OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / net / ethernet / sis / sis900.c
blobc8efc708c792a63d47bb608d1ff16659613bd0c5
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h> /* User space memory access functions */
79 #include "sis900.h"
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
84 static const char version[] __devinitconst =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
101 enum {
102 SIS_900 = 0,
103 SIS_7016
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 {0,}
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 static const struct mii_chip_info {
121 const char * name;
122 u16 phy_id0;
123 u16 phy_id1;
124 u8 phy_types;
125 #define HOME 0x0001
126 #define LAN 0x0002
127 #define MIX 0x0003
128 #define UNKNOWN 0x0
129 } mii_chip_table[] = {
130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
137 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
143 {NULL,},
146 struct mii_phy {
147 struct mii_phy * next;
148 int phy_addr;
149 u16 phy_id0;
150 u16 phy_id1;
151 u16 status;
152 u8 phy_types;
155 typedef struct _BufferDesc {
156 u32 link;
157 u32 cmdsts;
158 u32 bufptr;
159 } BufferDesc;
161 struct sis900_private {
162 struct pci_dev * pci_dev;
164 spinlock_t lock;
166 struct mii_phy * mii;
167 struct mii_phy * first_mii; /* record the first mii structure */
168 unsigned int cur_phy;
169 struct mii_if_info mii_info;
171 struct timer_list timer; /* Link status detection timer. */
172 u8 autong_complete; /* 1: auto-negotiate complete */
174 u32 msg_enable;
176 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177 unsigned int cur_tx, dirty_tx;
179 /* The saved address of a sent/receive-in-place packet buffer */
180 struct sk_buff *tx_skbuff[NUM_TX_DESC];
181 struct sk_buff *rx_skbuff[NUM_RX_DESC];
182 BufferDesc *tx_ring;
183 BufferDesc *rx_ring;
185 dma_addr_t tx_ring_dma;
186 dma_addr_t rx_ring_dma;
188 unsigned int tx_full; /* The Tx queue is full. */
189 u8 host_bridge_rev;
190 u8 chipset_rev;
193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195 MODULE_LICENSE("GPL");
197 module_param(multicast_filter_limit, int, 0444);
198 module_param(max_interrupt_work, int, 0444);
199 module_param(sis900_debug, int, 0444);
200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 static void sis900_poll(struct net_device *dev);
206 #endif
207 static int sis900_open(struct net_device *net_dev);
208 static int sis900_mii_probe (struct net_device * net_dev);
209 static void sis900_init_rxfilter (struct net_device * net_dev);
210 static u16 read_eeprom(long ioaddr, int location);
211 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213 static void sis900_timer(unsigned long data);
214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215 static void sis900_tx_timeout(struct net_device *net_dev);
216 static void sis900_init_tx_ring(struct net_device *net_dev);
217 static void sis900_init_rx_ring(struct net_device *net_dev);
218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219 struct net_device *net_dev);
220 static int sis900_rx(struct net_device *net_dev);
221 static void sis900_finish_xmit (struct net_device *net_dev);
222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223 static int sis900_close(struct net_device *net_dev);
224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226 static void set_rx_mode(struct net_device *net_dev);
227 static void sis900_reset(struct net_device *net_dev);
228 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230 static u16 sis900_default_phy(struct net_device * net_dev);
231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234 static void sis900_set_mode (long ioaddr, int speed, int duplex);
235 static const struct ethtool_ops sis900_ethtool_ops;
238 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239 * @pci_dev: the sis900 pci device
240 * @net_dev: the net device to get address for
242 * Older SiS900 and friends, use EEPROM to store MAC address.
243 * MAC address is read from read_eeprom() into @net_dev->dev_addr and
244 * @net_dev->perm_addr.
247 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
249 long ioaddr = pci_resource_start(pci_dev, 0);
250 u16 signature;
251 int i;
253 /* check to see if we have sane EEPROM */
254 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
255 if (signature == 0xffff || signature == 0x0000) {
256 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
257 pci_name(pci_dev), signature);
258 return 0;
261 /* get MAC address from EEPROM */
262 for (i = 0; i < 3; i++)
263 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
265 /* Store MAC Address in perm_addr */
266 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
268 return 1;
272 * sis630e_get_mac_addr - Get MAC address for SiS630E model
273 * @pci_dev: the sis900 pci device
274 * @net_dev: the net device to get address for
276 * SiS630E model, use APC CMOS RAM to store MAC address.
277 * APC CMOS RAM is accessed through ISA bridge.
278 * MAC address is read into @net_dev->dev_addr and
279 * @net_dev->perm_addr.
282 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
283 struct net_device *net_dev)
285 struct pci_dev *isa_bridge = NULL;
286 u8 reg;
287 int i;
289 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
290 if (!isa_bridge)
291 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
292 if (!isa_bridge) {
293 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
294 pci_name(pci_dev));
295 return 0;
297 pci_read_config_byte(isa_bridge, 0x48, &reg);
298 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
300 for (i = 0; i < 6; i++) {
301 outb(0x09 + i, 0x70);
302 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
305 /* Store MAC Address in perm_addr */
306 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
308 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
309 pci_dev_put(isa_bridge);
311 return 1;
316 * sis635_get_mac_addr - Get MAC address for SIS635 model
317 * @pci_dev: the sis900 pci device
318 * @net_dev: the net device to get address for
320 * SiS635 model, set MAC Reload Bit to load Mac address from APC
321 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
322 * @net_dev->dev_addr and @net_dev->perm_addr.
325 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
326 struct net_device *net_dev)
328 long ioaddr = net_dev->base_addr;
329 u32 rfcrSave;
330 u32 i;
332 rfcrSave = inl(rfcr + ioaddr);
334 outl(rfcrSave | RELOAD, ioaddr + cr);
335 outl(0, ioaddr + cr);
337 /* disable packet filtering before setting filter */
338 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
340 /* load MAC addr to filter data register */
341 for (i = 0 ; i < 3 ; i++) {
342 outl((i << RFADDR_shift), ioaddr + rfcr);
343 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
346 /* Store MAC Address in perm_addr */
347 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
349 /* enable packet filtering */
350 outl(rfcrSave | RFEN, rfcr + ioaddr);
352 return 1;
356 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
357 * @pci_dev: the sis900 pci device
358 * @net_dev: the net device to get address for
360 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
361 * is shared by
362 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
363 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
364 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
365 * EEDONE signal to refuse EEPROM access by LAN.
366 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
367 * The signature field in SiS962 or SiS963 spec is meaningless.
368 * MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
371 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
372 struct net_device *net_dev)
374 long ioaddr = net_dev->base_addr;
375 long ee_addr = ioaddr + mear;
376 u32 waittime = 0;
377 int i;
379 outl(EEREQ, ee_addr);
380 while(waittime < 2000) {
381 if(inl(ee_addr) & EEGNT) {
383 /* get MAC address from EEPROM */
384 for (i = 0; i < 3; i++)
385 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
387 /* Store MAC Address in perm_addr */
388 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
390 outl(EEDONE, ee_addr);
391 return 1;
392 } else {
393 udelay(1);
394 waittime ++;
397 outl(EEDONE, ee_addr);
398 return 0;
401 static const struct net_device_ops sis900_netdev_ops = {
402 .ndo_open = sis900_open,
403 .ndo_stop = sis900_close,
404 .ndo_start_xmit = sis900_start_xmit,
405 .ndo_set_config = sis900_set_config,
406 .ndo_set_rx_mode = set_rx_mode,
407 .ndo_change_mtu = eth_change_mtu,
408 .ndo_validate_addr = eth_validate_addr,
409 .ndo_set_mac_address = eth_mac_addr,
410 .ndo_do_ioctl = mii_ioctl,
411 .ndo_tx_timeout = sis900_tx_timeout,
412 #ifdef CONFIG_NET_POLL_CONTROLLER
413 .ndo_poll_controller = sis900_poll,
414 #endif
418 * sis900_probe - Probe for sis900 device
419 * @pci_dev: the sis900 pci device
420 * @pci_id: the pci device ID
422 * Check and probe sis900 net device for @pci_dev.
423 * Get mac address according to the chip revision,
424 * and assign SiS900-specific entries in the device structure.
