1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
68 #include "iwl-agn-calib.h"
69 #include "iwl-trans.h"
72 /*****************************************************************************
73 * INIT calibrations framework
74 *****************************************************************************/
76 struct statistics_general_data
{
77 u32 beacon_silence_rssi_a
;
78 u32 beacon_silence_rssi_b
;
79 u32 beacon_silence_rssi_c
;
85 int iwl_send_calib_results(struct iwl_trans
*trans
)
87 struct iwl_host_cmd hcmd
= {
88 .id
= REPLY_PHY_CALIBRATION_CMD
,
91 struct iwl_calib_result
*res
;
93 list_for_each_entry(res
, &trans
->calib_results
, list
) {
96 hcmd
.len
[0] = res
->cmd_len
;
97 hcmd
.data
[0] = &res
->hdr
;
98 hcmd
.dataflags
[0] = IWL_HCMD_DFL_NOCOPY
;
99 ret
= iwl_trans_send_cmd(trans
, &hcmd
);
101 IWL_ERR(trans
, "Error %d on calib cmd %d\n",
102 ret
, res
->hdr
.op_code
);
110 int iwl_calib_set(struct iwl_trans
*trans
,
111 const struct iwl_calib_hdr
*cmd
, int len
)
113 struct iwl_calib_result
*res
, *tmp
;
115 res
= kmalloc(sizeof(*res
) + len
- sizeof(struct iwl_calib_hdr
),
119 memcpy(&res
->hdr
, cmd
, len
);
122 list_for_each_entry(tmp
, &trans
->calib_results
, list
) {
123 if (tmp
->hdr
.op_code
== res
->hdr
.op_code
) {
124 list_replace(&tmp
->list
, &res
->list
);
130 /* wasn't in list already */
131 list_add_tail(&res
->list
, &trans
->calib_results
);
136 void iwl_calib_free_results(struct iwl_trans
*trans
)
138 struct iwl_calib_result
*res
, *tmp
;
140 list_for_each_entry_safe(res
, tmp
, &trans
->calib_results
, list
) {
141 list_del(&res
->list
);
146 /*****************************************************************************
147 * RUNTIME calibrations framework
148 *****************************************************************************/
150 /* "false alarms" are signals that our DSP tries to lock onto,
151 * but then determines that they are either noise, or transmissions
152 * from a distant wireless network (also "noise", really) that get
153 * "stepped on" by stronger transmissions within our own network.
154 * This algorithm attempts to set a sensitivity level that is high
155 * enough to receive all of our own network traffic, but not so
156 * high that our DSP gets too busy trying to lock onto non-network
158 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
161 struct statistics_general_data
*rx_info
)
165 u8 max_silence_rssi
= 0;
167 u8 silence_rssi_a
= 0;
168 u8 silence_rssi_b
= 0;
169 u8 silence_rssi_c
= 0;
172 /* "false_alarms" values below are cross-multiplications to assess the
173 * numbers of false alarms within the measured period of actual Rx
174 * (Rx is off when we're txing), vs the min/max expected false alarms
175 * (some should be expected if rx is sensitive enough) in a
176 * hypothetical listening period of 200 time units (TU), 204.8 msec:
178 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
181 u32 false_alarms
= norm_fa
* 200 * 1024;
182 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
183 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
184 struct iwl_sensitivity_data
*data
= NULL
;
185 const struct iwl_sensitivity_ranges
*ranges
= hw_params(priv
).sens
;
187 data
= &(priv
->sensitivity_data
);
189 data
->nrg_auto_corr_silence_diff
= 0;
191 /* Find max silence rssi among all 3 receivers.
192 * This is background noise, which may include transmissions from other
193 * networks, measured during silence before our network's beacon */
194 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
195 ALL_BAND_FILTER
) >> 8);
196 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
197 ALL_BAND_FILTER
) >> 8);
198 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
199 ALL_BAND_FILTER
) >> 8);
201 val
= max(silence_rssi_b
, silence_rssi_c
);
202 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
204 /* Store silence rssi in 20-beacon history table */
205 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
206 data
->nrg_silence_idx
++;
207 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
208 data
->nrg_silence_idx
= 0;
210 /* Find max silence rssi across 20 beacon history */
211 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
212 val
= data
->nrg_silence_rssi
[i
];
213 silence_ref
= max(silence_ref
, val
);
215 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
216 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
219 /* Find max rx energy (min value!) among all 3 receivers,
220 * measured during beacon frame.
