2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device
*dev
);
36 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
37 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
38 u8
*sas_addr
, int include
);
39 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task
)
45 struct sas_task
*task
= (void *) _task
;
48 spin_lock_irqsave(&task
->task_state_lock
, flags
);
49 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
50 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
51 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
53 complete(&task
->completion
);
56 static void smp_task_done(struct sas_task
*task
)
58 if (!del_timer(&task
->timer
))
60 complete(&task
->completion
);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
67 void *resp
, int resp_size
)
70 struct sas_task
*task
= NULL
;
71 struct sas_internal
*i
=
72 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
74 for (retry
= 0; retry
< 3; retry
++) {
75 task
= sas_alloc_task(GFP_KERNEL
);
80 task
->task_proto
= dev
->tproto
;
81 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
82 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
84 task
->task_done
= smp_task_done
;
86 task
->timer
.data
= (unsigned long) task
;
87 task
->timer
.function
= smp_task_timedout
;
88 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
89 add_timer(&task
->timer
);
91 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
94 del_timer(&task
->timer
);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
99 wait_for_completion(&task
->completion
);
101 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i
->dft
->lldd_abort_task(task
);
104 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
109 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
110 task
->task_status
.stat
== SAM_STAT_GOOD
) {
113 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
114 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
115 /* no error, but return the number of bytes of
117 res
= task
->task_status
.residual
;
119 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
120 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__
,
126 SAS_ADDR(dev
->sas_addr
),
127 task
->task_status
.resp
,
128 task
->task_status
.stat
);
134 BUG_ON(retry
== 3 && task
!= NULL
);
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size
)
145 u8
*p
= kzalloc(size
, GFP_KERNEL
);
151 static inline void *alloc_smp_resp(int size
)
153 return kzalloc(size
, GFP_KERNEL
);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
161 struct expander_device
*ex
= &dev
->ex_dev
;
162 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
163 struct smp_resp
*resp
= disc_resp
;
164 struct discover_resp
*dr
= &resp
->disc
;
165 struct sas_rphy
*rphy
= dev
->rphy
;
166 int rediscover
= (phy
->phy
!= NULL
);
169 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
171 /* FIXME: error_handling */
175 switch (resp
->result
) {
176 case SMP_RESP_PHY_VACANT
:
177 phy
->phy_state
= PHY_VACANT
;
180 phy
->phy_state
= PHY_NOT_PRESENT
;
182 case SMP_RESP_FUNC_ACC
:
183 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
187 phy
->phy_id
= phy_id
;
188 phy
->attached_dev_type
= dr
->attached_dev_type
;
189 phy
->linkrate
= dr
->linkrate
;
190 phy
->attached_sata_host
= dr
->attached_sata_host
;
191 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
192 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
193 phy
->attached_iproto
= dr
->iproto
<< 1;
194 phy
->attached_tproto
= dr
->tproto
<< 1;
195 /* help some expanders that fail to zero sas_address in the 'no
198 if (phy
->attached_dev_type
== NO_DEVICE
||
199 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
200 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
202 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
203 phy
->attached_phy_id
= dr
->attached_phy_id
;
204 phy
->phy_change_count
= dr
->change_count
;
205 phy
->routing_attr
= dr
->routing_attr
;
206 phy
->virtual = dr
->virtual;
207 phy
->last_da_index
= -1;
209 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
210 phy
->phy
->identify
.device_type
= phy
->attached_dev_type
;
211 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
212 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
213 phy
->phy
->identify
.phy_identifier
= phy_id
;
214 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
215 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
216 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
217 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
218 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
221 if (sas_phy_add(phy
->phy
)) {
222 sas_phy_free(phy
->phy
);
226 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
227 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
228 phy
->routing_attr
== TABLE_ROUTING
? 'T' :
229 phy
->routing_attr
== DIRECT_ROUTING
? 'D' :
230 phy
->routing_attr
== SUBTRACTIVE_ROUTING
? 'S' : '?',
231 SAS_ADDR(phy
->attached_sas_addr
));
236 #define DISCOVER_REQ_SIZE 16
237 #define DISCOVER_RESP_SIZE 56
239 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
240 u8
*disc_resp
, int single
)
244 disc_req
[9] = single
;
245 for (i
= 1 ; i
< 3; i
++) {
246 struct discover_resp
*dr
;
248 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
249 disc_resp
, DISCOVER_RESP_SIZE
);
252 /* This is detecting a failure to transmit initial
253 * dev to host FIS as described in section G.5 of
255 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
256 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
,
257 SAS_ADDR_SIZE
) == 0) {
258 sas_printk("Found loopback topology, just ignore it!\n");
261 if (!(dr
->attached_dev_type
== 0 &&
262 dr
->attached_sata_dev
))
264 /* In order to generate the dev to host FIS, we
265 * send a link reset to the expander port */
266 sas_smp_phy_control(dev
, single
, PHY_FUNC_LINK_RESET
, NULL
);
267 /* Wait for the reset to trigger the negotiation */
270 sas_set_ex_phy(dev
, single
, disc_resp
);
274 static int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
276 struct expander_device
*ex
= &dev
->ex_dev
;
