OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / scsi / libsas / sas_expander.c
blobe48ba4b58504441d475046c3f17ddc153dbad60f
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task)
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
53 complete(&task->completion);
56 static void smp_task_done(struct sas_task *task)
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
84 task->task_done = smp_task_done;
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
133 ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
138 return res;
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size)
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
151 static inline void *alloc_smp_resp(int size)
153 return kzalloc(size, GFP_KERNEL);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 break;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 break;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 /* help some expanders that fail to zero sas_address in the 'no
196 * device' case
198 if (phy->attached_dev_type == NO_DEVICE ||
199 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
200 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
201 else
202 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
203 phy->attached_phy_id = dr->attached_phy_id;
204 phy->phy_change_count = dr->change_count;
205 phy->routing_attr = dr->routing_attr;
206 phy->virtual = dr->virtual;
207 phy->last_da_index = -1;
209 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
210 phy->phy->identify.device_type = phy->attached_dev_type;
211 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
212 phy->phy->identify.target_port_protocols = phy->attached_tproto;
213 phy->phy->identify.phy_identifier = phy_id;
214 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
215 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
216 phy->phy->minimum_linkrate = dr->pmin_linkrate;
217 phy->phy->maximum_linkrate = dr->pmax_linkrate;
218 phy->phy->negotiated_linkrate = phy->linkrate;
220 if (!rediscover)
221 if (sas_phy_add(phy->phy)) {
222 sas_phy_free(phy->phy);
223 return;
226 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
227 SAS_ADDR(dev->sas_addr), phy->phy_id,
228 phy->routing_attr == TABLE_ROUTING ? 'T' :
229 phy->routing_attr == DIRECT_ROUTING ? 'D' :
230 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
231 SAS_ADDR(phy->attached_sas_addr));
233 return;
236 #define DISCOVER_REQ_SIZE 16
237 #define DISCOVER_RESP_SIZE 56
239 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
240 u8 *disc_resp, int single)
242 int i, res;
244 disc_req[9] = single;
245 for (i = 1 ; i < 3; i++) {
246 struct discover_resp *dr;
248 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
249 disc_resp, DISCOVER_RESP_SIZE);
250 if (res)
251 return res;
252 /* This is detecting a failure to transmit initial
253 * dev to host FIS as described in section G.5 of
254 * sas-2 r 04b */
255 dr = &((struct smp_resp *)disc_resp)->disc;
256 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
257 SAS_ADDR_SIZE) == 0) {
258 sas_printk("Found loopback topology, just ignore it!\n");
259 return 0;
261 if (!(dr->attached_dev_type == 0 &&
262 dr->attached_sata_dev))
263 break;
264 /* In order to generate the dev to host FIS, we
265 * send a link reset to the expander port */
266 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
267 /* Wait for the reset to trigger the negotiation */
268 msleep(500);
270 sas_set_ex_phy(dev, single, disc_resp);
271 return 0;
274 static int sas_ex_phy_discover(struct domain_device *dev, int single)
276 struct expander_device *ex = &dev->ex_dev;
277 int res = 0;
278 u8 *disc_req;
279 u8 *disc_resp;
281 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
282 if (!disc_req)
283 return -ENOMEM;
285 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
286 if (!disc_resp) {
287 kfree(disc_req);
288 return -ENOMEM;
291 disc_req[1] = SMP_DISCOVER;
293 if (0 <= single && single < ex->num_phys) {
294 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
295 } else {
296 int i;
298 for (i = 0; i < ex->num_phys; i++) {
299 res = sas_ex_phy_discover_helper(dev, disc_req,
300 disc_resp, i);
301 if (res)
302 goto out_err;
305 out_err:
306 kfree(disc_resp);
307 kfree(disc_req);
308 return res;
311 static int sas_expander_discover(struct domain_device *dev)
313 struct expander_device *ex = &dev->ex_dev;
314 int res = -ENOMEM;
316 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
317 if (!ex->ex_phy)
318 return -ENOMEM;
320 res = sas_ex_phy_discover(dev, -1);
321 if (res)
322 goto out_err;
324 return 0;
325 out_err:
326 kfree(ex->ex_phy);
327 ex->ex_phy = NULL;
328 return res;
331 #define MAX_EXPANDER_PHYS 128
333 static void ex_assign_report_general(struct domain_device *dev,
334 struct smp_resp *resp)
336 struct report_general_resp *rg = &resp->rg;
338 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
339 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
340 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
341 dev->ex_dev.t2t_supp = rg->t2t_supp;
342 dev->ex_dev.conf_route_table = rg->conf_route_table;
343 dev->ex_dev.configuring = rg->configuring;
344 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
347 #define RG_REQ_SIZE 8
348 #define RG_RESP_SIZE 32
350 static int sas_ex_general(struct domain_device *dev)
352 u8 *rg_req;
353 struct smp_resp *rg_resp;
354 int res;
355 int i;
357 rg_req = alloc_smp_req(RG_REQ_SIZE);
358 if (!rg_req)
359 return -ENOMEM;
361 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
362 if (!rg_resp) {
363 kfree(rg_req);
364 return -ENOMEM;
367 rg_req[1] = SMP_REPORT_GENERAL;
369 for (i = 0; i < 5; i++) {
370 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
371 RG_RESP_SIZE);
373 if (res) {
374 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
375 SAS_ADDR(dev->sas_addr), res);
376 goto out;
377 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
