OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / net / ethernet / via / via-velocity.c
blobcb35b14b73bb2480e10082db5a41a8558cedfe1a
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
17 * This source has not been verified for use in safety critical systems.
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
22 * Original code:
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
37 * Author: Chuang Liang-Shing, AJ Jiang
39 * Date: Jan 24, 2003
41 * MODULE_LICENSE("GPL");
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
80 #include "via-velocity.h"
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
96 int i;
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
101 writeb(0, &regs->CAMADDR);
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
115 * mac_set_cam_mask - Set a CAM mask
116 * @regs: register block for this velocity
117 * @mask: CAM mask to load
119 * Store a new mask into a CAM
121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
123 int i;
124 /* Select CAM mask */
125 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
127 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
129 for (i = 0; i < 8; i++)
130 writeb(*mask++, &(regs->MARCAM[i]));
132 /* disable CAMEN */
133 writeb(0, &regs->CAMADDR);
135 /* Select mar */
136 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 int i;
142 /* Select CAM mask */
143 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
147 for (i = 0; i < 8; i++)
148 writeb(*mask++, &(regs->MARCAM[i]));
150 /* disable CAMEN */
151 writeb(0, &regs->CAMADDR);
153 /* Select mar */
154 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
158 * mac_set_cam - set CAM data
159 * @regs: register block of this velocity
160 * @idx: Cam index
161 * @addr: 2 or 6 bytes of CAM data
163 * Load an address or vlan tag into a CAM
165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
167 int i;
169 /* Select CAM mask */
170 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
172 idx &= (64 - 1);
174 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
176 for (i = 0; i < 6; i++)
177 writeb(*addr++, &(regs->MARCAM[i]));
179 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
181 udelay(10);
183 writeb(0, &regs->CAMADDR);
185 /* Select mar */
186 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 const u8 *addr)
193 /* Select CAM mask */
194 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
196 idx &= (64 - 1);
198 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 writew(*((u16 *) addr), &regs->MARCAM[0]);
201 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
203 udelay(10);
205 writeb(0, &regs->CAMADDR);
207 /* Select mar */
208 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
213 * mac_wol_reset - reset WOL after exiting low power
214 * @regs: register block of this velocity
216 * Called after we drop out of wake on lan mode in order to
217 * reset the Wake on lan features. This function doesn't restore
218 * the rest of the logic from the result of sleep/wakeup
220 static void mac_wol_reset(struct mac_regs __iomem *regs)
223 /* Turn off SWPTAG right after leaving power mode */
224 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 /* clear sticky bits */
226 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
228 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 /* disable force PME-enable */
231 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 /* disable power-event config bit */
233 writew(0xFFFF, &regs->WOLCRClr);
234 /* clear power status */
235 writew(0xFFFF, &regs->WOLSRClr);
238 static const struct ethtool_ops velocity_ethtool_ops;
241 Define module options
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
248 #define VELOCITY_PARAM(N, D) \
249 static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 module_param_array(N, int, NULL, 0); \
251 MODULE_PARM_DESC(N, D);
253 #define RX_DESC_MIN 64
254 #define RX_DESC_MAX 255
255 #define RX_DESC_DEF 64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
258 #define TX_DESC_MIN 16
259 #define TX_DESC_MAX 256
260 #define TX_DESC_DEF 64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
263 #define RX_THRESH_MIN 0
264 #define RX_THRESH_MAX 3
265 #define RX_THRESH_DEF 0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267 0: indicate the rxfifo threshold is 128 bytes.
268 1: indicate the rxfifo threshold is 512 bytes.
269 2: indicate the rxfifo threshold is 1024 bytes.
270 3: indicate the rxfifo threshold is store & forward.
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
274 #define DMA_LENGTH_MIN 0
275 #define DMA_LENGTH_MAX 7
276 #define DMA_LENGTH_DEF 6
278 /* DMA_length[] is used for controlling the DMA length
279 0: 8 DWORDs
280 1: 16 DWORDs
281 2: 32 DWORDs
282 3: 64 DWORDs
283 4: 128 DWORDs
284 5: 256 DWORDs
285 6: SF(flush till emply)
286 7: SF(flush till emply)
288 VELOCITY_PARAM(DMA_length, "DMA length");
290 #define IP_ALIG_DEF 0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292 0: indicate the IP header won't be DWORD byte aligned.(Default) .
293 1: indicate the IP header will be DWORD byte aligned.
294 In some environment, the IP header should be DWORD byte aligned,
295 or the packet will be droped when we receive it. (eg: IPVS)
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
299 #define FLOW_CNTL_DEF 1
300 #define FLOW_CNTL_MIN 1
301 #define FLOW_CNTL_MAX 5
303 /* flow_control[] is used for setting the flow control ability of NIC.
304 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305 2: enable TX flow control.
306 3: enable RX flow control.
307 4: enable RX/TX flow control.
308 5: disable
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316 0: indicate autonegotiation for both speed and duplex mode
317 1: indicate 100Mbps half duplex mode
318 2: indicate 100Mbps full duplex mode
319 3: indicate 10Mbps half duplex mode
320 4: indicate 10Mbps full duplex mode
321 5: indicate 1000Mbps full duplex mode
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
329 #define VAL_PKT_LEN_DEF 0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
336 #define WOL_OPT_DEF 0
337 #define WOL_OPT_MIN 0
338 #define WOL_OPT_MAX 7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
353 * Internal board variants. At the moment we have only one
355 static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
372 * get_chip_name - identifier to name
373 * @id: chip identifier
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
378 static const char __devinit *get_chip_name(enum chip_type chip_id)
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
395 static void __devexit velocity_remove1(struct pci_dev *pdev)
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
407 velocity_nics--;
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
424 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
426 if (val == -1)
427 *opt = def;
428 else if (val < min || val > max) {
429 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 devname, name, min, max);
431 *opt = def;
432 } else {
433 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 devname, name, val);
435 *opt = val;
440 * velocity_set_bool_opt - parser for boolean options
441 * @opt: pointer to option value
442 * @val: value the user requested (or -1 for default)
443 * @def: default value (yes/no)
444 * @flag: numeric value to set for true.
445 * @name: property name
446 * @dev: device name
448 * Set a boolean property in the module options. This function does
449 * all the verification and checking as well as reporting so that
450 * we don't duplicate code for each option.
452 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
454 (*opt) &= (~flag);
455 if (val == -1)
456 *opt |= (def ? flag : 0);
457 else if (val < 0 || val > 1) {
458 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 devname, name);
460 *opt |= (def ? flag : 0);
461 } else {
462 printk(KERN_INFO "%s: set parameter %s to %s\n",
463 devname, name, val ? "TRUE" : "FALSE");
464 *opt |= (val ? flag : 0);
469 * velocity_get_options - set options on device
470 * @opts: option structure for the device
471 * @index: index of option to use in module options array
472 * @devname: device name
474 * Turn the module and command options into a single structure
475 * for the current device
477 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
480 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
485 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 opts->numrx = (opts->numrx & ~3);
494 * velocity_init_cam_filter - initialise CAM
495 * @vptr: velocity to program
497 * Initialize the content addressable memory used for filters. Load
498 * appropriately according to the presence of VLAN
500 static void velocity_init_cam_filter(struct velocity_info *vptr)
502 struct mac_regs __iomem *regs = vptr->mac_regs;
503 unsigned int vid, i = 0;
505 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
509 /* Disable all CAMs */
510 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 mac_set_cam_mask(regs, vptr->mCAMmask);
515 /* Enable VCAMs */
516 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
517 mac_set_vlan_cam(regs, i, (u8 *) &vid);
518 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
519 if (++i >= VCAM_SIZE)
520 break;
522 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
525 static int velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
527 struct velocity_info *vptr = netdev_priv(dev);
529 spin_lock_irq(&vptr->lock);
530 set_bit(vid, vptr->active_vlans);
531 velocity_init_cam_filter(vptr);
532 spin_unlock_irq(&vptr->lock);
533 return 0;
536 static int velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
538 struct velocity_info *vptr = netdev_priv(dev);
540 spin_lock_irq(&vptr->lock);
541 clear_bit(vid, vptr->active_vlans);
542 velocity_init_cam_filter(vptr);
543 spin_unlock_irq(&vptr->lock);
544 return 0;
547 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
549 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
553 * velocity_rx_reset - handle a receive reset
554 * @vptr: velocity we are resetting
556 * Reset the ownership and status for the receive ring side.
557 * Hand all the receive queue to the NIC.
559 static void velocity_rx_reset(struct velocity_info *vptr)
562 struct mac_regs __iomem *regs = vptr->mac_regs;
563 int i;
565 velocity_init_rx_ring_indexes(vptr);
568 * Init state, all RD entries belong to the NIC
570 for (i = 0; i < vptr->options.numrx; ++i)
571 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
573 writew(vptr->options.numrx, &regs->RBRDU);
574 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
575 writew(0, &regs->RDIdx);
576 writew(vptr->options.numrx - 1, &regs->RDCSize);
580 * velocity_get_opt_media_mode - get media selection
581 * @vptr: velocity adapter
583 * Get the media mode stored in EEPROM or module options and load
584 * mii_status accordingly. The requested link state information
585 * is also returned.
587 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
589 u32 status = 0;
591 switch (vptr->options.spd_dpx) {
592 case SPD_DPX_AUTO:
593 status = VELOCITY_AUTONEG_ENABLE;
594 break;
595 case SPD_DPX_100_FULL:
596 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
597 break;
598 case SPD_DPX_10_FULL:
599 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
600 break;
601 case SPD_DPX_100_HALF:
602 status = VELOCITY_SPEED_100;
603 break;
604 case SPD_DPX_10_HALF:
605 status = VELOCITY_SPEED_10;
606 break;
607 case SPD_DPX_1000_FULL:
608 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
609 break;
611 vptr->mii_status = status;
612 return status;
616 * safe_disable_mii_autopoll - autopoll off
617 * @regs: velocity registers
619 * Turn off the autopoll and wait for it to disable on the chip
621 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
623 u16 ww;
625 /* turn off MAUTO */
626 writeb(0, &regs->MIICR);
627 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
628 udelay(1);
629 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
630 break;
635 * enable_mii_autopoll - turn on autopolling
636 * @regs: velocity registers
638 * Enable the MII link status autopoll feature on the Velocity
639 * hardware. Wait for it to enable.
