) *
1425 (frag_cnt - frag_idx)) | TX_DESC_C);
1426 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1427 map);
1428 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1429 sizeof(struct oal));
1430 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1431 map_idx++;
1434 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1435 DMA_TO_DEVICE);
1437 err = dma_mapping_error(&qdev->pdev->dev, map);
1438 if (err) {
1439 netif_err(qdev, tx_queued, qdev->ndev,
1440 "PCI mapping frags failed with error: %d.\n",
1441 err);
1442 goto map_error;
1445 tbd->addr = cpu_to_le64(map);
1446 tbd->len = cpu_to_le32(skb_frag_size(frag));
1447 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1448 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1449 skb_frag_size(frag));
1452 /* Save the number of segments we've mapped. */
1453 tx_ring_desc->map_cnt = map_idx;
1454 /* Terminate the last segment. */
1455 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1456 return NETDEV_TX_OK;
1458 map_error:
1460 * If the first frag mapping failed, then i will be zero.
1461 * This causes the unmap of the skb->data area. Otherwise
1462 * we pass in the number of frags that mapped successfully
1463 * so they can be umapped.
1465 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1466 return NETDEV_TX_BUSY;
1469 /* Process an inbound completion from an rx ring. */
1470 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1471 struct rx_ring *rx_ring,
1472 struct ib_mac_iocb_rsp *ib_mac_rsp,
1473 u32 length,
1474 u16 vlan_id)
1476 struct sk_buff *skb;
1477 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1478 struct napi_struct *napi = &rx_ring->napi;
1480 napi->dev = qdev->ndev;
1482 skb = napi_get_frags(napi);
1483 if (!skb) {
1484 netif_err(qdev, drv, qdev->ndev,
1485 "Couldn't get an skb, exiting.\n");
1486 rx_ring->rx_dropped++;
1487 put_page(lbq_desc->p.pg_chunk.page);
1488 return;
1490 prefetch(lbq_desc->p.pg_chunk.va);
1491 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1492 lbq_desc->p.pg_chunk.page,
1493 lbq_desc->p.pg_chunk.offset,
1494 length);
1496 skb->len += length;
1497 skb->data_len += length;
1498 skb->truesize += length;
1499 skb_shinfo(skb)->nr_frags++;
1501 rx_ring->rx_packets++;
1502 rx_ring->rx_bytes += length;
1503 skb->ip_summed = CHECKSUM_UNNECESSARY;
1504 skb_record_rx_queue(skb, rx_ring->cq_id);
1505 if (vlan_id != 0xffff)
1506 __vlan_hwaccel_put_tag(skb, vlan_id);
1507 napi_gro_frags(napi);
1510 /* Process an inbound completion from an rx ring. */
1511 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1512 struct rx_ring *rx_ring,
1513 struct ib_mac_iocb_rsp *ib_mac_rsp,
1514 u32 length,
1515 u16 vlan_id)
1517 struct net_device *ndev = qdev->ndev;
1518 struct sk_buff *skb = NULL;
1519 void *addr;
1520 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1521 struct napi_struct *napi = &rx_ring->napi;
1523 skb = netdev_alloc_skb(ndev, length);
1524 if (!skb) {
1525 netif_err(qdev, drv, qdev->ndev,
1526 "Couldn't get an skb, need to unwind!.\n");
1527 rx_ring->rx_dropped++;
1528 put_page(lbq_desc->p.pg_chunk.page);
1529 return;
1532 addr = lbq_desc->p.pg_chunk.va;
1533 prefetch(addr);
1536 /* Frame error, so drop the packet. */
1537 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1538 netif_info(qdev, drv, qdev->ndev,
1539 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1540 rx_ring->rx_errors++;
1541 goto err_out;
1544 /* The max framesize filter on this chip is set higher than
1545 * MTU since FCoE uses 2k frames.
1547 if (skb->len > ndev->mtu + ETH_HLEN) {
1548 netif_err(qdev, drv, qdev->ndev,
1549 "Segment too small, dropping.\n");
1550 rx_ring->rx_dropped++;
1551 goto err_out;
1553 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1554 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1555 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1556 length);
1557 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1558 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1559 length-ETH_HLEN);
1560 skb->len += length-ETH_HLEN;
1561 skb->data_len += length-ETH_HLEN;
1562 skb->truesize += length-ETH_HLEN;
1564 rx_ring->rx_packets++;
1565 rx_ring->rx_bytes += skb->len;
1566 skb->protocol = eth_type_trans(skb, ndev);
1567 skb_checksum_none_assert(skb);
1569 if ((ndev->features & NETIF_F_RXCSUM) &&
1570 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1571 /* TCP frame. */
1572 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1573 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1574 "TCP checksum done!\n");
1575 skb->ip_summed = CHECKSUM_UNNECESSARY;
1576 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1577 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1578 /* Unfragmented ipv4 UDP frame. */
1579 struct iphdr *iph = (struct iphdr *) skb->data;
1580 if (!(iph->frag_off &
1581 cpu_to_be16(IP_MF|IP_OFFSET))) {
1582 skb->ip_summed = CHECKSUM_UNNECESSARY;
1583 netif_printk(qdev, rx_status, KERN_DEBUG,
1584 qdev->ndev,
1585 "TCP checksum done!\n");
1590 skb_record_rx_queue(skb, rx_ring->cq_id);
1591 if (vlan_id != 0xffff)
1592 __vlan_hwaccel_put_tag(skb, vlan_id);
1593 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1594 napi_gro_receive(napi, skb);
1595 else
1596 netif_receive_skb(skb);
1597 return;
1598 err_out:
1599 dev_kfree_skb_any(skb);
1600 put_page(lbq_desc->p.pg_chunk.page);
1603 /* Process an inbound completion from an rx ring. */
1604 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1605 struct rx_ring *rx_ring,
1606 struct ib_mac_iocb_rsp *ib_mac_rsp,
1607 u32 length,
1608 u16 vlan_id)
1610 struct net_device *ndev = qdev->ndev;
1611 struct sk_buff *skb = NULL;
1612 struct sk_buff *new_skb = NULL;
1613 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1615 skb = sbq_desc->p.skb;
1616 /* Allocate new_skb and copy */
1617 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1618 if (new_skb == NULL) {
1619 netif_err(qdev, probe, qdev->ndev,
1620 "No skb available, drop the packet.\n");
1621 rx_ring->rx_dropped++;
1622 return;
1624 skb_reserve(new_skb, NET_IP_ALIGN);
1625 memcpy(skb_put(new_skb, length), skb->data, length);
1626 skb = new_skb;
1628 /* Frame error, so drop the packet. */
1629 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1630 netif_info(qdev, drv, qdev->ndev,
1631 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1632 dev_kfree_skb_any(skb);
1633 rx_ring->rx_errors++;
1634 return;
1637 /* loopback self test for ethtool */
1638 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1639 ql_check_lb_frame(qdev, skb);
1640 dev_kfree_skb_any(skb);
1641 return;
1644 /* The max framesize filter on this chip is set higher than
1645 * MTU since FCoE uses 2k frames.
1647 if (skb->len > ndev->mtu + ETH_HLEN) {
1648 dev_kfree_skb_any(skb);
1649 rx_ring->rx_dropped++;
1650 return;
1653 prefetch(skb->data);
1654 skb->dev = ndev;
1655 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1656 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1657 "%s Multicast.\n",
1658 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1659 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1660 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1661 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1662 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1663 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1665 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1666 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1667 "Promiscuous Packet.\n");
1669 rx_ring->rx_packets++;
1670 rx_ring->rx_bytes += skb->len;
1671 skb->protocol = eth_type_trans(skb, ndev);
1672 skb_checksum_none_assert(skb);
1674 /* If rx checksum is on, and there are no
1675 * csum or frame errors.
1677 if ((ndev->features & NETIF_F_RXCSUM) &&
1678 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1679 /* TCP frame. */
1680 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1681 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1682 "TCP checksum done!\n");
1683 skb->ip_summed = CHECKSUM_UNNECESSARY;
1684 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1685 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1686 /* Unfragmented ipv4 UDP frame. */
1687 struct iphdr *iph = (struct iphdr *) skb->data;
1688 if (!(iph->frag_off &
1689 ntohs(IP_MF|IP_OFFSET))) {
1690 skb->ip_summed = CHECKSUM_UNNECESSARY;
1691 netif_printk(qdev, rx_status, KERN_DEBUG,
1692 qdev->ndev,
1693 "TCP checksum done!\n");
1698 skb_record_rx_queue(skb, rx_ring->cq_id);
1699 if (vlan_id != 0xffff)
1700 __vlan_hwaccel_put_tag(skb, vlan_id);
1701 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1702 napi_gro_receive(&rx_ring->napi, skb);
1703 else
1704 netif_receive_skb(skb);
1707 static void ql_realign_skb(struct sk_buff *skb, int len)
1709 void *temp_addr = skb->data;
1711 /* Undo the skb_reserve(skb,32) we did before
1712 * giving to hardware, and realign data on
1713 * a 2-byte boundary.
1715 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1716 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1717 skb_copy_to_linear_data(skb, temp_addr,
1718 (unsigned int)len);
1722 * This function builds an skb for the given inbound
1723 * completion. It will be rewritten for readability in the near
1724 * future, but for not it works well.
1726 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1727 struct rx_ring *rx_ring,
1728 struct ib_mac_iocb_rsp *ib_mac_rsp)
1730 struct bq_desc *lbq_desc;
1731 struct bq_desc *sbq_desc;
1732 struct sk_buff *skb = NULL;
1733 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1734 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1737 * Handle the header buffer if present.
1739 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1740 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1741 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1742 "Header of %d bytes in small buffer.\n", hdr_len);
1744 * Headers fit nicely into a small buffer.
1746 sbq_desc = ql_get_curr_sbuf(rx_ring);
1747 pci_unmap_single(qdev->pdev,
1748 dma_unmap_addr(sbq_desc, mapaddr),
1749 dma_unmap_len(sbq_desc, maplen),
1750 PCI_DMA_FROMDEVICE);
1751 skb = sbq_desc->p.skb;
1752 ql_realign_skb(skb, hdr_len);
1753 skb_put(skb, hdr_len);
1754 sbq_desc->p.skb = NULL;
1758 * Handle the data buffer(s).
1760 if (unlikely(!length)) { /* Is there data too? */
1761 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1762 "No Data buffer in this packet.\n");
1763 return skb;
1766 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1767 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1768 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1769 "Headers in small, data of %d bytes in small, combine them.\n",
1770 length);
1772 * Data is less than small buffer size so it's
1773 * stuffed in a small buffer.
1774 * For this case we append the data
1775 * from the "data" small buffer to the "header" small
1776 * buffer.
1778 sbq_desc = ql_get_curr_sbuf(rx_ring);
1779 pci_dma_sync_single_for_cpu(qdev->pdev,
1780 dma_unmap_addr
1781 (sbq_desc, mapaddr),
1782 dma_unmap_len
1783 (sbq_desc, maplen),
1784 PCI_DMA_FROMDEVICE);
1785 memcpy(skb_put(skb, length),
1786 sbq_desc->p.skb->data, length);
1787 pci_dma_sync_single_for_device(qdev->pdev,
1788 dma_unmap_addr
1789 (sbq_desc,
1790 mapaddr),
1791 dma_unmap_len
1792 (sbq_desc,
1793 maplen),
1794 PCI_DMA_FROMDEVICE);
1795 } else {
1796 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797 "%d bytes in a single small buffer.\n",
1798 length);
1799 sbq_desc = ql_get_curr_sbuf(rx_ring);
1800 skb = sbq_desc->p.skb;
1801 ql_realign_skb(skb, length);
1802 skb_put(skb, length);
1803 pci_unmap_single(qdev->pdev,
1804 dma_unmap_addr(sbq_desc,
1805 mapaddr),
1806 dma_unmap_len(sbq_desc,
1807 maplen),
1808 PCI_DMA_FROMDEVICE);
1809 sbq_desc->p.skb = NULL;
1811 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1812 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1813 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1814 "Header in small, %d bytes in large. Chain large to small!\n",
1815 length);
1817 * The data is in a single large buffer. We
1818 * chain it to the header buffer's skb and let
1819 * it rip.
1821 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1822 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1823 "Chaining page at offset = %d, for %d bytes to skb.\n",
1824 lbq_desc->p.pg_chunk.offset, length);
1825 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1826 lbq_desc->p.pg_chunk.offset,
1827 length);
1828 skb->len += length;
1829 skb->data_len += length;
1830 skb->truesize += length;
1831 } else {
1833 * The headers and data are in a single large buffer. We
1834 * copy it to a new skb and let it go. This can happen with
1835 * jumbo mtu on a non-TCP/UDP frame.