378 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
379 SAS_ADDR(dev->sas_addr), rg_resp->result);
380 res = rg_resp->result;
381 goto out;
384 ex_assign_report_general(dev, rg_resp);
386 if (dev->ex_dev.configuring) {
387 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
388 SAS_ADDR(dev->sas_addr));
389 schedule_timeout_interruptible(5*HZ);
390 } else
391 break;
393 out:
394 kfree(rg_req);
395 kfree(rg_resp);
396 return res;
399 static void ex_assign_manuf_info(struct domain_device *dev, void
400 *_mi_resp)
402 u8 *mi_resp = _mi_resp;
403 struct sas_rphy *rphy = dev->rphy;
404 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
406 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
407 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
408 memcpy(edev->product_rev, mi_resp + 36,
409 SAS_EXPANDER_PRODUCT_REV_LEN);
411 if (mi_resp[8] & 1) {
412 memcpy(edev->component_vendor_id, mi_resp + 40,
413 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
414 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
415 edev->component_revision_id = mi_resp[50];
419 #define MI_REQ_SIZE 8
420 #define MI_RESP_SIZE 64
422 static int sas_ex_manuf_info(struct domain_device *dev)
424 u8 *mi_req;
425 u8 *mi_resp;
426 int res;
428 mi_req = alloc_smp_req(MI_REQ_SIZE);
429 if (!mi_req)
430 return -ENOMEM;
432 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
433 if (!mi_resp) {
434 kfree(mi_req);
435 return -ENOMEM;
438 mi_req[1] = SMP_REPORT_MANUF_INFO;
440 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
441 if (res) {
442 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
443 SAS_ADDR(dev->sas_addr), res);
444 goto out;
445 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
446 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
447 SAS_ADDR(dev->sas_addr), mi_resp[2]);
448 goto out;
451 ex_assign_manuf_info(dev, mi_resp);
452 out:
453 kfree(mi_req);
454 kfree(mi_resp);
455 return res;
458 #define PC_REQ_SIZE 44
459 #define PC_RESP_SIZE 8
461 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
462 enum phy_func phy_func,
463 struct sas_phy_linkrates *rates)
465 u8 *pc_req;
466 u8 *pc_resp;
467 int res;
469 pc_req = alloc_smp_req(PC_REQ_SIZE);
470 if (!pc_req)
471 return -ENOMEM;
473 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
474 if (!pc_resp) {
475 kfree(pc_req);
476 return -ENOMEM;
479 pc_req[1] = SMP_PHY_CONTROL;
480 pc_req[9] = phy_id;
481 pc_req[10]= phy_func;
482 if (rates) {
483 pc_req[32] = rates->minimum_linkrate << 4;
484 pc_req[33] = rates->maximum_linkrate << 4;
487 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
489 kfree(pc_resp);
490 kfree(pc_req);
491 return res;
494 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
496 struct expander_device *ex = &dev->ex_dev;
497 struct ex_phy *phy = &ex->ex_phy[phy_id];
499 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
500 phy->linkrate = SAS_PHY_DISABLED;
503 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
505 struct expander_device *ex = &dev->ex_dev;
506 int i;
508 for (i = 0; i < ex->num_phys; i++) {
509 struct ex_phy *phy = &ex->ex_phy[i];
511 if (phy->phy_state == PHY_VACANT ||
512 phy->phy_state == PHY_NOT_PRESENT)
513 continue;
515 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
516 sas_ex_disable_phy(dev, i);
520 static int sas_dev_present_in_domain(struct asd_sas_port *port,
521 u8 *sas_addr)
523 struct domain_device *dev;
525 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
526 return 1;
527 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
528 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
529 return 1;
531 return 0;
534 #define RPEL_REQ_SIZE 16
535 #define RPEL_RESP_SIZE 32
536 int sas_smp_get_phy_events(struct sas_phy *phy)
538 int res;
539 u8 *req;
540 u8 *resp;
541 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
542 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
544 req = alloc_smp_req(RPEL_REQ_SIZE);
545 if (!req)
546 return -ENOMEM;
548 resp = alloc_smp_resp(RPEL_RESP_SIZE);
549 if (!resp) {
550 kfree(req);
551 return -ENOMEM;
554 req[1] = SMP_REPORT_PHY_ERR_LOG;
555 req[9] = phy->number;
557 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
558 resp, RPEL_RESP_SIZE);
560 if (!res)
561 goto out;
563 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
564 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
565 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
566 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
568 out:
569 kfree(resp);
570 return res;
574 #ifdef CONFIG_SCSI_SAS_ATA
576 #define RPS_REQ_SIZE 16
577 #define RPS_RESP_SIZE 60
579 static int sas_get_report_phy_sata(struct domain_device *dev,
580 int phy_id,
581 struct smp_resp *rps_resp)
583 int res;
584 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
585 u8 *resp = (u8 *)rps_resp;
587 if (!rps_req)
588 return -ENOMEM;
590 rps_req[1] = SMP_REPORT_PHY_SATA;
591 rps_req[9] = phy_id;
593 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
594 rps_resp, RPS_RESP_SIZE);
596 /* 0x34 is the FIS type for the D2H fis. There's a potential
597 * standards cockup here. sas-2 explicitly specifies the FIS
598 * should be encoded so that FIS type is in resp[24].
599 * However, some expanders endian reverse this. Undo the
600 * reversal here */
601 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
602 int i;
604 for (i = 0; i < 5; i++) {
605 int j = 24 + (i*4);
606 u8 a, b;
607 a = resp[j + 0];
608 b = resp[j + 1];
609 resp[j + 0] = resp[j + 3];
610 resp[j + 1] = resp[j + 2];
611 resp[j + 2] = b;
612 resp[j + 3] = a;
616 kfree(rps_req);
617 return res;
619 #endif
621 static void sas_ex_get_linkrate(struct domain_device *parent,
622 struct domain_device *child,
623 struct ex_phy *parent_phy)
625 struct expander_device *parent_ex = &parent->ex_dev;
626 struct sas_port *port;
627 int i;
629 child->pathways = 0;
631 port = parent_phy->port;
633 for (i = 0; i < parent_ex->num_phys; i++) {