641 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
643 int ii;
645 writeb(0, &(regs->MIICR));
646 writeb(MIIADR_SWMPL, &regs->MIIADR);
648 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
649 udelay(1);
650 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
651 break;
654 writeb(MIICR_MAUTO, &regs->MIICR);
656 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
657 udelay(1);
658 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
659 break;
665 * velocity_mii_read - read MII data
666 * @regs: velocity registers
667 * @index: MII register index
668 * @data: buffer for received data
670 * Perform a single read of an MII 16bit register. Returns zero
671 * on success or -ETIMEDOUT if the PHY did not respond.
673 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
675 u16 ww;
678 * Disable MIICR_MAUTO, so that mii addr can be set normally
680 safe_disable_mii_autopoll(regs);
682 writeb(index, &regs->MIIADR);
684 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
686 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
687 if (!(readb(&regs->MIICR) & MIICR_RCMD))
688 break;
691 *data = readw(&regs->MIIDATA);
693 enable_mii_autopoll(regs);
694 if (ww == W_MAX_TIMEOUT)
695 return -ETIMEDOUT;
696 return 0;
700 * mii_check_media_mode - check media state
701 * @regs: velocity registers
703 * Check the current MII status and determine the link status
704 * accordingly
706 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
708 u32 status = 0;
709 u16 ANAR;
711 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
712 status |= VELOCITY_LINK_FAIL;
714 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
715 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
716 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
717 status |= (VELOCITY_SPEED_1000);
718 else {
719 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
720 if (ANAR & ADVERTISE_100FULL)
721 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
722 else if (ANAR & ADVERTISE_100HALF)
723 status |= VELOCITY_SPEED_100;
724 else if (ANAR & ADVERTISE_10FULL)
725 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
726 else
727 status |= (VELOCITY_SPEED_10);
730 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
731 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
732 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
733 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
734 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
735 status |= VELOCITY_AUTONEG_ENABLE;
739 return status;
743 * velocity_mii_write - write MII data
744 * @regs: velocity registers
745 * @index: MII register index
746 * @data: 16bit data for the MII register
748 * Perform a single write to an MII 16bit register. Returns zero
749 * on success or -ETIMEDOUT if the PHY did not respond.
751 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
753 u16 ww;
756 * Disable MIICR_MAUTO, so that mii addr can be set normally
758 safe_disable_mii_autopoll(regs);
760 /* MII reg offset */
761 writeb(mii_addr, &regs->MIIADR);
762 /* set MII data */
763 writew(data, &regs->MIIDATA);
765 /* turn on MIICR_WCMD */
766 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
768 /* W_MAX_TIMEOUT is the timeout period */
769 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
770 udelay(5);
771 if (!(readb(&regs->MIICR) & MIICR_WCMD))
772 break;
774 enable_mii_autopoll(regs);
776 if (ww == W_MAX_TIMEOUT)
777 return -ETIMEDOUT;
778 return 0;
782 * set_mii_flow_control - flow control setup
783 * @vptr: velocity interface
785 * Set up the flow control on this interface according to
786 * the supplied user/eeprom options.
788 static void set_mii_flow_control(struct velocity_info *vptr)
790 /*Enable or Disable PAUSE in ANAR */
791 switch (vptr->options.flow_cntl) {
792 case FLOW_CNTL_TX:
793 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
794 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
795 break;
797 case FLOW_CNTL_RX:
798 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
799 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
800 break;
802 case FLOW_CNTL_TX_RX:
803 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
804 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
805 break;
807 case FLOW_CNTL_DISABLE:
808 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 break;
811 default:
812 break;
817 * mii_set_auto_on - autonegotiate on
818 * @vptr: velocity
820 * Enable autonegotation on this interface
822 static void mii_set_auto_on(struct velocity_info *vptr)
824 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
825 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
826 else
827 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
830 static u32 check_connection_type(struct mac_regs __iomem *regs)
832 u32 status = 0;
833 u8 PHYSR0;
834 u16 ANAR;
835 PHYSR0 = readb(&regs->PHYSR0);
838 if (!(PHYSR0 & PHYSR0_LINKGD))
839 status|=VELOCITY_LINK_FAIL;
842 if (PHYSR0 & PHYSR0_FDPX)
843 status |= VELOCITY_DUPLEX_FULL;
845 if (PHYSR0 & PHYSR0_SPDG)
846 status |= VELOCITY_SPEED_1000;
847 else if (PHYSR0 & PHYSR0_SPD10)
848 status |= VELOCITY_SPEED_10;
849 else
850 status |= VELOCITY_SPEED_100;
852 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
853 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
854 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
855 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
856 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
857 status |= VELOCITY_AUTONEG_ENABLE;
861 return status;
865 * velocity_set_media_mode - set media mode
866 * @mii_status: old MII link state
868 * Check the media link state and configure the flow control
869 * PHY and also velocity hardware setup accordingly. In particular
870 * we need to set up CD polling and frame bursting.
872 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
874 u32 curr_status;
875 struct mac_regs __iomem *regs = vptr->mac_regs;
877 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
878 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
880 /* Set mii link status */
881 set_mii_flow_control(vptr);
884 Check if new status is consistent with current status
885 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
886 (mii_status==curr_status)) {
887 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
888 vptr->mii_status=check_connection_type(vptr->mac_regs);
889 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
890 return 0;
894 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
895 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
898 * If connection type is AUTO
900 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
901 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
902 /* clear force MAC mode bit */
903 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
904 /* set duplex mode of MAC according to duplex mode of MII */
905 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
906 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
907 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
909 /* enable AUTO-NEGO mode */
910 mii_set_auto_on(vptr);
911 } else {
912 u16 CTRL1000;
913 u16 ANAR;
914 u8 CHIPGCR;
917 * 1. if it's 3119, disable frame bursting in halfduplex mode
918 * and enable it in fullduplex mode
919 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
920 * 3. only enable CD heart beat counter in 10HD mode
923 /* set force MAC mode bit */
924 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
926 CHIPGCR = readb(&regs->CHIPGCR);
928 if (mii_status & VELOCITY_SPEED_1000)
929 CHIPGCR |= CHIPGCR_FCGMII;
930 else
931 CHIPGCR &= ~CHIPGCR_FCGMII;
933 if (mii_status & VELOCITY_DUPLEX_FULL) {
934 CHIPGCR |= CHIPGCR_FCFDX;
935 writeb(CHIPGCR, &regs->CHIPGCR);
936 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
937 if (vptr->rev_id < REV_ID_VT3216_A0)
938 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
939 } else {
940 CHIPGCR &= ~CHIPGCR_FCFDX;
941 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
942 writeb(CHIPGCR, &regs->CHIPGCR);
943 if (vptr->rev_id < REV_ID_VT3216_A0)
944 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
947 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
948 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
949 if ((mii_status & VELOCITY_SPEED_1000) &&
950 (mii_status & VELOCITY_DUPLEX_FULL)) {
951 CTRL1000 |= ADVERTISE_1000FULL;
953 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
955 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
956 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
957 else
958 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
960 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
961 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
962 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
963 if (mii_status & VELOCITY_SPEED_100) {
964 if (mii_status & VELOCITY_DUPLEX_FULL)
965 ANAR |= ADVERTISE_100FULL;
966 else
967 ANAR |= ADVERTISE_100HALF;
968 } else if (mii_status & VELOCITY_SPEED_10) {
969 if (mii_status & VELOCITY_DUPLEX_FULL)
970 ANAR |= ADVERTISE_10FULL;
971 else
972 ANAR |= ADVERTISE_10HALF;
974 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
975 /* enable AUTO-NEGO mode */
976 mii_set_auto_on(vptr);
977 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
979 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
980 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
981 return VELOCITY_LINK_CHANGE;
985 * velocity_print_link_status - link status reporting
986 * @vptr: velocity to report on
988 * Turn the link status of the velocity card into a kernel log
989 * description of the new link state, detailing speed and duplex
990 * status
992 static void velocity_print_link_status(struct velocity_info *vptr)
995 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
996 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
997 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
998 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1000 if (vptr->mii_status & VELOCITY_SPEED_1000)
1001 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1002 else if (vptr->mii_status & VELOCITY_SPEED_100)
1003 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1004 else
1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1007 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1008 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1009 else
1010 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1011 } else {
1012 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1013 switch (vptr->options.spd_dpx) {
1014 case SPD_DPX_1000_FULL:
1015 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1016 break;
1017 case SPD_DPX_100_HALF:
1018 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1019 break;
1020 case SPD_DPX_100_FULL:
1021 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1022 break;
1023 case SPD_DPX_10_HALF:
1024 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1025 break;
1026 case SPD_DPX_10_FULL:
1027 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1028 break;
1029 default:
1030 break;
1036 * enable_flow_control_ability - flow control
1037 * @vptr: veloity to configure
1039 * Set up flow control according to the flow control options
1040 * determined by the eeprom/configuration.
1042 static void enable_flow_control_ability(struct velocity_info *vptr)
1045 struct mac_regs __iomem *regs = vptr->mac_regs;
1047 switch (vptr->options.flow_cntl) {
1049 case FLOW_CNTL_DEFAULT:
1050 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1051 writel(CR0_FDXRFCEN, &regs->CR0Set);
1052 else
1053 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1055 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1056 writel(CR0_FDXTFCEN, &regs->CR0Set);
1057 else
1058 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1059 break;
1061 case FLOW_CNTL_TX:
1062 writel(CR0_FDXTFCEN, &regs->CR0Set);
1063 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1064 break;
1066 case FLOW_CNTL_RX:
1067 writel(CR0_FDXRFCEN, &regs->CR0Set);
1068 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1069 break;
1071 case FLOW_CNTL_TX_RX:
1072 writel(CR0_FDXTFCEN, &regs->CR0Set);
1073 writel(CR0_FDXRFCEN, &regs->CR0Set);
1074 break;
1076 case FLOW_CNTL_DISABLE:
1077 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1078 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1079 break;
1081 default:
1082 break;
1088 * velocity_soft_reset - soft reset
1089 * @vptr: velocity to reset
1091 * Kick off a soft reset of the velocity adapter and then poll
1092 * until the reset sequence has completed before returning.
1094 static int velocity_soft_reset(struct velocity_info *vptr)
1096 struct mac_regs __iomem *regs = vptr->mac_regs;
1097 int i = 0;
1099 writel(CR0_SFRST, &regs->CR0Set);
1101 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1102 udelay(5);
1103 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1104 break;
1107 if (i == W_MAX_TIMEOUT) {
1108 writel(CR0_FORSRST, &regs->CR0Set);
1109 /* FIXME: PCI POSTING */
1110 /* delay 2ms */
1111 mdelay(2);
1113 return 0;
1117 * velocity_set_multi - filter list change callback
1118 * @dev: network device
1120 * Called by the network layer when the filter lists need to change
1121 * for a velocity adapter. Reload the CAMs with the new address
1122 * filter ruleset.