221 * Save it in 10-beacon history table. */
222 i
= data
->nrg_energy_idx
;
223 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
224 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
226 data
->nrg_energy_idx
++;
227 if (data
->nrg_energy_idx
>= 10)
228 data
->nrg_energy_idx
= 0;
230 /* Find min rx energy (max value) across 10 beacon history.
231 * This is the minimum signal level that we want to receive well.
232 * Add backoff (margin so we don't miss slightly lower energy frames).
233 * This establishes an upper bound (min value) for energy threshold. */
234 max_nrg_cck
= data
->nrg_value
[0];
235 for (i
= 1; i
< 10; i
++)
236 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
239 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
240 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
241 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
243 /* Count number of consecutive beacons with fewer-than-desired
245 if (false_alarms
< min_false_alarms
)
246 data
->num_in_cck_no_fa
++;
248 data
->num_in_cck_no_fa
= 0;
249 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
250 data
->num_in_cck_no_fa
);
252 /* If we got too many false alarms this time, reduce sensitivity */
253 if ((false_alarms
> max_false_alarms
) &&
254 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
255 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
256 false_alarms
, max_false_alarms
);
257 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
258 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
259 /* Store for "fewer than desired" on later beacon */
260 data
->nrg_silence_ref
= silence_ref
;
262 /* increase energy threshold (reduce nrg value)
263 * to decrease sensitivity */
264 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
265 /* Else if we got fewer than desired, increase sensitivity */
266 } else if (false_alarms
< min_false_alarms
) {
267 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
269 /* Compare silence level with silence level for most recent
270 * healthy number or too many false alarms */
271 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
274 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u, silence diff %d\n",
275 false_alarms
, min_false_alarms
,
276 data
->nrg_auto_corr_silence_diff
);
278 /* Increase value to increase sensitivity, but only if:
279 * 1a) previous beacon did *not* have *too many* false alarms
280 * 1b) AND there's a significant difference in Rx levels
281 * from a previous beacon with too many, or healthy # FAs
282 * OR 2) We've seen a lot of beacons (100) with too few
284 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
285 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
286 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
288 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
289 /* Increase nrg value to increase sensitivity */
290 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
291 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
293 IWL_DEBUG_CALIB(priv
, "... but not changing sensitivity\n");
296 /* Else we got a healthy number of false alarms, keep status quo */
298 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
299 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
301 /* Store for use in "fewer than desired" with later beacon */
302 data
->nrg_silence_ref
= silence_ref
;
304 /* If previous beacon had too many false alarms,
305 * give it some extra margin by reducing sensitivity again
306 * (but don't go below measured energy of desired Rx) */
307 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
308 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
309 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
310 data
->nrg_th_cck
-= NRG_MARGIN
;
312 data
->nrg_th_cck
= max_nrg_cck
;
316 /* Make sure the energy threshold does not go above the measured
317 * energy of the desired Rx signals (reduced by backoff margin),
318 * or else we might start missing Rx frames.
319 * Lower value is higher energy, so we use max()!
