OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / rtc / interface.c
blob565742b9f0d01977cc7f18543f50ffe1d5a730da
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
34 return err;
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
39 int err;
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
49 EXPORT_SYMBOL_GPL(rtc_read_time);
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
53 int err;
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
75 mutex_unlock(&rtc->ops_lock);
76 return err;
78 EXPORT_SYMBOL_GPL(rtc_set_time);
80 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
82 int err;
84 err = mutex_lock_interruptible(&rtc->ops_lock);
85 if (err)
86 return err;
88 if (!rtc->ops)
89 err = -ENODEV;
90 else if (rtc->ops->set_mmss)
91 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
92 else if (rtc->ops->read_time && rtc->ops->set_time) {
93 struct rtc_time new, old;
95 err = rtc->ops->read_time(rtc->dev.parent, &old);
96 if (err == 0) {
97 rtc_time_to_tm(secs, &new);
100 * avoid writing when we're going to change the day of
101 * the month. We will retry in the next minute. This
102 * basically means that if the RTC must not drift
103 * by more than 1 minute in 11 minutes.
105 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
106 (new.tm_hour == 23 && new.tm_min == 59)))
107 err = rtc->ops->set_time(rtc->dev.parent,
108 &new);
111 else
112 err = -EINVAL;
114 mutex_unlock(&rtc->ops_lock);
116 return err;
118 EXPORT_SYMBOL_GPL(rtc_set_mmss);
120 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
122 int err;
124 err = mutex_lock_interruptible(&rtc->ops_lock);
125 if (err)
126 return err;
128 if (rtc->ops == NULL)
129 err = -ENODEV;
130 else if (!rtc->ops->read_alarm)
131 err = -EINVAL;
132 else {
133 memset(alarm, 0, sizeof(struct rtc_wkalrm));
134 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
137 mutex_unlock(&rtc->ops_lock);
138 return err;
141 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
143 int err;
144 struct rtc_time before, now;
145 int first_time = 1;
146 unsigned long t_now, t_alm;
147 enum { none, day, month, year } missing = none;
148 unsigned days;
150 /* The lower level RTC driver may return -1 in some fields,
151 * creating invalid alarm->time values, for reasons like:
153 * - The hardware may not be capable of filling them in;
154 * many alarms match only on time-of-day fields, not
155 * day/month/year calendar data.
157 * - Some hardware uses illegal values as "wildcard" match
158 * values, which non-Linux firmware (like a BIOS) may try
159 * to set up as e.g. "alarm 15 minutes after each hour".
160 * Linux uses only oneshot alarms.
162 * When we see that here, we deal with it by using values from
163 * a current RTC timestamp for any missing (-1) values. The
164 * RTC driver prevents "periodic alarm" modes.
166 * But this can be racey, because some fields of the RTC timestamp
167 * may have wrapped in the interval since we read the RTC alarm,
168 * which would lead to us inserting inconsistent values in place
169 * of the -1 fields.
171 * Reading the alarm and timestamp in the reverse sequence
172 * would have the same race condition, and not solve the issue.
174 * So, we must first read the RTC timestamp,
175 * then read the RTC alarm value,
176 * and then read a second RTC timestamp.
178 * If any fields of the second timestamp have changed
179 * when compared with the first timestamp, then we know
180 * our timestamp may be inconsistent with that used by
181 * the low-level rtc_read_alarm_internal() function.
183 * So, when the two timestamps disagree, we just loop and do
184 * the process again to get a fully consistent set of values.
186 * This could all instead be done in the lower level driver,
187 * but since more than one lower level RTC implementation needs it,
188 * then it's probably best best to do it here instead of there..
191 /* Get the "before" timestamp */
192 err = rtc_read_time(rtc, &before);
193 if (err < 0)
194 return err;
195 do {
196 if (!first_time)
197 memcpy(&before, &now, sizeof(struct rtc_time));
198 first_time = 0;
200 /* get the RTC alarm values, which may be incomplete */
201 err = rtc_read_alarm_internal(rtc, alarm);
202 if (err)
203 return err;
205 /* full-function RTCs won't have such missing fields */
206 if (rtc_valid_tm(&alarm->time) == 0)
207 return 0;
209 /* get the "after" timestamp, to detect wrapped fields */
210 err = rtc_read_time(rtc, &now);
211 if (err < 0)
212 return err;
214 /* note that tm_sec is a "don't care" value here: */
215 } while ( before.tm_min != now.tm_min
216 || before.tm_hour != now.tm_hour
217 || before.tm_mon != now.tm_mon
218 || before.tm_year != now.tm_year);
220 /* Fill in the missing alarm fields using the timestamp; we
221 * know there's at least one since alarm->time is invalid.