1124 static void velocity_set_multi(struct net_device *dev)
1126 struct velocity_info *vptr = netdev_priv(dev);
1127 struct mac_regs __iomem *regs = vptr->mac_regs;
1128 u8 rx_mode;
1129 int i;
1130 struct netdev_hw_addr *ha;
1132 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1133 writel(0xffffffff, &regs->MARCAM[0]);
1134 writel(0xffffffff, &regs->MARCAM[4]);
1135 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1136 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1137 (dev->flags & IFF_ALLMULTI)) {
1138 writel(0xffffffff, &regs->MARCAM[0]);
1139 writel(0xffffffff, &regs->MARCAM[4]);
1140 rx_mode = (RCR_AM | RCR_AB);
1141 } else {
1142 int offset = MCAM_SIZE - vptr->multicast_limit;
1143 mac_get_cam_mask(regs, vptr->mCAMmask);
1145 i = 0;
1146 netdev_for_each_mc_addr(ha, dev) {
1147 mac_set_cam(regs, i + offset, ha->addr);
1148 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1149 i++;
1152 mac_set_cam_mask(regs, vptr->mCAMmask);
1153 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1155 if (dev->mtu > 1500)
1156 rx_mode |= RCR_AL;
1158 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1163 * MII access , media link mode setting functions
1167 * mii_init - set up MII
1168 * @vptr: velocity adapter
1169 * @mii_status: links tatus
1171 * Set up the PHY for the current link state.
1173 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1175 u16 BMCR;
1177 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1178 case PHYID_CICADA_CS8201:
1180 * Reset to hardware default
1182 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1184 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1185 * off it in NWay-forced half mode for NWay-forced v.s.
1186 * legacy-forced issue.
1188 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1189 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1190 else
1191 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1193 * Turn on Link/Activity LED enable bit for CIS8201
1195 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1196 break;
1197 case PHYID_VT3216_32BIT:
1198 case PHYID_VT3216_64BIT:
1200 * Reset to hardware default
1202 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1204 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1205 * off it in NWay-forced half mode for NWay-forced v.s.
1206 * legacy-forced issue
1208 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1209 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1210 else
1211 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1212 break;
1214 case PHYID_MARVELL_1000:
1215 case PHYID_MARVELL_1000S:
1217 * Assert CRS on Transmit
1219 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1221 * Reset to hardware default
1223 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1224 break;
1225 default:
1228 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1229 if (BMCR & BMCR_ISOLATE) {
1230 BMCR &= ~BMCR_ISOLATE;
1231 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1236 * setup_queue_timers - Setup interrupt timers
1238 * Setup interrupt frequency during suppression (timeout if the frame
1239 * count isn't filled).
1241 static void setup_queue_timers(struct velocity_info *vptr)
1243 /* Only for newer revisions */
1244 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1245 u8 txqueue_timer = 0;
1246 u8 rxqueue_timer = 0;
1248 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1249 VELOCITY_SPEED_100)) {
1250 txqueue_timer = vptr->options.txqueue_timer;
1251 rxqueue_timer = vptr->options.rxqueue_timer;
1254 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1255 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1260 * setup_adaptive_interrupts - Setup interrupt suppression
1262 * @vptr velocity adapter
1264 * The velocity is able to suppress interrupt during high interrupt load.
1265 * This function turns on that feature.
1267 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1269 struct mac_regs __iomem *regs = vptr->mac_regs;
1270 u16 tx_intsup = vptr->options.tx_intsup;
1271 u16 rx_intsup = vptr->options.rx_intsup;
1273 /* Setup default interrupt mask (will be changed below) */
1274 vptr->int_mask = INT_MASK_DEF;
1276 /* Set Tx Interrupt Suppression Threshold */
1277 writeb(CAMCR_PS0, &regs->CAMCR);
1278 if (tx_intsup != 0) {
1279 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1280 ISR_PTX2I | ISR_PTX3I);
1281 writew(tx_intsup, &regs->ISRCTL);
1282 } else
1283 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1285 /* Set Rx Interrupt Suppression Threshold */
1286 writeb(CAMCR_PS1, &regs->CAMCR);
1287 if (rx_intsup != 0) {
1288 vptr->int_mask &= ~ISR_PRXI;
1289 writew(rx_intsup, &regs->ISRCTL);
1290 } else
1291 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1293 /* Select page to interrupt hold timer */
1294 writeb(0, &regs->CAMCR);
1298 * velocity_init_registers - initialise MAC registers
1299 * @vptr: velocity to init
1300 * @type: type of initialisation (hot or cold)
1302 * Initialise the MAC on a reset or on first set up on the
1303 * hardware.
1305 static void velocity_init_registers(struct velocity_info *vptr,
1306 enum velocity_init_type type)
1308 struct mac_regs __iomem *regs = vptr->mac_regs;
1309 int i, mii_status;
1311 mac_wol_reset(regs);
1313 switch (type) {
1314 case VELOCITY_INIT_RESET:
1315 case VELOCITY_INIT_WOL:
1317 netif_stop_queue(vptr->dev);
1320 * Reset RX to prevent RX pointer not on the 4X location
1322 velocity_rx_reset(vptr);
1323 mac_rx_queue_run(regs);
1324 mac_rx_queue_wake(regs);
1326 mii_status = velocity_get_opt_media_mode(vptr);
1327 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1328 velocity_print_link_status(vptr);
1329 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1330 netif_wake_queue(vptr->dev);
1333 enable_flow_control_ability(vptr);
1335 mac_clear_isr(regs);
1336 writel(CR0_STOP, &regs->CR0Clr);
1337 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1338 &regs->CR0Set);
1340 break;
1342 case VELOCITY_INIT_COLD:
1343 default:
1345 * Do reset
1347 velocity_soft_reset(vptr);
1348 mdelay(5);
1350 mac_eeprom_reload(regs);
1351 for (i = 0; i < 6; i++)
1352 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1355 * clear Pre_ACPI bit.
1357 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1358 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1359 mac_set_dma_length(regs, vptr->options.DMA_length);
1361 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1363 * Back off algorithm use original IEEE standard
1365 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1368 * Init CAM filter
1370 velocity_init_cam_filter(vptr);
1373 * Set packet filter: Receive directed and broadcast address
1375 velocity_set_multi(vptr->dev);
1378 * Enable MII auto-polling
1380 enable_mii_autopoll(regs);
1382 setup_adaptive_interrupts(vptr);
1384 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1385 writew(vptr->options.numrx - 1, &regs->RDCSize);
1386 mac_rx_queue_run(regs);
1387 mac_rx_queue_wake(regs);
1389 writew(vptr->options.numtx - 1, &regs->TDCSize);
1391 for (i = 0; i < vptr->tx.numq; i++) {
1392 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1393 mac_tx_queue_run(regs, i);
1396 init_flow_control_register(vptr);
1398 writel(CR0_STOP, &regs->CR0Clr);
1399 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1401 mii_status = velocity_get_opt_media_mode(vptr);
1402 netif_stop_queue(vptr->dev);
1404 mii_init(vptr, mii_status);
1406 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1407 velocity_print_link_status(vptr);
1408 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1409 netif_wake_queue(vptr->dev);
1412 enable_flow_control_ability(vptr);
1413 mac_hw_mibs_init(regs);
1414 mac_write_int_mask(vptr->int_mask, regs);
1415 mac_clear_isr(regs);
1420 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1422 struct mac_regs __iomem *regs = vptr->mac_regs;
1423 int avail, dirty, unusable;
1426 * RD number must be equal to 4X per hardware spec
1427 * (programming guide rev 1.20, p.13)
1429 if (vptr->rx.filled < 4)
1430 return;
1432 wmb();
1434 unusable = vptr->rx.filled & 0x0003;
1435 dirty = vptr->rx.dirty - unusable;
1436 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1437 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1438 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1441 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1442 vptr->rx.filled = unusable;
1446 * velocity_init_dma_rings - set up DMA rings
1447 * @vptr: Velocity to set up
1449 * Allocate PCI mapped DMA rings for the receive and transmit layer
1450 * to use.
1452 static int velocity_init_dma_rings(struct velocity_info *vptr)
1454 struct velocity_opt *opt = &vptr->options;
1455 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1456 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1457 struct pci_dev *pdev = vptr->pdev;
1458 dma_addr_t pool_dma;
1459 void *pool;
1460 unsigned int i;
1463 * Allocate all RD/TD rings a single pool.
1465 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1466 * alignment
1468 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1469 rx_ring_size, &pool_dma);
1470 if (!pool) {
1471 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1472 vptr->dev->name);
1473 return -ENOMEM;
1476 vptr->rx.ring = pool;
1477 vptr->rx.pool_dma = pool_dma;
1479 pool += rx_ring_size;
1480 pool_dma += rx_ring_size;
1482 for (i = 0; i < vptr->tx.numq; i++) {
1483 vptr->tx.rings[i] = pool;
1484 vptr->tx.pool_dma[i] = pool_dma;
1485 pool += tx_ring_size;
1486 pool_dma += tx_ring_size;
1489 return 0;
1492 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1494 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1498 * velocity_alloc_rx_buf - allocate aligned receive buffer
1499 * @vptr: velocity
1500 * @idx: ring index
1502 * Allocate a new full sized buffer for the reception of a frame and
1503 * map it into PCI space for the hardware to use. The hardware
1504 * requires *64* byte alignment of the buffer which makes life
1505 * less fun than would be ideal.
1507 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1509 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1510 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1512 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1513 if (rd_info->skb == NULL)
1514 return -ENOMEM;
1517 * Do the gymnastics to get the buffer head for data at
1518 * 64byte alignment.
1520 skb_reserve(rd_info->skb,
1521 64 - ((unsigned long) rd_info->skb->data & 63));
1522 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1523 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1526 * Fill in the descriptor to match
1529 *((u32 *) & (rd->rdesc0)) = 0;
1530 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1531 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1532 rd->pa_high = 0;
1533 return 0;
1537 static int velocity_rx_refill(struct velocity_info *vptr)
1539 int dirty = vptr->rx.dirty, done = 0;
1541 do {
1542 struct rx_desc *rd = vptr->rx.ring + dirty;
1544 /* Fine for an all zero Rx desc at init time as well */
1545 if (rd->rdesc0.len & OWNED_BY_NIC)
1546 break;
1548 if (!vptr->rx.info[dirty].skb) {
1549 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1550 break;
1552 done++;
1553 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1554 } while (dirty != vptr->rx.curr);
1556 if (done) {
1557 vptr->rx.dirty = dirty;
1558 vptr->rx.filled += done;
1561 return done;
1565 * velocity_free_rd_ring - free receive ring
1566 * @vptr: velocity to clean up
1568 * Free the receive buffers for each ring slot and any
1569 * attached socket buffers that need to go away.