281 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
285 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
291 disc_req
[1] = SMP_DISCOVER
;
293 if (0 <= single
&& single
< ex
->num_phys
) {
294 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
298 for (i
= 0; i
< ex
->num_phys
; i
++) {
299 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
311 static int sas_expander_discover(struct domain_device
*dev
)
313 struct expander_device
*ex
= &dev
->ex_dev
;
316 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
320 res
= sas_ex_phy_discover(dev
, -1);
331 #define MAX_EXPANDER_PHYS 128
333 static void ex_assign_report_general(struct domain_device
*dev
,
334 struct smp_resp
*resp
)
336 struct report_general_resp
*rg
= &resp
->rg
;
338 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
339 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
340 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
341 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
342 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
343 dev
->ex_dev
.configuring
= rg
->configuring
;
344 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
347 #define RG_REQ_SIZE 8
348 #define RG_RESP_SIZE 32
350 static int sas_ex_general(struct domain_device
*dev
)
353 struct smp_resp
*rg_resp
;
357 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
361 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
367 rg_req
[1] = SMP_REPORT_GENERAL
;
369 for (i
= 0; i
< 5; i
++) {
370 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
374 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
375 SAS_ADDR(dev
->sas_addr
), res
);
377 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
378 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
379 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
380 res
= rg_resp
->result
;
384 ex_assign_report_general(dev
, rg_resp
);
386 if (dev
->ex_dev
.configuring
) {
387 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
388 SAS_ADDR(dev
->sas_addr
));
389 schedule_timeout_interruptible(5*HZ
);
399 static void ex_assign_manuf_info(struct domain_device
*dev
, void
402 u8
*mi_resp
= _mi_resp
;
403 struct sas_rphy
*rphy
= dev
->rphy
;
404 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
406 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
407 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
408 memcpy(edev
->product_rev
, mi_resp
+ 36,
409 SAS_EXPANDER_PRODUCT_REV_LEN
);
411 if (mi_resp
[8] & 1) {
412 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
413 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
414 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
415 edev
->component_revision_id
= mi_resp
[50];
419 #define MI_REQ_SIZE 8
420 #define MI_RESP_SIZE 64
422 static int sas_ex_manuf_info(struct domain_device
*dev
)
428 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
432 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
438 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
440 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
442 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
443 SAS_ADDR(dev
->sas_addr
), res
);
445 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
446 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
447 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
451 ex_assign_manuf_info(dev
, mi_resp
);
458 #define PC_REQ_SIZE 44
459 #define PC_RESP_SIZE 8
461 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
462 enum phy_func phy_func
,
463 struct sas_phy_linkrates
*rates
)
469 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
473 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
479 pc_req
[1] = SMP_PHY_CONTROL
;
481 pc_req
[10]= phy_func
;
483 pc_req
[32] = rates
->minimum_linkrate
<< 4;
484 pc_req
[33] = rates
->maximum_linkrate
<< 4;
487 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
494 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
496 struct expander_device
*ex
= &dev
->ex_dev
;
497 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
499 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
500 phy
->linkrate
= SAS_PHY_DISABLED
;
503 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
505 struct expander_device
*ex
= &dev
->ex_dev
;
508 for (i
= 0; i
< ex
->num_phys
; i
++) {
509 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
511 if (phy
->phy_state
== PHY_VACANT
||
512 phy
->phy_state
== PHY_NOT_PRESENT
)
515 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
516 sas_ex_disable_phy(dev
, i
);
520 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
523 struct domain_device
*dev
;
525 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
527 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
528 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
534 #define RPEL_REQ_SIZE 16
535 #define RPEL_RESP_SIZE 32
536 int sas_smp_get_phy_events(struct sas_phy
*phy
)
541 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
542 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
544 req
= alloc_smp_req(RPEL_REQ_SIZE
);
548 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
554 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
555 req
[9] = phy
->number
;
557 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
558 resp
, RPEL_RESP_SIZE
);
563 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
564 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
565 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
566 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
574 #ifdef CONFIG_SCSI_SAS_ATA
576 #define RPS_REQ_SIZE 16
577 #define RPS_RESP_SIZE 60
579 static int sas_get_report_phy_sata(struct domain_device
*dev
,
581 struct smp_resp
*rps_resp
)
584 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
585 u8
*resp
= (u8
*)rps_resp
;
590 rps_req
[1] = SMP_REPORT_PHY_SATA
;
593 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
594 rps_resp
, RPS_RESP_SIZE
);
596 /* 0x34 is the FIS type for the D2H fis. There's a potential
597 * standards cockup here. sas-2 explicitly specifies the FIS
598 * should be encoded so that FIS type is in resp[24].