321 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
322 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
324 data
->nrg_prev_state
= data
->nrg_curr_state
;
326 /* Auto-correlation CCK algorithm */
327 if (false_alarms
> min_false_alarms
) {
329 /* increase auto_corr values to decrease sensitivity
330 * so the DSP won't be disturbed by the noise
332 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
333 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
335 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
336 data
->auto_corr_cck
=
337 min((u32
)ranges
->auto_corr_max_cck
, val
);
339 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
340 data
->auto_corr_cck_mrc
=
341 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
342 } else if ((false_alarms
< min_false_alarms
) &&
343 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
344 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
346 /* Decrease auto_corr values to increase sensitivity */
347 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
348 data
->auto_corr_cck
=
349 max((u32
)ranges
->auto_corr_min_cck
, val
);
350 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
351 data
->auto_corr_cck_mrc
=
352 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
359 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
364 u32 false_alarms
= norm_fa
* 200 * 1024;
365 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
366 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
367 struct iwl_sensitivity_data
*data
= NULL
;
368 const struct iwl_sensitivity_ranges
*ranges
= hw_params(priv
).sens
;
370 data
= &(priv
->sensitivity_data
);
372 /* If we got too many false alarms this time, reduce sensitivity */
373 if (false_alarms
> max_false_alarms
) {
375 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
376 false_alarms
, max_false_alarms
);
378 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
379 data
->auto_corr_ofdm
=
380 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
382 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
383 data
->auto_corr_ofdm_mrc
=
384 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
386 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
387 data
->auto_corr_ofdm_x1
=
388 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
390 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
391 data
->auto_corr_ofdm_mrc_x1
=
392 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
395 /* Else if we got fewer than desired, increase sensitivity */
396 else if (false_alarms
< min_false_alarms
) {
398 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
399 false_alarms
, min_false_alarms
);
401 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
402 data
->auto_corr_ofdm
=
403 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
405 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
406 data
->auto_corr_ofdm_mrc
=
407 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
409 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
410 data
->auto_corr_ofdm_x1
=
411 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
413 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
414 data
->auto_corr_ofdm_mrc_x1
=
415 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
417 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
418 min_false_alarms
, false_alarms
, max_false_alarms
);
423 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv
*priv
,
424 struct iwl_sensitivity_data
*data
,
427 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
428 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
429 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
430 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
431 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
432 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
433 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
434 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
436 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
437 cpu_to_le16((u16
)data
->auto_corr_cck
);
438 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
439 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
441 tbl
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
442 cpu_to_le16((u16
)data
->nrg_th_cck
);
443 tbl
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
444 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
446 tbl
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
447 cpu_to_le16(data
->barker_corr_th_min
);
448 tbl
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
449 cpu_to_le16(data
->barker_corr_th_min_mrc
);
450 tbl
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
451 cpu_to_le16(data
->nrg_th_cca
);
453 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
454 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
455 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
458 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
459 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
463 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
464 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
466 struct iwl_sensitivity_cmd cmd
;
467 struct iwl_sensitivity_data
*data
= NULL
;
468 struct iwl_host_cmd cmd_out
= {
469 .id
= SENSITIVITY_CMD
,
470 .len
= { sizeof(struct iwl_sensitivity_cmd
), },
475 data
= &(priv
->sensitivity_data
);
477 memset(&cmd
, 0, sizeof(cmd
));
479 iwl_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.table
[0]);
481 /* Update uCode's "work" table, and copy it to DSP */
482 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
484 /* Don't send command to uCode if nothing has changed */
485 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
486 sizeof(u16
)*HD_TABLE_SIZE
)) {
487 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