1571 static void velocity_free_rd_ring(struct velocity_info *vptr)
1573 int i;
1575 if (vptr->rx.info == NULL)
1576 return;
1578 for (i = 0; i < vptr->options.numrx; i++) {
1579 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1580 struct rx_desc *rd = vptr->rx.ring + i;
1582 memset(rd, 0, sizeof(*rd));
1584 if (!rd_info->skb)
1585 continue;
1586 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1587 PCI_DMA_FROMDEVICE);
1588 rd_info->skb_dma = 0;
1590 dev_kfree_skb(rd_info->skb);
1591 rd_info->skb = NULL;
1594 kfree(vptr->rx.info);
1595 vptr->rx.info = NULL;
1599 * velocity_init_rd_ring - set up receive ring
1600 * @vptr: velocity to configure
1602 * Allocate and set up the receive buffers for each ring slot and
1603 * assign them to the network adapter.
1605 static int velocity_init_rd_ring(struct velocity_info *vptr)
1607 int ret = -ENOMEM;
1609 vptr->rx.info = kcalloc(vptr->options.numrx,
1610 sizeof(struct velocity_rd_info), GFP_KERNEL);
1611 if (!vptr->rx.info)
1612 goto out;
1614 velocity_init_rx_ring_indexes(vptr);
1616 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1617 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1618 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1619 velocity_free_rd_ring(vptr);
1620 goto out;
1623 ret = 0;
1624 out:
1625 return ret;
1629 * velocity_init_td_ring - set up transmit ring
1630 * @vptr: velocity
1632 * Set up the transmit ring and chain the ring pointers together.
1633 * Returns zero on success or a negative posix errno code for
1634 * failure.
1636 static int velocity_init_td_ring(struct velocity_info *vptr)
1638 int j;
1640 /* Init the TD ring entries */
1641 for (j = 0; j < vptr->tx.numq; j++) {
1643 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1644 sizeof(struct velocity_td_info),
1645 GFP_KERNEL);
1646 if (!vptr->tx.infos[j]) {
1647 while (--j >= 0)
1648 kfree(vptr->tx.infos[j]);
1649 return -ENOMEM;
1652 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1654 return 0;
1658 * velocity_free_dma_rings - free PCI ring pointers
1659 * @vptr: Velocity to free from
1661 * Clean up the PCI ring buffers allocated to this velocity.
1663 static void velocity_free_dma_rings(struct velocity_info *vptr)
1665 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1666 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1668 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1671 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1673 int ret;
1675 velocity_set_rxbufsize(vptr, mtu);
1677 ret = velocity_init_dma_rings(vptr);
1678 if (ret < 0)
1679 goto out;
1681 ret = velocity_init_rd_ring(vptr);
1682 if (ret < 0)
1683 goto err_free_dma_rings_0;
1685 ret = velocity_init_td_ring(vptr);
1686 if (ret < 0)
1687 goto err_free_rd_ring_1;
1688 out:
1689 return ret;
1691 err_free_rd_ring_1:
1692 velocity_free_rd_ring(vptr);
1693 err_free_dma_rings_0:
1694 velocity_free_dma_rings(vptr);
1695 goto out;
1699 * velocity_free_tx_buf - free transmit buffer
1700 * @vptr: velocity
1701 * @tdinfo: buffer
1703 * Release an transmit buffer. If the buffer was preallocated then
1704 * recycle it, if not then unmap the buffer.
1706 static void velocity_free_tx_buf(struct velocity_info *vptr,
1707 struct velocity_td_info *tdinfo, struct tx_desc *td)
1709 struct sk_buff *skb = tdinfo->skb;
1712 * Don't unmap the pre-allocated tx_bufs
1714 if (tdinfo->skb_dma) {
1715 int i;
1717 for (i = 0; i < tdinfo->nskb_dma; i++) {
1718 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1720 /* For scatter-gather */
1721 if (skb_shinfo(skb)->nr_frags > 0)
1722 pktlen = max_t(size_t, pktlen,
1723 td->td_buf[i].size & ~TD_QUEUE);
1725 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1726 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1729 dev_kfree_skb_irq(skb);
1730 tdinfo->skb = NULL;
1734 * FIXME: could we merge this with velocity_free_tx_buf ?
1736 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1737 int q, int n)
1739 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1740 int i;
1742 if (td_info == NULL)
1743 return;
1745 if (td_info->skb) {
1746 for (i = 0; i < td_info->nskb_dma; i++) {
1747 if (td_info->skb_dma[i]) {
1748 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1749 td_info->skb->len, PCI_DMA_TODEVICE);
1750 td_info->skb_dma[i] = 0;
1753 dev_kfree_skb(td_info->skb);
1754 td_info->skb = NULL;
1759 * velocity_free_td_ring - free td ring
1760 * @vptr: velocity
1762 * Free up the transmit ring for this particular velocity adapter.
1763 * We free the ring contents but not the ring itself.
1765 static void velocity_free_td_ring(struct velocity_info *vptr)
1767 int i, j;
1769 for (j = 0; j < vptr->tx.numq; j++) {
1770 if (vptr->tx.infos[j] == NULL)
1771 continue;
1772 for (i = 0; i < vptr->options.numtx; i++)
1773 velocity_free_td_ring_entry(vptr, j, i);
1775 kfree(vptr->tx.infos[j]);
1776 vptr->tx.infos[j] = NULL;
1780 static void velocity_free_rings(struct velocity_info *vptr)
1782 velocity_free_td_ring(vptr);
1783 velocity_free_rd_ring(vptr);
1784 velocity_free_dma_rings(vptr);
1788 * velocity_error - handle error from controller
1789 * @vptr: velocity
1790 * @status: card status
1792 * Process an error report from the hardware and attempt to recover
1793 * the card itself. At the moment we cannot recover from some
1794 * theoretically impossible errors but this could be fixed using
1795 * the pci_device_failed logic to bounce the hardware
1798 static void velocity_error(struct velocity_info *vptr, int status)
1801 if (status & ISR_TXSTLI) {
1802 struct mac_regs __iomem *regs = vptr->mac_regs;
1804 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1805 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1806 writew(TRDCSR_RUN, &regs->TDCSRClr);
1807 netif_stop_queue(vptr->dev);
1809 /* FIXME: port over the pci_device_failed code and use it
1810 here */
1813 if (status & ISR_SRCI) {
1814 struct mac_regs __iomem *regs = vptr->mac_regs;
1815 int linked;
1817 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1818 vptr->mii_status = check_connection_type(regs);
1821 * If it is a 3119, disable frame bursting in
1822 * halfduplex mode and enable it in fullduplex
1823 * mode
1825 if (vptr->rev_id < REV_ID_VT3216_A0) {
1826 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1827 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1828 else
1829 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1832 * Only enable CD heart beat counter in 10HD mode
1834 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1835 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1836 else
1837 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1839 setup_queue_timers(vptr);
1842 * Get link status from PHYSR0
1844 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1846 if (linked) {
1847 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1848 netif_carrier_on(vptr->dev);
1849 } else {
1850 vptr->mii_status |= VELOCITY_LINK_FAIL;
1851 netif_carrier_off(vptr->dev);
1854 velocity_print_link_status(vptr);
1855 enable_flow_control_ability(vptr);
1858 * Re-enable auto-polling because SRCI will disable
1859 * auto-polling
1862 enable_mii_autopoll(regs);
1864 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1865 netif_stop_queue(vptr->dev);
1866 else
1867 netif_wake_queue(vptr->dev);
1870 if (status & ISR_MIBFI)
1871 velocity_update_hw_mibs(vptr);
1872 if (status & ISR_LSTEI)
1873 mac_rx_queue_wake(vptr->mac_regs);
1877 * tx_srv - transmit interrupt service
1878 * @vptr; Velocity
1880 * Scan the queues looking for transmitted packets that
1881 * we can complete and clean up. Update any statistics as
1882 * necessary/
1884 static int velocity_tx_srv(struct velocity_info *vptr)
1886 struct tx_desc *td;
1887 int qnum;
1888 int full = 0;
1889 int idx;
1890 int works = 0;
1891 struct velocity_td_info *tdinfo;
1892 struct net_device_stats *stats = &vptr->dev->stats;
1894 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1895 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1896 idx = (idx + 1) % vptr->options.numtx) {
1899 * Get Tx Descriptor
1901 td = &(vptr->tx.rings[qnum][idx]);
1902 tdinfo = &(vptr->tx.infos[qnum][idx]);
1904 if (td->tdesc0.len & OWNED_BY_NIC)
1905 break;
1907 if ((works++ > 15))
1908 break;
1910 if (td->tdesc0.TSR & TSR0_TERR) {
1911 stats->tx_errors++;
1912 stats->tx_dropped++;
1913 if (td->tdesc0.TSR & TSR0_CDH)
1914 stats->tx_heartbeat_errors++;
1915 if (td->tdesc0.TSR & TSR0_CRS)
1916 stats->tx_carrier_errors++;
1917 if (td->tdesc0.TSR & TSR0_ABT)
1918 stats->tx_aborted_errors++;
1919 if (td->tdesc0.TSR & TSR0_OWC)
1920 stats->tx_window_errors++;
1921 } else {
1922 stats->tx_packets++;
1923 stats->tx_bytes += tdinfo->skb->len;
1925 velocity_free_tx_buf(vptr, tdinfo, td);
1926 vptr->tx.used[qnum]--;
1928 vptr->tx.tail[qnum] = idx;
1930 if (AVAIL_TD(vptr, qnum) < 1)
1931 full = 1;
1934 * Look to see if we should kick the transmit network
1935 * layer for more work.
1937 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1938 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1939 netif_wake_queue(vptr->dev);
1941 return works;
1945 * velocity_rx_csum - checksum process
1946 * @rd: receive packet descriptor
1947 * @skb: network layer packet buffer
1949 * Process the status bits for the received packet and determine
1950 * if the checksum was computed and verified by the hardware
1952 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1954 skb_checksum_none_assert(skb);
1956 if (rd->rdesc1.CSM & CSM_IPKT) {
1957 if (rd->rdesc1.CSM & CSM_IPOK) {
1958 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1959 (rd->rdesc1.CSM & CSM_UDPKT)) {
1960 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1961 return;
1963 skb->ip_summed = CHECKSUM_UNNECESSARY;
1969 * velocity_rx_copy - in place Rx copy for small packets
1970 * @rx_skb: network layer packet buffer candidate
1971 * @pkt_size: received data size
1972 * @rd: receive packet descriptor
1973 * @dev: network device
1975 * Replace the current skb that is scheduled for Rx processing by a
1976 * shorter, immediately allocated skb, if the received packet is small
1977 * enough. This function returns a negative value if the received
1978 * packet is too big or if memory is exhausted.