425 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
428 static int __devinit sis900_probe(struct pci_dev *pci_dev,
429 const struct pci_device_id *pci_id)
431 struct sis900_private *sis_priv;
432 struct net_device *net_dev;
433 struct pci_dev *dev;
434 dma_addr_t ring_dma;
435 void *ring_space;
436 long ioaddr;
437 int i, ret;
438 const char *card_name = card_names[pci_id->driver_data];
439 const char *dev_name = pci_name(pci_dev);
441 /* when built into the kernel, we only print version if device is found */
442 #ifndef MODULE
443 static int printed_version;
444 if (!printed_version++)
445 printk(version);
446 #endif
448 /* setup various bits in PCI command register */
449 ret = pci_enable_device(pci_dev);
450 if(ret) return ret;
452 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
453 if(i){
454 printk(KERN_ERR "sis900.c: architecture does not support "
455 "32bit PCI busmaster DMA\n");
456 return i;
459 pci_set_master(pci_dev);
461 net_dev = alloc_etherdev(sizeof(struct sis900_private));
462 if (!net_dev)
463 return -ENOMEM;
464 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
466 /* We do a request_region() to register /proc/ioports info. */
467 ioaddr = pci_resource_start(pci_dev, 0);
468 ret = pci_request_regions(pci_dev, "sis900");
469 if (ret)
470 goto err_out;
472 sis_priv = netdev_priv(net_dev);
473 net_dev->base_addr = ioaddr;
474 net_dev->irq = pci_dev->irq;
475 sis_priv->pci_dev = pci_dev;
476 spin_lock_init(&sis_priv->lock);
478 pci_set_drvdata(pci_dev, net_dev);
480 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
481 if (!ring_space) {
482 ret = -ENOMEM;
483 goto err_out_cleardev;
485 sis_priv->tx_ring = ring_space;
486 sis_priv->tx_ring_dma = ring_dma;
488 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
489 if (!ring_space) {
490 ret = -ENOMEM;
491 goto err_unmap_tx;
493 sis_priv->rx_ring = ring_space;
494 sis_priv->rx_ring_dma = ring_dma;
496 /* The SiS900-specific entries in the device structure. */
497 net_dev->netdev_ops = &sis900_netdev_ops;
498 net_dev->watchdog_timeo = TX_TIMEOUT;
499 net_dev->ethtool_ops = &sis900_ethtool_ops;
501 if (sis900_debug > 0)
502 sis_priv->msg_enable = sis900_debug;
503 else
504 sis_priv->msg_enable = SIS900_DEF_MSG;
506 sis_priv->mii_info.dev = net_dev;
507 sis_priv->mii_info.mdio_read = mdio_read;
508 sis_priv->mii_info.mdio_write = mdio_write;
509 sis_priv->mii_info.phy_id_mask = 0x1f;
510 sis_priv->mii_info.reg_num_mask = 0x1f;
512 /* Get Mac address according to the chip revision */
513 sis_priv->chipset_rev = pci_dev->revision;
514 if(netif_msg_probe(sis_priv))
515 printk(KERN_DEBUG "%s: detected revision %2.2x, "
516 "trying to get MAC address...\n",
517 dev_name, sis_priv->chipset_rev);
519 ret = 0;
520 if (sis_priv->chipset_rev == SIS630E_900_REV)
521 ret = sis630e_get_mac_addr(pci_dev, net_dev);
522 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
523 ret = sis635_get_mac_addr(pci_dev, net_dev);
524 else if (sis_priv->chipset_rev == SIS96x_900_REV)
525 ret = sis96x_get_mac_addr(pci_dev, net_dev);
526 else
527 ret = sis900_get_mac_addr(pci_dev, net_dev);
529 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
530 random_ether_addr(net_dev->dev_addr);
531 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
532 "using random generated one\n", dev_name);
535 /* 630ET : set the mii access mode as software-mode */
536 if (sis_priv->chipset_rev == SIS630ET_900_REV)
537 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
539 /* probe for mii transceiver */
540 if (sis900_mii_probe(net_dev) == 0) {
541 printk(KERN_WARNING "%s: Error probing MII device.\n",
542 dev_name);
543 ret = -ENODEV;
544 goto err_unmap_rx;
547 /* save our host bridge revision */
548 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
549 if (dev) {
550 sis_priv->host_bridge_rev = dev->revision;
551 pci_dev_put(dev);
554 ret = register_netdev(net_dev);
555 if (ret)
556 goto err_unmap_rx;
558 /* print some information about our NIC */
559 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
560 net_dev->name, card_name, ioaddr, net_dev->irq,
561 net_dev->dev_addr);
563 /* Detect Wake on Lan support */
564 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
565 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
566 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
568 return 0;
570 err_unmap_rx:
571 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
572 sis_priv->rx_ring_dma);
573 err_unmap_tx:
574 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
575 sis_priv->tx_ring_dma);
576 err_out_cleardev:
577 pci_set_drvdata(pci_dev, NULL);
578 pci_release_regions(pci_dev);
579 err_out:
580 free_netdev(net_dev);
581 return ret;
585 * sis900_mii_probe - Probe MII PHY for sis900
586 * @net_dev: the net device to probe for
588 * Search for total of 32 possible mii phy addresses.
589 * Identify and set current phy if found one,
590 * return error if it failed to found.
593 static int __devinit sis900_mii_probe(struct net_device * net_dev)
595 struct sis900_private *sis_priv = netdev_priv(net_dev);
596 const char *dev_name = pci_name(sis_priv->pci_dev);
597 u16 poll_bit = MII_STAT_LINK, status = 0;
598 unsigned long timeout = jiffies + 5 * HZ;
599 int phy_addr;
601 sis_priv->mii = NULL;
603 /* search for total of 32 possible mii phy addresses */
604 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
605 struct mii_phy * mii_phy = NULL;
606 u16 mii_status;
607 int i;
609 mii_phy = NULL;
610 for(i = 0; i < 2; i++)
611 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
613 if (mii_status == 0xffff || mii_status == 0x0000) {
614 if (netif_msg_probe(sis_priv))
615 printk(KERN_DEBUG "%s: MII at address %d"
616 " not accessible\n",
617 dev_name, phy_addr);
618 continue;
621 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
622 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
623 mii_phy = sis_priv->first_mii;
624 while (mii_phy) {
625 struct mii_phy *phy;
626 phy = mii_phy;
627 mii_phy = mii_phy->next;
628 kfree(phy);
630 return 0;
633 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
634 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
635 mii_phy->phy_addr = phy_addr;
636 mii_phy->status = mii_status;
637 mii_phy->next = sis_priv->mii;
638 sis_priv->mii = mii_phy;
639 sis_priv->first_mii = mii_phy;
641 for (i = 0; mii_chip_table[i].phy_id1; i++)
642 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
643 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
644 mii_phy->phy_types = mii_chip_table[i].phy_types;
645 if (mii_chip_table[i].phy_types == MIX)
646 mii_phy->phy_types =
647 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
648 printk(KERN_INFO "%s: %s transceiver found "
649 "at address %d.\n",
650 dev_name,
651 mii_chip_table[i].name,
652 phy_addr);
653 break;
656 if( !mii_chip_table[i].phy_id1 ) {
657 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
658 dev_name, phy_addr);
659 mii_phy->phy_types = UNKNOWN;
663 if (sis_priv->mii == NULL) {
664 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
665 return 0;
668 /* select default PHY for mac */
669 sis_priv->mii = NULL;
670 sis900_default_phy( net_dev );
672 /* Reset phy if default phy is internal sis900 */
673 if ((sis_priv->mii->phy_id0 == 0x001D) &&
674 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
675 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
677 /* workaround for ICS1893 PHY */
678 if ((sis_priv->mii->phy_id0 == 0x0015) &&
679 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
680 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
682 if(status & MII_STAT_LINK){
683 while (poll_bit) {
684 yield();
686 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
687 if (time_after_eq(jiffies, timeout)) {
688 printk(KERN_WARNING "%s: reset phy and link down now\n",
689 dev_name);
690 return -ETIME;
695 if (sis_priv->chipset_rev == SIS630E_900_REV) {
696 /* SiS 630E has some bugs on default value of PHY registers */
697 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
698 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
699 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
700 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
701 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
704 if (sis_priv->mii->status & MII_STAT_LINK)
705 netif_carrier_on(net_dev);
706 else
707 netif_carrier_off(net_dev);
709 return 1;
713 * sis900_default_phy - Select default PHY for sis900 mac.
714 * @net_dev: the net device to probe for
716 * Select first detected PHY with link as default.
717 * If no one is link on, select PHY whose types is HOME as default.
718 * If HOME doesn't exist, select LAN.