491 /* Copy table for comparison next time */
492 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
493 sizeof(u16
)*HD_TABLE_SIZE
);
495 return iwl_trans_send_cmd(trans(priv
), &cmd_out
);
498 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
499 static int iwl_enhance_sensitivity_write(struct iwl_priv
*priv
)
501 struct iwl_enhance_sensitivity_cmd cmd
;
502 struct iwl_sensitivity_data
*data
= NULL
;
503 struct iwl_host_cmd cmd_out
= {
504 .id
= SENSITIVITY_CMD
,
505 .len
= { sizeof(struct iwl_enhance_sensitivity_cmd
), },
510 data
= &(priv
->sensitivity_data
);
512 memset(&cmd
, 0, sizeof(cmd
));
514 iwl_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.enhance_table
[0]);
516 if (cfg(priv
)->base_params
->hd_v2
) {
517 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
] =
518 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2
;
519 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_CCK_INDEX
] =
520 HD_INA_NON_SQUARE_DET_CCK_DATA_V2
;
521 cmd
.enhance_table
[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX
] =
522 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2
;
523 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
524 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2
;
525 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
526 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2
;
527 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX
] =
528 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2
;
529 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX
] =
530 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2
;
531 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
532 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2
;
533 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
534 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2
;
535 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX
] =
536 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2
;
537 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX
] =
538 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2
;
540 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
] =
541 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1
;
542 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_CCK_INDEX
] =
543 HD_INA_NON_SQUARE_DET_CCK_DATA_V1
;
544 cmd
.enhance_table
[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX
] =
545 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1
;
546 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
547 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1
;
548 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
549 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1
;
550 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX
] =
551 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1
;
552 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX
] =
553 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1
;
554 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
555 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1
;
556 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
557 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1
;
558 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX
] =
559 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1
;
560 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX
] =
561 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1
;
564 /* Update uCode's "work" table, and copy it to DSP */
565 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
567 /* Don't send command to uCode if nothing has changed */
568 if (!memcmp(&cmd
.enhance_table
[0], &(priv
->sensitivity_tbl
[0]),
569 sizeof(u16
)*HD_TABLE_SIZE
) &&
570 !memcmp(&cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
],
571 &(priv
->enhance_sensitivity_tbl
[0]),
572 sizeof(u16
)*ENHANCE_HD_TABLE_ENTRIES
)) {
573 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
577 /* Copy table for comparison next time */
578 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.enhance_table
[0]),
579 sizeof(u16
)*HD_TABLE_SIZE
);
580 memcpy(&(priv
->enhance_sensitivity_tbl
[0]),
581 &(cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
]),
582 sizeof(u16
)*ENHANCE_HD_TABLE_ENTRIES
);
584 return iwl_trans_send_cmd(trans(priv
), &cmd_out
);
587 void iwl_init_sensitivity(struct iwl_priv
*priv
)
591 struct iwl_sensitivity_data
*data
= NULL
;
592 const struct iwl_sensitivity_ranges
*ranges
= hw_params(priv
).sens
;
594 if (priv
->disable_sens_cal
)
597 IWL_DEBUG_CALIB(priv
, "Start iwl_init_sensitivity\n");
599 /* Clear driver's sensitivity algo data */
600 data
= &(priv
->sensitivity_data
);
605 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
607 data
->num_in_cck_no_fa
= 0;
608 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
609 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
610 data
->nrg_silence_ref
= 0;
611 data
->nrg_silence_idx
= 0;
612 data
->nrg_energy_idx
= 0;
614 for (i
= 0; i
< 10; i
++)
615 data
->nrg_value
[i
] = 0;
617 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
618 data
->nrg_silence_rssi
[i
] = 0;
620 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
621 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
622 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
623 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
624 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
625 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
626 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
627 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
628 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
629 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
630 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