634 struct ex_phy *phy = &parent_ex->ex_phy[i];
636 if (phy->phy_state == PHY_VACANT ||
637 phy->phy_state == PHY_NOT_PRESENT)
638 continue;
640 if (SAS_ADDR(phy->attached_sas_addr) ==
641 SAS_ADDR(child->sas_addr)) {
643 child->min_linkrate = min(parent->min_linkrate,
644 phy->linkrate);
645 child->max_linkrate = max(parent->max_linkrate,
646 phy->linkrate);
647 child->pathways++;
648 sas_port_add_phy(port, phy->phy);
651 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
652 child->pathways = min(child->pathways, parent->pathways);
655 static struct domain_device *sas_ex_discover_end_dev(
656 struct domain_device *parent, int phy_id)
658 struct expander_device *parent_ex = &parent->ex_dev;
659 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
660 struct domain_device *child = NULL;
661 struct sas_rphy *rphy;
662 int res;
664 if (phy->attached_sata_host || phy->attached_sata_ps)
665 return NULL;
667 child = kzalloc(sizeof(*child), GFP_KERNEL);
668 if (!child)
669 return NULL;
671 child->parent = parent;
672 child->port = parent->port;
673 child->iproto = phy->attached_iproto;
674 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
675 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
676 if (!phy->port) {
677 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
678 if (unlikely(!phy->port))
679 goto out_err;
680 if (unlikely(sas_port_add(phy->port) != 0)) {
681 sas_port_free(phy->port);
682 goto out_err;
685 sas_ex_get_linkrate(parent, child, phy);
687 #ifdef CONFIG_SCSI_SAS_ATA
688 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
689 child->dev_type = SATA_DEV;
690 if (phy->attached_tproto & SAS_PROTOCOL_STP)
691 child->tproto = phy->attached_tproto;
692 if (phy->attached_sata_dev)
693 child->tproto |= SATA_DEV;
694 res = sas_get_report_phy_sata(parent, phy_id,
695 &child->sata_dev.rps_resp);
696 if (res) {
697 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
698 "0x%x\n", SAS_ADDR(parent->sas_addr),
699 phy_id, res);
700 goto out_free;
702 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
703 sizeof(struct dev_to_host_fis));
705 rphy = sas_end_device_alloc(phy->port);
706 if (unlikely(!rphy))
707 goto out_free;
709 sas_init_dev(child);
711 child->rphy = rphy;
713 spin_lock_irq(&parent->port->dev_list_lock);
714 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
715 spin_unlock_irq(&parent->port->dev_list_lock);
717 res = sas_discover_sata(child);
718 if (res) {
719 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
720 "%016llx:0x%x returned 0x%x\n",
721 SAS_ADDR(child->sas_addr),
722 SAS_ADDR(parent->sas_addr), phy_id, res);
723 goto out_list_del;
725 } else
726 #endif
727 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
728 child->dev_type = SAS_END_DEV;
729 rphy = sas_end_device_alloc(phy->port);
730 /* FIXME: error handling */
731 if (unlikely(!rphy))
732 goto out_free;
733 child->tproto = phy->attached_tproto;
734 sas_init_dev(child);
736 child->rphy = rphy;
737 sas_fill_in_rphy(child, rphy);
739 spin_lock_irq(&parent->port->dev_list_lock);
740 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
741 spin_unlock_irq(&parent->port->dev_list_lock);
743 res = sas_discover_end_dev(child);
744 if (res) {
745 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
746 "at %016llx:0x%x returned 0x%x\n",
747 SAS_ADDR(child->sas_addr),
748 SAS_ADDR(parent->sas_addr), phy_id, res);
749 goto out_list_del;
751 } else {
752 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
753 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
754 phy_id);
755 goto out_free;
758 list_add_tail(&child->siblings, &parent_ex->children);
759 return child;
761 out_list_del:
762 sas_rphy_free(child->rphy);
763 child->rphy = NULL;
765 spin_lock_irq(&parent->port->dev_list_lock);
766 list_del(&child->dev_list_node);
767 spin_unlock_irq(&parent->port->dev_list_lock);
768 out_free:
769 sas_port_delete(phy->port);
770 out_err:
771 phy->port = NULL;
772 kfree(child);
773 return NULL;
776 /* See if this phy is part of a wide port */
777 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
779 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
780 int i;
782 for (i = 0; i < parent->ex_dev.num_phys; i++) {
783 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
785 if (ephy == phy)
786 continue;
788 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
789 SAS_ADDR_SIZE) && ephy->port) {
790 sas_port_add_phy(ephy->port, phy->phy);
791 phy->port = ephy->port;
792 phy->phy_state = PHY_DEVICE_DISCOVERED;
793 return 0;
797 return -ENODEV;
800 static struct domain_device *sas_ex_discover_expander(
801 struct domain_device *parent, int phy_id)
803 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
804 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
805 struct domain_device *child = NULL;
806 struct sas_rphy *rphy;
807 struct sas_expander_device *edev;
808 struct asd_sas_port *port;
809 int res;
811 if (phy->routing_attr == DIRECT_ROUTING) {
812 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
813 "allowed\n",
814 SAS_ADDR(parent->sas_addr), phy_id,
815 SAS_ADDR(phy->attached_sas_addr),
816 phy->attached_phy_id);
817 return NULL;
819 child = kzalloc(sizeof(*child), GFP_KERNEL);
820 if (!child)
821 return NULL;
823 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
824 /* FIXME: better error handling */
825 BUG_ON(sas_port_add(phy->port) != 0);
828 switch (phy->attached_dev_type) {
829 case EDGE_DEV:
830 rphy = sas_expander_alloc(phy->port,
831 SAS_EDGE_EXPANDER_DEVICE);
832 break;
833 case FANOUT_DEV:
834 rphy = sas_expander_alloc(phy->port,
835 SAS_FANOUT_EXPANDER_DEVICE);
836 break;
837 default:
838 rphy = NULL; /* shut gcc up */
839 BUG();
841 port = parent->port;
842 child->rphy = rphy;
843 edev = rphy_to_expander_device(rphy);
844 child->dev_type = phy->attached_dev_type;
845 child->parent = parent;
846 child->port = port;
847 child->iproto = phy->attached_iproto;