223 if (alarm->time.tm_sec == -1)
224 alarm->time.tm_sec = now.tm_sec;
225 if (alarm->time.tm_min == -1)
226 alarm->time.tm_min = now.tm_min;
227 if (alarm->time.tm_hour == -1)
228 alarm->time.tm_hour = now.tm_hour;
230 /* For simplicity, only support date rollover for now */
231 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
232 alarm->time.tm_mday = now.tm_mday;
233 missing = day;
235 if ((unsigned)alarm->time.tm_mon >= 12) {
236 alarm->time.tm_mon = now.tm_mon;
237 if (missing == none)
238 missing = month;
240 if (alarm->time.tm_year == -1) {
241 alarm->time.tm_year = now.tm_year;
242 if (missing == none)
243 missing = year;
246 /* with luck, no rollover is needed */
247 rtc_tm_to_time(&now, &t_now);
248 rtc_tm_to_time(&alarm->time, &t_alm);
249 if (t_now < t_alm)
250 goto done;
252 switch (missing) {
254 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
255 * that will trigger at 5am will do so at 5am Tuesday, which
256 * could also be in the next month or year. This is a common
257 * case, especially for PCs.
259 case day:
260 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
261 t_alm += 24 * 60 * 60;
262 rtc_time_to_tm(t_alm, &alarm->time);
263 break;
265 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
266 * be next month. An alarm matching on the 30th, 29th, or 28th
267 * may end up in the month after that! Many newer PCs support
268 * this type of alarm.
270 case month:
271 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
272 do {
273 if (alarm->time.tm_mon < 11)
274 alarm->time.tm_mon++;
275 else {
276 alarm->time.tm_mon = 0;
277 alarm->time.tm_year++;
279 days = rtc_month_days(alarm->time.tm_mon,
280 alarm->time.tm_year);
281 } while (days < alarm->time.tm_mday);
282 break;
284 /* Year rollover ... easy except for leap years! */
285 case year:
286 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
287 do {
288 alarm->time.tm_year++;
289 } while (rtc_valid_tm(&alarm->time) != 0);
290 break;
292 default:
293 dev_warn(&rtc->dev, "alarm rollover not handled\n");
296 done:
297 return 0;
300 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
302 int err;
304 err = mutex_lock_interruptible(&rtc->ops_lock);
305 if (err)
306 return err;
307 if (rtc->ops == NULL)
308 err = -ENODEV;
309 else if (!rtc->ops->read_alarm)
310 err = -EINVAL;
311 else {
312 memset(alarm, 0, sizeof(struct rtc_wkalrm));
313 alarm->enabled = rtc->aie_timer.enabled;
314 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
316 mutex_unlock(&rtc->ops_lock);
318 return err;
320 EXPORT_SYMBOL_GPL(rtc_read_alarm);
322 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
324 struct rtc_time tm;
325 long now, scheduled;
326 int err;
328 err = rtc_valid_tm(&alarm->time);
329 if (err)
330 return err;
331 rtc_tm_to_time(&alarm->time, &scheduled);
333 /* Make sure we're not setting alarms in the past */
334 err = __rtc_read_time(rtc, &tm);
335 rtc_tm_to_time(&tm, &now);
336 if (scheduled <= now)
337 return -ETIME;
339 * XXX - We just checked to make sure the alarm time is not
340 * in the past, but there is still a race window where if
341 * the is alarm set for the next second and the second ticks
342 * over right here, before we set the alarm.