632 data
->last_bad_plcp_cnt_ofdm
= 0;
633 data
->last_fa_cnt_ofdm
= 0;
634 data
->last_bad_plcp_cnt_cck
= 0;
635 data
->last_fa_cnt_cck
= 0;
637 if (priv
->enhance_sensitivity_table
)
638 ret
|= iwl_enhance_sensitivity_write(priv
);
640 ret
|= iwl_sensitivity_write(priv
);
641 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
644 void iwl_sensitivity_calibration(struct iwl_priv
*priv
)
653 struct iwl_sensitivity_data
*data
= NULL
;
654 struct statistics_rx_non_phy
*rx_info
;
655 struct statistics_rx_phy
*ofdm
, *cck
;
657 struct statistics_general_data statis
;
659 if (priv
->disable_sens_cal
)
662 data
= &(priv
->sensitivity_data
);
664 if (!iwl_is_any_associated(priv
)) {
665 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
669 spin_lock_irqsave(&priv
->shrd
->lock
, flags
);
670 rx_info
= &priv
->statistics
.rx_non_phy
;
671 ofdm
= &priv
->statistics
.rx_ofdm
;
672 cck
= &priv
->statistics
.rx_cck
;
673 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
674 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
675 spin_unlock_irqrestore(&priv
->shrd
->lock
, flags
);
679 /* Extract Statistics: */
680 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
681 fa_cck
= le32_to_cpu(cck
->false_alarm_cnt
);
682 fa_ofdm
= le32_to_cpu(ofdm
->false_alarm_cnt
);
683 bad_plcp_cck
= le32_to_cpu(cck
->plcp_err
);
684 bad_plcp_ofdm
= le32_to_cpu(ofdm
->plcp_err
);
686 statis
.beacon_silence_rssi_a
=
687 le32_to_cpu(rx_info
->beacon_silence_rssi_a
);
688 statis
.beacon_silence_rssi_b
=
689 le32_to_cpu(rx_info
->beacon_silence_rssi_b
);
690 statis
.beacon_silence_rssi_c
=
691 le32_to_cpu(rx_info
->beacon_silence_rssi_c
);
692 statis
.beacon_energy_a
=
693 le32_to_cpu(rx_info
->beacon_energy_a
);
694 statis
.beacon_energy_b
=
695 le32_to_cpu(rx_info
->beacon_energy_b
);
696 statis
.beacon_energy_c
=
697 le32_to_cpu(rx_info
->beacon_energy_c
);
699 spin_unlock_irqrestore(&priv
->shrd
->lock
, flags
);
701 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
703 if (!rx_enable_time
) {
704 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0!\n");
708 /* These statistics increase monotonically, and do not reset
709 * at each beacon. Calculate difference from last value, or just
710 * use the new statistics value if it has reset or wrapped around. */
711 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
712 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
714 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
715 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
718 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
719 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
721 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
722 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
725 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
726 data
->last_fa_cnt_ofdm
= fa_ofdm
;
728 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
729 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
732 if (data
->last_fa_cnt_cck
> fa_cck
)
733 data
->last_fa_cnt_cck
= fa_cck
;
735 fa_cck
-= data
->last_fa_cnt_cck
;
736 data
->last_fa_cnt_cck
+= fa_cck
;
739 /* Total aborted signal locks */
740 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
741 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
743 IWL_DEBUG_CALIB(priv
, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
744 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
746 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
747 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
748 if (priv
->enhance_sensitivity_table
)
749 iwl_enhance_sensitivity_write(priv
);
751 iwl_sensitivity_write(priv
);
754 static inline u8
find_first_chain(u8 mask
)
764 * Run disconnected antenna algorithm to find out which antennas are
767 static void iwl_find_disconn_antenna(struct iwl_priv
*priv
, u32
* average_sig
,
768 struct iwl_chain_noise_data
*data
)
770 u32 active_chains
= 0;
772 u16 max_average_sig_antenna_i
;
777 average_sig
[0] = data
->chain_signal_a
/ IWL_CAL_NUM_BEACONS
;
778 average_sig
[1] = data
->chain_signal_b
/ IWL_CAL_NUM_BEACONS
;
779 average_sig
[2] = data
->chain_signal_c
/ IWL_CAL_NUM_BEACONS
;
781 if (average_sig
[0] >= average_sig
[1]) {
782 max_average_sig
= average_sig
[0];
783 max_average_sig_antenna_i
= 0;
784 active_chains
= (1 << max_average_sig_antenna_i
);
786 max_average_sig
= average_sig
[1];
787 max_average_sig_antenna_i
= 1;
788 active_chains
= (1 << max_average_sig_antenna_i
);
791 if (average_sig
[2] >= max_average_sig
) {
792 max_average_sig
= average_sig
[2];
793 max_average_sig_antenna_i
= 2;
794 active_chains
= (1 << max_average_sig_antenna_i
);
797 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
798 average_sig
[0], average_sig
[1], average_sig
[2]);
799 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
800 max_average_sig
, max_average_sig_antenna_i
);
802 /* Compare signal strengths for all 3 receivers. */
803 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
804 if (i
!= max_average_sig_antenna_i
) {
805 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
807 /* If signal is very weak, compared with
808 * strongest, mark it as disconnected. */
809 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
810 data
->disconn_array
[i
] = 1;
812 active_chains
|= (1 << i
);
813 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
814 "disconn_array[i] = %d\n",
815 i
, rssi_delta
, data
->disconn_array
[i
]);
820 * The above algorithm sometimes fails when the ucode
821 * reports 0 for all chains. It's not clear why that
822 * happens to start with, but it is then causing trouble
823 * because this can make us enable more chains than the
824 * hardware really has.
826 * To be safe, simply mask out any chains that we know
827 * are not on the device.