1837 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1838 skb = netdev_alloc_skb(qdev->ndev, length);
1839 if (skb == NULL) {
1840 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1841 "No skb available, drop the packet.\n");
1842 return NULL;
1844 pci_unmap_page(qdev->pdev,
1845 dma_unmap_addr(lbq_desc,
1846 mapaddr),
1847 dma_unmap_len(lbq_desc, maplen),
1848 PCI_DMA_FROMDEVICE);
1849 skb_reserve(skb, NET_IP_ALIGN);
1850 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1851 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1852 length);
1853 skb_fill_page_desc(skb, 0,
1854 lbq_desc->p.pg_chunk.page,
1855 lbq_desc->p.pg_chunk.offset,
1856 length);
1857 skb->len += length;
1858 skb->data_len += length;
1859 skb->truesize += length;
1860 length -= length;
1861 __pskb_pull_tail(skb,
1862 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1863 VLAN_ETH_HLEN : ETH_HLEN);
1865 } else {
1867 * The data is in a chain of large buffers
1868 * pointed to by a small buffer. We loop
1869 * thru and chain them to the our small header
1870 * buffer's skb.
1871 * frags: There are 18 max frags and our small
1872 * buffer will hold 32 of them. The thing is,
1873 * we'll use 3 max for our 9000 byte jumbo
1874 * frames. If the MTU goes up we could
1875 * eventually be in trouble.
1877 int size, i = 0;
1878 sbq_desc = ql_get_curr_sbuf(rx_ring);
1879 pci_unmap_single(qdev->pdev,
1880 dma_unmap_addr(sbq_desc, mapaddr),
1881 dma_unmap_len(sbq_desc, maplen),
1882 PCI_DMA_FROMDEVICE);
1883 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1885 * This is an non TCP/UDP IP frame, so
1886 * the headers aren't split into a small
1887 * buffer. We have to use the small buffer
1888 * that contains our sg list as our skb to
1889 * send upstairs. Copy the sg list here to
1890 * a local buffer and use it to find the
1891 * pages to chain.
1893 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1894 "%d bytes of headers & data in chain of large.\n",
1895 length);
1896 skb = sbq_desc->p.skb;
1897 sbq_desc->p.skb = NULL;
1898 skb_reserve(skb, NET_IP_ALIGN);
1900 while (length > 0) {
1901 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1902 size = (length < rx_ring->lbq_buf_size) ? length :
1903 rx_ring->lbq_buf_size;
1905 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1906 "Adding page %d to skb for %d bytes.\n",
1907 i, size);
1908 skb_fill_page_desc(skb, i,
1909 lbq_desc->p.pg_chunk.page,
1910 lbq_desc->p.pg_chunk.offset,
1911 size);
1912 skb->len += size;
1913 skb->data_len += size;
1914 skb->truesize += size;
1915 length -= size;
1916 i++;
1918 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1919 VLAN_ETH_HLEN : ETH_HLEN);
1921 return skb;
1924 /* Process an inbound completion from an rx ring. */
1925 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1926 struct rx_ring *rx_ring,
1927 struct ib_mac_iocb_rsp *ib_mac_rsp,
1928 u16 vlan_id)
1930 struct net_device *ndev = qdev->ndev;
1931 struct sk_buff *skb = NULL;
1933 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1935 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1936 if (unlikely(!skb)) {
1937 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1938 "No skb available, drop packet.\n");
1939 rx_ring->rx_dropped++;
1940 return;
1943 /* Frame error, so drop the packet. */
1944 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1945 netif_info(qdev, drv, qdev->ndev,
1946 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1947 dev_kfree_skb_any(skb);
1948 rx_ring->rx_errors++;
1949 return;
1952 /* The max framesize filter on this chip is set higher than
1953 * MTU since FCoE uses 2k frames.
1955 if (skb->len > ndev->mtu + ETH_HLEN) {
1956 dev_kfree_skb_any(skb);
1957 rx_ring->rx_dropped++;
1958 return;
1961 /* loopback self test for ethtool */
1962 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1963 ql_check_lb_frame(qdev, skb);
1964 dev_kfree_skb_any(skb);
1965 return;
1968 prefetch(skb->data);
1969 skb->dev = ndev;
1970 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1971 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1972 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1973 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1974 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1975 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1976 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1977 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1978 rx_ring->rx_multicast++;
1980 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1981 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1982 "Promiscuous Packet.\n");
1985 skb->protocol = eth_type_trans(skb, ndev);
1986 skb_checksum_none_assert(skb);
1988 /* If rx checksum is on, and there are no
1989 * csum or frame errors.
1991 if ((ndev->features & NETIF_F_RXCSUM) &&
1992 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1993 /* TCP frame. */
1994 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1995 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1996 "TCP checksum done!\n");
1997 skb->ip_summed = CHECKSUM_UNNECESSARY;
1998 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1999 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2000 /* Unfragmented ipv4 UDP frame. */
2001 struct iphdr *iph = (struct iphdr *) skb->data;
2002 if (!(iph->frag_off &
2003 ntohs(IP_MF|IP_OFFSET))) {
2004 skb->ip_summed = CHECKSUM_UNNECESSARY;
2005 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2006 "TCP checksum done!\n");
2011 rx_ring->rx_packets++;
2012 rx_ring->rx_bytes += skb->len;
2013 skb_record_rx_queue(skb, rx_ring->cq_id);
2014 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
2015 __vlan_hwaccel_put_tag(skb, vlan_id);
2016 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2017 napi_gro_receive(&rx_ring->napi, skb);
2018 else
2019 netif_receive_skb(skb);
2022 /* Process an inbound completion from an rx ring. */
2023 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2024 struct rx_ring *rx_ring,
2025 struct ib_mac_iocb_rsp *ib_mac_rsp)
2027 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2028 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2029 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2030 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2032 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2034 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2035 /* The data and headers are split into
2036 * separate buffers.
2038 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2039 vlan_id);
2040 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2041 /* The data fit in a single small buffer.
2042 * Allocate a new skb, copy the data and
2043 * return the buffer to the free pool.
2045 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2046 length, vlan_id);
2047 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2048 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2049 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2050 /* TCP packet in a page chunk that's been checksummed.
2051 * Tack it on to our GRO skb and let it go.
2053 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2054 length, vlan_id);
2055 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2056 /* Non-TCP packet in a page chunk. Allocate an
2057 * skb, tack it on frags, and send it up.
2059 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2060 length, vlan_id);
2061 } else {
2062 /* Non-TCP/UDP large frames that span multiple buffers
2063 * can be processed corrrectly by the split frame logic.
2065 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2066 vlan_id);
2069 return (unsigned long)length;
2072 /* Process an outbound completion from an rx ring. */
2073 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2074 struct ob_mac_iocb_rsp *mac_rsp)
2076 struct tx_ring *tx_ring;
2077 struct tx_ring_desc *tx_ring_desc;
2079 QL_DUMP_OB_MAC_RSP(mac_rsp);
2080 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2081 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2082 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2083 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2084 tx_ring->tx_packets++;
2085 dev_kfree_skb(tx_ring_desc->skb);
2086 tx_ring_desc->skb = NULL;
2088 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2089 OB_MAC_IOCB_RSP_S |
2090 OB_MAC_IOCB_RSP_L |
2091 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2092 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2093 netif_warn(qdev, tx_done, qdev->ndev,
2094 "Total descriptor length did not match transfer length.\n");
2096 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2097 netif_warn(qdev, tx_done, qdev->ndev,
2098 "Frame too short to be valid, not sent.\n");
2100 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2101 netif_warn(qdev, tx_done, qdev->ndev,
2102 "Frame too long, but sent anyway.\n");
2104 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2105 netif_warn(qdev, tx_done, qdev->ndev,
2106 "PCI backplane error. Frame not sent.\n");
2109 atomic_inc(&tx_ring->tx_count);
2112 /* Fire up a handler to reset the MPI processor. */
2113 void ql_queue_fw_error(struct ql_adapter *qdev)
2115 ql_link_off(qdev);
2116 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2119 void ql_queue_asic_error(struct ql_adapter *qdev)
2121 ql_link_off(qdev);
2122 ql_disable_interrupts(qdev);
2123 /* Clear adapter up bit to signal the recovery
2124 * process that it shouldn't kill the reset worker
2125 * thread
2127 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2128 /* Set asic recovery bit to indicate reset process that we are
2129 * in fatal error recovery process rather than normal close
2131 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2132 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2135 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2136 struct ib_ae_iocb_rsp *ib_ae_rsp)
2138 switch (ib_ae_rsp->event) {
2139 case MGMT_ERR_EVENT:
2140 netif_err(qdev, rx_err, qdev->ndev,
2141 "Management Processor Fatal Error.\n");
2142 ql_queue_fw_error(qdev);
2143 return;
2145 case CAM_LOOKUP_ERR_EVENT:
2146 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2147 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2148 ql_queue_asic_error(qdev);
2149 return;
2151 case SOFT_ECC_ERROR_EVENT:
2152 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2153 ql_queue_asic_error(qdev);
2154 break;
2156 case PCI_ERR_ANON_BUF_RD:
2157 netdev_err(qdev->ndev, "PCI error occurred when reading "
2158 "anonymous buffers from rx_ring %d.\n",
2159 ib_ae_rsp->q_id);
2160 ql_queue_asic_error(qdev);
2161 break;
2163 default:
2164 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2165 ib_ae_rsp->event);
2166 ql_queue_asic_error(qdev);
2167 break;
2171 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2173 struct ql_adapter *qdev = rx_ring->qdev;
2174 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2175 struct ob_mac_iocb_rsp *net_rsp = NULL;
2176 int count = 0;
2178 struct tx_ring *tx_ring;
2179 /* While there are entries in the completion queue. */
2180 while (prod != rx_ring->cnsmr_idx) {
2182 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2183 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2184 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2186 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2187 rmb();
2188 switch (net_rsp->opcode) {
2190 case OPCODE_OB_MAC_TSO_IOCB:
2191 case OPCODE_OB_MAC_IOCB:
2192 ql_process_mac_tx_intr(qdev, net_rsp);
2193 break;
2194 default:
2195 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2196 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2197 net_rsp->opcode);
2199 count++;
2200 ql_update_cq(rx_ring);
2201 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2203 if (!net_rsp)
2204 return 0;
2205 ql_write_cq_idx(rx_ring);
2206 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2207 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2208 if (atomic_read(&tx_ring->queue_stopped) &&
2209 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2211 * The queue got stopped because the tx_ring was full.
2212 * Wake it up, because it's now at least 25% empty.
2214 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2217 return count;
2220 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2222 struct ql_adapter *qdev = rx_ring->qdev;
2223 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2224 struct ql_net_rsp_iocb *net_rsp;
2225 int count = 0;
2227 /* While there are entries in the completion queue. */
2228 while (prod != rx_ring->cnsmr_idx) {
2230 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2231 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2232 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2234 net_rsp = rx_ring->curr_entry;
2235 rmb();
2236 switch (net_rsp->opcode) {
2237 case OPCODE_IB_MAC_IOCB:
2238 ql_process_mac_rx_intr(qdev, rx_ring,
2239 (struct ib_mac_iocb_rsp *)
2240 net_rsp);
2241 break;
2243 case OPCODE_IB_AE_IOCB:
2244 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2245 net_rsp);
2246 break;
2247 default:
2248 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2249 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2250 net_rsp->opcode);
2251 break;
2253 count++;
2254 ql_update_cq(rx_ring);
2255 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2256 if (count == budget)
2257 break;
2259 ql_update_buffer_queues(qdev, rx_ring);
2260 ql_write_cq_idx(rx_ring);
2261 return count;
2264 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2266 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2267 struct ql_adapter *qdev = rx_ring->qdev;
2268 struct rx_ring *trx_ring;
2269 int i, work_done = 0;
2270 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2272 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2273 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2275 /* Service the TX rings first. They start
2276 * right after the RSS rings. */
2277 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2278 trx_ring = &qdev->rx_ring[i];
2279 /* If this TX completion ring belongs to this vector and
2280 * it's not empty then service it.
2282 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2283 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2284 trx_ring->cnsmr_idx)) {
2285 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2286 "%s: Servicing TX completion ring %d.\n",
2287 __func__, trx_ring->cq_id);
2288 ql_clean_outbound_rx_ring(trx_ring);
2293 * Now service the RSS ring if it's active.