848 child->tproto = phy->attached_tproto;
849 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
850 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
851 sas_ex_get_linkrate(parent, child, phy);
852 edev->level = parent_ex->level + 1;
853 parent->port->disc.max_level = max(parent->port->disc.max_level,
854 edev->level);
855 sas_init_dev(child);
856 sas_fill_in_rphy(child, rphy);
857 sas_rphy_add(rphy);
859 spin_lock_irq(&parent->port->dev_list_lock);
860 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
861 spin_unlock_irq(&parent->port->dev_list_lock);
863 res = sas_discover_expander(child);
864 if (res) {
865 spin_lock_irq(&parent->port->dev_list_lock);
866 list_del(&child->dev_list_node);
867 spin_unlock_irq(&parent->port->dev_list_lock);
868 kfree(child);
869 return NULL;
871 list_add_tail(&child->siblings, &parent->ex_dev.children);
872 return child;
875 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
877 struct expander_device *ex = &dev->ex_dev;
878 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
879 struct domain_device *child = NULL;
880 int res = 0;
882 /* Phy state */
883 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
884 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
885 res = sas_ex_phy_discover(dev, phy_id);
886 if (res)
887 return res;
890 /* Parent and domain coherency */
891 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
892 SAS_ADDR(dev->port->sas_addr))) {
893 sas_add_parent_port(dev, phy_id);
894 return 0;
896 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
897 SAS_ADDR(dev->parent->sas_addr))) {
898 sas_add_parent_port(dev, phy_id);
899 if (ex_phy->routing_attr == TABLE_ROUTING)
900 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
901 return 0;
904 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
905 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
907 if (ex_phy->attached_dev_type == NO_DEVICE) {
908 if (ex_phy->routing_attr == DIRECT_ROUTING) {
909 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
910 sas_configure_routing(dev, ex_phy->attached_sas_addr);
912 return 0;
913 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
914 return 0;
916 if (ex_phy->attached_dev_type != SAS_END_DEV &&
917 ex_phy->attached_dev_type != FANOUT_DEV &&
918 ex_phy->attached_dev_type != EDGE_DEV) {
919 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
920 "phy 0x%x\n", ex_phy->attached_dev_type,
921 SAS_ADDR(dev->sas_addr),
922 phy_id);
923 return 0;
926 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
927 if (res) {
928 SAS_DPRINTK("configure routing for dev %016llx "
929 "reported 0x%x. Forgotten\n",
930 SAS_ADDR(ex_phy->attached_sas_addr), res);
931 sas_disable_routing(dev, ex_phy->attached_sas_addr);
932 return res;
935 res = sas_ex_join_wide_port(dev, phy_id);
936 if (!res) {
937 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
938 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
939 return res;
942 switch (ex_phy->attached_dev_type) {
943 case SAS_END_DEV:
944 child = sas_ex_discover_end_dev(dev, phy_id);
945 break;
946 case FANOUT_DEV:
947 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
948 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
949 "attached to ex %016llx phy 0x%x\n",
950 SAS_ADDR(ex_phy->attached_sas_addr),
951 ex_phy->attached_phy_id,
952 SAS_ADDR(dev->sas_addr),
953 phy_id);
954 sas_ex_disable_phy(dev, phy_id);
955 break;
956 } else
957 memcpy(dev->port->disc.fanout_sas_addr,
958 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
959 /* fallthrough */
960 case EDGE_DEV:
961 child = sas_ex_discover_expander(dev, phy_id);
962 break;
963 default:
964 break;
967 if (child) {
968 int i;
970 for (i = 0; i < ex->num_phys; i++) {
971 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
972 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
973 continue;
975 * Due to races, the phy might not get added to the
976 * wide port, so we add the phy to the wide port here.
978 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
979 SAS_ADDR(child->sas_addr)) {
980 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
981 res = sas_ex_join_wide_port(dev, i);
982 if (!res)
983 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
984 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
990 return res;
993 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
995 struct expander_device *ex = &dev->ex_dev;
996 int i;
998 for (i = 0; i < ex->num_phys; i++) {
999 struct ex_phy *phy = &ex->ex_phy[i];
1001 if (phy->phy_state == PHY_VACANT ||
1002 phy->phy_state == PHY_NOT_PRESENT)
1003 continue;
1005 if ((phy->attached_dev_type == EDGE_DEV ||
1006 phy->attached_dev_type == FANOUT_DEV) &&
1007 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1009 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1011 return 1;
1014 return 0;
1017 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1019 struct expander_device *ex = &dev->ex_dev;
1020 struct domain_device *child;
1021 u8 sub_addr[8] = {0, };
1023 list_for_each_entry(child, &ex->children, siblings) {
1024 if (child->dev_type != EDGE_DEV &&
1025 child->dev_type != FANOUT_DEV)
1026 continue;
1027 if (sub_addr[0] == 0) {
1028 sas_find_sub_addr(child, sub_addr);
1029 continue;
1030 } else {
1031 u8 s2[8];
1033 if (sas_find_sub_addr(child, s2) &&
1034 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1036 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1037 "diverges from subtractive "
1038 "boundary %016llx\n",
1039 SAS_ADDR(dev->sas_addr),
1040 SAS_ADDR(child->sas_addr),
1041 SAS_ADDR(s2),
1042 SAS_ADDR(sub_addr));
1044 sas_ex_disable_port(child, s2);
1048 return 0;
1051 * sas_ex_discover_devices -- discover devices attached to this expander
1052 * dev: pointer to the expander domain device
1053 * single: if you want to do a single phy, else set to -1;
1055 * Configure this expander for use with its devices and register the
1056 * devices of this expander.