721 static u16 sis900_default_phy(struct net_device * net_dev)
723 struct sis900_private *sis_priv = netdev_priv(net_dev);
724 struct mii_phy *phy = NULL, *phy_home = NULL,
725 *default_phy = NULL, *phy_lan = NULL;
726 u16 status;
728 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
729 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
730 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
732 /* Link ON & Not select default PHY & not ghost PHY */
733 if ((status & MII_STAT_LINK) && !default_phy &&
734 (phy->phy_types != UNKNOWN))
735 default_phy = phy;
736 else {
737 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
738 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
739 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
740 if (phy->phy_types == HOME)
741 phy_home = phy;
742 else if(phy->phy_types == LAN)
743 phy_lan = phy;
747 if (!default_phy && phy_home)
748 default_phy = phy_home;
749 else if (!default_phy && phy_lan)
750 default_phy = phy_lan;
751 else if (!default_phy)
752 default_phy = sis_priv->first_mii;
754 if (sis_priv->mii != default_phy) {
755 sis_priv->mii = default_phy;
756 sis_priv->cur_phy = default_phy->phy_addr;
757 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
758 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
761 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
763 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
764 status &= (~MII_CNTL_ISOLATE);
766 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
767 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
768 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
770 return status;
775 * sis900_set_capability - set the media capability of network adapter.
776 * @net_dev : the net device to probe for
777 * @phy : default PHY
779 * Set the media capability of network adapter according to
780 * mii status register. It's necessary before auto-negotiate.
783 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
785 u16 cap;
786 u16 status;
788 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
789 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
791 cap = MII_NWAY_CSMA_CD |
792 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
793 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
794 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
795 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
797 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
801 /* Delay between EEPROM clock transitions. */
802 #define eeprom_delay() inl(ee_addr)
805 * read_eeprom - Read Serial EEPROM
806 * @ioaddr: base i/o address
807 * @location: the EEPROM location to read
809 * Read Serial EEPROM through EEPROM Access Register.
810 * Note that location is in word (16 bits) unit
813 static u16 __devinit read_eeprom(long ioaddr, int location)
815 int i;
816 u16 retval = 0;
817 long ee_addr = ioaddr + mear;
818 u32 read_cmd = location | EEread;
820 outl(0, ee_addr);
821 eeprom_delay();
822 outl(EECS, ee_addr);
823 eeprom_delay();
825 /* Shift the read command (9) bits out. */
826 for (i = 8; i >= 0; i--) {
827 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
828 outl(dataval, ee_addr);
829 eeprom_delay();
830 outl(dataval | EECLK, ee_addr);
831 eeprom_delay();
833 outl(EECS, ee_addr);
834 eeprom_delay();
836 /* read the 16-bits data in */
837 for (i = 16; i > 0; i--) {
838 outl(EECS, ee_addr);
839 eeprom_delay();
840 outl(EECS | EECLK, ee_addr);
841 eeprom_delay();
842 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
843 eeprom_delay();
846 /* Terminate the EEPROM access. */
847 outl(0, ee_addr);
848 eeprom_delay();
850 return retval;
853 /* Read and write the MII management registers using software-generated
854 serial MDIO protocol. Note that the command bits and data bits are
855 send out separately */
856 #define mdio_delay() inl(mdio_addr)
858 static void mdio_idle(long mdio_addr)
860 outl(MDIO | MDDIR, mdio_addr);
861 mdio_delay();
862 outl(MDIO | MDDIR | MDC, mdio_addr);
865 /* Syncronize the MII management interface by shifting 32 one bits out. */
866 static void mdio_reset(long mdio_addr)
868 int i;
870 for (i = 31; i >= 0; i--) {
871 outl(MDDIR | MDIO, mdio_addr);
872 mdio_delay();
873 outl(MDDIR | MDIO | MDC, mdio_addr);
874 mdio_delay();
879 * mdio_read - read MII PHY register
880 * @net_dev: the net device to read
881 * @phy_id: the phy address to read
882 * @location: the phy regiester id to read
884 * Read MII registers through MDIO and MDC
885 * using MDIO management frame structure and protocol(defined by ISO/IEC).
886 * Please see SiS7014 or ICS spec
889 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
891 long mdio_addr = net_dev->base_addr + mear;
892 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
893 u16 retval = 0;
894 int i;
896 mdio_reset(mdio_addr);
897 mdio_idle(mdio_addr);
899 for (i = 15; i >= 0; i--) {
900 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
901 outl(dataval, mdio_addr);
902 mdio_delay();
903 outl(dataval | MDC, mdio_addr);
904 mdio_delay();
907 /* Read the 16 data bits. */
908 for (i = 16; i > 0; i--) {
909 outl(0, mdio_addr);
910 mdio_delay();
911 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
912 outl(MDC, mdio_addr);
913 mdio_delay();
915 outl(0x00, mdio_addr);
917 return retval;
921 * mdio_write - write MII PHY register
922 * @net_dev: the net device to write
923 * @phy_id: the phy address to write
924 * @location: the phy regiester id to write
925 * @value: the register value to write with
927 * Write MII registers with @value through MDIO and MDC
928 * using MDIO management frame structure and protocol(defined by ISO/IEC)
929 * please see SiS7014 or ICS spec
932 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
933 int value)
935 long mdio_addr = net_dev->base_addr + mear;
936 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
937 int i;
939 mdio_reset(mdio_addr);
940 mdio_idle(mdio_addr);
942 /* Shift the command bits out. */
943 for (i = 15; i >= 0; i--) {
944 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
945 outb(dataval, mdio_addr);
946 mdio_delay();
947 outb(dataval | MDC, mdio_addr);
948 mdio_delay();
950 mdio_delay();
952 /* Shift the value bits out. */
953 for (i = 15; i >= 0; i--) {
954 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
955 outl(dataval, mdio_addr);
956 mdio_delay();
957 outl(dataval | MDC, mdio_addr);
958 mdio_delay();
960 mdio_delay();
962 /* Clear out extra bits. */
963 for (i = 2; i > 0; i--) {
964 outb(0, mdio_addr);
965 mdio_delay();
966 outb(MDC, mdio_addr);
967 mdio_delay();
969 outl(0x00, mdio_addr);
974 * sis900_reset_phy - reset sis900 mii phy.
975 * @net_dev: the net device to write
976 * @phy_addr: default phy address
978 * Some specific phy can't work properly without reset.
979 * This function will be called during initialization and
980 * link status change from ON to DOWN.
983 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
985 int i;
986 u16 status;
988 for (i = 0; i < 2; i++)
989 status = mdio_read(net_dev, phy_addr, MII_STATUS);
991 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
993 return status;
996 #ifdef CONFIG_NET_POLL_CONTROLLER
998 * Polling 'interrupt' - used by things like netconsole to send skbs
999 * without having to re-enable interrupts. It's not called while
1000 * the interrupt routine is executing.
1002 static void sis900_poll(struct net_device *dev)
1004 disable_irq(dev->irq);
1005 sis900_interrupt(dev->irq, dev);
1006 enable_irq(dev->irq);
1008 #endif
1011 * sis900_open - open sis900 device
1012 * @net_dev: the net device to open
1014 * Do some initialization and start net interface.
1015 * enable interrupts and set sis900 timer.
1018 static int
1019 sis900_open(struct net_device *net_dev)
1021 struct sis900_private *sis_priv = netdev_priv(net_dev);
1022 long ioaddr = net_dev->base_addr;
1023 int ret;
1025 /* Soft reset the chip. */
1026 sis900_reset(net_dev);
1028 /* Equalizer workaround Rule */
1029 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1031 ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1032 net_dev->name, net_dev);
1033 if (ret)
1034 return ret;
1036 sis900_init_rxfilter(net_dev);
1038 sis900_init_tx_ring(net_dev);
1039 sis900_init_rx_ring(net_dev);
1041 set_rx_mode(net_dev);
1043 netif_start_queue(net_dev);
1045 /* Workaround for EDB */
1046 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1048 /* Enable all known interrupts by setting the interrupt mask. */
1049 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1050 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1051 outl(IE, ioaddr + ier);
1053 sis900_check_mode(net_dev, sis_priv->mii);
1055 /* Set the timer to switch to check for link beat and perhaps switch
1056 to an alternate media type. */
1057 init_timer(&sis_priv->timer);
1058 sis_priv->timer.expires = jiffies + HZ;
1059 sis_priv->timer.data = (unsigned long)net_dev;
1060 sis_priv->timer.function = sis900_timer;
1061 add_timer(&sis_priv->timer);
1063 return 0;
1067 * sis900_init_rxfilter - Initialize the Rx filter
1068 * @net_dev: the net device to initialize for
1070 * Set receive filter address to our MAC address
1071 * and enable packet filtering.