2295 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2296 rx_ring->cnsmr_idx) {
2297 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2298 "%s: Servicing RX completion ring %d.\n",
2299 __func__, rx_ring->cq_id);
2300 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2303 if (work_done < budget) {
2304 napi_complete(napi);
2305 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2307 return work_done;
2310 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2312 struct ql_adapter *qdev = netdev_priv(ndev);
2314 if (features & NETIF_F_HW_VLAN_RX) {
2315 netif_printk(qdev, ifup, KERN_DEBUG, ndev,
2316 "Turning on VLAN in NIC_RCV_CFG.\n");
2317 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2318 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2319 } else {
2320 netif_printk(qdev, ifup, KERN_DEBUG, ndev,
2321 "Turning off VLAN in NIC_RCV_CFG.\n");
2322 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2326 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2327 netdev_features_t features)
2330 * Since there is no support for separate rx/tx vlan accel
2331 * enable/disable make sure tx flag is always in same state as rx.
2333 if (features & NETIF_F_HW_VLAN_RX)
2334 features |= NETIF_F_HW_VLAN_TX;
2335 else
2336 features &= ~NETIF_F_HW_VLAN_TX;
2338 return features;
2341 static int qlge_set_features(struct net_device *ndev,
2342 netdev_features_t features)
2344 netdev_features_t changed = ndev->features ^ features;
2346 if (changed & NETIF_F_HW_VLAN_RX)
2347 qlge_vlan_mode(ndev, features);
2349 return 0;
2352 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2354 u32 enable_bit = MAC_ADDR_E;
2355 int err;
2357 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2358 MAC_ADDR_TYPE_VLAN, vid);
2359 if (err)
2360 netif_err(qdev, ifup, qdev->ndev,
2361 "Failed to init vlan address.\n");
2362 return err;
2365 static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2367 struct ql_adapter *qdev = netdev_priv(ndev);
2368 int status;
2369 int err;
2371 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2372 if (status)
2373 return status;
2375 err = __qlge_vlan_rx_add_vid(qdev, vid);
2376 set_bit(vid, qdev->active_vlans);
2378 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2380 return err;
2383 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2385 u32 enable_bit = 0;
2386 int err;
2388 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2389 MAC_ADDR_TYPE_VLAN, vid);
2390 if (err)
2391 netif_err(qdev, ifup, qdev->ndev,
2392 "Failed to clear vlan address.\n");
2393 return err;
2396 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2398 struct ql_adapter *qdev = netdev_priv(ndev);
2399 int status;
2400 int err;
2402 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2403 if (status)
2404 return status;
2406 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2407 clear_bit(vid, qdev->active_vlans);
2409 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2411 return err;
2414 static void qlge_restore_vlan(struct ql_adapter *qdev)
2416 int status;
2417 u16 vid;
2419 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2420 if (status)
2421 return;
2423 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2424 __qlge_vlan_rx_add_vid(qdev, vid);
2426 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2429 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2430 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2432 struct rx_ring *rx_ring = dev_id;
2433 napi_schedule(&rx_ring->napi);
2434 return IRQ_HANDLED;
2437 /* This handles a fatal error, MPI activity, and the default
2438 * rx_ring in an MSI-X multiple vector environment.
2439 * In MSI/Legacy environment it also process the rest of
2440 * the rx_rings.
2442 static irqreturn_t qlge_isr(int irq, void *dev_id)
2444 struct rx_ring *rx_ring = dev_id;
2445 struct ql_adapter *qdev = rx_ring->qdev;
2446 struct intr_context *intr_context = &qdev->intr_context[0];
2447 u32 var;
2448 int work_done = 0;
2450 spin_lock(&qdev->hw_lock);
2451 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2452 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2453 "Shared Interrupt, Not ours!\n");
2454 spin_unlock(&qdev->hw_lock);
2455 return IRQ_NONE;
2457 spin_unlock(&qdev->hw_lock);
2459 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2462 * Check for fatal error.
2464 if (var & STS_FE) {
2465 ql_queue_asic_error(qdev);
2466 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2467 var = ql_read32(qdev, ERR_STS);
2468 netdev_err(qdev->ndev, "Resetting chip. "
2469 "Error Status Register = 0x%x\n", var);
2470 return IRQ_HANDLED;
2474 * Check MPI processor activity.
2476 if ((var & STS_PI) &&
2477 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2479 * We've got an async event or mailbox completion.
2480 * Handle it and clear the source of the interrupt.
2482 netif_err(qdev, intr, qdev->ndev,
2483 "Got MPI processor interrupt.\n");
2484 ql_disable_completion_interrupt(qdev, intr_context->intr);
2485 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2486 queue_delayed_work_on(smp_processor_id(),
2487 qdev->workqueue, &qdev->mpi_work, 0);
2488 work_done++;
2492 * Get the bit-mask that shows the active queues for this
2493 * pass. Compare it to the queues that this irq services
2494 * and call napi if there's a match.
2496 var = ql_read32(qdev, ISR1);
2497 if (var & intr_context->irq_mask) {
2498 netif_info(qdev, intr, qdev->ndev,
2499 "Waking handler for rx_ring[0].\n");
2500 ql_disable_completion_interrupt(qdev, intr_context->intr);
2501 napi_schedule(&rx_ring->napi);
2502 work_done++;
2504 ql_enable_completion_interrupt(qdev, intr_context->intr);
2505 return work_done ? IRQ_HANDLED : IRQ_NONE;
2508 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2511 if (skb_is_gso(skb)) {
2512 int err;
2513 if (skb_header_cloned(skb)) {
2514 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2515 if (err)
2516 return err;
2519 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2520 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2521 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2522 mac_iocb_ptr->total_hdrs_len =
2523 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2524 mac_iocb_ptr->net_trans_offset =
2525 cpu_to_le16(skb_network_offset(skb) |
2526 skb_transport_offset(skb)
2527 << OB_MAC_TRANSPORT_HDR_SHIFT);
2528 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2529 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2530 if (likely(skb->protocol == htons(ETH_P_IP))) {
2531 struct iphdr *iph = ip_hdr(skb);
2532 iph->check = 0;
2533 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2534 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2535 iph->daddr, 0,
2536 IPPROTO_TCP,
2538 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2539 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2540 tcp_hdr(skb)->check =
2541 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2542 &ipv6_hdr(skb)->daddr,
2543 0, IPPROTO_TCP, 0);
2545 return 1;
2547 return 0;
2550 static void ql_hw_csum_setup(struct sk_buff *skb,
2551 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2553 int len;
2554 struct iphdr *iph = ip_hdr(skb);
2555 __sum16 *check;
2556 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2557 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2558 mac_iocb_ptr->net_trans_offset =
2559 cpu_to_le16(skb_network_offset(skb) |
2560 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2562 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2563 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2564 if (likely(iph->protocol == IPPROTO_TCP)) {
2565 check = &(tcp_hdr(skb)->check);
2566 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2567 mac_iocb_ptr->total_hdrs_len =
2568 cpu_to_le16(skb_transport_offset(skb) +
2569 (tcp_hdr(skb)->doff << 2));
2570 } else {
2571 check = &(udp_hdr(skb)->check);
2572 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2573 mac_iocb_ptr->total_hdrs_len =
2574 cpu_to_le16(skb_transport_offset(skb) +
2575 sizeof(struct udphdr));
2577 *check = ~csum_tcpudp_magic(iph->saddr,
2578 iph->daddr, len, iph->protocol, 0);
2581 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2583 struct tx_ring_desc *tx_ring_desc;
2584 struct ob_mac_iocb_req *mac_iocb_ptr;
2585 struct ql_adapter *qdev = netdev_priv(ndev);
2586 int tso;
2587 struct tx_ring *tx_ring;
2588 u32 tx_ring_idx = (u32) skb->queue_mapping;
2590 tx_ring = &qdev->tx_ring[tx_ring_idx];
2592 if (skb_padto(skb, ETH_ZLEN))
2593 return NETDEV_TX_OK;
2595 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2596 netif_info(qdev, tx_queued, qdev->ndev,
2597 "%s: shutting down tx queue %d du to lack of resources.\n",
2598 __func__, tx_ring_idx);
2599 netif_stop_subqueue(ndev, tx_ring->wq_id);
2600 atomic_inc(&tx_ring->queue_stopped);
2601 tx_ring->tx_errors++;
2602 return NETDEV_TX_BUSY;
2604 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2605 mac_iocb_ptr = tx_ring_desc->queue_entry;
2606 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2608 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2609 mac_iocb_ptr->tid = tx_ring_desc->index;
2610 /* We use the upper 32-bits to store the tx queue for this IO.
2611 * When we get the completion we can use it to establish the context.
2613 mac_iocb_ptr->txq_idx = tx_ring_idx;
2614 tx_ring_desc->skb = skb;
2616 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2618 if (vlan_tx_tag_present(skb)) {
2619 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2620 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2621 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2622 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2624 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2625 if (tso < 0) {
2626 dev_kfree_skb_any(skb);
2627 return NETDEV_TX_OK;
2628 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2629 ql_hw_csum_setup(skb,
2630 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2632 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2633 NETDEV_TX_OK) {
2634 netif_err(qdev, tx_queued, qdev->ndev,
2635 "Could not map the segments.\n");
2636 tx_ring->tx_errors++;
2637 return NETDEV_TX_BUSY;
2639 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2640 tx_ring->prod_idx++;
2641 if (tx_ring->prod_idx == tx_ring->wq_len)
2642 tx_ring->prod_idx = 0;
2643 wmb();
2645 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2646 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2647 "tx queued, slot %d, len %d\n",
2648 tx_ring->prod_idx, skb->len);
2650 atomic_dec(&tx_ring->tx_count);
2651 return NETDEV_TX_OK;
2655 static void ql_free_shadow_space(struct ql_adapter *qdev)
2657 if (qdev->rx_ring_shadow_reg_area) {
2658 pci_free_consistent(qdev->pdev,
2659 PAGE_SIZE,
2660 qdev->rx_ring_shadow_reg_area,
2661 qdev->rx_ring_shadow_reg_dma);
2662 qdev->rx_ring_shadow_reg_area = NULL;
2664 if (qdev->tx_ring_shadow_reg_area) {
2665 pci_free_consistent(qdev->pdev,
2666 PAGE_SIZE,
2667 qdev->tx_ring_shadow_reg_area,
2668 qdev->tx_ring_shadow_reg_dma);
2669 qdev->tx_ring_shadow_reg_area = NULL;
2673 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2675 qdev->rx_ring_shadow_reg_area =
2676 pci_alloc_consistent(qdev->pdev,
2677 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2678 if (qdev->rx_ring_shadow_reg_area == NULL) {
2679 netif_err(qdev, ifup, qdev->ndev,
2680 "Allocation of RX shadow space failed.\n");
2681 return -ENOMEM;
2683 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2684 qdev->tx_ring_shadow_reg_area =
2685 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2686 &qdev->tx_ring_shadow_reg_dma);
2687 if (qdev->tx_ring_shadow_reg_area == NULL) {
2688 netif_err(qdev, ifup, qdev->ndev,
2689 "Allocation of TX shadow space failed.\n");
2690 goto err_wqp_sh_area;
2692 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2693 return 0;
2695 err_wqp_sh_area:
2696 pci_free_consistent(qdev->pdev,
2697 PAGE_SIZE,
2698 qdev->rx_ring_shadow_reg_area,
2699 qdev->rx_ring_shadow_reg_dma);
2700 return -ENOMEM;
2703 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2705 struct tx_ring_desc *tx_ring_desc;
2706 int i;
2707 struct ob_mac_iocb_req *mac_iocb_ptr;
2709 mac_iocb_ptr = tx_ring->wq_base;
2710 tx_ring_desc = tx_ring->q;
2711 for (i = 0; i < tx_ring->wq_len; i++) {
2712 tx_ring_desc->index = i;
2713 tx_ring_desc->skb = NULL;
2714 tx_ring_desc->queue_entry = mac_iocb_ptr;
2715 mac_iocb_ptr++;
2716 tx_ring_desc++;
2718 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2719 atomic_set(&tx_ring->queue_stopped, 0);
2722 static void ql_free_tx_resources(struct ql_adapter *qdev,
2723 struct tx_ring *tx_ring)
2725 if (tx_ring->wq_base) {
2726 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2727 tx_ring->wq_base, tx_ring->wq_base_dma);
2728 tx_ring->wq_base = NULL;
2730 kfree(tx_ring->q);
2731 tx_ring->q = NULL;
2734 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2735 struct tx_ring *tx_ring)
2737 tx_ring->wq_base =
2738 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2739 &tx_ring->wq_base_dma);
2741 if ((tx_ring->wq_base == NULL) ||
2742 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2743 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2744 return -ENOMEM;
2746 tx_ring->q =
2747 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2748 if (tx_ring->q == NULL)
2749 goto err;
2751 return 0;
2752 err:
2753 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2754 tx_ring->wq_base, tx_ring->wq_base_dma);
2755 return -ENOMEM;
2758 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2760 struct bq_desc *lbq_desc;
2762 uint32_t curr_idx, clean_idx;
2764 curr_idx = rx_ring->lbq_curr_idx;
2765 clean_idx = rx_ring->lbq_clean_idx;
2766 while (curr_idx != clean_idx) {
2767 lbq_desc = &rx_ring->lbq[curr_idx];
2769 if (lbq_desc->p.pg_chunk.last_flag) {
2770 pci_unmap_page(qdev->pdev,
2771 lbq_desc->p.pg_chunk.map,
2772 ql_lbq_block_size(qdev),
2773 PCI_DMA_FROMDEVICE);
2774 lbq_desc->p.pg_chunk.last_flag = 0;
2777 put_page(lbq_desc->p.pg_chunk.page);
2778 lbq_desc->p.pg_chunk.page = NULL;
2780 if (++curr_idx == rx_ring->lbq_len)
2781 curr_idx = 0;
2786 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2788 int i;
2789 struct bq_desc *sbq_desc;
2791 for (i = 0; i < rx_ring->sbq_len; i++) {
2792 sbq_desc = &rx_ring->sbq[i];
2793 if (sbq_desc == NULL) {
2794 netif_err(qdev, ifup, qdev->ndev,
2795 "sbq_desc %d is NULL.\n", i);
2796 return;
2798 if (sbq_desc->p.skb) {
2799 pci_unmap_single(qdev->pdev,
2800 dma_unmap_addr(sbq_desc, mapaddr),
2801 dma_unmap_len(sbq_desc, maplen),
2802 PCI_DMA_FROMDEVICE);
2803 dev_kfree_skb(sbq_desc->p.skb);
2804 sbq_desc->p.skb = NULL;
2809 /* Free all large and small rx buffers associated
2810 * with the completion queues for this device.