1058 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1060 struct expander_device *ex = &dev->ex_dev;
1061 int i = 0, end = ex->num_phys;
1062 int res = 0;
1064 if (0 <= single && single < end) {
1065 i = single;
1066 end = i+1;
1069 for ( ; i < end; i++) {
1070 struct ex_phy *ex_phy = &ex->ex_phy[i];
1072 if (ex_phy->phy_state == PHY_VACANT ||
1073 ex_phy->phy_state == PHY_NOT_PRESENT ||
1074 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1075 continue;
1077 switch (ex_phy->linkrate) {
1078 case SAS_PHY_DISABLED:
1079 case SAS_PHY_RESET_PROBLEM:
1080 case SAS_SATA_PORT_SELECTOR:
1081 continue;
1082 default:
1083 res = sas_ex_discover_dev(dev, i);
1084 if (res)
1085 break;
1086 continue;
1090 if (!res)
1091 sas_check_level_subtractive_boundary(dev);
1093 return res;
1096 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1098 struct expander_device *ex = &dev->ex_dev;
1099 int i;
1100 u8 *sub_sas_addr = NULL;
1102 if (dev->dev_type != EDGE_DEV)
1103 return 0;
1105 for (i = 0; i < ex->num_phys; i++) {
1106 struct ex_phy *phy = &ex->ex_phy[i];
1108 if (phy->phy_state == PHY_VACANT ||
1109 phy->phy_state == PHY_NOT_PRESENT)
1110 continue;
1112 if ((phy->attached_dev_type == FANOUT_DEV ||
1113 phy->attached_dev_type == EDGE_DEV) &&
1114 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1116 if (!sub_sas_addr)
1117 sub_sas_addr = &phy->attached_sas_addr[0];
1118 else if (SAS_ADDR(sub_sas_addr) !=
1119 SAS_ADDR(phy->attached_sas_addr)) {
1121 SAS_DPRINTK("ex %016llx phy 0x%x "
1122 "diverges(%016llx) on subtractive "
1123 "boundary(%016llx). Disabled\n",
1124 SAS_ADDR(dev->sas_addr), i,
1125 SAS_ADDR(phy->attached_sas_addr),
1126 SAS_ADDR(sub_sas_addr));
1127 sas_ex_disable_phy(dev, i);
1131 return 0;
1134 static void sas_print_parent_topology_bug(struct domain_device *child,
1135 struct ex_phy *parent_phy,
1136 struct ex_phy *child_phy)
1138 static const char ra_char[] = {
1139 [DIRECT_ROUTING] = 'D',
1140 [SUBTRACTIVE_ROUTING] = 'S',
1141 [TABLE_ROUTING] = 'T',
1143 static const char *ex_type[] = {
1144 [EDGE_DEV] = "edge",
1145 [FANOUT_DEV] = "fanout",
1147 struct domain_device *parent = child->parent;
1149 sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1150 "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1152 ex_type[parent->dev_type],
1153 SAS_ADDR(parent->sas_addr),
1154 parent->ex_dev.t2t_supp,
1155 parent_phy->phy_id,
1157 ex_type[child->dev_type],
1158 SAS_ADDR(child->sas_addr),
1159 child->ex_dev.t2t_supp,
1160 child_phy->phy_id,
1162 ra_char[parent_phy->routing_attr],
1163 ra_char[child_phy->routing_attr]);
1166 static int sas_check_eeds(struct domain_device *child,
1167 struct ex_phy *parent_phy,
1168 struct ex_phy *child_phy)
1170 int res = 0;
1171 struct domain_device *parent = child->parent;
1173 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1174 res = -ENODEV;
1175 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1176 "phy S:0x%x, while there is a fanout ex %016llx\n",
1177 SAS_ADDR(parent->sas_addr),
1178 parent_phy->phy_id,
1179 SAS_ADDR(child->sas_addr),
1180 child_phy->phy_id,
1181 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1182 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1183 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1184 SAS_ADDR_SIZE);
1185 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1186 SAS_ADDR_SIZE);
1187 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1188 SAS_ADDR(parent->sas_addr)) ||
1189 (SAS_ADDR(parent->port->disc.eeds_a) ==
1190 SAS_ADDR(child->sas_addr)))
1192 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1193 SAS_ADDR(parent->sas_addr)) ||
1194 (SAS_ADDR(parent->port->disc.eeds_b) ==
1195 SAS_ADDR(child->sas_addr))))
1197 else {
1198 res = -ENODEV;
1199 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1200 "phy 0x%x link forms a third EEDS!\n",
1201 SAS_ADDR(parent->sas_addr),
1202 parent_phy->phy_id,
1203 SAS_ADDR(child->sas_addr),
1204 child_phy->phy_id);
1207 return res;
1210 /* Here we spill over 80 columns. It is intentional.
1212 static int sas_check_parent_topology(struct domain_device *child)
1214 struct expander_device *child_ex = &child->ex_dev;
1215 struct expander_device *parent_ex;
1216 int i;
1217 int res = 0;
1219 if (!child->parent)
1220 return 0;
1222 if (child->parent->dev_type != EDGE_DEV &&
1223 child->parent->dev_type != FANOUT_DEV)
1224 return 0;
1226 parent_ex = &child->parent->ex_dev;
1228 for (i = 0; i < parent_ex->num_phys; i++) {
1229 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1230 struct ex_phy *child_phy;
1232 if (parent_phy->phy_state == PHY_VACANT ||
1233 parent_phy->phy_state == PHY_NOT_PRESENT)
1234 continue;
1236 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1237 continue;
1239 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1241 switch (child->parent->dev_type) {
1242 case EDGE_DEV:
1243 if (child->dev_type == FANOUT_DEV) {
1244 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1245 child_phy->routing_attr != TABLE_ROUTING) {
1246 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1247 res = -ENODEV;
1249 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1250 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1251 res = sas_check_eeds(child, parent_phy, child_phy);
1252 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1253 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1254 res = -ENODEV;
1256 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1257 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1258 (child_phy->routing_attr == TABLE_ROUTING &&
1259 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1260 /* All good */;
1261 } else {
1262 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1263 res = -ENODEV;
1266 break;
1267 case FANOUT_DEV:
1268 if (parent_phy->routing_attr != TABLE_ROUTING ||
1269 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1270 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1271 res = -ENODEV;
1273 break;
1274 default:
1275 break;
1279 return res;
1282 #define RRI_REQ_SIZE 16
1283 #define RRI_RESP_SIZE 44
1285 static int sas_configure_present(struct domain_device *dev, int phy_id,
1286 u8 *sas_addr, int *index, int *present)
1288 int i, res = 0;
1289 struct expander_device *ex = &dev->ex_dev;
1290 struct ex_phy *phy = &ex->ex_phy[phy_id];
1291 u8 *rri_req;
1292 u8 *rri_resp;
1294 *present = 0;
1295 *index = 0;
1297 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1298 if (!rri_req)
1299 return -ENOMEM;