1074 static void
1075 sis900_init_rxfilter (struct net_device * net_dev)
1077 struct sis900_private *sis_priv = netdev_priv(net_dev);
1078 long ioaddr = net_dev->base_addr;
1079 u32 rfcrSave;
1080 u32 i;
1082 rfcrSave = inl(rfcr + ioaddr);
1084 /* disable packet filtering before setting filter */
1085 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1087 /* load MAC addr to filter data register */
1088 for (i = 0 ; i < 3 ; i++) {
1089 u32 w;
1091 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1092 outl((i << RFADDR_shift), ioaddr + rfcr);
1093 outl(w, ioaddr + rfdr);
1095 if (netif_msg_hw(sis_priv)) {
1096 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1097 net_dev->name, i, inl(ioaddr + rfdr));
1101 /* enable packet filtering */
1102 outl(rfcrSave | RFEN, rfcr + ioaddr);
1106 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1107 * @net_dev: the net device to initialize for
1109 * Initialize the Tx descriptor ring,
1112 static void
1113 sis900_init_tx_ring(struct net_device *net_dev)
1115 struct sis900_private *sis_priv = netdev_priv(net_dev);
1116 long ioaddr = net_dev->base_addr;
1117 int i;
1119 sis_priv->tx_full = 0;
1120 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1122 for (i = 0; i < NUM_TX_DESC; i++) {
1123 sis_priv->tx_skbuff[i] = NULL;
1125 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1126 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1127 sis_priv->tx_ring[i].cmdsts = 0;
1128 sis_priv->tx_ring[i].bufptr = 0;
1131 /* load Transmit Descriptor Register */
1132 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1133 if (netif_msg_hw(sis_priv))
1134 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1135 net_dev->name, inl(ioaddr + txdp));
1139 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1140 * @net_dev: the net device to initialize for
1142 * Initialize the Rx descriptor ring,
1143 * and pre-allocate recevie buffers (socket buffer)
1146 static void
1147 sis900_init_rx_ring(struct net_device *net_dev)
1149 struct sis900_private *sis_priv = netdev_priv(net_dev);
1150 long ioaddr = net_dev->base_addr;
1151 int i;
1153 sis_priv->cur_rx = 0;
1154 sis_priv->dirty_rx = 0;
1156 /* init RX descriptor */
1157 for (i = 0; i < NUM_RX_DESC; i++) {
1158 sis_priv->rx_skbuff[i] = NULL;
1160 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1161 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1162 sis_priv->rx_ring[i].cmdsts = 0;
1163 sis_priv->rx_ring[i].bufptr = 0;
1166 /* allocate sock buffers */
1167 for (i = 0; i < NUM_RX_DESC; i++) {
1168 struct sk_buff *skb;
1170 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1171 /* not enough memory for skbuff, this makes a "hole"
1172 on the buffer ring, it is not clear how the
1173 hardware will react to this kind of degenerated
1174 buffer */
1175 break;
1177 sis_priv->rx_skbuff[i] = skb;
1178 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1179 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1180 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1182 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1184 /* load Receive Descriptor Register */
1185 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1186 if (netif_msg_hw(sis_priv))
1187 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1188 net_dev->name, inl(ioaddr + rxdp));
1192 * sis630_set_eq - set phy equalizer value for 630 LAN
1193 * @net_dev: the net device to set equalizer value
1194 * @revision: 630 LAN revision number
1196 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1197 * PHY register 14h(Test)
1198 * Bit 14: 0 -- Automatically detect (default)
1199 * 1 -- Manually set Equalizer filter
1200 * Bit 13: 0 -- (Default)
1201 * 1 -- Speed up convergence of equalizer setting
1202 * Bit 9 : 0 -- (Default)
1203 * 1 -- Disable Baseline Wander
1204 * Bit 3~7 -- Equalizer filter setting
1205 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1206 * Then calculate equalizer value
1207 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1208 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1209 * Calculate Equalizer value:
1210 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1211 * When the equalizer is stable, this value is not a fixed value. It will be within
1212 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1213 * 0 <= max <= 4 --> set equalizer to max
1214 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1215 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1218 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1220 struct sis900_private *sis_priv = netdev_priv(net_dev);
1221 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1222 int i, maxcount=10;
1224 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1225 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1226 return;
1228 if (netif_carrier_ok(net_dev)) {
1229 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1230 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1231 (0x2200 | reg14h) & 0xBFFF);
1232 for (i=0; i < maxcount; i++) {
1233 eq_value = (0x00F8 & mdio_read(net_dev,
1234 sis_priv->cur_phy, MII_RESV)) >> 3;
1235 if (i == 0)
1236 max_value=min_value=eq_value;
1237 max_value = (eq_value > max_value) ?
1238 eq_value : max_value;
1239 min_value = (eq_value < min_value) ?
1240 eq_value : min_value;
1242 /* 630E rule to determine the equalizer value */
1243 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1244 revision == SIS630ET_900_REV) {
1245 if (max_value < 5)
1246 eq_value = max_value;
1247 else if (max_value >= 5 && max_value < 15)
1248 eq_value = (max_value == min_value) ?
1249 max_value+2 : max_value+1;
1250 else if (max_value >= 15)
1251 eq_value=(max_value == min_value) ?
1252 max_value+6 : max_value+5;
1254 /* 630B0&B1 rule to determine the equalizer value */
1255 if (revision == SIS630A_900_REV &&
1256 (sis_priv->host_bridge_rev == SIS630B0 ||
1257 sis_priv->host_bridge_rev == SIS630B1)) {
1258 if (max_value == 0)
1259 eq_value = 3;
1260 else
1261 eq_value = (max_value + min_value + 1)/2;
1263 /* write equalizer value and setting */
1264 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1265 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1266 reg14h = (reg14h | 0x6000) & 0xFDFF;
1267 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1268 } else {
1269 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1270 if (revision == SIS630A_900_REV &&
1271 (sis_priv->host_bridge_rev == SIS630B0 ||
1272 sis_priv->host_bridge_rev == SIS630B1))
1273 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1274 (reg14h | 0x2200) & 0xBFFF);
1275 else
1276 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1277 (reg14h | 0x2000) & 0xBFFF);
1282 * sis900_timer - sis900 timer routine
1283 * @data: pointer to sis900 net device
1285 * On each timer ticks we check two things,
1286 * link status (ON/OFF) and link mode (10/100/Full/Half)
1289 static void sis900_timer(unsigned long data)
1291 struct net_device *net_dev = (struct net_device *)data;
1292 struct sis900_private *sis_priv = netdev_priv(net_dev);
1293 struct mii_phy *mii_phy = sis_priv->mii;
1294 static const int next_tick = 5*HZ;
1295 u16 status;
1297 if (!sis_priv->autong_complete){
1298 int uninitialized_var(speed), duplex = 0;
1300 sis900_read_mode(net_dev, &speed, &duplex);
1301 if (duplex){
1302 sis900_set_mode(net_dev->base_addr, speed, duplex);
1303 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1304 netif_start_queue(net_dev);
1307 sis_priv->timer.expires = jiffies + HZ;
1308 add_timer(&sis_priv->timer);
1309 return;
1312 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1313 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1315 /* Link OFF -> ON */
1316 if (!netif_carrier_ok(net_dev)) {
1317 LookForLink:
1318 /* Search for new PHY */
1319 status = sis900_default_phy(net_dev);
1320 mii_phy = sis_priv->mii;
1322 if (status & MII_STAT_LINK){
1323 sis900_check_mode(net_dev, mii_phy);
1324 netif_carrier_on(net_dev);
1326 } else {
1327 /* Link ON -> OFF */
1328 if (!(status & MII_STAT_LINK)){
1329 netif_carrier_off(net_dev);
1330 if(netif_msg_link(sis_priv))
1331 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1333 /* Change mode issue */
1334 if ((mii_phy->phy_id0 == 0x001D) &&
1335 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1336 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1338 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1340 goto LookForLink;
1344 sis_priv->timer.expires = jiffies + next_tick;
1345 add_timer(&sis_priv->timer);
1349 * sis900_check_mode - check the media mode for sis900
1350 * @net_dev: the net device to be checked
1351 * @mii_phy: the mii phy
1353 * Older driver gets the media mode from mii status output
1354 * register. Now we set our media capability and auto-negotiate
1355 * to get the upper bound of speed and duplex between two ends.
1356 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1357 * and autong_complete should be set to 1.