1980 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1981 struct velocity_info *vptr)
1983 int ret = -1;
1984 if (pkt_size < rx_copybreak) {
1985 struct sk_buff *new_skb;
1987 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1988 if (new_skb) {
1989 new_skb->ip_summed = rx_skb[0]->ip_summed;
1990 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1991 *rx_skb = new_skb;
1992 ret = 0;
1996 return ret;
2000 * velocity_iph_realign - IP header alignment
2001 * @vptr: velocity we are handling
2002 * @skb: network layer packet buffer
2003 * @pkt_size: received data size
2005 * Align IP header on a 2 bytes boundary. This behavior can be
2006 * configured by the user.
2008 static inline void velocity_iph_realign(struct velocity_info *vptr,
2009 struct sk_buff *skb, int pkt_size)
2011 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2012 memmove(skb->data + 2, skb->data, pkt_size);
2013 skb_reserve(skb, 2);
2018 * velocity_receive_frame - received packet processor
2019 * @vptr: velocity we are handling
2020 * @idx: ring index
2022 * A packet has arrived. We process the packet and if appropriate
2023 * pass the frame up the network stack
2025 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2027 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2028 struct net_device_stats *stats = &vptr->dev->stats;
2029 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2030 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2031 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2032 struct sk_buff *skb;
2034 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2035 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2036 stats->rx_length_errors++;
2037 return -EINVAL;
2040 if (rd->rdesc0.RSR & RSR_MAR)
2041 stats->multicast++;
2043 skb = rd_info->skb;
2045 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2046 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2049 * Drop frame not meeting IEEE 802.3
2052 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2053 if (rd->rdesc0.RSR & RSR_RL) {
2054 stats->rx_length_errors++;
2055 return -EINVAL;
2059 pci_action = pci_dma_sync_single_for_device;
2061 velocity_rx_csum(rd, skb);
2063 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2064 velocity_iph_realign(vptr, skb, pkt_len);
2065 pci_action = pci_unmap_single;
2066 rd_info->skb = NULL;
2069 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2070 PCI_DMA_FROMDEVICE);
2072 skb_put(skb, pkt_len - 4);
2073 skb->protocol = eth_type_trans(skb, vptr->dev);
2075 if (rd->rdesc0.RSR & RSR_DETAG) {
2076 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2078 __vlan_hwaccel_put_tag(skb, vid);
2080 netif_rx(skb);
2082 stats->rx_bytes += pkt_len;
2083 stats->rx_packets++;
2085 return 0;
2089 * velocity_rx_srv - service RX interrupt
2090 * @vptr: velocity
2092 * Walk the receive ring of the velocity adapter and remove
2093 * any received packets from the receive queue. Hand the ring
2094 * slots back to the adapter for reuse.
2096 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2098 struct net_device_stats *stats = &vptr->dev->stats;
2099 int rd_curr = vptr->rx.curr;
2100 int works = 0;
2102 while (works < budget_left) {
2103 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2105 if (!vptr->rx.info[rd_curr].skb)
2106 break;
2108 if (rd->rdesc0.len & OWNED_BY_NIC)
2109 break;
2111 rmb();
2114 * Don't drop CE or RL error frame although RXOK is off
2116 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2117 if (velocity_receive_frame(vptr, rd_curr) < 0)
2118 stats->rx_dropped++;
2119 } else {
2120 if (rd->rdesc0.RSR & RSR_CRC)
2121 stats->rx_crc_errors++;
2122 if (rd->rdesc0.RSR & RSR_FAE)
2123 stats->rx_frame_errors++;
2125 stats->rx_dropped++;
2128 rd->size |= RX_INTEN;
2130 rd_curr++;
2131 if (rd_curr >= vptr->options.numrx)
2132 rd_curr = 0;
2133 works++;
2136 vptr->rx.curr = rd_curr;
2138 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2139 velocity_give_many_rx_descs(vptr);
2141 VAR_USED(stats);
2142 return works;
2145 static int velocity_poll(struct napi_struct *napi, int budget)
2147 struct velocity_info *vptr = container_of(napi,
2148 struct velocity_info, napi);
2149 unsigned int rx_done;
2150 unsigned long flags;
2152 spin_lock_irqsave(&vptr->lock, flags);
2154 * Do rx and tx twice for performance (taken from the VIA
2155 * out-of-tree driver).
2157 rx_done = velocity_rx_srv(vptr, budget / 2);
2158 velocity_tx_srv(vptr);
2159 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2160 velocity_tx_srv(vptr);
2162 /* If budget not fully consumed, exit the polling mode */
2163 if (rx_done < budget) {
2164 napi_complete(napi);
2165 mac_enable_int(vptr->mac_regs);
2167 spin_unlock_irqrestore(&vptr->lock, flags);
2169 return rx_done;
2173 * velocity_intr - interrupt callback
2174 * @irq: interrupt number
2175 * @dev_instance: interrupting device
2177 * Called whenever an interrupt is generated by the velocity
2178 * adapter IRQ line. We may not be the source of the interrupt
2179 * and need to identify initially if we are, and if not exit as
2180 * efficiently as possible.
2182 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2184 struct net_device *dev = dev_instance;
2185 struct velocity_info *vptr = netdev_priv(dev);
2186 u32 isr_status;
2188 spin_lock(&vptr->lock);
2189 isr_status = mac_read_isr(vptr->mac_regs);
2191 /* Not us ? */
2192 if (isr_status == 0) {
2193 spin_unlock(&vptr->lock);
2194 return IRQ_NONE;
2197 /* Ack the interrupt */
2198 mac_write_isr(vptr->mac_regs, isr_status);
2200 if (likely(napi_schedule_prep(&vptr->napi))) {
2201 mac_disable_int(vptr->mac_regs);
2202 __napi_schedule(&vptr->napi);
2205 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2206 velocity_error(vptr, isr_status);
2208 spin_unlock(&vptr->lock);
2210 return IRQ_HANDLED;
2214 * velocity_open - interface activation callback
2215 * @dev: network layer device to open
2217 * Called when the network layer brings the interface up. Returns
2218 * a negative posix error code on failure, or zero on success.
2220 * All the ring allocation and set up is done on open for this
2221 * adapter to minimise memory usage when inactive
2223 static int velocity_open(struct net_device *dev)
2225 struct velocity_info *vptr = netdev_priv(dev);
2226 int ret;
2228 ret = velocity_init_rings(vptr, dev->mtu);
2229 if (ret < 0)
2230 goto out;
2232 /* Ensure chip is running */
2233 pci_set_power_state(vptr->pdev, PCI_D0);
2235 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2237 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2238 dev->name, dev);
2239 if (ret < 0) {
2240 /* Power down the chip */
2241 pci_set_power_state(vptr->pdev, PCI_D3hot);
2242 velocity_free_rings(vptr);
2243 goto out;
2246 velocity_give_many_rx_descs(vptr);
2248 mac_enable_int(vptr->mac_regs);
2249 netif_start_queue(dev);
2250 napi_enable(&vptr->napi);
2251 vptr->flags |= VELOCITY_FLAGS_OPENED;
2252 out:
2253 return ret;
2257 * velocity_shutdown - shut down the chip
2258 * @vptr: velocity to deactivate
2260 * Shuts down the internal operations of the velocity and
2261 * disables interrupts, autopolling, transmit and receive
2263 static void velocity_shutdown(struct velocity_info *vptr)
2265 struct mac_regs __iomem *regs = vptr->mac_regs;
2266 mac_disable_int(regs);
2267 writel(CR0_STOP, &regs->CR0Set);
2268 writew(0xFFFF, &regs->TDCSRClr);
2269 writeb(0xFF, &regs->RDCSRClr);
2270 safe_disable_mii_autopoll(regs);
2271 mac_clear_isr(regs);
2275 * velocity_change_mtu - MTU change callback
2276 * @dev: network device
2277 * @new_mtu: desired MTU
2279 * Handle requests from the networking layer for MTU change on
2280 * this interface. It gets called on a change by the network layer.
2281 * Return zero for success or negative posix error code.
2283 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2285 struct velocity_info *vptr = netdev_priv(dev);
2286 int ret = 0;
2288 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2289 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2290 vptr->dev->name);
2291 ret = -EINVAL;
2292 goto out_0;
2295 if (!netif_running(dev)) {
2296 dev->mtu = new_mtu;
2297 goto out_0;
2300 if (dev->mtu != new_mtu) {
2301 struct velocity_info *tmp_vptr;
2302 unsigned long flags;
2303 struct rx_info rx;
2304 struct tx_info tx;
2306 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2307 if (!tmp_vptr) {
2308 ret = -ENOMEM;
2309 goto out_0;
2312 tmp_vptr->dev = dev;
2313 tmp_vptr->pdev = vptr->pdev;
2314 tmp_vptr->options = vptr->options;
2315 tmp_vptr->tx.numq = vptr->tx.numq;
2317 ret = velocity_init_rings(tmp_vptr, new_mtu);
2318 if (ret < 0)
2319 goto out_free_tmp_vptr_1;
2321 spin_lock_irqsave(&vptr->lock, flags);
2323 netif_stop_queue(dev);
2324 velocity_shutdown(vptr);
2326 rx = vptr->rx;
2327 tx = vptr->tx;
2329 vptr->rx = tmp_vptr->rx;
2330 vptr->tx = tmp_vptr->tx;
2332 tmp_vptr->rx = rx;
2333 tmp_vptr->tx = tx;
2335 dev->mtu = new_mtu;
2337 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2339 velocity_give_many_rx_descs(vptr);
2341 mac_enable_int(vptr->mac_regs);
2342 netif_start_queue(dev);
2344 spin_unlock_irqrestore(&vptr->lock, flags);
2346 velocity_free_rings(tmp_vptr);
2348 out_free_tmp_vptr_1:
2349 kfree(tmp_vptr);
2351 out_0:
2352 return ret;
2356 * velocity_mii_ioctl - MII ioctl handler
2357 * @dev: network device
2358 * @ifr: the ifreq block for the ioctl
2359 * @cmd: the command
2361 * Process MII requests made via ioctl from the network layer. These
2362 * are used by tools like kudzu to interrogate the link state of the
2363 * hardware
2365 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2367 struct velocity_info *vptr = netdev_priv(dev);
2368 struct mac_regs __iomem *regs = vptr->mac_regs;
2369 unsigned long flags;
2370 struct mii_ioctl_data *miidata = if_mii(ifr);
2371 int err;
2373 switch (cmd) {
2374 case SIOCGMIIPHY:
2375 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2376 break;
2377 case SIOCGMIIREG:
2378 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2379 return -ETIMEDOUT;
2380 break;
2381 case SIOCSMIIREG:
2382 spin_lock_irqsave(&vptr->lock, flags);
2383 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2384 spin_unlock_irqrestore(&vptr->lock, flags);
2385 check_connection_type(vptr->mac_regs);
2386 if (err)
2387 return err;
2388 break;
2389 default:
2390 return -EOPNOTSUPP;
2392 return 0;
2396 * velocity_ioctl - ioctl entry point
2397 * @dev: network device
2398 * @rq: interface request ioctl
2399 * @cmd: command code
2401 * Called when the user issues an ioctl request to the network
2402 * device in question. The velocity interface supports MII.