599 * However, some expanders endian reverse this. Undo the
601 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
604 for (i
= 0; i
< 5; i
++) {
609 resp
[j
+ 0] = resp
[j
+ 3];
610 resp
[j
+ 1] = resp
[j
+ 2];
621 static void sas_ex_get_linkrate(struct domain_device
*parent
,
622 struct domain_device
*child
,
623 struct ex_phy
*parent_phy
)
625 struct expander_device
*parent_ex
= &parent
->ex_dev
;
626 struct sas_port
*port
;
631 port
= parent_phy
->port
;
633 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
634 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
636 if (phy
->phy_state
== PHY_VACANT
||
637 phy
->phy_state
== PHY_NOT_PRESENT
)
640 if (SAS_ADDR(phy
->attached_sas_addr
) ==
641 SAS_ADDR(child
->sas_addr
)) {
643 child
->min_linkrate
= min(parent
->min_linkrate
,
645 child
->max_linkrate
= max(parent
->max_linkrate
,
648 sas_port_add_phy(port
, phy
->phy
);
651 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
652 child
->pathways
= min(child
->pathways
, parent
->pathways
);
655 static struct domain_device
*sas_ex_discover_end_dev(
656 struct domain_device
*parent
, int phy_id
)
658 struct expander_device
*parent_ex
= &parent
->ex_dev
;
659 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
660 struct domain_device
*child
= NULL
;
661 struct sas_rphy
*rphy
;
664 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
667 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
671 child
->parent
= parent
;
672 child
->port
= parent
->port
;
673 child
->iproto
= phy
->attached_iproto
;
674 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
675 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
677 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
678 if (unlikely(!phy
->port
))
680 if (unlikely(sas_port_add(phy
->port
) != 0)) {
681 sas_port_free(phy
->port
);
685 sas_ex_get_linkrate(parent
, child
, phy
);
687 #ifdef CONFIG_SCSI_SAS_ATA
688 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
689 child
->dev_type
= SATA_DEV
;
690 if (phy
->attached_tproto
& SAS_PROTOCOL_STP
)
691 child
->tproto
= phy
->attached_tproto
;
692 if (phy
->attached_sata_dev
)
693 child
->tproto
|= SATA_DEV
;
694 res
= sas_get_report_phy_sata(parent
, phy_id
,
695 &child
->sata_dev
.rps_resp
);
697 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
698 "0x%x\n", SAS_ADDR(parent
->sas_addr
),
702 memcpy(child
->frame_rcvd
, &child
->sata_dev
.rps_resp
.rps
.fis
,
703 sizeof(struct dev_to_host_fis
));
705 rphy
= sas_end_device_alloc(phy
->port
);
713 spin_lock_irq(&parent
->port
->dev_list_lock
);
714 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
715 spin_unlock_irq(&parent
->port
->dev_list_lock
);
717 res
= sas_discover_sata(child
);
719 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
720 "%016llx:0x%x returned 0x%x\n",
721 SAS_ADDR(child
->sas_addr
),
722 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
727 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
728 child
->dev_type
= SAS_END_DEV
;
729 rphy
= sas_end_device_alloc(phy
->port
);
730 /* FIXME: error handling */
733 child
->tproto
= phy
->attached_tproto
;
737 sas_fill_in_rphy(child
, rphy
);
739 spin_lock_irq(&parent
->port
->dev_list_lock
);
740 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
741 spin_unlock_irq(&parent
->port
->dev_list_lock
);
743 res
= sas_discover_end_dev(child
);
745 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
746 "at %016llx:0x%x returned 0x%x\n",
747 SAS_ADDR(child
->sas_addr
),
748 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
752 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
753 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
758 list_add_tail(&child
->siblings
, &parent_ex
->children
);
762 sas_rphy_free(child
->rphy
);
765 spin_lock_irq(&parent
->port
->dev_list_lock
);
766 list_del(&child
->dev_list_node
);
767 spin_unlock_irq(&parent
->port
->dev_list_lock
);
769 sas_port_delete(phy
->port
);
776 /* See if this phy is part of a wide port */
777 static int sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
779 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
782 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
783 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
788 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
789 SAS_ADDR_SIZE
) && ephy
->port
) {
790 sas_port_add_phy(ephy
->port
, phy
->phy
);
791 phy
->port
= ephy
->port
;
792 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
800 static struct domain_device
*sas_ex_discover_expander(
801 struct domain_device
*parent
, int phy_id
)
803 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
804 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
805 struct domain_device
*child
= NULL
;
806 struct sas_rphy
*rphy
;
807 struct sas_expander_device
*edev
;
808 struct asd_sas_port
*port
;
811 if (phy
->routing_attr
== DIRECT_ROUTING
) {
812 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
814 SAS_ADDR(parent
->sas_addr
), phy_id
,
815 SAS_ADDR(phy
->attached_sas_addr
),
816 phy
->attached_phy_id
);
819 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
823 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
824 /* FIXME: better error handling */
825 BUG_ON(sas_port_add(phy
->port
) != 0);
828 switch (phy
->attached_dev_type
) {
830 rphy
= sas_expander_alloc(phy
->port
,
831 SAS_EDGE_EXPANDER_DEVICE
);
834 rphy
= sas_expander_alloc(phy
->port
,
835 SAS_FANOUT_EXPANDER_DEVICE
);
838 rphy
= NULL
; /* shut gcc up */
843 edev
= rphy_to_expander_device(rphy