1360 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1362 struct sis900_private *sis_priv = netdev_priv(net_dev);
1363 long ioaddr = net_dev->base_addr;
1364 int speed, duplex;
1366 if (mii_phy->phy_types == LAN) {
1367 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1368 sis900_set_capability(net_dev , mii_phy);
1369 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1370 } else {
1371 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1372 speed = HW_SPEED_HOME;
1373 duplex = FDX_CAPABLE_HALF_SELECTED;
1374 sis900_set_mode(ioaddr, speed, duplex);
1375 sis_priv->autong_complete = 1;
1380 * sis900_set_mode - Set the media mode of mac register.
1381 * @ioaddr: the address of the device
1382 * @speed : the transmit speed to be determined
1383 * @duplex: the duplex mode to be determined
1385 * Set the media mode of mac register txcfg/rxcfg according to
1386 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1387 * bus is used instead of PCI bus. When this bit is set 1, the
1388 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1389 * double words.
1392 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1394 u32 tx_flags = 0, rx_flags = 0;
1396 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1397 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1398 (TX_FILL_THRESH << TxFILLT_shift);
1399 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1400 } else {
1401 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1402 (TX_FILL_THRESH << TxFILLT_shift);
1403 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1406 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1407 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1408 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1409 } else {
1410 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1411 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1414 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1415 tx_flags |= (TxCSI | TxHBI);
1416 rx_flags |= RxATX;
1419 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1420 /* Can accept Jumbo packet */
1421 rx_flags |= RxAJAB;
1422 #endif
1424 outl (tx_flags, ioaddr + txcfg);
1425 outl (rx_flags, ioaddr + rxcfg);
1429 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1430 * @net_dev: the net device to read mode for
1431 * @phy_addr: mii phy address
1433 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1434 * autong_complete should be set to 0 when starting auto-negotiation.
1435 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1436 * sis900_timer will wait for link on again if autong_complete = 0.
1439 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1441 struct sis900_private *sis_priv = netdev_priv(net_dev);
1442 int i = 0;
1443 u32 status;
1445 for (i = 0; i < 2; i++)
1446 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1448 if (!(status & MII_STAT_LINK)){
1449 if(netif_msg_link(sis_priv))
1450 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1451 sis_priv->autong_complete = 1;
1452 netif_carrier_off(net_dev);
1453 return;
1456 /* (Re)start AutoNegotiate */
1457 mdio_write(net_dev, phy_addr, MII_CONTROL,
1458 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1459 sis_priv->autong_complete = 0;
1464 * sis900_read_mode - read media mode for sis900 internal phy
1465 * @net_dev: the net device to read mode for
1466 * @speed : the transmit speed to be determined
1467 * @duplex : the duplex mode to be determined
1469 * The capability of remote end will be put in mii register autorec
1470 * after auto-negotiation. Use AND operation to get the upper bound
1471 * of speed and duplex between two ends.
1474 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1476 struct sis900_private *sis_priv = netdev_priv(net_dev);
1477 struct mii_phy *phy = sis_priv->mii;
1478 int phy_addr = sis_priv->cur_phy;
1479 u32 status;
1480 u16 autoadv, autorec;
1481 int i;
1483 for (i = 0; i < 2; i++)
1484 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1486 if (!(status & MII_STAT_LINK))
1487 return;
1489 /* AutoNegotiate completed */
1490 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1491 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1492 status = autoadv & autorec;
1494 *speed = HW_SPEED_10_MBPS;
1495 *duplex = FDX_CAPABLE_HALF_SELECTED;
1497 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1498 *speed = HW_SPEED_100_MBPS;
1499 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1500 *duplex = FDX_CAPABLE_FULL_SELECTED;
1502 sis_priv->autong_complete = 1;
1504 /* Workaround for Realtek RTL8201 PHY issue */
1505 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1506 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1507 *duplex = FDX_CAPABLE_FULL_SELECTED;
1508 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1509 *speed = HW_SPEED_100_MBPS;
1512 if(netif_msg_link(sis_priv))
1513 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1514 net_dev->name,
1515 *speed == HW_SPEED_100_MBPS ?
1516 "100mbps" : "10mbps",
1517 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1518 "full" : "half");
1522 * sis900_tx_timeout - sis900 transmit timeout routine
1523 * @net_dev: the net device to transmit
1525 * print transmit timeout status
1526 * disable interrupts and do some tasks
1529 static void sis900_tx_timeout(struct net_device *net_dev)
1531 struct sis900_private *sis_priv = netdev_priv(net_dev);
1532 long ioaddr = net_dev->base_addr;
1533 unsigned long flags;
1534 int i;
1536 if(netif_msg_tx_err(sis_priv))
1537 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1538 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1540 /* Disable interrupts by clearing the interrupt mask. */
1541 outl(0x0000, ioaddr + imr);
1543 /* use spinlock to prevent interrupt handler accessing buffer ring */
1544 spin_lock_irqsave(&sis_priv->lock, flags);
1546 /* discard unsent packets */
1547 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1548 for (i = 0; i < NUM_TX_DESC; i++) {
1549 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1551 if (skb) {
1552 pci_unmap_single(sis_priv->pci_dev,
1553 sis_priv->tx_ring[i].bufptr, skb->len,
1554 PCI_DMA_TODEVICE);
1555 dev_kfree_skb_irq(skb);
1556 sis_priv->tx_skbuff[i] = NULL;
1557 sis_priv->tx_ring[i].cmdsts = 0;
1558 sis_priv->tx_ring[i].bufptr = 0;
1559 net_dev->stats.tx_dropped++;
1562 sis_priv->tx_full = 0;
1563 netif_wake_queue(net_dev);
1565 spin_unlock_irqrestore(&sis_priv->lock, flags);
1567 net_dev->trans_start = jiffies; /* prevent tx timeout */
1569 /* load Transmit Descriptor Register */
1570 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1572 /* Enable all known interrupts by setting the interrupt mask. */
1573 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1577 * sis900_start_xmit - sis900 start transmit routine
1578 * @skb: socket buffer pointer to put the data being transmitted
1579 * @net_dev: the net device to transmit with
1581 * Set the transmit buffer descriptor,
1582 * and write TxENA to enable transmit state machine.
1583 * tell upper layer if the buffer is full
1586 static netdev_tx_t
1587 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1589 struct sis900_private *sis_priv = netdev_priv(net_dev);
1590 long ioaddr = net_dev->base_addr;
1591 unsigned int entry;
1592 unsigned long flags;
1593 unsigned int index_cur_tx, index_dirty_tx;
1594 unsigned int count_dirty_tx;
1596 /* Don't transmit data before the complete of auto-negotiation */
1597 if(!sis_priv->autong_complete){
1598 netif_stop_queue(net_dev);
1599 return NETDEV_TX_BUSY;
1602 spin_lock_irqsave(&sis_priv->lock, flags);
1604 /* Calculate the next Tx descriptor entry. */
1605 entry = sis_priv->cur_tx % NUM_TX_DESC;
1606 sis_priv->tx_skbuff[entry] = skb;
1608 /* set the transmit buffer descriptor and enable Transmit State Machine */
1609 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1610 skb->data, skb->len, PCI_DMA_TODEVICE);
1611 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1612 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1614 sis_priv->cur_tx ++;
1615 index_cur_tx = sis_priv->cur_tx;
1616 index_dirty_tx = sis_priv->dirty_tx;