2404 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2406 struct velocity_info *vptr = netdev_priv(dev);
2407 int ret;
2409 /* If we are asked for information and the device is power
2410 saving then we need to bring the device back up to talk to it */
2412 if (!netif_running(dev))
2413 pci_set_power_state(vptr->pdev, PCI_D0);
2415 switch (cmd) {
2416 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2417 case SIOCGMIIREG: /* Read MII PHY register. */
2418 case SIOCSMIIREG: /* Write to MII PHY register. */
2419 ret = velocity_mii_ioctl(dev, rq, cmd);
2420 break;
2422 default:
2423 ret = -EOPNOTSUPP;
2425 if (!netif_running(dev))
2426 pci_set_power_state(vptr->pdev, PCI_D3hot);
2429 return ret;
2433 * velocity_get_status - statistics callback
2434 * @dev: network device
2436 * Callback from the network layer to allow driver statistics
2437 * to be resynchronized with hardware collected state. In the
2438 * case of the velocity we need to pull the MIB counters from
2439 * the hardware into the counters before letting the network
2440 * layer display them.
2442 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2444 struct velocity_info *vptr = netdev_priv(dev);
2446 /* If the hardware is down, don't touch MII */
2447 if (!netif_running(dev))
2448 return &dev->stats;
2450 spin_lock_irq(&vptr->lock);
2451 velocity_update_hw_mibs(vptr);
2452 spin_unlock_irq(&vptr->lock);
2454 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2455 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2456 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2458 // unsigned long rx_dropped; /* no space in linux buffers */
2459 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2460 /* detailed rx_errors: */
2461 // unsigned long rx_length_errors;
2462 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2463 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2464 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2465 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2466 // unsigned long rx_missed_errors; /* receiver missed packet */
2468 /* detailed tx_errors */
2469 // unsigned long tx_fifo_errors;
2471 return &dev->stats;
2475 * velocity_close - close adapter callback
2476 * @dev: network device
2478 * Callback from the network layer when the velocity is being
2479 * deactivated by the network layer
2481 static int velocity_close(struct net_device *dev)
2483 struct velocity_info *vptr = netdev_priv(dev);
2485 napi_disable(&vptr->napi);
2486 netif_stop_queue(dev);
2487 velocity_shutdown(vptr);
2489 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2490 velocity_get_ip(vptr);
2491 if (dev->irq != 0)
2492 free_irq(dev->irq, dev);
2494 velocity_free_rings(vptr);
2496 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2497 return 0;
2501 * velocity_xmit - transmit packet callback
2502 * @skb: buffer to transmit
2503 * @dev: network device
2505 * Called by the networ layer to request a packet is queued to
2506 * the velocity. Returns zero on success.
2508 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2509 struct net_device *dev)
2511 struct velocity_info *vptr = netdev_priv(dev);
2512 int qnum = 0;
2513 struct tx_desc *td_ptr;
2514 struct velocity_td_info *tdinfo;
2515 unsigned long flags;
2516 int pktlen;
2517 int index, prev;
2518 int i = 0;
2520 if (skb_padto(skb, ETH_ZLEN))
2521 goto out;
2523 /* The hardware can handle at most 7 memory segments, so merge
2524 * the skb if there are more */
2525 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2526 kfree_skb(skb);
2527 return NETDEV_TX_OK;
2530 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2531 max_t(unsigned int, skb->len, ETH_ZLEN) :
2532 skb_headlen(skb);
2534 spin_lock_irqsave(&vptr->lock, flags);
2536 index = vptr->tx.curr[qnum];
2537 td_ptr = &(vptr->tx.rings[qnum][index]);
2538 tdinfo = &(vptr->tx.infos[qnum][index]);
2540 td_ptr->tdesc1.TCR = TCR0_TIC;
2541 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2544 * Map the linear network buffer into PCI space and
2545 * add it to the transmit ring.
2547 tdinfo->skb = skb;
2548 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2549 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2550 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2551 td_ptr->td_buf[0].pa_high = 0;
2552 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2554 /* Handle fragments */
2555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2556 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2558 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2559 frag, 0,
2560 skb_frag_size(frag),
2561 DMA_TO_DEVICE);
2563 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2564 td_ptr->td_buf[i + 1].pa_high = 0;
2565 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2567 tdinfo->nskb_dma = i + 1;
2569 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2571 if (vlan_tx_tag_present(skb)) {
2572 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2573 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2577 * Handle hardware checksum
2579 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2580 const struct iphdr *ip = ip_hdr(skb);
2581 if (ip->protocol == IPPROTO_TCP)
2582 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2583 else if (ip->protocol == IPPROTO_UDP)
2584 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2585 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2588 prev = index - 1;
2589 if (prev < 0)
2590 prev = vptr->options.numtx - 1;
2591 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2592 vptr->tx.used[qnum]++;
2593 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2595 if (AVAIL_TD(vptr, qnum) < 1)
2596 netif_stop_queue(dev);
2598 td_ptr = &(vptr->tx.rings[qnum][prev]);
2599 td_ptr->td_buf[0].size |= TD_QUEUE;
2600 mac_tx_queue_wake(vptr->mac_regs, qnum);
2602 spin_unlock_irqrestore(&vptr->lock, flags);
2603 out:
2604 return NETDEV_TX_OK;
2607 static const struct net_device_ops velocity_netdev_ops = {
2608 .ndo_open = velocity_open,
2609 .ndo_stop = velocity_close,
2610 .ndo_start_xmit = velocity_xmit,
2611 .ndo_get_stats = velocity_get_stats,
2612 .ndo_validate_addr = eth_validate_addr,
2613 .ndo_set_mac_address = eth_mac_addr,
2614 .ndo_set_rx_mode = velocity_set_multi,
2615 .ndo_change_mtu = velocity_change_mtu,
2616 .ndo_do_ioctl = velocity_ioctl,
2617 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2618 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2622 * velocity_init_info - init private data
2623 * @pdev: PCI device
2624 * @vptr: Velocity info
2625 * @info: Board type
2627 * Set up the initial velocity_info struct for the device that has been
2628 * discovered.
2630 static void __devinit velocity_init_info(struct pci_dev *pdev,
2631 struct velocity_info *vptr,
2632 const struct velocity_info_tbl *info)
2634 memset(vptr, 0, sizeof(struct velocity_info));
2636 vptr->pdev = pdev;
2637 vptr->chip_id = info->chip_id;
2638 vptr->tx.numq = info->txqueue;
2639 vptr->multicast_limit = MCAM_SIZE;
2640 spin_lock_init(&vptr->lock);
2644 * velocity_get_pci_info - retrieve PCI info for device
2645 * @vptr: velocity device
2646 * @pdev: PCI device it matches
2648 * Retrieve the PCI configuration space data that interests us from
2649 * the kernel PCI layer
2651 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2653 vptr->rev_id = pdev->revision;
2655 pci_set_master(pdev);
2657 vptr->ioaddr = pci_resource_start(pdev, 0);
2658 vptr->memaddr = pci_resource_start(pdev, 1);
2660 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2661 dev_err(&pdev->dev,
2662 "region #0 is not an I/O resource, aborting.\n");
2663 return -EINVAL;
2666 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2667 dev_err(&pdev->dev,
2668 "region #1 is an I/O resource, aborting.\n");
2669 return -EINVAL;
2672 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2673 dev_err(&pdev->dev, "region #1 is too small.\n");
2674 return -EINVAL;
2676 vptr->pdev = pdev;
2678 return 0;
2682 * velocity_print_info - per driver data
2683 * @vptr: velocity
2685 * Print per driver data as the kernel driver finds Velocity
2686 * hardware
2688 static void __devinit velocity_print_info(struct velocity_info *vptr)
2690 struct net_device *dev = vptr->dev;
2692 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2693 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2694 dev->name, dev->dev_addr);
2697 static u32 velocity_get_link(struct net_device *dev)
2699 struct velocity_info *vptr = netdev_priv(dev);
2700 struct mac_regs __iomem *regs = vptr->mac_regs;
2701 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2705 * velocity_found1 - set up discovered velocity card
2706 * @pdev: PCI device
2707 * @ent: PCI device table entry that matched
2709 * Configure a discovered adapter from scratch. Return a negative
2710 * errno error code on failure paths.
2712 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2714 static int first = 1;
2715 struct net_device *dev;
2716 int i;
2717 const char *drv_string;
2718 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2719 struct velocity_info *vptr;
2720 struct mac_regs __iomem *regs;
2721 int ret = -ENOMEM;
2723 /* FIXME: this driver, like almost all other ethernet drivers,
2724 * can support more than MAX_UNITS.