2812 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2814 int i;
2815 struct rx_ring *rx_ring;
2817 for (i = 0; i < qdev->rx_ring_count; i++) {
2818 rx_ring = &qdev->rx_ring[i];
2819 if (rx_ring->lbq)
2820 ql_free_lbq_buffers(qdev, rx_ring);
2821 if (rx_ring->sbq)
2822 ql_free_sbq_buffers(qdev, rx_ring);
2826 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2828 struct rx_ring *rx_ring;
2829 int i;
2831 for (i = 0; i < qdev->rx_ring_count; i++) {
2832 rx_ring = &qdev->rx_ring[i];
2833 if (rx_ring->type != TX_Q)
2834 ql_update_buffer_queues(qdev, rx_ring);
2838 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2839 struct rx_ring *rx_ring)
2841 int i;
2842 struct bq_desc *lbq_desc;
2843 __le64 *bq = rx_ring->lbq_base;
2845 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2846 for (i = 0; i < rx_ring->lbq_len; i++) {
2847 lbq_desc = &rx_ring->lbq[i];
2848 memset(lbq_desc, 0, sizeof(*lbq_desc));
2849 lbq_desc->index = i;
2850 lbq_desc->addr = bq;
2851 bq++;
2855 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2856 struct rx_ring *rx_ring)
2858 int i;
2859 struct bq_desc *sbq_desc;
2860 __le64 *bq = rx_ring->sbq_base;
2862 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2863 for (i = 0; i < rx_ring->sbq_len; i++) {
2864 sbq_desc = &rx_ring->sbq[i];
2865 memset(sbq_desc, 0, sizeof(*sbq_desc));
2866 sbq_desc->index = i;
2867 sbq_desc->addr = bq;
2868 bq++;
2872 static void ql_free_rx_resources(struct ql_adapter *qdev,
2873 struct rx_ring *rx_ring)
2875 /* Free the small buffer queue. */
2876 if (rx_ring->sbq_base) {
2877 pci_free_consistent(qdev->pdev,
2878 rx_ring->sbq_size,
2879 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2880 rx_ring->sbq_base = NULL;
2883 /* Free the small buffer queue control blocks. */
2884 kfree(rx_ring->sbq);
2885 rx_ring->sbq = NULL;
2887 /* Free the large buffer queue. */
2888 if (rx_ring->lbq_base) {
2889 pci_free_consistent(qdev->pdev,
2890 rx_ring->lbq_size,
2891 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2892 rx_ring->lbq_base = NULL;
2895 /* Free the large buffer queue control blocks. */
2896 kfree(rx_ring->lbq);
2897 rx_ring->lbq = NULL;
2899 /* Free the rx queue. */
2900 if (rx_ring->cq_base) {
2901 pci_free_consistent(qdev->pdev,
2902 rx_ring->cq_size,
2903 rx_ring->cq_base, rx_ring->cq_base_dma);
2904 rx_ring->cq_base = NULL;
2908 /* Allocate queues and buffers for this completions queue based
2909 * on the values in the parameter structure. */
2910 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2911 struct rx_ring *rx_ring)
2915 * Allocate the completion queue for this rx_ring.
2917 rx_ring->cq_base =
2918 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2919 &rx_ring->cq_base_dma);
2921 if (rx_ring->cq_base == NULL) {
2922 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2923 return -ENOMEM;
2926 if (rx_ring->sbq_len) {
2928 * Allocate small buffer queue.
2930 rx_ring->sbq_base =
2931 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2932 &rx_ring->sbq_base_dma);
2934 if (rx_ring->sbq_base == NULL) {
2935 netif_err(qdev, ifup, qdev->ndev,
2936 "Small buffer queue allocation failed.\n");
2937 goto err_mem;
2941 * Allocate small buffer queue control blocks.
2943 rx_ring->sbq =
2944 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2945 GFP_KERNEL);
2946 if (rx_ring->sbq == NULL) {
2947 netif_err(qdev, ifup, qdev->ndev,
2948 "Small buffer queue control block allocation failed.\n");
2949 goto err_mem;
2952 ql_init_sbq_ring(qdev, rx_ring);
2955 if (rx_ring->lbq_len) {
2957 * Allocate large buffer queue.
2959 rx_ring->lbq_base =
2960 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2961 &rx_ring->lbq_base_dma);
2963 if (rx_ring->lbq_base == NULL) {
2964 netif_err(qdev, ifup, qdev->ndev,
2965 "Large buffer queue allocation failed.\n");
2966 goto err_mem;
2969 * Allocate large buffer queue control blocks.
2971 rx_ring->lbq =
2972 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2973 GFP_KERNEL);
2974 if (rx_ring->lbq == NULL) {
2975 netif_err(qdev, ifup, qdev->ndev,
2976 "Large buffer queue control block allocation failed.\n");
2977 goto err_mem;
2980 ql_init_lbq_ring(qdev, rx_ring);
2983 return 0;
2985 err_mem:
2986 ql_free_rx_resources(qdev, rx_ring);
2987 return -ENOMEM;
2990 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2992 struct tx_ring *tx_ring;
2993 struct tx_ring_desc *tx_ring_desc;
2994 int i, j;
2997 * Loop through all queues and free
2998 * any resources.
3000 for (j = 0; j < qdev->tx_ring_count; j++) {
3001 tx_ring = &qdev->tx_ring[j];
3002 for (i = 0; i < tx_ring->wq_len; i++) {
3003 tx_ring_desc = &tx_ring->q[i];
3004 if (tx_ring_desc && tx_ring_desc->skb) {
3005 netif_err(qdev, ifdown, qdev->ndev,
3006 "Freeing lost SKB %p, from queue %d, index %d.\n",
3007 tx_ring_desc->skb, j,
3008 tx_ring_desc->index);
3009 ql_unmap_send(qdev, tx_ring_desc,
3010 tx_ring_desc->map_cnt);
3011 dev_kfree_skb(tx_ring_desc->skb);
3012 tx_ring_desc->skb = NULL;
3018 static void ql_free_mem_resources(struct ql_adapter *qdev)
3020 int i;
3022 for (i = 0; i < qdev->tx_ring_count; i++)
3023 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3024 for (i = 0; i < qdev->rx_ring_count; i++)
3025 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3026 ql_free_shadow_space(qdev);
3029 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3031 int i;
3033 /* Allocate space for our shadow registers and such. */
3034 if (ql_alloc_shadow_space(qdev))
3035 return -ENOMEM;
3037 for (i = 0; i < qdev->rx_ring_count; i++) {
3038 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3039 netif_err(qdev, ifup, qdev->ndev,
3040 "RX resource allocation failed.\n");
3041 goto err_mem;
3044 /* Allocate tx queue resources */
3045 for (i = 0; i < qdev->tx_ring_count; i++) {
3046 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3047 netif_err(qdev, ifup, qdev->ndev,
3048 "TX resource allocation failed.\n");
3049 goto err_mem;
3052 return 0;
3054 err_mem:
3055 ql_free_mem_resources(qdev);
3056 return -ENOMEM;
3059 /* Set up the rx ring control block and pass it to the chip.
3060 * The control block is defined as
3061 * "Completion Queue Initialization Control Block", or cqicb.
3063 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3065 struct cqicb *cqicb = &rx_ring->cqicb;
3066 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3067 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3068 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3069 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3070 void __iomem *doorbell_area =
3071 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3072 int err = 0;
3073 u16 bq_len;
3074 u64 tmp;
3075 __le64 *base_indirect_ptr;
3076 int page_entries;
3078 /* Set up the shadow registers for this ring. */
3079 rx_ring->prod_idx_sh_reg = shadow_reg;
3080 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3081 *rx_ring->prod_idx_sh_reg = 0;
3082 shadow_reg += sizeof(u64);
3083 shadow_reg_dma += sizeof(u64);
3084 rx_ring->lbq_base_indirect = shadow_reg;
3085 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3086 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3087 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3088 rx_ring->sbq_base_indirect = shadow_reg;
3089 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3091 /* PCI doorbell mem area + 0x00 for consumer index register */
3092 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3093 rx_ring->cnsmr_idx = 0;
3094 rx_ring->curr_entry = rx_ring->cq_base;
3096 /* PCI doorbell mem area + 0x04 for valid register */
3097 rx_ring->valid_db_reg = doorbell_area + 0x04;
3099 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3100 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3102 /* PCI doorbell mem area + 0x1c */
3103 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3105 memset((void *)cqicb, 0, sizeof(struct cqicb));
3106 cqicb->msix_vect = rx_ring->irq;
3108 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3109 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3111 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3113 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3116 * Set up the control block load flags.
3118 cqicb->flags = FLAGS_LC | /* Load queue base address */
3119 FLAGS_LV | /* Load MSI-X vector */
3120 FLAGS_LI; /* Load irq delay values */
3121 if (rx_ring->lbq_len) {
3122 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3123 tmp = (u64)rx_ring->lbq_base_dma;
3124 base_indirect_ptr = rx_ring->lbq_base_indirect;
3125 page_entries = 0;
3126 do {
3127 *base_indirect_ptr = cpu_to_le64(tmp);
3128 tmp += DB_PAGE_SIZE;
3129 base_indirect_ptr++;
3130 page_entries++;
3131 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3132 cqicb->lbq_addr =
3133 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3134 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3135 (u16) rx_ring->lbq_buf_size;
3136 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3137 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3138 (u16) rx_ring->lbq_len;
3139 cqicb->lbq_len = cpu_to_le16(bq_len);
3140 rx_ring->lbq_prod_idx = 0;
3141 rx_ring->lbq_curr_idx = 0;
3142 rx_ring->lbq_clean_idx = 0;
3143 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3145 if (rx_ring->sbq_len) {
3146 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3147 tmp = (u64)rx_ring->sbq_base_dma;
3148 base_indirect_ptr = rx_ring->sbq_base_indirect;
3149 page_entries = 0;
3150 do {
3151 *base_indirect_ptr = cpu_to_le64(tmp);
3152 tmp += DB_PAGE_SIZE;
3153 base_indirect_ptr++;
3154 page_entries++;
3155 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3156 cqicb->sbq_addr =
3157 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3158 cqicb->sbq_buf_size =
3159 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3160 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3161 (u16) rx_ring->sbq_len;
3162 cqicb->sbq_len = cpu_to_le16(bq_len);
3163 rx_ring->sbq_prod_idx = 0;
3164 rx_ring->sbq_curr_idx = 0;
3165 rx_ring->sbq_clean_idx = 0;
3166 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3168 switch (rx_ring->type) {
3169 case TX_Q:
3170 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3171 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3172 break;
3173 case RX_Q:
3174 /* Inbound completion handling rx_rings run in
3175 * separate NAPI contexts.