829 active_chains
&= hw_params(priv
).valid_rx_ant
;
832 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
833 /* loops on all the bits of
834 * priv->hw_setting.valid_tx_ant */
835 u8 ant_msk
= (1 << i
);
836 if (!(hw_params(priv
).valid_tx_ant
& ant_msk
))
840 if (data
->disconn_array
[i
] == 0)
841 /* there is a Tx antenna connected */
843 if (num_tx_chains
== hw_params(priv
).tx_chains_num
&&
844 data
->disconn_array
[i
]) {
846 * If all chains are disconnected
847 * connect the first valid tx chain
850 find_first_chain(cfg(priv
)->valid_tx_ant
);
851 data
->disconn_array
[first_chain
] = 0;
852 active_chains
|= BIT(first_chain
);
853 IWL_DEBUG_CALIB(priv
,
854 "All Tx chains are disconnected W/A - declare %d as connected\n",
860 if (active_chains
!= hw_params(priv
).valid_rx_ant
&&
861 active_chains
!= priv
->chain_noise_data
.active_chains
)
862 IWL_DEBUG_CALIB(priv
,
863 "Detected that not all antennas are connected! "
864 "Connected: %#x, valid: %#x.\n",
866 hw_params(priv
).valid_rx_ant
);
868 /* Save for use within RXON, TX, SCAN commands, etc. */
869 data
->active_chains
= active_chains
;
870 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
874 static void iwlagn_gain_computation(struct iwl_priv
*priv
,
875 u32 average_noise
[NUM_RX_CHAINS
],
876 u16 min_average_noise_antenna_i
,
877 u32 min_average_noise
,
882 struct iwl_chain_noise_data
*data
= &priv
->chain_noise_data
;
885 * Find Gain Code for the chains based on "default chain"
887 for (i
= default_chain
+ 1; i
< NUM_RX_CHAINS
; i
++) {
888 if ((data
->disconn_array
[i
])) {
889 data
->delta_gain_code
[i
] = 0;
893 delta_g
= (cfg(priv
)->base_params
->chain_noise_scale
*
894 ((s32
)average_noise
[default_chain
] -
895 (s32
)average_noise
[i
])) / 1500;
897 /* bound gain by 2 bits value max, 3rd bit is sign */
898 data
->delta_gain_code
[i
] =
900 (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE
);
904 * set negative sign ...
905 * note to Intel developers: This is uCode API format,
906 * not the format of any internal device registers.
907 * Do not change this format for e.g. 6050 or similar
908 * devices. Change format only if more resolution
909 * (i.e. more than 2 bits magnitude) is needed.
911 data
->delta_gain_code
[i
] |= (1 << 2);
914 IWL_DEBUG_CALIB(priv
, "Delta gains: ANT_B = %d ANT_C = %d\n",
915 data
->delta_gain_code
[1], data
->delta_gain_code
[2]);
917 if (!data
->radio_write
) {
918 struct iwl_calib_chain_noise_gain_cmd cmd
;
920 memset(&cmd
, 0, sizeof(cmd
));
922 iwl_set_calib_hdr(&cmd
.hdr
,
923 priv
->phy_calib_chain_noise_gain_cmd
);
924 cmd
.delta_gain_1
= data
->delta_gain_code
[1];
925 cmd
.delta_gain_2
= data
->delta_gain_code
[2];
926 iwl_trans_send_cmd_pdu(trans(priv
), REPLY_PHY_CALIBRATION_CMD
,
927 CMD_ASYNC
, sizeof(cmd
), &cmd
);
929 data
->radio_write
= 1;
930 data
->state
= IWL_CHAIN_NOISE_CALIBRATED
;
935 * Accumulate 16 beacons of signal and noise statistics for each of
936 * 3 receivers/antennas/rx-chains, then figure out:
937 * 1) Which antennas are connected.
938 * 2) Differential rx gain settings to balance the 3 receivers.
940 void iwl_chain_noise_calibration(struct iwl_priv
*priv
)
942 struct iwl_chain_noise_data
*data
= NULL
;
950 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
951 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
952 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
953 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
955 u16 rxon_chnum
= INITIALIZATION_VALUE
;
956 u16 stat_chnum
= INITIALIZATION_VALUE
;
960 struct statistics_rx_non_phy
*rx_info
;
964 * When we support multiple interfaces on different channels,
965 * this must be modified/fixed.
967 struct iwl_rxon_context
*ctx
= &priv
->contexts
[IWL_RXON_CTX_BSS
];
969 if (priv
->disable_chain_noise_cal
)
972 data
= &(priv
->chain_noise_data
);
975 * Accumulate just the first "chain_noise_num_beacons" after
976 * the first association, then we're done forever.