);
844 child
->dev_type
= phy
->attached_dev_type
;
845 child
->parent
= parent
;
847 child
->iproto
= phy
->attached_iproto
;
848 child
->tproto
= phy
->attached_tproto
;
849 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
850 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
851 sas_ex_get_linkrate(parent
, child
, phy
);
852 edev
->level
= parent_ex
->level
+ 1;
853 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
856 sas_fill_in_rphy(child
, rphy
);
859 spin_lock_irq(&parent
->port
->dev_list_lock
);
860 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
861 spin_unlock_irq(&parent
->port
->dev_list_lock
);
863 res
= sas_discover_expander(child
);
865 spin_lock_irq(&parent
->port
->dev_list_lock
);
866 list_del(&child
->dev_list_node
);
867 spin_unlock_irq(&parent
->port
->dev_list_lock
);
871 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
875 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
877 struct expander_device
*ex
= &dev
->ex_dev
;
878 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
879 struct domain_device
*child
= NULL
;
883 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
884 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
885 res
= sas_ex_phy_discover(dev
, phy_id
);
890 /* Parent and domain coherency */
891 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
892 SAS_ADDR(dev
->port
->sas_addr
))) {
893 sas_add_parent_port(dev
, phy_id
);
896 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
897 SAS_ADDR(dev
->parent
->sas_addr
))) {
898 sas_add_parent_port(dev
, phy_id
);
899 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
900 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
904 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
905 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
907 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
908 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
909 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
910 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
913 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
916 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
917 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
918 ex_phy
->attached_dev_type
!= EDGE_DEV
) {
919 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
920 "phy 0x%x\n", ex_phy
->attached_dev_type
,
921 SAS_ADDR(dev
->sas_addr
),
926 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
928 SAS_DPRINTK("configure routing for dev %016llx "
929 "reported 0x%x. Forgotten\n",
930 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
931 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
935 res
= sas_ex_join_wide_port(dev
, phy_id
);
937 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
938 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
942 switch (ex_phy
->attached_dev_type
) {
944 child
= sas_ex_discover_end_dev(dev
, phy_id
);
947 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
948 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
949 "attached to ex %016llx phy 0x%x\n",
950 SAS_ADDR(ex_phy
->attached_sas_addr
),
951 ex_phy
->attached_phy_id
,
952 SAS_ADDR(dev
->sas_addr
),
954 sas_ex_disable_phy(dev
, phy_id
);
957 memcpy(dev
->port
->disc
.fanout_sas_addr
,
958 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
961 child
= sas_ex_discover_expander(dev
, phy_id
);
970 for (i
= 0; i
< ex
->num_phys
; i
++) {
971 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
972 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
975 * Due to races, the phy might not get added to the
976 * wide port, so we add the phy to the wide port here.
978 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
979 SAS_ADDR(child
->sas_addr
)) {
980 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
981 res
= sas_ex_join_wide_port(dev
, i
);
983 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
984 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
993 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
995 struct expander_device
*ex
= &dev
->ex_dev
;
998 for (i
= 0; i
< ex
->num_phys
; i
++) {
999 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1001 if (phy
->phy_state
== PHY_VACANT
||
1002 phy
->phy_state
== PHY_NOT_PRESENT
)
1005 if ((phy
->attached_dev_type
== EDGE_DEV
||
1006 phy
->attached_dev_type
== FANOUT_DEV
) &&
1007 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1009 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1017 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1019 struct expander_device
*ex
= &dev
->ex_dev
;
1020 struct domain_device
*child
;
1021 u8 sub_addr
[8] = {0, };
1023 list_for_each_entry(child
, &ex
->children
, siblings
) {
1024 if (child
->dev_type
!= EDGE_DEV
&&
1025 child
->dev_type
!= FANOUT_DEV
)
1027 if (sub_addr
[0] == 0) {
1028 sas_find_sub_addr(child
, sub_addr
);
1033 if (sas_find_sub_addr(child
, s2
) &&
1034 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1036 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1037 "diverges from subtractive "
1038 "boundary %016llx\n",
1039 SAS_ADDR(dev
->sas_addr
),
1040 SAS_ADDR(child
->sas_addr
),
1042 SAS_ADDR(sub_addr
));
1044 sas_ex_disable_port(child
, s2
);
1051 * sas_ex_discover_devices -- discover devices attached to this expander
1052 * dev: pointer to the expander domain device
1053 * single: if you want to do a single phy, else set to -1;
1055 * Configure this expander for use with its devices and register the
1056 * devices of this expander.