3177 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3178 64);
3179 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3180 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3181 break;
3182 default:
3183 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3184 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3186 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3187 "Initializing rx work queue.\n");
3188 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3189 CFG_LCQ, rx_ring->cq_id);
3190 if (err) {
3191 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3192 return err;
3194 return err;
3197 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3199 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3200 void __iomem *doorbell_area =
3201 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3202 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3203 (tx_ring->wq_id * sizeof(u64));
3204 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3205 (tx_ring->wq_id * sizeof(u64));
3206 int err = 0;
3209 * Assign doorbell registers for this tx_ring.
3211 /* TX PCI doorbell mem area for tx producer index */
3212 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3213 tx_ring->prod_idx = 0;
3214 /* TX PCI doorbell mem area + 0x04 */
3215 tx_ring->valid_db_reg = doorbell_area + 0x04;
3218 * Assign shadow registers for this tx_ring.
3220 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3221 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3223 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3224 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3225 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3226 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3227 wqicb->rid = 0;
3228 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3230 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3232 ql_init_tx_ring(qdev, tx_ring);
3234 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3235 (u16) tx_ring->wq_id);
3236 if (err) {
3237 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3238 return err;
3240 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3241 "Successfully loaded WQICB.\n");
3242 return err;
3245 static void ql_disable_msix(struct ql_adapter *qdev)
3247 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3248 pci_disable_msix(qdev->pdev);
3249 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3250 kfree(qdev->msi_x_entry);
3251 qdev->msi_x_entry = NULL;
3252 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3253 pci_disable_msi(qdev->pdev);
3254 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3258 /* We start by trying to get the number of vectors
3259 * stored in qdev->intr_count. If we don't get that
3260 * many then we reduce the count and try again.
3262 static void ql_enable_msix(struct ql_adapter *qdev)
3264 int i, err;
3266 /* Get the MSIX vectors. */
3267 if (qlge_irq_type == MSIX_IRQ) {
3268 /* Try to alloc space for the msix struct,
3269 * if it fails then go to MSI/legacy.
3271 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3272 sizeof(struct msix_entry),
3273 GFP_KERNEL);
3274 if (!qdev->msi_x_entry) {
3275 qlge_irq_type = MSI_IRQ;
3276 goto msi;
3279 for (i = 0; i < qdev->intr_count; i++)
3280 qdev->msi_x_entry[i].entry = i;
3282 /* Loop to get our vectors. We start with
3283 * what we want and settle for what we get.
3285 do {
3286 err = pci_enable_msix(qdev->pdev,
3287 qdev->msi_x_entry, qdev->intr_count);
3288 if (err > 0)
3289 qdev->intr_count = err;
3290 } while (err > 0);
3292 if (err < 0) {
3293 kfree(qdev->msi_x_entry);
3294 qdev->msi_x_entry = NULL;
3295 netif_warn(qdev, ifup, qdev->ndev,
3296 "MSI-X Enable failed, trying MSI.\n");
3297 qdev->intr_count = 1;
3298 qlge_irq_type = MSI_IRQ;
3299 } else if (err == 0) {
3300 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3301 netif_info(qdev, ifup, qdev->ndev,
3302 "MSI-X Enabled, got %d vectors.\n",
3303 qdev->intr_count);
3304 return;
3307 msi:
3308 qdev->intr_count = 1;
3309 if (qlge_irq_type == MSI_IRQ) {
3310 if (!pci_enable_msi(qdev->pdev)) {
3311 set_bit(QL_MSI_ENABLED, &qdev->flags);
3312 netif_info(qdev, ifup, qdev->ndev,
3313 "Running with MSI interrupts.\n");
3314 return;
3317 qlge_irq_type = LEG_IRQ;
3318 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3319 "Running with legacy interrupts.\n");
3322 /* Each vector services 1 RSS ring and and 1 or more
3323 * TX completion rings. This function loops through
3324 * the TX completion rings and assigns the vector that
3325 * will service it. An example would be if there are
3326 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3327 * This would mean that vector 0 would service RSS ring 0
3328 * and TX completion rings 0,1,2 and 3. Vector 1 would
3329 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3331 static void ql_set_tx_vect(struct ql_adapter *qdev)
3333 int i, j, vect;
3334 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3336 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3337 /* Assign irq vectors to TX rx_rings.*/
3338 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3339 i < qdev->rx_ring_count; i++) {
3340 if (j == tx_rings_per_vector) {
3341 vect++;
3342 j = 0;
3344 qdev->rx_ring[i].irq = vect;
3345 j++;
3347 } else {
3348 /* For single vector all rings have an irq
3349 * of zero.
3351 for (i = 0; i < qdev->rx_ring_count; i++)
3352 qdev->rx_ring[i].irq = 0;
3356 /* Set the interrupt mask for this vector. Each vector
3357 * will service 1 RSS ring and 1 or more TX completion
3358 * rings. This function sets up a bit mask per vector
3359 * that indicates which rings it services.
3361 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3363 int j, vect = ctx->intr;
3364 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3366 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3367 /* Add the RSS ring serviced by this vector
3368 * to the mask.
3370 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3371 /* Add the TX ring(s) serviced by this vector
3372 * to the mask. */
3373 for (j = 0; j < tx_rings_per_vector; j++) {
3374 ctx->irq_mask |=
3375 (1 << qdev->rx_ring[qdev->rss_ring_count +
3376 (vect * tx_rings_per_vector) + j].cq_id);
3378 } else {
3379 /* For single vector we just shift each queue's
3380 * ID into the mask.
3382 for (j = 0; j < qdev->rx_ring_count; j++)
3383 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3388 * Here we build the intr_context structures based on
3389 * our rx_ring count and intr vector count.
3390 * The intr_context structure is used to hook each vector
3391 * to possibly different handlers.
3393 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3395 int i = 0;
3396 struct intr_context *intr_context = &qdev->intr_context[0];
3398 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3399 /* Each rx_ring has it's
3400 * own intr_context since we have separate
3401 * vectors for each queue.
3403 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3404 qdev->rx_ring[i].irq = i;
3405 intr_context->intr = i;
3406 intr_context->qdev = qdev;
3407 /* Set up this vector's bit-mask that indicates
3408 * which queues it services.
3410 ql_set_irq_mask(qdev, intr_context);
3412 * We set up each vectors enable/disable/read bits so
3413 * there's no bit/mask calculations in the critical path.
3415 intr_context->intr_en_mask =
3416 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3417 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3418 | i;
3419 intr_context->intr_dis_mask =
3420 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3421 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3422 INTR_EN_IHD | i;
3423 intr_context->intr_read_mask =
3424 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3425 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3427 if (i == 0) {
3428 /* The first vector/queue handles
3429 * broadcast/multicast, fatal errors,
3430 * and firmware events. This in addition
3431 * to normal inbound NAPI processing.
3433 intr_context->handler = qlge_isr;
3434 sprintf(intr_context->name, "%s-rx-%d",
3435 qdev->ndev->name, i);
3436 } else {
3438 * Inbound queues handle unicast frames only.
3440 intr_context->handler = qlge_msix_rx_isr;
3441 sprintf(intr_context->name, "%s-rx-%d",
3442 qdev->ndev->name, i);
3445 } else {
3447 * All rx_rings use the same intr_context since
3448 * there is only one vector.
3450 intr_context->intr = 0;
3451 intr_context->qdev = qdev;
3453 * We set up each vectors enable/disable/read bits so
3454 * there's no bit/mask calculations in the critical path.
3456 intr_context->intr_en_mask =
3457 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3458 intr_context->intr_dis_mask =
3459 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3460 INTR_EN_TYPE_DISABLE;
3461 intr_context->intr_read_mask =
3462 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3464 * Single interrupt means one handler for all rings.
3466 intr_context->handler = qlge_isr;
3467 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3468 /* Set up this vector's bit-mask that indicates
3469 * which queues it services. In this case there is
3470 * a single vector so it will service all RSS and
3471 * TX completion rings.
3473 ql_set_irq_mask(qdev, intr_context);
3475 /* Tell the TX completion rings which MSIx vector
3476 * they will be using.
3478 ql_set_tx_vect(qdev);
3481 static void ql_free_irq(struct ql_adapter *qdev)
3483 int i;
3484 struct intr_context *intr_context = &qdev->intr_context[0];
3486 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3487 if (intr_context->hooked) {
3488 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3489 free_irq(qdev->msi_x_entry[i].vector,
3490 &qdev->rx_ring[i]);
3491 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3492 "freeing msix interrupt %d.\n", i);
3493 } else {
3494 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3495 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3496 "freeing msi interrupt %d.\n", i);
3500 ql_disable_msix(qdev);
3503 static int ql_request_irq(struct ql_adapter *qdev)
3505 int i;
3506 int status = 0;
3507 struct pci_dev *pdev = qdev->pdev;
3508 struct intr_context *intr_context = &qdev->intr_context[0];
3510 ql_resolve_queues_to_irqs(qdev);
3512 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3513 atomic_set(&intr_context->irq_cnt, 0);
3514 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3515 status = request_irq(qdev->msi_x_entry[i].vector,
3516 intr_context->handler,
3518 intr_context->name,
3519 &qdev->rx_ring[i]);
3520 if (status) {
3521 netif_err(qdev, ifup, qdev->ndev,
3522 "Failed request for MSIX interrupt %d.\n",
3524 goto err_irq;
3525 } else {
3526 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3527 "Hooked intr %d, queue type %s, with name %s.\n",
3529 qdev->rx_ring[i].type == DEFAULT_Q ?
3530 "DEFAULT_Q" :
3531 qdev->rx_ring[i].type == TX_Q ?
3532 "TX_Q" :
3533 qdev->rx_ring[i].type == RX_Q ?
3534 "RX_Q" : "",
3535 intr_context->name);
3537 } else {
3538 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3539 "trying msi or legacy interrupts.\n");
3540 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3541 "%s: irq = %d.\n", __func__, pdev->irq);
3542 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3543 "%s: context->name = %s.\n", __func__,
3544 intr_context->name);
3545 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3546 "%s: dev_id = 0x%p.\n", __func__,
3547 &qdev->rx_ring[0]);
3548 status =
3549 request_irq(pdev->irq, qlge_isr,
3550 test_bit(QL_MSI_ENABLED,
3551 &qdev->
3552 flags) ? 0 : IRQF_SHARED,
3553 intr_context->name, &qdev->rx_ring[0]);
3554 if (status)
3555 goto err_irq;
3557 netif_err(qdev, ifup, qdev->ndev,
3558 "Hooked intr %d, queue type %s, with name %s.\n",
3560 qdev->rx_ring[0].type == DEFAULT_Q ?
3561 "DEFAULT_Q" :
3562 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3563 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3564 intr_context->name);
3566 intr_context->hooked = 1;
3568 return status;
3569 err_irq:
3570 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3571 ql_free_irq(qdev);
3572 return status;
3575 static int ql_start_rss(struct ql_adapter *qdev)
3577 static const u8 init_hash_seed[] = {
3578 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3579 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3580 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3581 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3582 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3584 struct ricb *ricb = &qdev->ricb;
3585 int status = 0;
3586 int i;
3587 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3589 memset((void *)ricb, 0, sizeof(*ricb));
3591 ricb->base_cq = RSS_L4K;
3592 ricb->flags =
3593 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3594 ricb->mask = cpu_to_le16((u16)(0x3ff));
3597 * Fill out the Indirection Table.
3599 for (i = 0; i < 1024; i++)
3600 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3602 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3603 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3605 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
3607 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3608 if (status) {
3609 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3610 return status;
3612 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3613 "Successfully loaded RICB.\n");
3614 return status;
3617 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3619 int i, status = 0;
3621 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3622 if (status)
3623 return status;
3624 /* Clear all the entries in the routing table. */
3625 for (i = 0; i < 16; i++) {
3626 status = ql_set_routing_reg(qdev, i, 0, 0);
3627 if (status) {
3628 netif_err(qdev, ifup, qdev->ndev,
3629 "Failed to init routing register for CAM packets.\n");
3630 break;
3633 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3634 return status;
3637 /* Initialize the frame-to-queue routing. */
3638 static int ql_route_initialize(struct ql_adapter *qdev)
3640 int status = 0;
3642 /* Clear all the entries in the routing table. */
3643 status = ql_clear_routing_entries(qdev);
3644 if (status)
3645 return status;
3647 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3648 if (status)
3649 return status;
3651 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3652 RT_IDX_IP_CSUM_ERR, 1);
3653 if (status) {
3654 netif_err(qdev, ifup, qdev->ndev,
3655 "Failed to init routing register "
3656 "for IP CSUM error packets.\n");
3657 goto exit;
3659 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3660 RT_IDX_TU_CSUM_ERR, 1);
3661 if (status) {
3662 netif_err(qdev, ifup, qdev->ndev,
3663 "Failed to init routing register "
3664 "for TCP/UDP CSUM error packets.\n");
3665 goto exit;
3667 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3668 if (status) {
3669 netif_err(qdev, ifup, qdev->ndev,
3670 "Failed to init routing register for broadcast packets.\n");
3671 goto exit;
3673 /* If we have more than one inbound queue, then turn on RSS in the
3674 * routing block.