1618 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1619 count_dirty_tx ++;
1621 if (index_cur_tx == index_dirty_tx) {
1622 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1623 sis_priv->tx_full = 1;
1624 netif_stop_queue(net_dev);
1625 } else if (count_dirty_tx < NUM_TX_DESC) {
1626 /* Typical path, tell upper layer that more transmission is possible */
1627 netif_start_queue(net_dev);
1628 } else {
1629 /* buffer full, tell upper layer no more transmission */
1630 sis_priv->tx_full = 1;
1631 netif_stop_queue(net_dev);
1634 spin_unlock_irqrestore(&sis_priv->lock, flags);
1636 if (netif_msg_tx_queued(sis_priv))
1637 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1638 "to slot %d.\n",
1639 net_dev->name, skb->data, (int)skb->len, entry);
1641 return NETDEV_TX_OK;
1645 * sis900_interrupt - sis900 interrupt handler
1646 * @irq: the irq number
1647 * @dev_instance: the client data object
1649 * The interrupt handler does all of the Rx thread work,
1650 * and cleans up after the Tx thread
1653 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1655 struct net_device *net_dev = dev_instance;
1656 struct sis900_private *sis_priv = netdev_priv(net_dev);
1657 int boguscnt = max_interrupt_work;
1658 long ioaddr = net_dev->base_addr;
1659 u32 status;
1660 unsigned int handled = 0;
1662 spin_lock (&sis_priv->lock);
1664 do {
1665 status = inl(ioaddr + isr);
1667 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1668 /* nothing intresting happened */
1669 break;
1670 handled = 1;
1672 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1673 if (status & (RxORN | RxERR | RxOK))
1674 /* Rx interrupt */
1675 sis900_rx(net_dev);
1677 if (status & (TxURN | TxERR | TxIDLE))
1678 /* Tx interrupt */
1679 sis900_finish_xmit(net_dev);
1681 /* something strange happened !!! */
1682 if (status & HIBERR) {
1683 if(netif_msg_intr(sis_priv))
1684 printk(KERN_INFO "%s: Abnormal interrupt, "
1685 "status %#8.8x.\n", net_dev->name, status);
1686 break;
1688 if (--boguscnt < 0) {
1689 if(netif_msg_intr(sis_priv))
1690 printk(KERN_INFO "%s: Too much work at interrupt, "
1691 "interrupt status = %#8.8x.\n",
1692 net_dev->name, status);
1693 break;
1695 } while (1);
1697 if(netif_msg_intr(sis_priv))
1698 printk(KERN_DEBUG "%s: exiting interrupt, "
1699 "interrupt status = 0x%#8.8x.\n",
1700 net_dev->name, inl(ioaddr + isr));
1702 spin_unlock (&sis_priv->lock);
1703 return IRQ_RETVAL(handled);
1707 * sis900_rx - sis900 receive routine
1708 * @net_dev: the net device which receives data
1710 * Process receive interrupt events,
1711 * put buffer to higher layer and refill buffer pool
1712 * Note: This function is called by interrupt handler,
1713 * don't do "too much" work here
1716 static int sis900_rx(struct net_device *net_dev)
1718 struct sis900_private *sis_priv = netdev_priv(net_dev);
1719 long ioaddr = net_dev->base_addr;
1720 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1721 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1722 int rx_work_limit;
1724 if (netif_msg_rx_status(sis_priv))
1725 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1726 "status:0x%8.8x\n",
1727 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1728 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1730 while (rx_status & OWN) {
1731 unsigned int rx_size;
1732 unsigned int data_size;
1734 if (--rx_work_limit < 0)
1735 break;
1737 data_size = rx_status & DSIZE;
1738 rx_size = data_size - CRC_SIZE;
1740 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1741 /* ``TOOLONG'' flag means jumbo packet received. */
1742 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1743 rx_status &= (~ ((unsigned int)TOOLONG));
1744 #endif
1746 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1747 /* corrupted packet received */
1748 if (netif_msg_rx_err(sis_priv))
1749 printk(KERN_DEBUG "%s: Corrupted packet "
1750 "received, buffer status = 0x%8.8x/%d.\n",
1751 net_dev->name, rx_status, data_size);
1752 net_dev->stats.rx_errors++;
1753 if (rx_status & OVERRUN)
1754 net_dev->stats.rx_over_errors++;
1755 if (rx_status & (TOOLONG|RUNT))
1756 net_dev->stats.rx_length_errors++;
1757 if (rx_status & (RXISERR | FAERR))
1758 net_dev->stats.rx_frame_errors++;
1759 if (rx_status & CRCERR)
1760 net_dev->stats.rx_crc_errors++;
1761 /* reset buffer descriptor state */
1762 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1763 } else {
1764 struct sk_buff * skb;
1765 struct sk_buff * rx_skb;
1767 pci_unmap_single(sis_priv->pci_dev,
1768 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1769 PCI_DMA_FROMDEVICE);
1771 /* refill the Rx buffer, what if there is not enough
1772 * memory for new socket buffer ?? */
1773 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1775 * Not enough memory to refill the buffer
1776 * so we need to recycle the old one so
1777 * as to avoid creating a memory hole
1778 * in the rx ring
1780 skb = sis_priv->rx_skbuff[entry];
1781 net_dev->stats.rx_dropped++;
1782 goto refill_rx_ring;
1785 /* This situation should never happen, but due to
1786 some unknown bugs, it is possible that
1787 we are working on NULL sk_buff :-( */
1788 if (sis_priv->rx_skbuff[entry] == NULL) {
1789 if (netif_msg_rx_err(sis_priv))
1790 printk(KERN_WARNING "%s: NULL pointer "
1791 "encountered in Rx ring\n"
1792 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1793 net_dev->name, sis_priv->cur_rx,
1794 sis_priv->dirty_rx);
1795 dev_kfree_skb(skb);
1796 break;
1799 /* give the socket buffer to upper layers */
1800 rx_skb = sis_priv->rx_skbuff[entry];
1801 skb_put(rx_skb, rx_size);
1802 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1803 netif_rx(rx_skb);
1805 /* some network statistics */
1806 if ((rx_status & BCAST) == MCAST)
1807 net_dev->stats.multicast++;
1808 net_dev->stats.rx_bytes += rx_size;
1809 net_dev->stats.rx_packets++;
1810 sis_priv->dirty_rx++;
1811 refill_rx_ring:
1812 sis_priv->rx_skbuff[entry] = skb;
1813 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1814 sis_priv->rx_ring[entry].bufptr =
1815 pci_map_single(sis_priv->pci_dev, skb->data,
1816 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1818 sis_priv->cur_rx++;
1819 entry = sis_priv->cur_rx % NUM_RX_DESC;
1820 rx_status = sis_priv->rx_ring[entry].cmdsts;
1821 } // while
1823 /* refill the Rx buffer, what if the rate of refilling is slower
1824 * than consuming ?? */
1825 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1826 struct sk_buff *skb;
1828 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1830 if (sis_priv->rx_skbuff[entry] == NULL) {
1831 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1832 /* not enough memory for skbuff, this makes a
1833 * "hole" on the buffer ring, it is not clear
1834 * how the hardware will react to this kind
1835 * of degenerated buffer */
1836 if (netif_msg_rx_err(sis_priv))
1837 printk(KERN_INFO "%s: Memory squeeze, "
1838 "deferring packet.\n",
1839 net_dev->name);
1840 net_dev->stats.rx_dropped++;
1841 break;
1843 sis_priv->rx_skbuff[entry] = skb;
1844 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1845 sis_priv->rx_ring[entry].bufptr =
1846 pci_map_single(sis_priv->pci_dev, skb->data,
1847 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1850 /* re-enable the potentially idle receive state matchine */
1851 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1853 return 0;
1857 * sis900_finish_xmit - finish up transmission of packets
1858 * @net_dev: the net device to be transmitted on
1860 * Check for error condition and free socket buffer etc
1861 * schedule for more transmission as needed
1862 * Note: This function is called by interrupt handler,
1863 * don't do "too much" work here
1866 static void sis900_finish_xmit (struct net_device *net_dev)
1868 struct sis900_private *sis_priv = netdev_priv(net_dev);
1870 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1871 struct sk_buff *skb;
1872 unsigned int entry;
1873 u32 tx_status;
1875 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1876 tx_status = sis_priv->tx_ring[entry].cmdsts;
1878 if (tx_status & OWN) {
1879 /* The packet is not transmitted yet (owned by hardware) !