1058 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1060 struct expander_device
*ex
= &dev
->ex_dev
;
1061 int i
= 0, end
= ex
->num_phys
;
1064 if (0 <= single
&& single
< end
) {
1069 for ( ; i
< end
; i
++) {
1070 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1072 if (ex_phy
->phy_state
== PHY_VACANT
||
1073 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1074 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1077 switch (ex_phy
->linkrate
) {
1078 case SAS_PHY_DISABLED
:
1079 case SAS_PHY_RESET_PROBLEM
:
1080 case SAS_SATA_PORT_SELECTOR
:
1083 res
= sas_ex_discover_dev(dev
, i
);
1091 sas_check_level_subtractive_boundary(dev
);
1096 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1098 struct expander_device
*ex
= &dev
->ex_dev
;
1100 u8
*sub_sas_addr
= NULL
;
1102 if (dev
->dev_type
!= EDGE_DEV
)
1105 for (i
= 0; i
< ex
->num_phys
; i
++) {
1106 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1108 if (phy
->phy_state
== PHY_VACANT
||
1109 phy
->phy_state
== PHY_NOT_PRESENT
)
1112 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1113 phy
->attached_dev_type
== EDGE_DEV
) &&
1114 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1117 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1118 else if (SAS_ADDR(sub_sas_addr
) !=
1119 SAS_ADDR(phy
->attached_sas_addr
)) {
1121 SAS_DPRINTK("ex %016llx phy 0x%x "
1122 "diverges(%016llx) on subtractive "
1123 "boundary(%016llx). Disabled\n",
1124 SAS_ADDR(dev
->sas_addr
), i
,
1125 SAS_ADDR(phy
->attached_sas_addr
),
1126 SAS_ADDR(sub_sas_addr
));
1127 sas_ex_disable_phy(dev
, i
);
1134 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1135 struct ex_phy
*parent_phy
,
1136 struct ex_phy
*child_phy
)
1138 static const char ra_char
[] = {
1139 [DIRECT_ROUTING
] = 'D',
1140 [SUBTRACTIVE_ROUTING
] = 'S',
1141 [TABLE_ROUTING
] = 'T',
1143 static const char *ex_type
[] = {
1144 [EDGE_DEV
] = "edge",
1145 [FANOUT_DEV
] = "fanout",
1147 struct domain_device
*parent
= child
->parent
;
1149 sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1150 "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1152 ex_type
[parent
->dev_type
],
1153 SAS_ADDR(parent
->sas_addr
),
1154 parent
->ex_dev
.t2t_supp
,
1157 ex_type
[child
->dev_type
],
1158 SAS_ADDR(child
->sas_addr
),
1159 child
->ex_dev
.t2t_supp
,
1162 ra_char
[parent_phy
->routing_attr
],
1163 ra_char
[child_phy
->routing_attr
]);
1166 static int sas_check_eeds(struct domain_device
*child
,
1167 struct ex_phy
*parent_phy
,
1168 struct ex_phy
*child_phy
)
1171 struct domain_device
*parent
= child
->parent
;
1173 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1175 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1176 "phy S:0x%x, while there is a fanout ex %016llx\n",
1177 SAS_ADDR(parent
->sas_addr
),
1179 SAS_ADDR(child
->sas_addr
),
1181 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1182 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1183 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1185 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1187 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1188 SAS_ADDR(parent
->sas_addr
)) ||
1189 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1190 SAS_ADDR(child
->sas_addr
)))
1192 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1193 SAS_ADDR(parent
->sas_addr
)) ||
1194 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1195 SAS_ADDR(child
->sas_addr
))))
1199 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1200 "phy 0x%x link forms a third EEDS!\n",
1201 SAS_ADDR(parent
->sas_addr
),
1203 SAS_ADDR(child
->sas_addr
),
1210 /* Here we spill over 80 columns. It is intentional.