3676 if (qdev->rss_ring_count > 1) {
3677 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3678 RT_IDX_RSS_MATCH, 1);
3679 if (status) {
3680 netif_err(qdev, ifup, qdev->ndev,
3681 "Failed to init routing register for MATCH RSS packets.\n");
3682 goto exit;
3686 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3687 RT_IDX_CAM_HIT, 1);
3688 if (status)
3689 netif_err(qdev, ifup, qdev->ndev,
3690 "Failed to init routing register for CAM packets.\n");
3691 exit:
3692 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3693 return status;
3696 int ql_cam_route_initialize(struct ql_adapter *qdev)
3698 int status, set;
3700 /* If check if the link is up and use to
3701 * determine if we are setting or clearing
3702 * the MAC address in the CAM.
3704 set = ql_read32(qdev, STS);
3705 set &= qdev->port_link_up;
3706 status = ql_set_mac_addr(qdev, set);
3707 if (status) {
3708 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3709 return status;
3712 status = ql_route_initialize(qdev);
3713 if (status)
3714 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3716 return status;
3719 static int ql_adapter_initialize(struct ql_adapter *qdev)
3721 u32 value, mask;
3722 int i;
3723 int status = 0;
3726 * Set up the System register to halt on errors.
3728 value = SYS_EFE | SYS_FAE;
3729 mask = value << 16;
3730 ql_write32(qdev, SYS, mask | value);
3732 /* Set the default queue, and VLAN behavior. */
3733 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3734 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3735 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3737 /* Set the MPI interrupt to enabled. */
3738 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3740 /* Enable the function, set pagesize, enable error checking. */
3741 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3742 FSC_EC | FSC_VM_PAGE_4K;
3743 value |= SPLT_SETTING;
3745 /* Set/clear header splitting. */
3746 mask = FSC_VM_PAGESIZE_MASK |
3747 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3748 ql_write32(qdev, FSC, mask | value);
3750 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3752 /* Set RX packet routing to use port/pci function on which the
3753 * packet arrived on in addition to usual frame routing.
3754 * This is helpful on bonding where both interfaces can have
3755 * the same MAC address.
3757 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3758 /* Reroute all packets to our Interface.
3759 * They may have been routed to MPI firmware
3760 * due to WOL.
3762 value = ql_read32(qdev, MGMT_RCV_CFG);
3763 value &= ~MGMT_RCV_CFG_RM;
3764 mask = 0xffff0000;
3766 /* Sticky reg needs clearing due to WOL. */
3767 ql_write32(qdev, MGMT_RCV_CFG, mask);
3768 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3770 /* Default WOL is enable on Mezz cards */
3771 if (qdev->pdev->subsystem_device == 0x0068 ||
3772 qdev->pdev->subsystem_device == 0x0180)
3773 qdev->wol = WAKE_MAGIC;
3775 /* Start up the rx queues. */
3776 for (i = 0; i < qdev->rx_ring_count; i++) {
3777 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3778 if (status) {
3779 netif_err(qdev, ifup, qdev->ndev,
3780 "Failed to start rx ring[%d].\n", i);
3781 return status;
3785 /* If there is more than one inbound completion queue
3786 * then download a RICB to configure RSS.
3788 if (qdev->rss_ring_count > 1) {
3789 status = ql_start_rss(qdev);
3790 if (status) {
3791 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3792 return status;
3796 /* Start up the tx queues. */
3797 for (i = 0; i < qdev->tx_ring_count; i++) {
3798 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3799 if (status) {
3800 netif_err(qdev, ifup, qdev->ndev,
3801 "Failed to start tx ring[%d].\n", i);
3802 return status;
3806 /* Initialize the port and set the max framesize. */
3807 status = qdev->nic_ops->port_initialize(qdev);
3808 if (status)
3809 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3811 /* Set up the MAC address and frame routing filter. */
3812 status = ql_cam_route_initialize(qdev);
3813 if (status) {
3814 netif_err(qdev, ifup, qdev->ndev,
3815 "Failed to init CAM/Routing tables.\n");
3816 return status;
3819 /* Start NAPI for the RSS queues. */
3820 for (i = 0; i < qdev->rss_ring_count; i++) {
3821 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3822 "Enabling NAPI for rx_ring[%d].\n", i);
3823 napi_enable(&qdev->rx_ring[i].napi);
3826 return status;
3829 /* Issue soft reset to chip. */
3830 static int ql_adapter_reset(struct ql_adapter *qdev)
3832 u32 value;
3833 int status = 0;
3834 unsigned long end_jiffies;
3836 /* Clear all the entries in the routing table. */
3837 status = ql_clear_routing_entries(qdev);
3838 if (status) {
3839 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3840 return status;
3843 end_jiffies = jiffies +
3844 max((unsigned long)1, usecs_to_jiffies(30));
3846 /* Check if bit is set then skip the mailbox command and
3847 * clear the bit, else we are in normal reset process.
3849 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3850 /* Stop management traffic. */
3851 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3853 /* Wait for the NIC and MGMNT FIFOs to empty. */
3854 ql_wait_fifo_empty(qdev);
3855 } else
3856 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3858 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3860 do {
3861 value = ql_read32(qdev, RST_FO);
3862 if ((value & RST_FO_FR) == 0)
3863 break;
3864 cpu_relax();
3865 } while (time_before(jiffies, end_jiffies));
3867 if (value & RST_FO_FR) {
3868 netif_err(qdev, ifdown, qdev->ndev,
3869 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3870 status = -ETIMEDOUT;
3873 /* Resume management traffic. */
3874 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3875 return status;
3878 static void ql_display_dev_info(struct net_device *ndev)
3880 struct ql_adapter *qdev = netdev_priv(ndev);
3882 netif_info(qdev, probe, qdev->ndev,
3883 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3884 "XG Roll = %d, XG Rev = %d.\n",
3885 qdev->func,
3886 qdev->port,
3887 qdev->chip_rev_id & 0x0000000f,
3888 qdev->chip_rev_id >> 4 & 0x0000000f,
3889 qdev->chip_rev_id >> 8 & 0x0000000f,
3890 qdev->chip_rev_id >> 12 & 0x0000000f);
3891 netif_info(qdev, probe, qdev->ndev,
3892 "MAC address %pM\n", ndev->dev_addr);
3895 static int ql_wol(struct ql_adapter *qdev)
3897 int status = 0;
3898 u32 wol = MB_WOL_DISABLE;
3900 /* The CAM is still intact after a reset, but if we
3901 * are doing WOL, then we may need to program the
3902 * routing regs. We would also need to issue the mailbox
3903 * commands to instruct the MPI what to do per the ethtool
3904 * settings.
3907 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3908 WAKE_MCAST | WAKE_BCAST)) {
3909 netif_err(qdev, ifdown, qdev->ndev,
3910 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3911 qdev->wol);
3912 return -EINVAL;
3915 if (qdev->wol & WAKE_MAGIC) {
3916 status = ql_mb_wol_set_magic(qdev, 1);
3917 if (status) {
3918 netif_err(qdev, ifdown, qdev->ndev,
3919 "Failed to set magic packet on %s.\n",
3920 qdev->ndev->name);
3921 return status;
3922 } else
3923 netif_info(qdev, drv, qdev->ndev,
3924 "Enabled magic packet successfully on %s.\n",
3925 qdev->ndev->name);
3927 wol |= MB_WOL_MAGIC_PKT;
3930 if (qdev->wol) {
3931 wol |= MB_WOL_MODE_ON;
3932 status = ql_mb_wol_mode(qdev, wol);
3933 netif_err(qdev, drv, qdev->ndev,
3934 "WOL %s (wol code 0x%x) on %s\n",
3935 (status == 0) ? "Successfully set" : "Failed",
3936 wol, qdev->ndev->name);
3939 return status;
3942 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3945 /* Don't kill the reset worker thread if we
3946 * are in the process of recovery.
3948 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3949 cancel_delayed_work_sync(&qdev->asic_reset_work);
3950 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3951 cancel_delayed_work_sync(&qdev->mpi_work);
3952 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3953 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3954 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3957 static int ql_adapter_down(struct ql_adapter *qdev)
3959 int i, status = 0;
3961 ql_link_off(qdev);
3963 ql_cancel_all_work_sync(qdev);
3965 for (i = 0; i < qdev->rss_ring_count; i++)
3966 napi_disable(&qdev->rx_ring[i].napi);
3968 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3970 ql_disable_interrupts(qdev);
3972 ql_tx_ring_clean(qdev);
3974 /* Call netif_napi_del() from common point.
3976 for (i = 0; i < qdev->rss_ring_count; i++)
3977 netif_napi_del(&qdev->rx_ring[i].napi);
3979 status = ql_adapter_reset(qdev);
3980 if (status)
3981 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3982 qdev->func);
3983 ql_free_rx_buffers(qdev);
3985 return status;
3988 static int ql_adapter_up(struct ql_adapter *qdev)
3990 int err = 0;
3992 err = ql_adapter_initialize(qdev);
3993 if (err) {
3994 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3995 goto err_init;
3997 set_bit(QL_ADAPTER_UP, &qdev->flags);
3998 ql_alloc_rx_buffers(qdev);
3999 /* If the port is initialized and the
4000 * link is up the turn on the carrier.
4002 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4003 (ql_read32(qdev, STS) & qdev->port_link_up))
4004 ql_link_on(qdev);
4005 /* Restore rx mode. */
4006 clear_bit(QL_ALLMULTI, &qdev->flags);
4007 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4008 qlge_set_multicast_list(qdev->ndev);
4010 /* Restore vlan setting. */
4011 qlge_restore_vlan(qdev);
4013 ql_enable_interrupts(qdev);
4014 ql_enable_all_completion_interrupts(qdev);
4015 netif_tx_start_all_queues(qdev->ndev);
4017 return 0;
4018 err_init:
4019 ql_adapter_reset(qdev);
4020 return err;
4023 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4025 ql_free_mem_resources(qdev);
4026 ql_free_irq(qdev);
4029 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4031 int status = 0;
4033 if (ql_alloc_mem_resources(qdev)) {
4034 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4035 return -ENOMEM;
4037 status = ql_request_irq(qdev);
4038 return status;
4041 static int qlge_close(struct net_device *ndev)
4043 struct ql_adapter *qdev = netdev_priv(ndev);
4045 /* If we hit pci_channel_io_perm_failure
4046 * failure condition, then we already
4047 * brought the adapter down.
4049 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4050 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4051 clear_bit(QL_EEH_FATAL, &qdev->flags);
4052 return 0;
4056 * Wait for device to recover from a reset.
4057 * (Rarely happens, but possible.)
4059 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4060 msleep(1);
4061 ql_adapter_down(qdev);
4062 ql_release_adapter_resources(qdev);
4063 return 0;
4066 static int ql_configure_rings(struct ql_adapter *qdev)
4068 int i;
4069 struct rx_ring *rx_ring;
4070 struct tx_ring *tx_ring;
4071 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4072 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4073 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4075 qdev->lbq_buf_order = get_order(lbq_buf_len);
4077 /* In a perfect world we have one RSS ring for each CPU
4078 * and each has it's own vector. To do that we ask for
4079 * cpu_cnt vectors. ql_enable_msix() will adjust the
4080 * vector count to what we actually get. We then
4081 * allocate an RSS ring for each.
4082 * Essentially, we are doing min(cpu_count, msix_vector_count).
4084 qdev->intr_count = cpu_cnt;
4085 ql_enable_msix(qdev);
4086 /* Adjust the RSS ring count to the actual vector count. */
4087 qdev->rss_ring_count = qdev->intr_count;
4088 qdev->tx_ring_count = cpu_cnt;
4089 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4091 for (i = 0; i < qdev->tx_ring_count; i++) {
4092 tx_ring = &qdev->tx_ring[i];
4093 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4094 tx_ring->qdev = qdev;
4095 tx_ring->wq_id = i;
4096 tx_ring->wq_len = qdev->tx_ring_size;
4097 tx_ring->wq_size =
4098 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4101 * The completion queue ID for the tx rings start
4102 * immediately after the rss rings.