345 if (!rtc->ops)
346 err = -ENODEV;
347 else if (!rtc->ops->set_alarm)
348 err = -EINVAL;
349 else
350 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
352 return err;
355 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
357 int err;
359 err = rtc_valid_tm(&alarm->time);
360 if (err != 0)
361 return err;
363 err = mutex_lock_interruptible(&rtc->ops_lock);
364 if (err)
365 return err;
366 if (rtc->aie_timer.enabled) {
367 rtc_timer_remove(rtc, &rtc->aie_timer);
369 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
370 rtc->aie_timer.period = ktime_set(0, 0);
371 if (alarm->enabled) {
372 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
374 mutex_unlock(&rtc->ops_lock);
375 return err;
377 EXPORT_SYMBOL_GPL(rtc_set_alarm);
379 /* Called once per device from rtc_device_register */
380 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
382 int err;
384 err = rtc_valid_tm(&alarm->time);
385 if (err != 0)
386 return err;
388 err = mutex_lock_interruptible(&rtc->ops_lock);
389 if (err)
390 return err;
392 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
393 rtc->aie_timer.period = ktime_set(0, 0);
394 if (alarm->enabled) {
395 rtc->aie_timer.enabled = 1;
396 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
398 mutex_unlock(&rtc->ops_lock);
399 return err;
401 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
405 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
407 int err = mutex_lock_interruptible(&rtc->ops_lock);
408 if (err)
409 return err;
411 if (rtc->aie_timer.enabled != enabled) {
412 if (enabled)
413 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
414 else
415 rtc_timer_remove(rtc, &rtc->aie_timer);
418 if (err)
419 /* nothing */;
420 else if (!rtc->ops)
421 err = -ENODEV;
422 else if (!rtc->ops->alarm_irq_enable)
423 err = -EINVAL;
424 else
425 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
427 mutex_unlock(&rtc->ops_lock);
428 return err;
430 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
432 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
434 int err = mutex_lock_interruptible(&rtc->ops_lock);
435 if (err)
436 return err;
438 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
439 if (enabled == 0 && rtc->uie_irq_active) {
440 mutex_unlock(&rtc->ops_lock);
441 return rtc_dev_update_irq_enable_emul(rtc, 0);
443 #endif
444 /* make sure we're changing state */
445 if (rtc->uie_rtctimer.enabled == enabled)
446 goto out;
448 if (rtc->uie_unsupported) {
449 err = -EINVAL;
450 goto out;
453 if (enabled) {
454 struct rtc_time tm;
455 ktime_t now, onesec;
457 __rtc_read_time(rtc, &tm);
458 onesec = ktime_set(1, 0);
459 now = rtc_tm_to_ktime(tm);
460 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
461 rtc->uie_rtctimer.period = ktime_set(1, 0);
462 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
463 } else
464 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
466 out:
467 mutex_unlock(&rtc->ops_lock);
468 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
470 * Enable emulation if the driver did not provide
471 * the update_irq_enable function pointer or if returned
472 * -EINVAL to signal that it has been configured without
473 * interrupts or that are not available at the moment.
475 if (err == -EINVAL)
476 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
477 #endif
478 return err;
481 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
485 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
486 * @rtc: pointer to the rtc device
488 * This function is called when an AIE, UIE or PIE mode interrupt
489 * has occurred (or been emulated).
491 * Triggers the registered irq_task function callback.
493 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
495 unsigned long flags;
497 /* mark one irq of the appropriate mode */
498 spin_lock_irqsave(&rtc->irq_lock, flags);
499 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
500 spin_unlock_irqrestore(&rtc->irq_lock, flags);
502 /* call the task func */
503 spin_lock_irqsave(&rtc->irq_task_lock, flags);
504 if (rtc->irq_task)
505 rtc->irq_task->func(rtc->irq_task->private_data);
506 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
508 wake_up_interruptible(&rtc->irq_queue);
509 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
514 * rtc_aie_update_irq - AIE mode rtctimer hook
515 * @private: pointer to the rtc_device
517 * This functions is called when the aie_timer expires.
519 void rtc_aie_update_irq(void *private)
521 struct rtc_device *rtc = (struct rtc_device *)private;
522 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
527 * rtc_uie_update_irq - UIE mode rtctimer hook
528 * @private: pointer to the rtc_device
530 * This functions is called when the uie_timer expires.
532 void rtc_uie_update_irq(void *private)
534 struct rtc_device *rtc = (struct rtc_device *)private;
535 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
540 * rtc_pie_update_irq - PIE mode hrtimer hook
541 * @timer: pointer to the pie mode hrtimer
543 * This function is used to emulate PIE mode interrupts
544 * using an hrtimer. This function is called when the periodic
545 * hrtimer expires.
547 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
549 struct rtc_device *rtc;
550 ktime_t period;
551 int count;
552 rtc = container_of(timer, struct rtc_device, pie_timer);
554 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
555 count = hrtimer_forward_now(timer, period);
557 rtc_handle_legacy_irq(rtc, count, RTC_PF);
559 return HRTIMER_RESTART;
563 * rtc_update_irq - Triggered when a RTC interrupt occurs.