1212 static int sas_check_parent_topology(struct domain_device
*child
)
1214 struct expander_device
*child_ex
= &child
->ex_dev
;
1215 struct expander_device
*parent_ex
;
1222 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1223 child
->parent
->dev_type
!= FANOUT_DEV
)
1226 parent_ex
= &child
->parent
->ex_dev
;
1228 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1229 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1230 struct ex_phy
*child_phy
;
1232 if (parent_phy
->phy_state
== PHY_VACANT
||
1233 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1236 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1239 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1241 switch (child
->parent
->dev_type
) {
1243 if (child
->dev_type
== FANOUT_DEV
) {
1244 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1245 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1246 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1249 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1250 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1251 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1252 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1253 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1256 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1257 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1258 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1259 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1262 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1268 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1269 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1270 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1282 #define RRI_REQ_SIZE 16
1283 #define RRI_RESP_SIZE 44
1285 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1286 u8
*sas_addr
, int *index
, int *present
)
1289 struct expander_device
*ex
= &dev
->ex_dev
;
1290 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1297 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1301 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1307 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1308 rri_req
[9] = phy_id
;
1310 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1311 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1312 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1317 if (res
== SMP_RESP_NO_INDEX
) {
1318 SAS_DPRINTK("overflow of indexes: dev %016llx "
1319 "phy 0x%x index 0x%x\n",
1320 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1322 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1323 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1324 "result 0x%x\n", __func__
,
1325 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1328 if (SAS_ADDR(sas_addr
) != 0) {
1329 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1331 if ((rri_resp
[12] & 0x80) == 0x80)
1336 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1341 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1342 phy
->last_da_index
< i
) {
1343 phy
->last_da_index
= i
;
1356 #define CRI_REQ_SIZE 44
1357 #define CRI_RESP_SIZE 8
1359 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1360 u8
*sas_addr
, int index
, int include
)
1366 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1370 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1376 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1377 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1378 cri_req
[9] = phy_id
;
1379 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1380 cri_req
[12] |= 0x80;
1381 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1383 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1388 if (res
== SMP_RESP_NO_INDEX
) {
1389 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1391 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1399 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1400 u8
*sas_addr
, int include
)
1406 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1409 if (include
^ present
)
1410 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1416 * sas_configure_parent -- configure routing table of parent
1417 * parent: parent expander
1418 * child: child expander
1419 * sas_addr: SAS port identifier of device directly attached to child
1421 static int sas_configure_parent(struct domain_device
*parent
,
1422 struct domain_device
*child
,
1423 u8
*sas_addr
, int include
)
1425 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1429 if (parent
->parent
) {
1430 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1436 if (ex_parent
->conf_route_table
== 0) {
1437 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1438 SAS_ADDR(parent
->sas_addr
));
1442 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1443 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1445 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1446 (SAS_ADDR(phy
->attached_sas_addr
) ==
1447 SAS_ADDR(child
->sas_addr
))) {
1448 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1458 * sas_configure_routing -- configure routing
1459 * dev: expander device
1460 * sas_addr: port identifier of device directly attached to the expander device
1462 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1465 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1469 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1472 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1477 * sas_discover_expander -- expander discovery
1478 * @ex: pointer to expander domain device
1480 * See comment in sas_discover_sata().
1482 static int sas_discover_expander(struct domain_device
*dev
)
1486 res
= sas_notify_lldd_dev_found(dev
);
1490 res
= sas_ex_general(dev
);
1493 res
= sas_ex_manuf_info(dev
);
1497 res
= sas_expander_discover(dev
);
1499 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1500 SAS_ADDR(dev
->sas_addr
), res
);
1504 sas_check_ex_subtractive_boundary(dev
);
1505 res
= sas_check_parent_topology(dev
);
1510 sas_notify_lldd_dev_gone(dev
);
1514 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1517 struct domain_device
*dev
;
1519 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1520 if (dev
->dev_type
== EDGE_DEV
||
1521 dev
->dev_type
== FANOUT_DEV
) {
1522 struct sas_expander_device
*ex
=
1523 rphy_to_expander_device(dev
->rphy
);
1525 if (level
== ex
->level
)
1526 res
= sas_ex_discover_devices(dev
, -1);
1528 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1536 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1542 level
= port
->disc
.max_level
;
1543 res
= sas_ex_level_discovery(port
, level
);
1545 } while (level
< port
->disc
.max_level
);
1550 int sas_discover_root_expander(struct domain_device
*dev
)
1553 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1555 res
= sas_rphy_add(dev
->rphy
);
1559 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1560 res
= sas_discover_expander(dev
);
1564 sas_ex_bfs_disc(dev
->port
);
1569 sas_rphy_remove(dev
->rphy
);
1574 /* ---------- Domain revalidation ---------- */
1576 static int sas_get_phy_discover(struct domain_device
*dev
,
1577 int phy_id
, struct smp_resp
*disc_resp
)
1582 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1586 disc_req
[1] = SMP_DISCOVER
;
1587 disc_req
[9] = phy_id
;
1589 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1590 disc_resp
, DISCOVER_RESP_SIZE
);
1593 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1594 res
= disc_resp
->result
;
1602 static int sas_get_phy_change_count(struct domain_device
*dev
,
1603 int phy_id
, int *pcc
)
1606 struct smp_resp
*disc_resp
;
1608 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1612 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1614 *pcc
= disc_resp
->disc
.change_count
;
1620 static int sas_get_phy_attached_sas_addr(struct domain_device
*dev
,
1621 int phy_id
, u8
*attached_sas_addr
)
1624 struct smp_resp
*disc_resp
;
1625 struct discover_resp
*dr
;
1627 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1630 dr
= &disc_resp
->disc
;
1632 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1634 memcpy(attached_sas_addr
,disc_resp
->disc
.attached_sas_addr
,8);
1635 if (dr
->attached_dev_type
== 0)
1636 memset(attached_sas_addr
, 0, 8);
1642 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1643 int from_phy
, bool update
)
1645 struct expander_device
*ex
= &dev
->ex_dev
;
1649 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1650 int phy_change_count
= 0;
1652 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1654 case SMP_RESP_PHY_VACANT
:
1655 case SMP_RESP_NO_PHY
:
1657 case SMP_RESP_FUNC_ACC
:
1663 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1665 ex
->ex_phy
[i
].phy_change_count
=
1674 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1678 struct smp_resp
*rg_resp
;
1680 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1684 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1690 rg_req
[1] = SMP_REPORT_GENERAL
;
1692 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1696 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1697 res
= rg_resp
->result
;
1701 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1708 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1709 * @dev:domain device to be detect.