4104 tx_ring->cq_id = qdev->rss_ring_count + i;
4107 for (i = 0; i < qdev->rx_ring_count; i++) {
4108 rx_ring = &qdev->rx_ring[i];
4109 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4110 rx_ring->qdev = qdev;
4111 rx_ring->cq_id = i;
4112 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4113 if (i < qdev->rss_ring_count) {
4115 * Inbound (RSS) queues.
4117 rx_ring->cq_len = qdev->rx_ring_size;
4118 rx_ring->cq_size =
4119 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4120 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4121 rx_ring->lbq_size =
4122 rx_ring->lbq_len * sizeof(__le64);
4123 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4124 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
4125 "lbq_buf_size %d, order = %d\n",
4126 rx_ring->lbq_buf_size,
4127 qdev->lbq_buf_order);
4128 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4129 rx_ring->sbq_size =
4130 rx_ring->sbq_len * sizeof(__le64);
4131 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4132 rx_ring->type = RX_Q;
4133 } else {
4135 * Outbound queue handles outbound completions only.
4137 /* outbound cq is same size as tx_ring it services. */
4138 rx_ring->cq_len = qdev->tx_ring_size;
4139 rx_ring->cq_size =
4140 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4141 rx_ring->lbq_len = 0;
4142 rx_ring->lbq_size = 0;
4143 rx_ring->lbq_buf_size = 0;
4144 rx_ring->sbq_len = 0;
4145 rx_ring->sbq_size = 0;
4146 rx_ring->sbq_buf_size = 0;
4147 rx_ring->type = TX_Q;
4150 return 0;
4153 static int qlge_open(struct net_device *ndev)
4155 int err = 0;
4156 struct ql_adapter *qdev = netdev_priv(ndev);
4158 err = ql_adapter_reset(qdev);
4159 if (err)
4160 return err;
4162 err = ql_configure_rings(qdev);
4163 if (err)
4164 return err;
4166 err = ql_get_adapter_resources(qdev);
4167 if (err)
4168 goto error_up;
4170 err = ql_adapter_up(qdev);
4171 if (err)
4172 goto error_up;
4174 return err;
4176 error_up:
4177 ql_release_adapter_resources(qdev);
4178 return err;
4181 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4183 struct rx_ring *rx_ring;
4184 int i, status;
4185 u32 lbq_buf_len;
4187 /* Wait for an outstanding reset to complete. */
4188 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4189 int i = 3;
4190 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4191 netif_err(qdev, ifup, qdev->ndev,
4192 "Waiting for adapter UP...\n");
4193 ssleep(1);
4196 if (!i) {
4197 netif_err(qdev, ifup, qdev->ndev,
4198 "Timed out waiting for adapter UP\n");
4199 return -ETIMEDOUT;
4203 status = ql_adapter_down(qdev);
4204 if (status)
4205 goto error;
4207 /* Get the new rx buffer size. */
4208 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4209 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4210 qdev->lbq_buf_order = get_order(lbq_buf_len);
4212 for (i = 0; i < qdev->rss_ring_count; i++) {
4213 rx_ring = &qdev->rx_ring[i];
4214 /* Set the new size. */
4215 rx_ring->lbq_buf_size = lbq_buf_len;
4218 status = ql_adapter_up(qdev);
4219 if (status)
4220 goto error;
4222 return status;
4223 error:
4224 netif_alert(qdev, ifup, qdev->ndev,
4225 "Driver up/down cycle failed, closing device.\n");
4226 set_bit(QL_ADAPTER_UP, &qdev->flags);
4227 dev_close(qdev->ndev);
4228 return status;
4231 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4233 struct ql_adapter *qdev = netdev_priv(ndev);
4234 int status;
4236 if (ndev->mtu == 1500 && new_mtu == 9000) {
4237 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4238 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4239 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4240 } else
4241 return -EINVAL;
4243 queue_delayed_work(qdev->workqueue,
4244 &qdev->mpi_port_cfg_work, 3*HZ);
4246 ndev->mtu = new_mtu;
4248 if (!netif_running(qdev->ndev)) {
4249 return 0;
4252 status = ql_change_rx_buffers(qdev);
4253 if (status) {
4254 netif_err(qdev, ifup, qdev->ndev,
4255 "Changing MTU failed.\n");
4258 return status;
4261 static struct net_device_stats *qlge_get_stats(struct net_device
4262 *ndev)
4264 struct ql_adapter *qdev = netdev_priv(ndev);
4265 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4266 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4267 unsigned long pkts, mcast, dropped, errors, bytes;
4268 int i;
4270 /* Get RX stats. */
4271 pkts = mcast = dropped = errors = bytes = 0;
4272 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4273 pkts += rx_ring->rx_packets;
4274 bytes += rx_ring->rx_bytes;
4275 dropped += rx_ring->rx_dropped;
4276 errors += rx_ring->rx_errors;
4277 mcast += rx_ring->rx_multicast;
4279 ndev->stats.rx_packets = pkts;
4280 ndev->stats.rx_bytes = bytes;
4281 ndev->stats.rx_dropped = dropped;
4282 ndev->stats.rx_errors = errors;
4283 ndev->stats.multicast = mcast;
4285 /* Get TX stats. */
4286 pkts = errors = bytes = 0;
4287 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4288 pkts += tx_ring->tx_packets;
4289 bytes += tx_ring->tx_bytes;
4290 errors += tx_ring->tx_errors;
4292 ndev->stats.tx_packets = pkts;
4293 ndev->stats.tx_bytes = bytes;
4294 ndev->stats.tx_errors = errors;
4295 return &ndev->stats;
4298 static void qlge_set_multicast_list(struct net_device *ndev)
4300 struct ql_adapter *qdev = netdev_priv(ndev);
4301 struct netdev_hw_addr *ha;
4302 int i, status;
4304 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4305 if (status)
4306 return;
4308 * Set or clear promiscuous mode if a
4309 * transition is taking place.
4311 if (ndev->flags & IFF_PROMISC) {
4312 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4313 if (ql_set_routing_reg
4314 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4315 netif_err(qdev, hw, qdev->ndev,
4316 "Failed to set promiscuous mode.\n");
4317 } else {
4318 set_bit(QL_PROMISCUOUS, &qdev->flags);
4321 } else {
4322 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4323 if (ql_set_routing_reg
4324 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4325 netif_err(qdev, hw, qdev->ndev,
4326 "Failed to clear promiscuous mode.\n");
4327 } else {
4328 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4334 * Set or clear all multicast mode if a
4335 * transition is taking place.
4337 if ((ndev->flags & IFF_ALLMULTI) ||
4338 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4339 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4340 if (ql_set_routing_reg
4341 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4342 netif_err(qdev, hw, qdev->ndev,
4343 "Failed to set all-multi mode.\n");
4344 } else {
4345 set_bit(QL_ALLMULTI, &qdev->flags);
4348 } else {
4349 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4350 if (ql_set_routing_reg
4351 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4352 netif_err(qdev, hw, qdev->ndev,
4353 "Failed to clear all-multi mode.\n");
4354 } else {
4355 clear_bit(QL_ALLMULTI, &qdev->flags);
4360 if (!netdev_mc_empty(ndev)) {
4361 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4362 if (status)
4363 goto exit;
4364 i = 0;
4365 netdev_for_each_mc_addr(ha, ndev) {
4366 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4367 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4368 netif_err(qdev, hw, qdev->ndev,
4369 "Failed to loadmulticast address.\n");
4370 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4371 goto exit;
4373 i++;
4375 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4376 if (ql_set_routing_reg
4377 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4378 netif_err(qdev, hw, qdev->ndev,
4379 "Failed to set multicast match mode.\n");
4380 } else {
4381 set_bit(QL_ALLMULTI, &qdev->flags);
4384 exit:
4385 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4388 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4390 struct ql_adapter *qdev = netdev_priv(ndev);
4391 struct sockaddr *addr = p;
4392 int status;
4394 if (!is_valid_ether_addr(addr->sa_data))
4395 return -EADDRNOTAVAIL;
4396 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4397 /* Update local copy of current mac address. */
4398 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4400 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4401 if (status)
4402 return status;
4403 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4404 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4405 if (status)
4406 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4407 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4408 return status;
4411 static void qlge_tx_timeout(struct net_device *ndev)
4413 struct ql_adapter *qdev = netdev_priv(ndev);
4414 ql_queue_asic_error(qdev);
4417 static void ql_asic_reset_work(struct work_struct *work)
4419 struct ql_adapter *qdev =
4420 container_of(work, struct ql_adapter, asic_reset_work.work);
4421 int status;
4422 rtnl_lock();
4423 status = ql_adapter_down(qdev);
4424 if (status)
4425 goto error;
4427 status = ql_adapter_up(qdev);
4428 if (status)
4429 goto error;
4431 /* Restore rx mode. */
4432 clear_bit(QL_ALLMULTI, &qdev->flags);
4433 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4434 qlge_set_multicast_list(qdev->ndev);
4436 rtnl_unlock();
4437 return;
4438 error:
4439 netif_alert(qdev, ifup, qdev->ndev,
4440 "Driver up/down cycle failed, closing device\n");
4442 set_bit(QL_ADAPTER_UP, &qdev->flags);
4443 dev_close(qdev->ndev);
4444 rtnl_unlock();
4447 static const struct nic_operations qla8012_nic_ops = {
4448 .get_flash = ql_get_8012_flash_params,
4449 .port_initialize = ql_8012_port_initialize,
4452 static const struct nic_operations qla8000_nic_ops = {
4453 .get_flash = ql_get_8000_flash_params,
4454 .port_initialize = ql_8000_port_initialize,
4457 /* Find the pcie function number for the other NIC
4458 * on this chip. Since both NIC functions share a
4459 * common firmware we have the lowest enabled function
4460 * do any common work. Examples would be resetting
4461 * after a fatal firmware error, or doing a firmware
4462 * coredump.
4464 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4466 int status = 0;
4467 u32 temp;
4468 u32 nic_func1, nic_func2;
4470 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4471 &temp);
4472 if (status)
4473 return status;
4475 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4476 MPI_TEST_NIC_FUNC_MASK);
4477 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4478 MPI_TEST_NIC_FUNC_MASK);
4480 if (qdev->func == nic_func1)
4481 qdev->alt_func = nic_func2;
4482 else if (qdev->func == nic_func2)
4483 qdev->alt_func = nic_func1;
4484 else
4485 status = -EIO;
4487 return status;
4490 static int ql_get_board_info(struct ql_adapter *qdev)
4492 int status;
4493 qdev->func =
4494 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4495 if (qdev->func > 3)
4496 return -EIO;
4498 status = ql_get_alt_pcie_func(qdev);
4499 if (status)
4500 return status;
4502 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4503 if (qdev->port) {
4504 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4505 qdev->port_link_up = STS_PL1;
4506 qdev->port_init = STS_PI1;
4507 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4508 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4509 } else {
4510 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4511 qdev->port_link_up = STS_PL0;
4512 qdev->port_init = STS_PI0;
4513 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4514 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4516 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4517 qdev->device_id = qdev->pdev->device;
4518 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4519 qdev->nic_ops = &qla8012_nic_ops;
4520 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4521 qdev->nic_ops = &qla8000_nic_ops;
4522 return status;
4525 static void ql_release_all(struct pci_dev *pdev)
4527 struct net_device *ndev = pci_get_drvdata(pdev);
4528 struct ql_adapter *qdev = netdev_priv(ndev);
4530 if (qdev->workqueue) {
4531 destroy_workqueue(qdev->workqueue);
4532 qdev->workqueue = NULL;
4535 if (qdev->reg_base)
4536 iounmap(qdev->reg_base);
4537 if (qdev->doorbell_area)
4538 iounmap(qdev->doorbell_area);
4539 vfree(qdev->mpi_coredump);
4540 pci_release_regions(pdev);
4541 pci_set_drvdata(pdev, NULL);
4544 static int __devinit ql_init_device(struct pci_dev *pdev,
4545 struct net_device *ndev, int cards_found)
4547 struct ql_adapter *qdev = netdev_priv(ndev);
4548 int err = 0;
4550 memset((void *)qdev, 0, sizeof(*qdev));
4551 err = pci_enable_device(pdev);
4552 if (err) {
4553 dev_err(&pdev->dev, "PCI device enable failed.\n");
4554 return err;
4557 qdev->ndev = ndev;
4558 qdev->pdev = pdev;
4559 pci_set_drvdata(pdev, ndev);
4561 /* Set PCIe read request size */
4562 err = pcie_set_readrq(pdev, 4096);
4563 if (err) {
4564 dev_err(&pdev->dev, "Set readrq failed.\n");
4565 goto err_out1;
4568 err = pci_request_regions(pdev, DRV_NAME);
4569 if (err) {
4570 dev_err(&pdev->dev, "PCI region request failed.\n");
4571 return err;
4574 pci_set_master(pdev);
4575 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4576 set_bit(QL_DMA64, &qdev->flags);
4577 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4578 } else {
4579 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4580 if (!err)
4581 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4584 if (err) {
4585 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4586 goto err_out2;
4589 /* Set PCIe reset type for EEH to fundamental. */
4590 pdev->needs_freset = 1;
4591 pci_save_state(pdev);
4592 qdev->reg_base =
4593 ioremap_nocache(pci_resource_start(pdev, 1),
4594 pci_resource_len(pdev, 1));
4595 if (!qdev->reg_base) {
4596 dev_err(&pdev->dev, "Register mapping failed.\n");
4597 err = -ENOMEM;
4598 goto err_out2;
4601 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4602 qdev->doorbell_area =
4603 ioremap_nocache(pci_resource_start(pdev, 3),
4604 pci_resource_len(pdev, 3));
4605 if (!qdev->doorbell_area) {
4606 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4607 err = -ENOMEM;
4608 goto err_out2;
4611 err = ql_get_board_info(qdev);
4612 if (err) {
4613 dev_err(&pdev->dev, "Register access failed.\n");
4614 err = -EIO;
4615 goto err_out2;
4617 qdev->msg_enable = netif_msg_init(debug, default_msg);
4618 spin_lock_init(&qdev->hw_lock);
4619 spin_lock_init(&qdev->stats_lock);
4621 if (qlge_mpi_coredump) {
4622 qdev->mpi_coredump =
4623 vmalloc(sizeof(struct ql_mpi_coredump));
4624 if (qdev->mpi_coredump == NULL) {
4625 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4626 err = -ENOMEM;
4627 goto err_out2;
4629 if (qlge_force_coredump)
4630 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4632 /* make sure the EEPROM is good */
4633 err = qdev->nic_ops->get_flash(qdev);
4634 if (err) {
4635 dev_err(&pdev->dev, "Invalid FLASH.\n");
4636 goto err_out2;
4639 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4640 /* Keep local copy of current mac address. */
4641 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4643 /* Set up the default ring sizes. */
4644 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4645 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4647 /* Set up the coalescing parameters. */
4648 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4649 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4650 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4651 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4654 * Set up the operating parameters.