2726 if (velocity_nics >= MAX_UNITS) {
2727 dev_notice(&pdev->dev, "already found %d NICs.\n",
2728 velocity_nics);
2729 return -ENODEV;
2732 dev = alloc_etherdev(sizeof(struct velocity_info));
2733 if (!dev) {
2734 dev_err(&pdev->dev, "allocate net device failed.\n");
2735 goto out;
2738 /* Chain it all together */
2740 SET_NETDEV_DEV(dev, &pdev->dev);
2741 vptr = netdev_priv(dev);
2744 if (first) {
2745 printk(KERN_INFO "%s Ver. %s\n",
2746 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2747 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2748 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2749 first = 0;
2752 velocity_init_info(pdev, vptr, info);
2754 vptr->dev = dev;
2756 ret = pci_enable_device(pdev);
2757 if (ret < 0)
2758 goto err_free_dev;
2760 dev->irq = pdev->irq;
2762 ret = velocity_get_pci_info(vptr, pdev);
2763 if (ret < 0) {
2764 /* error message already printed */
2765 goto err_disable;
2768 ret = pci_request_regions(pdev, VELOCITY_NAME);
2769 if (ret < 0) {
2770 dev_err(&pdev->dev, "No PCI resources.\n");
2771 goto err_disable;
2774 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2775 if (regs == NULL) {
2776 ret = -EIO;
2777 goto err_release_res;
2780 vptr->mac_regs = regs;
2782 mac_wol_reset(regs);
2784 dev->base_addr = vptr->ioaddr;
2786 for (i = 0; i < 6; i++)
2787 dev->dev_addr[i] = readb(&regs->PAR[i]);
2790 drv_string = dev_driver_string(&pdev->dev);
2792 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2795 * Mask out the options cannot be set to the chip
2798 vptr->options.flags &= info->flags;
2801 * Enable the chip specified capbilities
2804 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2806 vptr->wol_opts = vptr->options.wol_opts;
2807 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2809 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2811 dev->irq = pdev->irq;
2812 dev->netdev_ops = &velocity_netdev_ops;
2813 dev->ethtool_ops = &velocity_ethtool_ops;
2814 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2816 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2817 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2818 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2820 ret = register_netdev(dev);
2821 if (ret < 0)
2822 goto err_iounmap;
2824 if (!velocity_get_link(dev)) {
2825 netif_carrier_off(dev);
2826 vptr->mii_status |= VELOCITY_LINK_FAIL;
2829 velocity_print_info(vptr);
2830 pci_set_drvdata(pdev, dev);
2832 /* and leave the chip powered down */
2834 pci_set_power_state(pdev, PCI_D3hot);
2835 velocity_nics++;
2836 out:
2837 return ret;
2839 err_iounmap:
2840 iounmap(regs);
2841 err_release_res:
2842 pci_release_regions(pdev);
2843 err_disable:
2844 pci_disable_device(pdev);
2845 err_free_dev:
2846 free_netdev(dev);
2847 goto out;
2850 #ifdef CONFIG_PM
2852 * wol_calc_crc - WOL CRC
2853 * @pattern: data pattern
2854 * @mask_pattern: mask
2856 * Compute the wake on lan crc hashes for the packet header
2857 * we are interested in.
2859 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2861 u16 crc = 0xFFFF;
2862 u8 mask;
2863 int i, j;
2865 for (i = 0; i < size; i++) {
2866 mask = mask_pattern[i];
2868 /* Skip this loop if the mask equals to zero */
2869 if (mask == 0x00)
2870 continue;
2872 for (j = 0; j < 8; j++) {
2873 if ((mask & 0x01) == 0) {
2874 mask >>= 1;
2875 continue;
2877 mask >>= 1;
2878 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2881 /* Finally, invert the result once to get the correct data */
2882 crc = ~crc;
2883 return bitrev32(crc) >> 16;
2887 * velocity_set_wol - set up for wake on lan
2888 * @vptr: velocity to set WOL status on
2890 * Set a card up for wake on lan either by unicast or by
2891 * ARP packet.
2893 * FIXME: check static buffer is safe here
2895 static int velocity_set_wol(struct velocity_info *vptr)
2897 struct mac_regs __iomem *regs = vptr->mac_regs;
2898 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2899 static u8 buf[256];
2900 int i;
2902 static u32 mask_pattern[2][4] = {
2903 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2904 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2907 writew(0xFFFF, &regs->WOLCRClr);
2908 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2909 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2912 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2913 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2916 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2917 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2919 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2920 struct arp_packet *arp = (struct arp_packet *) buf;
2921 u16 crc;
2922 memset(buf, 0, sizeof(struct arp_packet) + 7);
2924 for (i = 0; i < 4; i++)
2925 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2927 arp->type = htons(ETH_P_ARP);
2928 arp->ar_op = htons(1);
2930 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2932 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2933 (u8 *) & mask_pattern[0][0]);
2935 writew(crc, &regs->PatternCRC[0]);
2936 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2939 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2940 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2942 writew(0x0FFF, &regs->WOLSRClr);
2944 if (spd_dpx == SPD_DPX_1000_FULL)
2945 goto mac_done;
2947 if (spd_dpx != SPD_DPX_AUTO)
2948 goto advertise_done;
2950 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2951 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2952 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2954 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2957 if (vptr->mii_status & VELOCITY_SPEED_1000)
2958 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2960 advertise_done:
2961 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2964 u8 GCR;
2965 GCR = readb(&regs->CHIPGCR);
2966 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2967 writeb(GCR, &regs->CHIPGCR);
2970 mac_done:
2971 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2972 /* Turn on SWPTAG just before entering power mode */
2973 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2974 /* Go to bed ..... */
2975 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2977 return 0;
2981 * velocity_save_context - save registers
2982 * @vptr: velocity
2983 * @context: buffer for stored context
2985 * Retrieve the current configuration from the velocity hardware
2986 * and stash it in the context structure, for use by the context
2987 * restore functions. This allows us to save things we need across
2988 * power down states
2990 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2992 struct mac_regs __iomem *regs = vptr->mac_regs;
2993 u16 i;
2994 u8 __iomem *ptr = (u8 __iomem *)regs;
2996 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2997 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2999 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3000 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3002 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3003 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3007 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3009 struct net_device *dev = pci_get_drvdata(pdev);
3010 struct velocity_info *vptr = netdev_priv(dev);
3011 unsigned long flags;
3013 if (!netif_running(vptr->dev))
3014 return 0;
3016 netif_device_detach(vptr->dev);
3018 spin_lock_irqsave(&vptr->lock, flags);
3019 pci_save_state(pdev);
3021 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3022 velocity_get_ip(vptr);
3023 velocity_save_context(vptr, &vptr->context);
3024 velocity_shutdown(vptr);
3025 velocity_set_wol(vptr);
3026 pci_enable_wake(pdev, PCI_D3hot, 1);
3027 pci_set_power_state(pdev, PCI_D3hot);
3028 } else {
3029 velocity_save_context(vptr, &vptr->context);
3030 velocity_shutdown(vptr);
3031 pci_disable_device(pdev);
3032 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3035 spin_unlock_irqrestore(&vptr->lock, flags);
3036 return 0;
3040 * velocity_restore_context - restore registers
3041 * @vptr: velocity
3042 * @context: buffer for stored context
3044 * Reload the register configuration from the velocity context
3045 * created by velocity_save_context.
3047 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3049 struct mac_regs __iomem *regs = vptr->mac_regs;
3050 int i;
3051 u8 __iomem *ptr = (u8 __iomem *)regs;
3053 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3054 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3056 /* Just skip cr0 */
3057 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3058 /* Clear */
3059 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3060 /* Set */
3061 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3064 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3065 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3067 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3068 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3070 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3071 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3074 static int velocity_resume(struct pci_dev *pdev)
3076 struct net_device *dev = pci_get_drvdata(pdev);
3077 struct velocity_info *vptr = netdev_priv(dev);
3078 unsigned long flags;
3079 int i;
3081 if (!netif_running(vptr->dev))
3082 return 0;
3084 pci_set_power_state(pdev, PCI_D0);
3085 pci_enable_wake(pdev, 0, 0);
3086 pci_restore_state(pdev);
3088 mac_wol_reset(vptr->mac_regs);
3090 spin_lock_irqsave(&vptr->lock, flags);
3091 velocity_restore_context(vptr, &vptr->context);
3092 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3093 mac_disable_int(vptr->mac_regs);
3095 velocity_tx_srv(vptr);
3097 for (i = 0; i < vptr->tx.numq; i++) {
3098 if (vptr->tx.used[i])
3099 mac_tx_queue_wake(vptr->mac_regs, i);
3102 mac_enable_int(vptr->mac_regs);
3103 spin_unlock_irqrestore(&vptr->lock, flags);
3104 netif_device_attach(vptr->dev);
3106 return 0;
3108 #endif
3111 * Definition for our device driver. The PCI layer interface
3112 * uses this to handle all our card discover and plugging
3114 static struct pci_driver velocity_driver = {
3115 .name = VELOCITY_NAME,
3116 .id_table = velocity_id_table,
3117 .probe = velocity_found1,
3118 .remove = __devexit_p(velocity_remove1),
3119 #ifdef CONFIG_PM
3120 .suspend = velocity_suspend,
3121 .resume = velocity_resume,
3122 #endif
3127 * velocity_ethtool_up - pre hook for ethtool
3128 * @dev: network device
3130 * Called before an ethtool operation. We need to make sure the
3131 * chip is out of D3 state before we poke at it.
3133 static int velocity_ethtool_up(struct net_device *dev)
3135 struct velocity_info *vptr = netdev_priv(dev);
3136 if (!netif_running(dev))
3137 pci_set_power_state(vptr->pdev, PCI_D0);
3138 return 0;
3142 * velocity_ethtool_down - post hook for ethtool
3143 * @dev: network device
3145 * Called after an ethtool operation. Restore the chip back to D3
3146 * state if it isn't running.