1880 * Note: the interrupt is generated only when Tx Machine
1881 * is idle, so this is an almost impossible case */
1882 break;
1885 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1886 /* packet unsuccessfully transmitted */
1887 if (netif_msg_tx_err(sis_priv))
1888 printk(KERN_DEBUG "%s: Transmit "
1889 "error, Tx status %8.8x.\n",
1890 net_dev->name, tx_status);
1891 net_dev->stats.tx_errors++;
1892 if (tx_status & UNDERRUN)
1893 net_dev->stats.tx_fifo_errors++;
1894 if (tx_status & ABORT)
1895 net_dev->stats.tx_aborted_errors++;
1896 if (tx_status & NOCARRIER)
1897 net_dev->stats.tx_carrier_errors++;
1898 if (tx_status & OWCOLL)
1899 net_dev->stats.tx_window_errors++;
1900 } else {
1901 /* packet successfully transmitted */
1902 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1903 net_dev->stats.tx_bytes += tx_status & DSIZE;
1904 net_dev->stats.tx_packets++;
1906 /* Free the original skb. */
1907 skb = sis_priv->tx_skbuff[entry];
1908 pci_unmap_single(sis_priv->pci_dev,
1909 sis_priv->tx_ring[entry].bufptr, skb->len,
1910 PCI_DMA_TODEVICE);
1911 dev_kfree_skb_irq(skb);
1912 sis_priv->tx_skbuff[entry] = NULL;
1913 sis_priv->tx_ring[entry].bufptr = 0;
1914 sis_priv->tx_ring[entry].cmdsts = 0;
1917 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1918 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1919 /* The ring is no longer full, clear tx_full and schedule
1920 * more transmission by netif_wake_queue(net_dev) */
1921 sis_priv->tx_full = 0;
1922 netif_wake_queue (net_dev);
1927 * sis900_close - close sis900 device
1928 * @net_dev: the net device to be closed
1930 * Disable interrupts, stop the Tx and Rx Status Machine
1931 * free Tx and RX socket buffer
1934 static int sis900_close(struct net_device *net_dev)
1936 long ioaddr = net_dev->base_addr;
1937 struct sis900_private *sis_priv = netdev_priv(net_dev);
1938 struct sk_buff *skb;
1939 int i;
1941 netif_stop_queue(net_dev);
1943 /* Disable interrupts by clearing the interrupt mask. */
1944 outl(0x0000, ioaddr + imr);
1945 outl(0x0000, ioaddr + ier);
1947 /* Stop the chip's Tx and Rx Status Machine */
1948 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1950 del_timer(&sis_priv->timer);
1952 free_irq(net_dev->irq, net_dev);
1954 /* Free Tx and RX skbuff */
1955 for (i = 0; i < NUM_RX_DESC; i++) {
1956 skb = sis_priv->rx_skbuff[i];
1957 if (skb) {
1958 pci_unmap_single(sis_priv->pci_dev,
1959 sis_priv->rx_ring[i].bufptr,
1960 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1961 dev_kfree_skb(skb);
1962 sis_priv->rx_skbuff[i] = NULL;
1965 for (i = 0; i < NUM_TX_DESC; i++) {
1966 skb = sis_priv->tx_skbuff[i];
1967 if (skb) {
1968 pci_unmap_single(sis_priv->pci_dev,
1969 sis_priv->tx_ring[i].bufptr, skb->len,
1970 PCI_DMA_TODEVICE);
1971 dev_kfree_skb(skb);
1972 sis_priv->tx_skbuff[i] = NULL;
1976 /* Green! Put the chip in low-power mode. */
1978 return 0;
1982 * sis900_get_drvinfo - Return information about driver
1983 * @net_dev: the net device to probe
1984 * @info: container for info returned
1986 * Process ethtool command such as "ehtool -i" to show information
1989 static void sis900_get_drvinfo(struct net_device *net_dev,
1990 struct ethtool_drvinfo *info)
1992 struct sis900_private *sis_priv = netdev_priv(net_dev);
1994 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
1995 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
1996 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
1997 sizeof(info->bus_info));
2000 static u32 sis900_get_msglevel(struct net_device *net_dev)
2002 struct sis900_private *sis_priv = netdev_priv(net_dev);
2003 return sis_priv->msg_enable;
2006 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2008 struct sis900_private *sis_priv = netdev_priv(net_dev);
2009 sis_priv->msg_enable = value;
2012 static u32 sis900_get_link(struct net_device *net_dev)
2014 struct sis900_private *sis_priv = netdev_priv(net_dev);
2015 return mii_link_ok(&sis_priv->mii_info);
2018 static int sis900_get_settings(struct net_device *net_dev,
2019 struct ethtool_cmd *cmd)
2021 struct sis900_private *sis_priv = netdev_priv(net_dev);
2022 spin_lock_irq(&sis_priv->lock);
2023 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2024 spin_unlock_irq(&sis_priv->lock);
2025 return 0;
2028 static int sis900_set_settings(struct net_device *net_dev,
2029 struct ethtool_cmd *cmd)
2031 struct sis900_private *sis_priv = netdev_priv(net_dev);
2032 int rt;
2033 spin_lock_irq(&sis_priv->lock);
2034 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2035 spin_unlock_irq(&sis_priv->lock);
2036 return rt;
2039 static int sis900_nway_reset(struct net_device *net_dev)
2041 struct sis900_private *sis_priv = netdev_priv(net_dev);
2042 return mii_nway_restart(&sis_priv->mii_info);
2046 * sis900_set_wol - Set up Wake on Lan registers
2047 * @net_dev: the net device to probe
2048 * @wol: container for info passed to the driver
2050 * Process ethtool command "wol" to setup wake on lan features.
2051 * SiS900 supports sending WoL events if a correct packet is received,
2052 * but there is no simple way to filter them to only a subset (broadcast,
2053 * multicast, unicast or arp).
2056 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2058 struct sis900_private *sis_priv = netdev_priv(net_dev);
2059 long pmctrl_addr = net_dev->base_addr + pmctrl;
2060 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2062 if (wol->wolopts == 0) {
2063 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2064 cfgpmcsr &= ~PME_EN;
2065 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2066 outl(pmctrl_bits, pmctrl_addr);
2067 if (netif_msg_wol(sis_priv))
2068 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2069 return 0;
2072 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2073 | WAKE_BCAST | WAKE_ARP))
2074 return -EINVAL;
2076 if (wol->wolopts & WAKE_MAGIC)
2077 pmctrl_bits |= MAGICPKT;
2078 if (wol->wolopts & WAKE_PHY)
2079 pmctrl_bits |= LINKON;
2081 outl(pmctrl_bits, pmctrl_addr);
2083 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2084 cfgpmcsr |= PME_EN;
2085 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2086 if (netif_msg_wol(sis_priv))
2087 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2089 return 0;
2092 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2094 long pmctrl_addr = net_dev->base_addr + pmctrl;
2095 u32 pmctrl_bits;
2097 pmctrl_bits = inl(pmctrl_addr);
2098 if (pmctrl_bits & MAGICPKT)
2099 wol->wolopts |= WAKE_MAGIC;
2100 if (pmctrl_bits & LINKON)
2101 wol->wolopts |= WAKE_PHY;
2103 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2106 static const struct ethtool_ops sis900_ethtool_ops = {
2107 .get_drvinfo = sis900_get_drvinfo,
2108 .get_msglevel = sis900_get_msglevel,
2109 .set_msglevel = sis900_set_msglevel,
2110 .get_link = sis900_get_link,
2111 .get_settings = sis900_get_settings,
2112 .set_settings = sis900_set_settings,
2113 .nway_reset = sis900_nway_reset,
2114 .get_wol = sis900_get_wol,
2115 .set_wol = sis900_set_wol
2119 * mii_ioctl - process MII i/o control command
2120 * @net_dev: the net device to command for
2121 * @rq: parameter for command
2122 * @cmd: the i/o command
2124 * Process MII command like read/write MII register
2127 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2129 struct sis900_private *sis_priv = netdev_priv(net_dev);
2130 struct mii_ioctl_data *data = if_mii(rq);
2132 switch(cmd) {
2133 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2134 data->phy_id = sis_priv->mii->phy_addr;
2135 /* Fall Through */
2137 case SIOCGMIIREG: /* Read MII PHY register. */
2138 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2139 return 0;
2141 case SIOCSMIIREG: /* Write MII PHY register. */
2142 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2143 return 0;
2144 default:
2145 return -EOPNOTSUPP;
2150 * sis900_set_config - Set media type by net_device.set_config
2151 * @dev: the net device for media type change
2152 * @map: ifmap passed by ifconfig
2154 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2155 * we support only port changes. All other runtime configuration
2156 * changes will be ignored
2159 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2161 struct sis900_private *sis_priv = netdev_priv(dev);
2162 struct mii_phy *mii_phy = sis_priv->mii;
2164 u16 status;
2166 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2167 /* we switch on the ifmap->port field. I couldn't find anything
2168 * like a definition or standard for the values of that field.