1301 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1302 if (!rri_resp) {
1303 kfree(rri_req);
1304 return -ENOMEM;
1307 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1308 rri_req[9] = phy_id;
1310 for (i = 0; i < ex->max_route_indexes ; i++) {
1311 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1312 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1313 RRI_RESP_SIZE);
1314 if (res)
1315 goto out;
1316 res = rri_resp[2];
1317 if (res == SMP_RESP_NO_INDEX) {
1318 SAS_DPRINTK("overflow of indexes: dev %016llx "
1319 "phy 0x%x index 0x%x\n",
1320 SAS_ADDR(dev->sas_addr), phy_id, i);
1321 goto out;
1322 } else if (res != SMP_RESP_FUNC_ACC) {
1323 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1324 "result 0x%x\n", __func__,
1325 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1326 goto out;
1328 if (SAS_ADDR(sas_addr) != 0) {
1329 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1330 *index = i;
1331 if ((rri_resp[12] & 0x80) == 0x80)
1332 *present = 0;
1333 else
1334 *present = 1;
1335 goto out;
1336 } else if (SAS_ADDR(rri_resp+16) == 0) {
1337 *index = i;
1338 *present = 0;
1339 goto out;
1341 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1342 phy->last_da_index < i) {
1343 phy->last_da_index = i;
1344 *index = i;
1345 *present = 0;
1346 goto out;
1349 res = -1;
1350 out:
1351 kfree(rri_req);
1352 kfree(rri_resp);
1353 return res;
1356 #define CRI_REQ_SIZE 44
1357 #define CRI_RESP_SIZE 8
1359 static int sas_configure_set(struct domain_device *dev, int phy_id,
1360 u8 *sas_addr, int index, int include)
1362 int res;
1363 u8 *cri_req;
1364 u8 *cri_resp;
1366 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1367 if (!cri_req)
1368 return -ENOMEM;
1370 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1371 if (!cri_resp) {
1372 kfree(cri_req);
1373 return -ENOMEM;
1376 cri_req[1] = SMP_CONF_ROUTE_INFO;
1377 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1378 cri_req[9] = phy_id;
1379 if (SAS_ADDR(sas_addr) == 0 || !include)
1380 cri_req[12] |= 0x80;
1381 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1383 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1384 CRI_RESP_SIZE);
1385 if (res)
1386 goto out;
1387 res = cri_resp[2];
1388 if (res == SMP_RESP_NO_INDEX) {
1389 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1390 "index 0x%x\n",
1391 SAS_ADDR(dev->sas_addr), phy_id, index);
1393 out:
1394 kfree(cri_req);
1395 kfree(cri_resp);
1396 return res;
1399 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1400 u8 *sas_addr, int include)
1402 int index;
1403 int present;
1404 int res;
1406 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1407 if (res)
1408 return res;
1409 if (include ^ present)
1410 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1412 return res;
1416 * sas_configure_parent -- configure routing table of parent
1417 * parent: parent expander
1418 * child: child expander
1419 * sas_addr: SAS port identifier of device directly attached to child
1421 static int sas_configure_parent(struct domain_device *parent,
1422 struct domain_device *child,
1423 u8 *sas_addr, int include)
1425 struct expander_device *ex_parent = &parent->ex_dev;
1426 int res = 0;
1427 int i;
1429 if (parent->parent) {
1430 res = sas_configure_parent(parent->parent, parent, sas_addr,
1431 include);
1432 if (res)
1433 return res;
1436 if (ex_parent->conf_route_table == 0) {
1437 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1438 SAS_ADDR(parent->sas_addr));
1439 return 0;
1442 for (i = 0; i < ex_parent->num_phys; i++) {
1443 struct ex_phy *phy = &ex_parent->ex_phy[i];
1445 if ((phy->routing_attr == TABLE_ROUTING) &&
1446 (SAS_ADDR(phy->attached_sas_addr) ==
1447 SAS_ADDR(child->sas_addr))) {
1448 res = sas_configure_phy(parent, i, sas_addr, include);
1449 if (res)
1450 return res;
1454 return res;
1458 * sas_configure_routing -- configure routing
1459 * dev: expander device
1460 * sas_addr: port identifier of device directly attached to the expander device
1462 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1464 if (dev->parent)
1465 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1466 return 0;
1469 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1471 if (dev->parent)
1472 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1473 return 0;
1477 * sas_discover_expander -- expander discovery
1478 * @ex: pointer to expander domain device
1480 * See comment in sas_discover_sata().
1482 static int sas_discover_expander(struct domain_device *dev)
1484 int res;
1486 res = sas_notify_lldd_dev_found(dev);
1487 if (res)
1488 return res;
1490 res = sas_ex_general(dev);
1491 if (res)
1492 goto out_err;
1493 res = sas_ex_manuf_info(dev);
1494 if (res)
1495 goto out_err;
1497 res = sas_expander_discover(dev);
1498 if (res) {
1499 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1500 SAS_ADDR(dev->sas_addr), res);
1501 goto out_err;
1504 sas_check_ex_subtractive_boundary(dev);
1505 res = sas_check_parent_topology(dev);
1506 if (res)
1507 goto out_err;
1508 return 0;
1509 out_err:
1510 sas_notify_lldd_dev_gone(dev);
1511 return res;
1514 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1516 int res = 0;
1517 struct domain_device *dev;
1519 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1520 if (dev->dev_type == EDGE_DEV ||
1521 dev->dev_type == FANOUT_DEV) {
1522 struct sas_expander_device *ex =
1523 rphy_to_expander_device(dev->rphy);
1525 if (level == ex->level)
1526 res = sas_ex_discover_devices(dev, -1);
1527 else if (level > 0)
1528 res = sas_ex_discover_devices(port->port_dev, -1);
1533 return res;
1536 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1538 int res;
1539 int level;
1541 do {
1542 level = port->disc.max_level;
1543 res = sas_ex_level_discovery(port, level);
1544 mb();
1545 } while (level < port->disc.max_level);
1547 return res;
1550 int sas_discover_root_expander(struct domain_device *dev)
1552 int res;
1553 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1555 res = sas_rphy_add(dev->rphy);
1556 if (res)
1557 goto out_err;
1559 ex->level = dev->port->disc.max_level; /* 0 */
1560 res = sas_discover_expander(dev);
1561 if (res)
1562 goto out_err2;
1564 sas_ex_bfs_disc(dev->port);
1566 return res;
1568 out_err2:
1569 sas_rphy_remove(dev->rphy);
1570 out_err:
1571 return res;
1574 /* ---------- Domain revalidation ---------- */
1576 static int sas_get_phy_discover(struct domain_device *dev,
1577 int phy_id, struct smp_resp *disc_resp)
1579 int res;