3148 static void velocity_ethtool_down(struct net_device *dev)
3150 struct velocity_info *vptr = netdev_priv(dev);
3151 if (!netif_running(dev))
3152 pci_set_power_state(vptr->pdev, PCI_D3hot);
3155 static int velocity_get_settings(struct net_device *dev,
3156 struct ethtool_cmd *cmd)
3158 struct velocity_info *vptr = netdev_priv(dev);
3159 struct mac_regs __iomem *regs = vptr->mac_regs;
3160 u32 status;
3161 status = check_connection_type(vptr->mac_regs);
3163 cmd->supported = SUPPORTED_TP |
3164 SUPPORTED_Autoneg |
3165 SUPPORTED_10baseT_Half |
3166 SUPPORTED_10baseT_Full |
3167 SUPPORTED_100baseT_Half |
3168 SUPPORTED_100baseT_Full |
3169 SUPPORTED_1000baseT_Half |
3170 SUPPORTED_1000baseT_Full;
3172 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3173 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3174 cmd->advertising |=
3175 ADVERTISED_10baseT_Half |
3176 ADVERTISED_10baseT_Full |
3177 ADVERTISED_100baseT_Half |
3178 ADVERTISED_100baseT_Full |
3179 ADVERTISED_1000baseT_Half |
3180 ADVERTISED_1000baseT_Full;
3181 } else {
3182 switch (vptr->options.spd_dpx) {
3183 case SPD_DPX_1000_FULL:
3184 cmd->advertising |= ADVERTISED_1000baseT_Full;
3185 break;
3186 case SPD_DPX_100_HALF:
3187 cmd->advertising |= ADVERTISED_100baseT_Half;
3188 break;
3189 case SPD_DPX_100_FULL:
3190 cmd->advertising |= ADVERTISED_100baseT_Full;
3191 break;
3192 case SPD_DPX_10_HALF:
3193 cmd->advertising |= ADVERTISED_10baseT_Half;
3194 break;
3195 case SPD_DPX_10_FULL:
3196 cmd->advertising |= ADVERTISED_10baseT_Full;
3197 break;
3198 default:
3199 break;
3203 if (status & VELOCITY_SPEED_1000)
3204 ethtool_cmd_speed_set(cmd, SPEED_1000);
3205 else if (status & VELOCITY_SPEED_100)
3206 ethtool_cmd_speed_set(cmd, SPEED_100);
3207 else
3208 ethtool_cmd_speed_set(cmd, SPEED_10);
3210 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3211 cmd->port = PORT_TP;
3212 cmd->transceiver = XCVR_INTERNAL;
3213 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3215 if (status & VELOCITY_DUPLEX_FULL)
3216 cmd->duplex = DUPLEX_FULL;
3217 else
3218 cmd->duplex = DUPLEX_HALF;
3220 return 0;
3223 static int velocity_set_settings(struct net_device *dev,
3224 struct ethtool_cmd *cmd)
3226 struct velocity_info *vptr = netdev_priv(dev);
3227 u32 speed = ethtool_cmd_speed(cmd);
3228 u32 curr_status;
3229 u32 new_status = 0;
3230 int ret = 0;
3232 curr_status = check_connection_type(vptr->mac_regs);
3233 curr_status &= (~VELOCITY_LINK_FAIL);
3235 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3236 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3237 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3238 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3239 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3241 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3242 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3243 ret = -EINVAL;
3244 } else {
3245 enum speed_opt spd_dpx;
3247 if (new_status & VELOCITY_AUTONEG_ENABLE)
3248 spd_dpx = SPD_DPX_AUTO;
3249 else if ((new_status & VELOCITY_SPEED_1000) &&
3250 (new_status & VELOCITY_DUPLEX_FULL)) {
3251 spd_dpx = SPD_DPX_1000_FULL;
3252 } else if (new_status & VELOCITY_SPEED_100)
3253 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3254 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3255 else if (new_status & VELOCITY_SPEED_10)
3256 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3257 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3258 else
3259 return -EOPNOTSUPP;
3261 vptr->options.spd_dpx = spd_dpx;
3263 velocity_set_media_mode(vptr, new_status);
3266 return ret;
3269 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3271 struct velocity_info *vptr = netdev_priv(dev);
3272 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3273 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3274 strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info));
3277 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3279 struct velocity_info *vptr = netdev_priv(dev);
3280 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3281 wol->wolopts |= WAKE_MAGIC;
3283 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3284 wol.wolopts|=WAKE_PHY;
3286 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3287 wol->wolopts |= WAKE_UCAST;
3288 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3289 wol->wolopts |= WAKE_ARP;
3290 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3293 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3295 struct velocity_info *vptr = netdev_priv(dev);
3297 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3298 return -EFAULT;
3299 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3302 if (wol.wolopts & WAKE_PHY) {
3303 vptr->wol_opts|=VELOCITY_WOL_PHY;
3304 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3308 if (wol->wolopts & WAKE_MAGIC) {
3309 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3310 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3312 if (wol->wolopts & WAKE_UCAST) {
3313 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3314 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3316 if (wol->wolopts & WAKE_ARP) {
3317 vptr->wol_opts |= VELOCITY_WOL_ARP;
3318 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3320 memcpy(vptr->wol_passwd, wol->sopass, 6);
3321 return 0;
3324 static u32 velocity_get_msglevel(struct net_device *dev)
3326 return msglevel;
3329 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3331 msglevel = value;
3334 static int get_pending_timer_val(int val)
3336 int mult_bits = val >> 6;
3337 int mult = 1;
3339 switch (mult_bits)
3341 case 1:
3342 mult = 4; break;
3343 case 2:
3344 mult = 16; break;
3345 case 3:
3346 mult = 64; break;
3347 case 0:
3348 default:
3349 break;
3352 return (val & 0x3f) * mult;
3355 static void set_pending_timer_val(int *val, u32 us)
3357 u8 mult = 0;
3358 u8 shift = 0;
3360 if (us >= 0x3f) {
3361 mult = 1; /* mult with 4 */
3362 shift = 2;
3364 if (us >= 0x3f * 4) {
3365 mult = 2; /* mult with 16 */
3366 shift = 4;
3368 if (us >= 0x3f * 16) {
3369 mult = 3; /* mult with 64 */
3370 shift = 6;
3373 *val = (mult << 6) | ((us >> shift) & 0x3f);
3377 static int velocity_get_coalesce(struct net_device *dev,
3378 struct ethtool_coalesce *ecmd)
3380 struct velocity_info *vptr = netdev_priv(dev);
3382 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3383 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3385 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3386 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3388 return 0;
3391 static int velocity_set_coalesce(struct net_device *dev,
3392 struct ethtool_coalesce *ecmd)
3394 struct velocity_info *vptr = netdev_priv(dev);
3395 int max_us = 0x3f * 64;
3396 unsigned long flags;
3398 /* 6 bits of */
3399 if (ecmd->tx_coalesce_usecs > max_us)
3400 return -EINVAL;
3401 if (ecmd->rx_coalesce_usecs > max_us)
3402 return -EINVAL;
3404 if (ecmd->tx_max_coalesced_frames > 0xff)
3405 return -EINVAL;
3406 if (ecmd->rx_max_coalesced_frames > 0xff)
3407 return -EINVAL;
3409 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3410 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3412 set_pending_timer_val(&vptr->options.rxqueue_timer,
3413 ecmd->rx_coalesce_usecs);
3414 set_pending_timer_val(&vptr->options.txqueue_timer,
3415 ecmd->tx_coalesce_usecs);
3417 /* Setup the interrupt suppression and queue timers */
3418 spin_lock_irqsave(&vptr->lock, flags);
3419 mac_disable_int(vptr->mac_regs);
3420 setup_adaptive_interrupts(vptr);
3421 setup_queue_timers(vptr);
3423 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3424 mac_clear_isr(vptr->mac_regs);
3425 mac_enable_int(vptr->mac_regs);
3426 spin_unlock_irqrestore(&vptr->lock, flags);
3428 return 0;
3431 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3432 "rx_all",
3433 "rx_ok",
3434 "tx_ok",
3435 "rx_error",
3436 "rx_runt_ok",
3437 "rx_runt_err",
3438 "rx_64",
3439 "tx_64",
3440 "rx_65_to_127",
3441 "tx_65_to_127",
3442 "rx_128_to_255",
3443 "tx_128_to_255",
3444 "rx_256_to_511",
3445 "tx_256_to_511",
3446 "rx_512_to_1023",
3447 "tx_512_to_1023",
3448 "rx_1024_to_1518",
3449 "tx_1024_to_1518",
3450 "tx_ether_collisions",
3451 "rx_crc_errors",
3452 "rx_jumbo",
3453 "tx_jumbo",
3454 "rx_mac_control_frames",
3455 "tx_mac_control_frames",
3456 "rx_frame_alignement_errors",
3457 "rx_long_ok",
3458 "rx_long_err",
3459 "tx_sqe_errors",
3460 "rx_no_buf",
3461 "rx_symbol_errors",
3462 "in_range_length_errors",
3463 "late_collisions"
3466 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3468 switch (sset) {
3469 case ETH_SS_STATS:
3470 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3471 break;
3475 static int velocity_get_sset_count(struct net_device *dev, int sset)
3477 switch (sset) {
3478 case ETH_SS_STATS:
3479 return ARRAY_SIZE(velocity_gstrings);
3480 default:
3481 return -EOPNOTSUPP;
3485 static void velocity_get_ethtool_stats(struct net_device *dev,
3486 struct ethtool_stats *stats, u64 *data)
3488 if (netif_running(dev)) {
3489 struct velocity_info *vptr = netdev_priv(dev);
3490 u32 *p = vptr->mib_counter;
3491 int i;
3493 spin_lock_irq(&vptr->lock);
3494 velocity_update_hw_mibs(vptr);
3495 spin_unlock_irq(&vptr->lock);
3497 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3498 *data++ = *p++;
3502 static const struct ethtool_ops velocity_ethtool_ops = {
3503 .get_settings = velocity_get_settings,
3504 .set_settings = velocity_set_settings,
3505 .get_drvinfo = velocity_get_drvinfo,
3506 .get_wol = velocity_ethtool_get_wol,
3507 .set_wol = velocity_ethtool_set_wol,
3508 .get_msglevel = velocity_get_msglevel,
3509 .set_msglevel = velocity_set_msglevel,
3510 .get_link = velocity_get_link,
3511 .get_strings = velocity_get_strings,
3512 .get_sset_count = velocity_get_sset_count,
3513 .get_ethtool_stats = velocity_get_ethtool_stats,
3514 .get_coalesce = velocity_get_coalesce,
3515 .set_coalesce = velocity_set_coalesce,
3516 .begin = velocity_ethtool_up,
3517 .complete = velocity_ethtool_down
3520 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3521 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3523 struct in_ifaddr *ifa = ptr;
3524 struct net_device *dev = ifa->ifa_dev->dev;
3526 if (dev_net(dev) == &init_net &&
3527 dev->netdev_ops == &velocity_netdev_ops)
3528 velocity_get_ip(netdev_priv(dev));
3530 return NOTIFY_DONE;
3533 static struct notifier_block velocity_inetaddr_notifier = {
3534 .notifier_call = velocity_netdev_event,
3537 static void velocity_register_notifier(void)
3539 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3542 static void velocity_unregister_notifier(void)
3544 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3547 #else
3549 #define velocity_register_notifier() do {} while (0)
3550 #define velocity_unregister_notifier() do {} while (0)
3552 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3555 * velocity_init_module - load time function
3557 * Called when the velocity module is loaded. The PCI driver
3558 * is registered with the PCI layer, and in turn will call
3559 * the probe functions for each velocity adapter installed
3560 * in the system.
3562 static int __init velocity_init_module(void)
3564 int ret;
3566 velocity_register_notifier();
3567 ret = pci_register_driver(&velocity_driver);
3568 if (ret < 0)
3569 velocity_unregister_notifier();
3570 return ret;
3574 * velocity_cleanup - module unload
3576 * When the velocity hardware is unloaded this function is called.
3577 * It will clean up the notifiers and the unregister the PCI
3578 * driver interface for this hardware. This in turn cleans up
3579 * all discovered interfaces before returning from the function
3581 static void __exit velocity_cleanup_module(void)
3583 velocity_unregister_notifier();
3584 pci_unregister_driver(&velocity_driver);
3587 module_init(velocity_init_module);
3588 module_exit(velocity_cleanup_module);