1710 * @src_dev: the device which originated BROADCAST(CHANGE).
1712 * Add self-configuration expander suport. Suppose two expander cascading,
1713 * when the first level expander is self-configuring, hotplug the disks in
1714 * second level expander, BROADCAST(CHANGE) will not only be originated
1715 * in the second level expander, but also be originated in the first level
1716 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1717 * expander changed count in two level expanders will all increment at least
1718 * once, but the phy which chang count has changed is the source device which
1722 static int sas_find_bcast_dev(struct domain_device
*dev
,
1723 struct domain_device
**src_dev
)
1725 struct expander_device
*ex
= &dev
->ex_dev
;
1726 int ex_change_count
= -1;
1729 struct domain_device
*ch
;
1731 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1734 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1735 /* Just detect if this expander phys phy change count changed,
1736 * in order to determine if this expander originate BROADCAST,
1737 * and do not update phy change count field in our structure.
1739 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1742 ex
->ex_change_count
= ex_change_count
;
1743 SAS_DPRINTK("Expander phy change count has changed\n");
1746 SAS_DPRINTK("Expander phys DID NOT change\n");
1748 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1749 if (ch
->dev_type
== EDGE_DEV
|| ch
->dev_type
== FANOUT_DEV
) {
1750 res
= sas_find_bcast_dev(ch
, src_dev
);
1759 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1761 struct expander_device
*ex
= &dev
->ex_dev
;
1762 struct domain_device
*child
, *n
;
1764 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1766 if (child
->dev_type
== EDGE_DEV
||
1767 child
->dev_type
== FANOUT_DEV
)
1768 sas_unregister_ex_tree(port
, child
);
1770 sas_unregister_dev(port
, child
);
1772 sas_unregister_dev(port
, dev
);
1775 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1776 int phy_id
, bool last
)
1778 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1779 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1780 struct domain_device
*child
, *n
;
1782 list_for_each_entry_safe(child
, n
,
1783 &ex_dev
->children
, siblings
) {
1784 if (SAS_ADDR(child
->sas_addr
) ==
1785 SAS_ADDR(phy
->attached_sas_addr
)) {
1787 if (child
->dev_type
== EDGE_DEV
||
1788 child
->dev_type
== FANOUT_DEV
)
1789 sas_unregister_ex_tree(parent
->port
, child
);
1791 sas_unregister_dev(parent
->port
, child
);
1796 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1798 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1800 sas_port_delete_phy(phy
->port
, phy
->phy
);
1801 if (phy
->port
->num_phys
== 0)
1802 sas_port_delete(phy
->port
);
1807 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1810 struct expander_device
*ex_root
= &root
->ex_dev
;
1811 struct domain_device
*child
;
1814 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1815 if (child
->dev_type
== EDGE_DEV
||
1816 child
->dev_type
== FANOUT_DEV
) {
1817 struct sas_expander_device
*ex
=
1818 rphy_to_expander_device(child
->rphy
);
1820 if (level
> ex
->level
)
1821 res
= sas_discover_bfs_by_root_level(child
,
1823 else if (level
== ex
->level
)
1824 res
= sas_ex_discover_devices(child
, -1);
1830 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1833 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1834 int level
= ex
->level
+1;
1836 res
= sas_ex_discover_devices(dev
, -1);
1840 res
= sas_discover_bfs_by_root_level(dev
, level
);
1843 } while (level
<= dev
->port
->disc
.max_level
);
1848 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1850 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1851 struct domain_device
*child
;
1855 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1856 SAS_ADDR(dev
->sas_addr
), phy_id
);
1857 res
= sas_ex_phy_discover(dev
, phy_id
);
1860 /* to support the wide port inserted */
1861 for (i
= 0; i
< dev
->ex_dev
.num_phys
; i
++) {
1862 struct ex_phy
*ex_phy_temp
= &dev
->ex_dev
.ex_phy
[i
];
1865 if (SAS_ADDR(ex_phy_temp
->attached_sas_addr
) ==
1866 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1872 sas_ex_join_wide_port(dev
, phy_id
);
1875 res
= sas_ex_discover_devices(dev
, phy_id
);
1878 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1879 if (SAS_ADDR(child
->sas_addr
) ==