4656 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4657 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4658 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4659 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4660 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4661 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4662 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4663 init_completion(&qdev->ide_completion);
4664 mutex_init(&qdev->mpi_mutex);
4666 if (!cards_found) {
4667 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4668 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4669 DRV_NAME, DRV_VERSION);
4671 return 0;
4672 err_out2:
4673 ql_release_all(pdev);
4674 err_out1:
4675 pci_disable_device(pdev);
4676 return err;
4679 static const struct net_device_ops qlge_netdev_ops = {
4680 .ndo_open = qlge_open,
4681 .ndo_stop = qlge_close,
4682 .ndo_start_xmit = qlge_send,
4683 .ndo_change_mtu = qlge_change_mtu,
4684 .ndo_get_stats = qlge_get_stats,
4685 .ndo_set_rx_mode = qlge_set_multicast_list,
4686 .ndo_set_mac_address = qlge_set_mac_address,
4687 .ndo_validate_addr = eth_validate_addr,
4688 .ndo_tx_timeout = qlge_tx_timeout,
4689 .ndo_fix_features = qlge_fix_features,
4690 .ndo_set_features = qlge_set_features,
4691 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4692 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4695 static void ql_timer(unsigned long data)
4697 struct ql_adapter *qdev = (struct ql_adapter *)data;
4698 u32 var = 0;
4700 var = ql_read32(qdev, STS);
4701 if (pci_channel_offline(qdev->pdev)) {
4702 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4703 return;
4706 mod_timer(&qdev->timer, jiffies + (5*HZ));
4709 static int __devinit qlge_probe(struct pci_dev *pdev,
4710 const struct pci_device_id *pci_entry)
4712 struct net_device *ndev = NULL;
4713 struct ql_adapter *qdev = NULL;
4714 static int cards_found = 0;
4715 int err = 0;
4717 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4718 min(MAX_CPUS, (int)num_online_cpus()));
4719 if (!ndev)
4720 return -ENOMEM;
4722 err = ql_init_device(pdev, ndev, cards_found);
4723 if (err < 0) {
4724 free_netdev(ndev);
4725 return err;
4728 qdev = netdev_priv(ndev);
4729 SET_NETDEV_DEV(ndev, &pdev->dev);
4730 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4731 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4732 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4733 ndev->features = ndev->hw_features |
4734 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4736 if (test_bit(QL_DMA64, &qdev->flags))
4737 ndev->features |= NETIF_F_HIGHDMA;
4740 * Set up net_device structure.
4742 ndev->tx_queue_len = qdev->tx_ring_size;
4743 ndev->irq = pdev->irq;
4745 ndev->netdev_ops = &qlge_netdev_ops;
4746 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4747 ndev->watchdog_timeo = 10 * HZ;
4749 err = register_netdev(ndev);
4750 if (err) {
4751 dev_err(&pdev->dev, "net device registration failed.\n");
4752 ql_release_all(pdev);
4753 pci_disable_device(pdev);
4754 return err;
4756 /* Start up the timer to trigger EEH if
4757 * the bus goes dead
4759 init_timer_deferrable(&qdev->timer);
4760 qdev->timer.data = (unsigned long)qdev;
4761 qdev->timer.function = ql_timer;
4762 qdev->timer.expires = jiffies + (5*HZ);
4763 add_timer(&qdev->timer);
4764 ql_link_off(qdev);
4765 ql_display_dev_info(ndev);
4766 atomic_set(&qdev->lb_count, 0);
4767 cards_found++;
4768 return 0;
4771 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4773 return qlge_send(skb, ndev);
4776 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4778 return ql_clean_inbound_rx_ring(rx_ring, budget);
4781 static void __devexit qlge_remove(struct pci_dev *pdev)
4783 struct net_device *ndev = pci_get_drvdata(pdev);
4784 struct ql_adapter *qdev = netdev_priv(ndev);
4785 del_timer_sync(&qdev->timer);
4786 ql_cancel_all_work_sync(qdev);
4787 unregister_netdev(ndev);
4788 ql_release_all(pdev);
4789 pci_disable_device(pdev);
4790 free_netdev(ndev);
4793 /* Clean up resources without touching hardware. */
4794 static void ql_eeh_close(struct net_device *ndev)
4796 int i;
4797 struct ql_adapter *qdev = netdev_priv(ndev);
4799 if (netif_carrier_ok(ndev)) {
4800 netif_carrier_off(ndev);
4801 netif_stop_queue(ndev);
4804 /* Disabling the timer */
4805 del_timer_sync(&qdev->timer);
4806 ql_cancel_all_work_sync(qdev);
4808 for (i = 0; i < qdev->rss_ring_count; i++)
4809 netif_napi_del(&qdev->rx_ring[i].napi);
4811 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4812 ql_tx_ring_clean(qdev);
4813 ql_free_rx_buffers(qdev);
4814 ql_release_adapter_resources(qdev);
4818 * This callback is called by the PCI subsystem whenever
4819 * a PCI bus error is detected.
4821 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4822 enum pci_channel_state state)
4824 struct net_device *ndev = pci_get_drvdata(pdev);
4825 struct ql_adapter *qdev = netdev_priv(ndev);
4827 switch (state) {
4828 case pci_channel_io_normal:
4829 return PCI_ERS_RESULT_CAN_RECOVER;
4830 case pci_channel_io_frozen:
4831 netif_device_detach(ndev);
4832 if (netif_running(ndev))
4833 ql_eeh_close(ndev);
4834 pci_disable_device(pdev);
4835 return PCI_ERS_RESULT_NEED_RESET;
4836 case pci_channel_io_perm_failure:
4837 dev_err(&pdev->dev,
4838 "%s: pci_channel_io_perm_failure.\n", __func__);
4839 ql_eeh_close(ndev);
4840 set_bit(QL_EEH_FATAL, &qdev->flags);
4841 return PCI_ERS_RESULT_DISCONNECT;
4844 /* Request a slot reset. */
4845 return PCI_ERS_RESULT_NEED_RESET;
4849 * This callback is called after the PCI buss has been reset.
4850 * Basically, this tries to restart the card from scratch.
4851 * This is a shortened version of the device probe/discovery code,
4852 * it resembles the first-half of the () routine.
4854 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4856 struct net_device *ndev = pci_get_drvdata(pdev);
4857 struct ql_adapter *qdev = netdev_priv(ndev);
4859 pdev->error_state = pci_channel_io_normal;
4861 pci_restore_state(pdev);
4862 if (pci_enable_device(pdev)) {
4863 netif_err(qdev, ifup, qdev->ndev,
4864 "Cannot re-enable PCI device after reset.\n");
4865 return PCI_ERS_RESULT_DISCONNECT;
4867 pci_set_master(pdev);
4869 if (ql_adapter_reset(qdev)) {
4870 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4871 set_bit(QL_EEH_FATAL, &qdev->flags);
4872 return PCI_ERS_RESULT_DISCONNECT;
4875 return PCI_ERS_RESULT_RECOVERED;
4878 static void qlge_io_resume(struct pci_dev *pdev)
4880 struct net_device *ndev = pci_get_drvdata(pdev);
4881 struct ql_adapter *qdev = netdev_priv(ndev);
4882 int err = 0;
4884 if (netif_running(ndev)) {
4885 err = qlge_open(ndev);
4886 if (err) {
4887 netif_err(qdev, ifup, qdev->ndev,
4888 "Device initialization failed after reset.\n");
4889 return;
4891 } else {
4892 netif_err(qdev, ifup, qdev->ndev,
4893 "Device was not running prior to EEH.\n");
4895 mod_timer(&qdev->timer, jiffies + (5*HZ));
4896 netif_device_attach(ndev);
4899 static struct pci_error_handlers qlge_err_handler = {
4900 .error_detected = qlge_io_error_detected,
4901 .slot_reset = qlge_io_slot_reset,
4902 .resume = qlge_io_resume,
4905 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4907 struct net_device *ndev = pci_get_drvdata(pdev);
4908 struct ql_adapter *qdev = netdev_priv(ndev);
4909 int err;
4911 netif_device_detach(ndev);
4912 del_timer_sync(&qdev->timer);
4914 if (netif_running(ndev)) {
4915 err = ql_adapter_down(qdev);
4916 if (!err)
4917 return err;
4920 ql_wol(qdev);
4921 err = pci_save_state(pdev);
4922 if (err)
4923 return err;
4925 pci_disable_device(pdev);
4927 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4929 return 0;
4932 #ifdef CONFIG_PM
4933 static int qlge_resume(struct pci_dev *pdev)
4935 struct net_device *ndev = pci_get_drvdata(pdev);
4936 struct ql_adapter *qdev = netdev_priv(ndev);
4937 int err;
4939 pci_set_power_state(pdev, PCI_D0);
4940 pci_restore_state(pdev);
4941 err = pci_enable_device(pdev);
4942 if (err) {
4943 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4944 return err;
4946 pci_set_master(pdev);
4948 pci_enable_wake(pdev, PCI_D3hot, 0);
4949 pci_enable_wake(pdev, PCI_D3cold, 0);
4951 if (netif_running(ndev)) {
4952 err = ql_adapter_up(qdev);
4953 if (err)
4954 return err;
4957 mod_timer(&qdev->timer, jiffies + (5*HZ));
4958 netif_device_attach(ndev);
4960 return 0;
4962 #endif /* CONFIG_PM */
4964 static void qlge_shutdown(struct pci_dev *pdev)
4966 qlge_suspend(pdev, PMSG_SUSPEND);
4969 static struct pci_driver qlge_driver = {
4970 .name = DRV_NAME,
4971 .id_table = qlge_pci_tbl,
4972 .probe = qlge_probe,
4973 .remove = __devexit_p(qlge_remove),
4974 #ifdef CONFIG_PM
4975 .suspend = qlge_suspend,
4976 .resume = qlge_resume,
4977 #endif
4978 .shutdown = qlge_shutdown,
4979 .err_handler = &qlge_err_handler
4982 static int __init qlge_init_module(void)
4984 return pci_register_driver(&qlge_driver);
4987 static void __exit qlge_exit(void)
4989 pci_unregister_driver(&qlge_driver);
4992 module_init(qlge_init_module);
4993 module_exit(qlge_exit);