1580 u8 *disc_req;
1582 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1583 if (!disc_req)
1584 return -ENOMEM;
1586 disc_req[1] = SMP_DISCOVER;
1587 disc_req[9] = phy_id;
1589 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1590 disc_resp, DISCOVER_RESP_SIZE);
1591 if (res)
1592 goto out;
1593 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1594 res = disc_resp->result;
1595 goto out;
1597 out:
1598 kfree(disc_req);
1599 return res;
1602 static int sas_get_phy_change_count(struct domain_device *dev,
1603 int phy_id, int *pcc)
1605 int res;
1606 struct smp_resp *disc_resp;
1608 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1609 if (!disc_resp)
1610 return -ENOMEM;
1612 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613 if (!res)
1614 *pcc = disc_resp->disc.change_count;
1616 kfree(disc_resp);
1617 return res;
1620 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1621 int phy_id, u8 *attached_sas_addr)
1623 int res;
1624 struct smp_resp *disc_resp;
1625 struct discover_resp *dr;
1627 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1628 if (!disc_resp)
1629 return -ENOMEM;
1630 dr = &disc_resp->disc;
1632 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1633 if (!res) {
1634 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1635 if (dr->attached_dev_type == 0)
1636 memset(attached_sas_addr, 0, 8);
1638 kfree(disc_resp);
1639 return res;
1642 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1643 int from_phy, bool update)
1645 struct expander_device *ex = &dev->ex_dev;
1646 int res = 0;
1647 int i;
1649 for (i = from_phy; i < ex->num_phys; i++) {
1650 int phy_change_count = 0;
1652 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1653 switch (res) {
1654 case SMP_RESP_PHY_VACANT:
1655 case SMP_RESP_NO_PHY:
1656 continue;
1657 case SMP_RESP_FUNC_ACC:
1658 break;
1659 default:
1660 return res;
1663 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1664 if (update)
1665 ex->ex_phy[i].phy_change_count =
1666 phy_change_count;
1667 *phy_id = i;
1668 return 0;
1671 return 0;
1674 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1676 int res;
1677 u8 *rg_req;
1678 struct smp_resp *rg_resp;
1680 rg_req = alloc_smp_req(RG_REQ_SIZE);
1681 if (!rg_req)
1682 return -ENOMEM;
1684 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1685 if (!rg_resp) {
1686 kfree(rg_req);
1687 return -ENOMEM;
1690 rg_req[1] = SMP_REPORT_GENERAL;
1692 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1693 RG_RESP_SIZE);
1694 if (res)
1695 goto out;
1696 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1697 res = rg_resp->result;
1698 goto out;
1701 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1702 out:
1703 kfree(rg_resp);
1704 kfree(rg_req);
1705 return res;
1708 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1709 * @dev:domain device to be detect.
1710 * @src_dev: the device which originated BROADCAST(CHANGE).
1712 * Add self-configuration expander suport. Suppose two expander cascading,
1713 * when the first level expander is self-configuring, hotplug the disks in
1714 * second level expander, BROADCAST(CHANGE) will not only be originated
1715 * in the second level expander, but also be originated in the first level
1716 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1717 * expander changed count in two level expanders will all increment at least
1718 * once, but the phy which chang count has changed is the source device which
1719 * we concerned.
1722 static int sas_find_bcast_dev(struct domain_device *dev,
1723 struct domain_device **src_dev)
1725 struct expander_device *ex = &dev->ex_dev;
1726 int ex_change_count = -1;
1727 int phy_id = -1;
1728 int res;
1729 struct domain_device *ch;
1731 res = sas_get_ex_change_count(dev, &ex_change_count);
1732 if (res)
1733 goto out;
1734 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1735 /* Just detect if this expander phys phy change count changed,
1736 * in order to determine if this expander originate BROADCAST,
1737 * and do not update phy change count field in our structure.
1739 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1740 if (phy_id != -1) {
1741 *src_dev = dev;
1742 ex->ex_change_count = ex_change_count;
1743 SAS_DPRINTK("Expander phy change count has changed\n");
1744 return res;
1745 } else
1746 SAS_DPRINTK("Expander phys DID NOT change\n");
1748 list_for_each_entry(ch, &ex->children, siblings) {
1749 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1750 res = sas_find_bcast_dev(ch, src_dev);
1751 if (*src_dev)
1752 return res;
1755 out:
1756 return res;
1759 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1761 struct expander_device *ex = &dev->ex_dev;
1762 struct domain_device *child, *n;
1764 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1765 child->gone = 1;
1766 if (child->dev_type == EDGE_DEV ||
1767 child->dev_type == FANOUT_DEV)
1768 sas_unregister_ex_tree(port, child);
1769 else
1770 sas_unregister_dev(port, child);
1772 sas_unregister_dev(port, dev);
1775 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1776 int phy_id, bool last)
1778 struct expander_device *ex_dev = &parent->ex_dev;
1779 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1780 struct domain_device *child, *n;
1781 if (last) {
1782 list_for_each_entry_safe(child, n,
1783 &ex_dev->children, siblings) {
1784 if (SAS_ADDR(child->sas_addr) ==
1785 SAS_ADDR(phy->attached_sas_addr)) {
1786 child->gone = 1;
1787 if (child->dev_type == EDGE_DEV ||
1788 child->dev_type == FANOUT_DEV)
1789 sas_unregister_ex_tree(parent->port, child);
1790 else
1791 sas_unregister_dev(parent->port, child);
1792 break;
1795 parent->gone = 1;
1796 sas_disable_routing(parent, phy->attached_sas_addr);
1798 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1799 if (phy->port) {
1800 sas_port_delete_phy(phy->port, phy->phy);
1801 if (phy->port->num_phys == 0)
1802 sas_port_delete(phy->port);
1803 phy->port = NULL;
1807 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1808 const int level)
1810 struct expander_device *ex_root = &root->ex_dev;
1811 struct domain_device *child;
1812 int res = 0;
1814 list_for_each_entry(child, &ex_root->children, siblings) {
1815 if (child->dev_type == EDGE_DEV ||
1816 child->dev_type == FANOUT_DEV) {
1817 struct sas_expander_device *ex =
1818 rphy_to_expander_device(child->rphy);
1820 if (level > ex->level)
1821 res = sas_discover_bfs_by_root_level(child,
1822 level);
1823 else if (level == ex->level)