564 * @rtc: the rtc device
565 * @num: how many irqs are being reported (usually one)
566 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
567 * Context: any
569 void rtc_update_irq(struct rtc_device *rtc,
570 unsigned long num, unsigned long events)
572 schedule_work(&rtc->irqwork);
574 EXPORT_SYMBOL_GPL(rtc_update_irq);
576 static int __rtc_match(struct device *dev, void *data)
578 char *name = (char *)data;
580 if (strcmp(dev_name(dev), name) == 0)
581 return 1;
582 return 0;
585 struct rtc_device *rtc_class_open(char *name)
587 struct device *dev;
588 struct rtc_device *rtc = NULL;
590 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
591 if (dev)
592 rtc = to_rtc_device(dev);
594 if (rtc) {
595 if (!try_module_get(rtc->owner)) {
596 put_device(dev);
597 rtc = NULL;
601 return rtc;
603 EXPORT_SYMBOL_GPL(rtc_class_open);
605 void rtc_class_close(struct rtc_device *rtc)
607 module_put(rtc->owner);
608 put_device(&rtc->dev);
610 EXPORT_SYMBOL_GPL(rtc_class_close);
612 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
614 int retval = -EBUSY;
616 if (task == NULL || task->func == NULL)
617 return -EINVAL;
619 /* Cannot register while the char dev is in use */
620 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
621 return -EBUSY;
623 spin_lock_irq(&rtc->irq_task_lock);
624 if (rtc->irq_task == NULL) {
625 rtc->irq_task = task;
626 retval = 0;
628 spin_unlock_irq(&rtc->irq_task_lock);
630 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
632 return retval;
634 EXPORT_SYMBOL_GPL(rtc_irq_register);
636 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
638 spin_lock_irq(&rtc->irq_task_lock);
639 if (rtc->irq_task == task)
640 rtc->irq_task = NULL;
641 spin_unlock_irq(&rtc->irq_task_lock);
643 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
645 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
648 * We always cancel the timer here first, because otherwise
649 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
650 * when we manage to start the timer before the callback
651 * returns HRTIMER_RESTART.
653 * We cannot use hrtimer_cancel() here as a running callback
654 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
655 * would spin forever.
657 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
658 return -1;
660 if (enabled) {
661 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
663 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
665 return 0;
669 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
670 * @rtc: the rtc device
671 * @task: currently registered with rtc_irq_register()
672 * @enabled: true to enable periodic IRQs
673 * Context: any
675 * Note that rtc_irq_set_freq() should previously have been used to
676 * specify the desired frequency of periodic IRQ task->func() callbacks.
678 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
680 int err = 0;
681 unsigned long flags;
683 retry:
684 spin_lock_irqsave(&rtc->irq_task_lock, flags);
685 if (rtc->irq_task != NULL && task == NULL)
686 err = -EBUSY;
687 if (rtc->irq_task != task)
688 err = -EACCES;
689 if (!err) {
690 if (rtc_update_hrtimer(rtc, enabled) < 0) {
691 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
692 cpu_relax();
693 goto retry;
695 rtc->pie_enabled = enabled;
697 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
698 return err;
700 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
703 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
704 * @rtc: the rtc device
705 * @task: currently registered with rtc_irq_register()
706 * @freq: positive frequency with which task->func() will be called
707 * Context: any
709 * Note that rtc_irq_set_state() is used to enable or disable the
710 * periodic IRQs.
712 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
714 int err = 0;
715 unsigned long flags;
717 if (freq <= 0 || freq > RTC_MAX_FREQ)
718 return -EINVAL;
719 retry:
720 spin_lock_irqsave(&rtc->irq_task_lock, flags);
721 if (rtc->irq_task != NULL && task == NULL)
722 err = -EBUSY;
723 if (rtc->irq_task != task)
724 err = -EACCES;
725 if (!err) {
726 rtc->irq_freq = freq;
727 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
728 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
729 cpu_relax();
730 goto retry;
733 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
734 return err;
736 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
739 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
740 * @rtc rtc device
741 * @timer timer being added.
743 * Enqueues a timer onto the rtc devices timerqueue and sets
744 * the next alarm event appropriately.
746 * Sets the enabled bit on the added timer.
748 * Must hold ops_lock for proper serialization of timerqueue
750 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
752 timer->enabled = 1;
753 timerqueue_add(&rtc->timerqueue, &timer->node);
754 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
755 struct rtc_wkalrm alarm;
756 int err;
757 alarm.time = rtc_ktime_to_tm(timer->node.expires);
758 alarm.enabled = 1;
759 err = __rtc_set_alarm(rtc, &alarm);
760 if (err == -ETIME)
761 schedule_work(&rtc->irqwork);
762 else if (err) {
763 timerqueue_del(&rtc->timerqueue, &timer->node);
764 timer->enabled = 0;
765 return err;
768 return 0;
771 static void rtc_alarm_disable(struct rtc_device *rtc)
773 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
774 return;
776 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
780 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
781 * @rtc rtc device
782 * @timer timer being removed.