978 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
979 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
980 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
984 spin_lock_irqsave(&priv
->shrd
->lock
, flags
);
986 rx_info
= &priv
->statistics
.rx_non_phy
;
988 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
989 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
990 spin_unlock_irqrestore(&priv
->shrd
->lock
, flags
);
994 rxon_band24
= !!(ctx
->staging
.flags
& RXON_FLG_BAND_24G_MSK
);
995 rxon_chnum
= le16_to_cpu(ctx
->staging
.channel
);
997 !!(priv
->statistics
.flag
& STATISTICS_REPLY_FLG_BAND_24G_MSK
);
998 stat_chnum
= le32_to_cpu(priv
->statistics
.flag
) >> 16;
1000 /* Make sure we accumulate data for just the associated channel
1001 * (even if scanning). */
1002 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
1003 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
1004 rxon_chnum
, rxon_band24
);
1005 spin_unlock_irqrestore(&priv
->shrd
->lock
, flags
);
1010 * Accumulate beacon statistics values across
1011 * "chain_noise_num_beacons"
1013 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
1015 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
1017 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
1020 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
1021 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
1022 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
1024 spin_unlock_irqrestore(&priv
->shrd
->lock
, flags
);
1026 data
->beacon_count
++;
1028 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
1029 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
1030 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
1032 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
1033 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
1034 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
1036 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
1037 rxon_chnum
, rxon_band24
, data
->beacon_count
);
1038 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
1039 chain_sig_a
, chain_sig_b
, chain_sig_c
);
1040 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
1041 chain_noise_a
, chain_noise_b
, chain_noise_c
);
1043 /* If this is the "chain_noise_num_beacons", determine:
1044 * 1) Disconnected antennas (using signal strengths)
1045 * 2) Differential gain (using silence noise) to balance receivers */
1046 if (data
->beacon_count
!= IWL_CAL_NUM_BEACONS
)
1049 /* Analyze signal for disconnected antenna */
1050 if (cfg(priv
)->bt_params
&&
1051 cfg(priv
)->bt_params
->advanced_bt_coexist
) {
1052 /* Disable disconnected antenna algorithm for advanced
1053 bt coex, assuming valid antennas are connected */
1054 data
->active_chains
= hw_params(priv
).valid_rx_ant
;
1055 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
1056 if (!(data
->active_chains
& (1<<i
)))
1057 data
->disconn_array
[i
] = 1;
1059 iwl_find_disconn_antenna(priv
, average_sig
, data
);
1061 /* Analyze noise for rx balance */
1062 average_noise
[0] = data
->chain_noise_a
/ IWL_CAL_NUM_BEACONS
;
1063 average_noise
[1] = data
->chain_noise_b
/ IWL_CAL_NUM_BEACONS
;
1064 average_noise
[2] = data
->chain_noise_c
/ IWL_CAL_NUM_BEACONS
;
1066 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
1067 if (!(data
->disconn_array
[i
]) &&
1068 (average_noise
[i
] <= min_average_noise
)) {
1069 /* This means that chain i is active and has
1070 * lower noise values so far: */
1071 min_average_noise
= average_noise
[i
];
1072 min_average_noise_antenna_i
= i
;
1076 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
1077 average_noise
[0], average_noise
[1],
1080 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
1081 min_average_noise
, min_average_noise_antenna_i
);
1083 iwlagn_gain_computation(priv
, average_noise
,
1084 min_average_noise_antenna_i
, min_average_noise
,
1085 find_first_chain(cfg(priv
)->valid_rx_ant
));
1087 /* Some power changes may have been made during the calibration.
1088 * Update and commit the RXON
1090 iwl_update_chain_flags(priv
);
1092 data
->state
= IWL_CHAIN_NOISE_DONE
;
1093 iwl_power_update_mode(priv
, false);
1096 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
1099 memset(&(priv
->sensitivity_data
), 0,
1100 sizeof(struct iwl_sensitivity_data
));
1101 memset(&(priv
->chain_noise_data
), 0,
1102 sizeof(struct iwl_chain_noise_data
));
1103 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
1104 priv
->chain_noise_data
.delta_gain_code
[i
] =
1105 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
1107 /* Ask for statistics now, the uCode will send notification
1108 * periodically after association */
1109 iwl_send_statistics_request(priv
, CMD_ASYNC
, true);