1824 res = sas_ex_discover_devices(child, -1);
1827 return res;
1830 static int sas_discover_bfs_by_root(struct domain_device *dev)
1832 int res;
1833 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1834 int level = ex->level+1;
1836 res = sas_ex_discover_devices(dev, -1);
1837 if (res)
1838 goto out;
1839 do {
1840 res = sas_discover_bfs_by_root_level(dev, level);
1841 mb();
1842 level += 1;
1843 } while (level <= dev->port->disc.max_level);
1844 out:
1845 return res;
1848 static int sas_discover_new(struct domain_device *dev, int phy_id)
1850 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1851 struct domain_device *child;
1852 bool found = false;
1853 int res, i;
1855 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1856 SAS_ADDR(dev->sas_addr), phy_id);
1857 res = sas_ex_phy_discover(dev, phy_id);
1858 if (res)
1859 goto out;
1860 /* to support the wide port inserted */
1861 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1862 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1863 if (i == phy_id)
1864 continue;
1865 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1866 SAS_ADDR(ex_phy->attached_sas_addr)) {
1867 found = true;
1868 break;
1871 if (found) {
1872 sas_ex_join_wide_port(dev, phy_id);
1873 return 0;
1875 res = sas_ex_discover_devices(dev, phy_id);
1876 if (!res)
1877 goto out;
1878 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1879 if (SAS_ADDR(child->sas_addr) ==
1880 SAS_ADDR(ex_phy->attached_sas_addr)) {
1881 if (child->dev_type == EDGE_DEV ||
1882 child->dev_type == FANOUT_DEV)
1883 res = sas_discover_bfs_by_root(child);
1884 break;
1887 out:
1888 return res;
1891 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1893 struct expander_device *ex = &dev->ex_dev;
1894 struct ex_phy *phy = &ex->ex_phy[phy_id];
1895 u8 attached_sas_addr[8];
1896 int res;
1898 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1899 switch (res) {
1900 case SMP_RESP_NO_PHY:
1901 phy->phy_state = PHY_NOT_PRESENT;
1902 sas_unregister_devs_sas_addr(dev, phy_id, last);
1903 goto out; break;
1904 case SMP_RESP_PHY_VACANT:
1905 phy->phy_state = PHY_VACANT;
1906 sas_unregister_devs_sas_addr(dev, phy_id, last);
1907 goto out; break;
1908 case SMP_RESP_FUNC_ACC:
1909 break;
1912 if (SAS_ADDR(attached_sas_addr) == 0) {
1913 phy->phy_state = PHY_EMPTY;
1914 sas_unregister_devs_sas_addr(dev, phy_id, last);
1915 } else if (SAS_ADDR(attached_sas_addr) ==
1916 SAS_ADDR(phy->attached_sas_addr)) {
1917 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1918 SAS_ADDR(dev->sas_addr), phy_id);
1919 sas_ex_phy_discover(dev, phy_id);
1920 } else
1921 res = sas_discover_new(dev, phy_id);
1922 out:
1923 return res;
1927 * sas_rediscover - revalidate the domain.
1928 * @dev:domain device to be detect.
1929 * @phy_id: the phy id will be detected.
1931 * NOTE: this process _must_ quit (return) as soon as any connection
1932 * errors are encountered. Connection recovery is done elsewhere.
1933 * Discover process only interrogates devices in order to discover the
1934 * domain.For plugging out, we un-register the device only when it is
1935 * the last phy in the port, for other phys in this port, we just delete it
1936 * from the port.For inserting, we do discovery when it is the
1937 * first phy,for other phys in this port, we add it to the port to
1938 * forming the wide-port.
1940 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1942 struct expander_device *ex = &dev->ex_dev;
1943 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1944 int res = 0;
1945 int i;
1946 bool last = true; /* is this the last phy of the port */
1948 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1949 SAS_ADDR(dev->sas_addr), phy_id);
1951 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1952 for (i = 0; i < ex->num_phys; i++) {
1953 struct ex_phy *phy = &ex->ex_phy[i];
1955 if (i == phy_id)
1956 continue;
1957 if (SAS_ADDR(phy->attached_sas_addr) ==
1958 SAS_ADDR(changed_phy->attached_sas_addr)) {
1959 SAS_DPRINTK("phy%d part of wide port with "
1960 "phy%d\n", phy_id, i);
1961 last = false;
1962 break;
1965 res = sas_rediscover_dev(dev, phy_id, last);
1966 } else
1967 res = sas_discover_new(dev, phy_id);
1968 return res;
1972 * sas_revalidate_domain -- revalidate the domain
1973 * @port: port to the domain of interest
1975 * NOTE: this process _must_ quit (return) as soon as any connection
1976 * errors are encountered. Connection recovery is done elsewhere.
1977 * Discover process only interrogates devices in order to discover the
1978 * domain.
1980 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1982 int res;
1983 struct domain_device *dev = NULL;
1985 res = sas_find_bcast_dev(port_dev, &dev);
1986 if (res)
1987 goto out;
1988 if (dev) {
1989 struct expander_device *ex = &dev->ex_dev;
1990 int i = 0, phy_id;
1992 do {
1993 phy_id = -1;
1994 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1995 if (phy_id == -1)
1996 break;
1997 res = sas_rediscover(dev, phy_id);
1998 i = phy_id + 1;
1999 } while (i < ex->num_phys);
2001 out:
2002 return res;
2005 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2006 struct request *req)
2008 struct domain_device *dev;
2009 int ret, type;
2010 struct request *rsp = req->next_rq;
2012 if (!rsp) {
2013 printk("%s: space for a smp response is missing\n",
2014 __func__);
2015 return -EINVAL;
2018 /* no rphy means no smp target support (ie aic94xx host) */
2019 if (!rphy)
2020 return sas_smp_host_handler(shost, req, rsp);
2022 type = rphy->identify.device_type;
2024 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2025 type != SAS_FANOUT_EXPANDER_DEVICE) {
2026 printk("%s: can we send a smp request to a device?\n",
2027 __func__);
2028 return -EINVAL;
2031 dev = sas_find_dev_by_rphy(rphy);
2032 if (!dev) {
2033 printk("%s: fail to find a domain_device?\n", __func__);
2034 return -EINVAL;
2037 /* do we need to support multiple segments? */
2038 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2039 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2040 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2041 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2042 return -EINVAL;
2045 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2046 bio_data(rsp->bio), blk_rq_bytes(rsp));
2047 if (ret > 0) {
2048 /* positive number is the untransferred residual */
2049 rsp->resid_len = ret;
2050 req->resid_len = 0;
2051 ret = 0;
2052 } else if (ret == 0) {
2053 rsp->resid_len = 0;
2054 req->resid_len = 0;
2057 return ret;