784 * Removes a timer onto the rtc devices timerqueue and sets
785 * the next alarm event appropriately.
787 * Clears the enabled bit on the removed timer.
789 * Must hold ops_lock for proper serialization of timerqueue
791 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
793 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
794 timerqueue_del(&rtc->timerqueue, &timer->node);
795 timer->enabled = 0;
796 if (next == &timer->node) {
797 struct rtc_wkalrm alarm;
798 int err;
799 next = timerqueue_getnext(&rtc->timerqueue);
800 if (!next) {
801 rtc_alarm_disable(rtc);
802 return;
804 alarm.time = rtc_ktime_to_tm(next->expires);
805 alarm.enabled = 1;
806 err = __rtc_set_alarm(rtc, &alarm);
807 if (err == -ETIME)
808 schedule_work(&rtc->irqwork);
813 * rtc_timer_do_work - Expires rtc timers
814 * @rtc rtc device
815 * @timer timer being removed.
817 * Expires rtc timers. Reprograms next alarm event if needed.
818 * Called via worktask.
820 * Serializes access to timerqueue via ops_lock mutex
822 void rtc_timer_do_work(struct work_struct *work)
824 struct rtc_timer *timer;
825 struct timerqueue_node *next;
826 ktime_t now;
827 struct rtc_time tm;
829 struct rtc_device *rtc =
830 container_of(work, struct rtc_device, irqwork);
832 mutex_lock(&rtc->ops_lock);
833 again:
834 __rtc_read_time(rtc, &tm);
835 now = rtc_tm_to_ktime(tm);
836 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
837 if (next->expires.tv64 > now.tv64)
838 break;
840 /* expire timer */
841 timer = container_of(next, struct rtc_timer, node);
842 timerqueue_del(&rtc->timerqueue, &timer->node);
843 timer->enabled = 0;
844 if (timer->task.func)
845 timer->task.func(timer->task.private_data);
847 /* Re-add/fwd periodic timers */
848 if (ktime_to_ns(timer->period)) {
849 timer->node.expires = ktime_add(timer->node.expires,
850 timer->period);
851 timer->enabled = 1;
852 timerqueue_add(&rtc->timerqueue, &timer->node);
856 /* Set next alarm */
857 if (next) {
858 struct rtc_wkalrm alarm;
859 int err;
860 alarm.time = rtc_ktime_to_tm(next->expires);
861 alarm.enabled = 1;
862 err = __rtc_set_alarm(rtc, &alarm);
863 if (err == -ETIME)
864 goto again;
865 } else
866 rtc_alarm_disable(rtc);
868 mutex_unlock(&rtc->ops_lock);
872 /* rtc_timer_init - Initializes an rtc_timer
873 * @timer: timer to be intiialized
874 * @f: function pointer to be called when timer fires
875 * @data: private data passed to function pointer
877 * Kernel interface to initializing an rtc_timer.
879 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
881 timerqueue_init(&timer->node);
882 timer->enabled = 0;
883 timer->task.func = f;
884 timer->task.private_data = data;
887 /* rtc_timer_start - Sets an rtc_timer to fire in the future
888 * @ rtc: rtc device to be used
889 * @ timer: timer being set
890 * @ expires: time at which to expire the timer
891 * @ period: period that the timer will recur
893 * Kernel interface to set an rtc_timer
895 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
896 ktime_t expires, ktime_t period)
898 int ret = 0;
899 mutex_lock(&rtc->ops_lock);
900 if (timer->enabled)
901 rtc_timer_remove(rtc, timer);
903 timer->node.expires = expires;
904 timer->period = period;
906 ret = rtc_timer_enqueue(rtc, timer);
908 mutex_unlock(&rtc->ops_lock);
909 return ret;
912 /* rtc_timer_cancel - Stops an rtc_timer
913 * @ rtc: rtc device to be used
914 * @ timer: timer being set
916 * Kernel interface to cancel an rtc_timer
918 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
920 int ret = 0;
921 mutex_lock(&rtc->ops_lock);
922 if (timer->enabled)
923 rtc_timer_remove(rtc, timer);
924 mutex_unlock(&rtc->ops_lock);
925 return ret;