2169 * I think the meaning of those values is device specific. But
2170 * since I would like to change the media type via the ifconfig
2171 * command I use the definition from linux/netdevice.h
2172 * (which seems to be different from the ifport(pcmcia) definition) */
2173 switch(map->port){
2174 case IF_PORT_UNKNOWN: /* use auto here */
2175 dev->if_port = map->port;
2176 /* we are going to change the media type, so the Link
2177 * will be temporary down and we need to reflect that
2178 * here. When the Link comes up again, it will be
2179 * sensed by the sis_timer procedure, which also does
2180 * all the rest for us */
2181 netif_carrier_off(dev);
2183 /* read current state */
2184 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2186 /* enable auto negotiation and reset the negotioation
2187 * (I don't really know what the auto negatiotiation
2188 * reset really means, but it sounds for me right to
2189 * do one here) */
2190 mdio_write(dev, mii_phy->phy_addr,
2191 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2193 break;
2195 case IF_PORT_10BASET: /* 10BaseT */
2196 dev->if_port = map->port;
2198 /* we are going to change the media type, so the Link
2199 * will be temporary down and we need to reflect that
2200 * here. When the Link comes up again, it will be
2201 * sensed by the sis_timer procedure, which also does
2202 * all the rest for us */
2203 netif_carrier_off(dev);
2205 /* set Speed to 10Mbps */
2206 /* read current state */
2207 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2209 /* disable auto negotiation and force 10MBit mode*/
2210 mdio_write(dev, mii_phy->phy_addr,
2211 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2212 MII_CNTL_AUTO));
2213 break;
2215 case IF_PORT_100BASET: /* 100BaseT */
2216 case IF_PORT_100BASETX: /* 100BaseTx */
2217 dev->if_port = map->port;
2219 /* we are going to change the media type, so the Link
2220 * will be temporary down and we need to reflect that
2221 * here. When the Link comes up again, it will be
2222 * sensed by the sis_timer procedure, which also does
2223 * all the rest for us */
2224 netif_carrier_off(dev);
2226 /* set Speed to 100Mbps */
2227 /* disable auto negotiation and enable 100MBit Mode */
2228 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2229 mdio_write(dev, mii_phy->phy_addr,
2230 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2231 MII_CNTL_SPEED);
2233 break;
2235 case IF_PORT_10BASE2: /* 10Base2 */
2236 case IF_PORT_AUI: /* AUI */
2237 case IF_PORT_100BASEFX: /* 100BaseFx */
2238 /* These Modes are not supported (are they?)*/
2239 return -EOPNOTSUPP;
2240 break;
2242 default:
2243 return -EINVAL;
2246 return 0;
2250 * sis900_mcast_bitnr - compute hashtable index
2251 * @addr: multicast address
2252 * @revision: revision id of chip
2254 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2255 * hash table, which makes this function a little bit different from other drivers
2256 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2257 * multicast hash table.
2260 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2263 u32 crc = ether_crc(6, addr);
2265 /* leave 8 or 7 most siginifant bits */
2266 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2267 return (int)(crc >> 24);
2268 else
2269 return (int)(crc >> 25);
2273 * set_rx_mode - Set SiS900 receive mode
2274 * @net_dev: the net device to be set
2276 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2277 * And set the appropriate multicast filter.
2278 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2281 static void set_rx_mode(struct net_device *net_dev)
2283 long ioaddr = net_dev->base_addr;
2284 struct sis900_private *sis_priv = netdev_priv(net_dev);
2285 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2286 int i, table_entries;
2287 u32 rx_mode;
2289 /* 635 Hash Table entries = 256(2^16) */
2290 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2291 (sis_priv->chipset_rev == SIS900B_900_REV))
2292 table_entries = 16;
2293 else
2294 table_entries = 8;
2296 if (net_dev->flags & IFF_PROMISC) {
2297 /* Accept any kinds of packets */
2298 rx_mode = RFPromiscuous;
2299 for (i = 0; i < table_entries; i++)
2300 mc_filter[i] = 0xffff;
2301 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2302 (net_dev->flags & IFF_ALLMULTI)) {
2303 /* too many multicast addresses or accept all multicast packet */
2304 rx_mode = RFAAB | RFAAM;
2305 for (i = 0; i < table_entries; i++)
2306 mc_filter[i] = 0xffff;
2307 } else {
2308 /* Accept Broadcast packet, destination address matchs our
2309 * MAC address, use Receive Filter to reject unwanted MCAST
2310 * packets */
2311 struct netdev_hw_addr *ha;
2312 rx_mode = RFAAB;
2314 netdev_for_each_mc_addr(ha, net_dev) {
2315 unsigned int bit_nr;
2317 bit_nr = sis900_mcast_bitnr(ha->addr,
2318 sis_priv->chipset_rev);
2319 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2323 /* update Multicast Hash Table in Receive Filter */
2324 for (i = 0; i < table_entries; i++) {
2325 /* why plus 0x04 ??, That makes the correct value for hash table. */
2326 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2327 outl(mc_filter[i], ioaddr + rfdr);
2330 outl(RFEN | rx_mode, ioaddr + rfcr);
2332 /* sis900 is capable of looping back packets at MAC level for
2333 * debugging purpose */
2334 if (net_dev->flags & IFF_LOOPBACK) {
2335 u32 cr_saved;
2336 /* We must disable Tx/Rx before setting loopback mode */
2337 cr_saved = inl(ioaddr + cr);
2338 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2339 /* enable loopback */
2340 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2341 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2342 /* restore cr */
2343 outl(cr_saved, ioaddr + cr);
2348 * sis900_reset - Reset sis900 MAC
2349 * @net_dev: the net device to reset
2351 * reset sis900 MAC and wait until finished
2352 * reset through command register
2353 * change backoff algorithm for 900B0 & 635 M/B
2356 static void sis900_reset(struct net_device *net_dev)
2358 struct sis900_private *sis_priv = netdev_priv(net_dev);
2359 long ioaddr = net_dev->base_addr;
2360 int i = 0;
2361 u32 status = TxRCMP | RxRCMP;
2363 outl(0, ioaddr + ier);
2364 outl(0, ioaddr + imr);
2365 outl(0, ioaddr + rfcr);
2367 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2369 /* Check that the chip has finished the reset. */
2370 while (status && (i++ < 1000)) {
2371 status ^= (inl(isr + ioaddr) & status);
2374 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2375 (sis_priv->chipset_rev == SIS900B_900_REV) )
2376 outl(PESEL | RND_CNT, ioaddr + cfg);
2377 else
2378 outl(PESEL, ioaddr + cfg);
2382 * sis900_remove - Remove sis900 device
2383 * @pci_dev: the pci device to be removed
2385 * remove and release SiS900 net device
2388 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2390 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2391 struct sis900_private *sis_priv = netdev_priv(net_dev);
2392 struct mii_phy *phy = NULL;
2394 while (sis_priv->first_mii) {
2395 phy = sis_priv->first_mii;
2396 sis_priv->first_mii = phy->next;
2397 kfree(phy);
2400 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2401 sis_priv->rx_ring_dma);
2402 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2403 sis_priv->tx_ring_dma);
2404 unregister_netdev(net_dev);
2405 free_netdev(net_dev);
2406 pci_release_regions(pci_dev);
2407 pci_set_drvdata(pci_dev, NULL);
2410 #ifdef CONFIG_PM
2412 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2414 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2415 long ioaddr = net_dev->base_addr;
2417 if(!netif_running(net_dev))
2418 return 0;
2420 netif_stop_queue(net_dev);
2421 netif_device_detach(net_dev);
2423 /* Stop the chip's Tx and Rx Status Machine */
2424 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2426 pci_set_power_state(pci_dev, PCI_D3hot);
2427 pci_save_state(pci_dev);
2429 return 0;
2432 static int sis900_resume(struct pci_dev *pci_dev)
2434 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2435 struct sis900_private *sis_priv = netdev_priv(net_dev);
2436 long ioaddr = net_dev->base_addr;
2438 if(!netif_running(net_dev))
2439 return 0;
2440 pci_restore_state(pci_dev);
2441 pci_set_power_state(pci_dev, PCI_D0);
2443 sis900_init_rxfilter(net_dev);
2445 sis900_init_tx_ring(net_dev);
2446 sis900_init_rx_ring(net_dev);
2448 set_rx_mode(net_dev);
2450 netif_device_attach(net_dev);
2451 netif_start_queue(net_dev);
2453 /* Workaround for EDB */
2454 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2456 /* Enable all known interrupts by setting the interrupt mask. */
2457 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2458 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2459 outl(IE, ioaddr + ier);
2461 sis900_check_mode(net_dev, sis_priv->mii);
2463 return 0;
2465 #endif /* CONFIG_PM */
2467 static struct pci_driver sis900_pci_driver = {
2468 .name = SIS900_MODULE_NAME,
2469 .id_table = sis900_pci_tbl,
2470 .probe = sis900_probe,
2471 .remove = __devexit_p(sis900_remove),
2472 #ifdef CONFIG_PM
2473 .suspend = sis900_suspend,
2474 .resume = sis900_resume,
2475 #endif /* CONFIG_PM */
2478 static int __init sis900_init_module(void)
2480 /* when a module, this is printed whether or not devices are found in probe */
2481 #ifdef MODULE
2482 printk(version);
2483 #endif
2485 return pci_register_driver(&sis900_pci_driver);
2488 static void __exit sis900_cleanup_module(void)
2490 pci_unregister_driver(&sis900_pci_driver);
2493 module_init(sis900_init_module);
2494 module_exit(sis900_cleanup_module);