1880 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1881 if (child
->dev_type
== EDGE_DEV
||
1882 child
->dev_type
== FANOUT_DEV
)
1883 res
= sas_discover_bfs_by_root(child
);
1891 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1893 struct expander_device
*ex
= &dev
->ex_dev
;
1894 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1895 u8 attached_sas_addr
[8];
1898 res
= sas_get_phy_attached_sas_addr(dev
, phy_id
, attached_sas_addr
);
1900 case SMP_RESP_NO_PHY
:
1901 phy
->phy_state
= PHY_NOT_PRESENT
;
1902 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1904 case SMP_RESP_PHY_VACANT
:
1905 phy
->phy_state
= PHY_VACANT
;
1906 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1908 case SMP_RESP_FUNC_ACC
:
1912 if (SAS_ADDR(attached_sas_addr
) == 0) {
1913 phy
->phy_state
= PHY_EMPTY
;
1914 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1915 } else if (SAS_ADDR(attached_sas_addr
) ==
1916 SAS_ADDR(phy
->attached_sas_addr
)) {
1917 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1918 SAS_ADDR(dev
->sas_addr
), phy_id
);
1919 sas_ex_phy_discover(dev
, phy_id
);
1921 res
= sas_discover_new(dev
, phy_id
);
1927 * sas_rediscover - revalidate the domain.
1928 * @dev:domain device to be detect.
1929 * @phy_id: the phy id will be detected.
1931 * NOTE: this process _must_ quit (return) as soon as any connection
1932 * errors are encountered. Connection recovery is done elsewhere.
1933 * Discover process only interrogates devices in order to discover the
1934 * domain.For plugging out, we un-register the device only when it is
1935 * the last phy in the port, for other phys in this port, we just delete it
1936 * from the port.For inserting, we do discovery when it is the
1937 * first phy,for other phys in this port, we add it to the port to
1938 * forming the wide-port.
1940 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
1942 struct expander_device
*ex
= &dev
->ex_dev
;
1943 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
1946 bool last
= true; /* is this the last phy of the port */
1948 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1949 SAS_ADDR(dev
->sas_addr
), phy_id
);
1951 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
1952 for (i
= 0; i
< ex
->num_phys
; i
++) {
1953 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1957 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1958 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
1959 SAS_DPRINTK("phy%d part of wide port with "
1960 "phy%d\n", phy_id
, i
);
1965 res
= sas_rediscover_dev(dev
, phy_id
, last
);
1967 res
= sas_discover_new(dev
, phy_id
);
1972 * sas_revalidate_domain -- revalidate the domain
1973 * @port: port to the domain of interest
1975 * NOTE: this process _must_ quit (return) as soon as any connection
1976 * errors are encountered. Connection recovery is done elsewhere.
1977 * Discover process only interrogates devices in order to discover the
1980 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
1983 struct domain_device
*dev
= NULL
;
1985 res
= sas_find_bcast_dev(port_dev
, &dev
);
1989 struct expander_device
*ex
= &dev
->ex_dev
;
1994 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
1997 res
= sas_rediscover(dev
, phy_id
);
1999 } while (i
< ex
->num_phys
);
2005 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
2006 struct request
*req
)
2008 struct domain_device
*dev
;
2010 struct request
*rsp
= req
->next_rq
;
2013 printk("%s: space for a smp response is missing\n",
2018 /* no rphy means no smp target support (ie aic94xx host) */
2020 return sas_smp_host_handler(shost
, req
, rsp
);
2022 type
= rphy
->identify
.device_type
;
2024 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
2025 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
2026 printk("%s: can we send a smp request to a device?\n",
2031 dev
= sas_find_dev_by_rphy(rphy
);
2033 printk("%s: fail to find a domain_device?\n", __func__
);
2037 /* do we need to support multiple segments? */
2038 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
2039 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2040 __func__
, req
->bio
->bi_vcnt
, blk_rq_bytes(req
),
2041 rsp
->bio
->bi_vcnt
, blk_rq_bytes(rsp
));
2045 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2046 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2048 /* positive number is the untransferred residual */
2049 rsp
->resid_len
= ret
;
2052 } else if (ret
== 0) {