OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / drivers / tty / serial / sh-sci.c
blob9ec6d4e7d9e50edd8eeef289c4d6db02f896ec6b
1 /*
2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
4 * Copyright (C) 2002 - 2011 Paul Mundt
5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7 * based off of the old drivers/char/sh-sci.c by:
9 * Copyright (C) 1999, 2000 Niibe Yutaka
10 * Copyright (C) 2000 Sugioka Toshinobu
11 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
12 * Modified to support SecureEdge. David McCullough (2002)
13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14 * Removed SH7300 support (Jul 2007).
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file "COPYING" in the main directory of this archive
18 * for more details.
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
24 #undef DEBUG
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/timer.h>
29 #include <linux/interrupt.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial.h>
33 #include <linux/major.h>
34 #include <linux/string.h>
35 #include <linux/sysrq.h>
36 #include <linux/ioport.h>
37 #include <linux/mm.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/console.h>
41 #include <linux/platform_device.h>
42 #include <linux/serial_sci.h>
43 #include <linux/notifier.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/cpufreq.h>
46 #include <linux/clk.h>
47 #include <linux/ctype.h>
48 #include <linux/err.h>
49 #include <linux/dmaengine.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/scatterlist.h>
52 #include <linux/slab.h>
53 #include <linux/gpio.h>
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
59 #include "sh-sci.h"
61 struct sci_port {
62 struct uart_port port;
64 /* Platform configuration */
65 struct plat_sci_port *cfg;
67 /* Break timer */
68 struct timer_list break_timer;
69 int break_flag;
71 /* Interface clock */
72 struct clk *iclk;
73 /* Function clock */
74 struct clk *fclk;
76 char *irqstr[SCIx_NR_IRQS];
77 char *gpiostr[SCIx_NR_FNS];
79 struct dma_chan *chan_tx;
80 struct dma_chan *chan_rx;
82 #ifdef CONFIG_SERIAL_SH_SCI_DMA
83 struct dma_async_tx_descriptor *desc_tx;
84 struct dma_async_tx_descriptor *desc_rx[2];
85 dma_cookie_t cookie_tx;
86 dma_cookie_t cookie_rx[2];
87 dma_cookie_t active_rx;
88 struct scatterlist sg_tx;
89 unsigned int sg_len_tx;
90 struct scatterlist sg_rx[2];
91 size_t buf_len_rx;
92 struct sh_dmae_slave param_tx;
93 struct sh_dmae_slave param_rx;
94 struct work_struct work_tx;
95 struct work_struct work_rx;
96 struct timer_list rx_timer;
97 unsigned int rx_timeout;
98 #endif
100 struct notifier_block freq_transition;
102 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
103 unsigned short saved_smr;
104 unsigned short saved_fcr;
105 unsigned char saved_brr;
106 #endif
109 /* Function prototypes */
110 static void sci_start_tx(struct uart_port *port);
111 static void sci_stop_tx(struct uart_port *port);
112 static void sci_start_rx(struct uart_port *port);
114 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
116 static struct sci_port sci_ports[SCI_NPORTS];
117 static struct uart_driver sci_uart_driver;
119 static inline struct sci_port *
120 to_sci_port(struct uart_port *uart)
122 return container_of(uart, struct sci_port, port);
125 struct plat_sci_reg {
126 u8 offset, size;
129 /* Helper for invalidating specific entries of an inherited map. */
130 #define sci_reg_invalid { .offset = 0, .size = 0 }
132 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
133 [SCIx_PROBE_REGTYPE] = {
134 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
138 * Common SCI definitions, dependent on the port's regshift
139 * value.
141 [SCIx_SCI_REGTYPE] = {
142 [SCSMR] = { 0x00, 8 },
143 [SCBRR] = { 0x01, 8 },
144 [SCSCR] = { 0x02, 8 },
145 [SCxTDR] = { 0x03, 8 },
146 [SCxSR] = { 0x04, 8 },
147 [SCxRDR] = { 0x05, 8 },
148 [SCFCR] = sci_reg_invalid,
149 [SCFDR] = sci_reg_invalid,
150 [SCTFDR] = sci_reg_invalid,
151 [SCRFDR] = sci_reg_invalid,
152 [SCSPTR] = sci_reg_invalid,
153 [SCLSR] = sci_reg_invalid,
157 * Common definitions for legacy IrDA ports, dependent on
158 * regshift value.
160 [SCIx_IRDA_REGTYPE] = {
161 [SCSMR] = { 0x00, 8 },
162 [SCBRR] = { 0x01, 8 },
163 [SCSCR] = { 0x02, 8 },
164 [SCxTDR] = { 0x03, 8 },
165 [SCxSR] = { 0x04, 8 },
166 [SCxRDR] = { 0x05, 8 },
167 [SCFCR] = { 0x06, 8 },
168 [SCFDR] = { 0x07, 16 },
169 [SCTFDR] = sci_reg_invalid,
170 [SCRFDR] = sci_reg_invalid,
171 [SCSPTR] = sci_reg_invalid,
172 [SCLSR] = sci_reg_invalid,
176 * Common SCIFA definitions.
178 [SCIx_SCIFA_REGTYPE] = {
179 [SCSMR] = { 0x00, 16 },
180 [SCBRR] = { 0x04, 8 },
181 [SCSCR] = { 0x08, 16 },
182 [SCxTDR] = { 0x20, 8 },
183 [SCxSR] = { 0x14, 16 },
184 [SCxRDR] = { 0x24, 8 },
185 [SCFCR] = { 0x18, 16 },
186 [SCFDR] = { 0x1c, 16 },
187 [SCTFDR] = sci_reg_invalid,
188 [SCRFDR] = sci_reg_invalid,
189 [SCSPTR] = sci_reg_invalid,
190 [SCLSR] = sci_reg_invalid,
194 * Common SCIFB definitions.
196 [SCIx_SCIFB_REGTYPE] = {
197 [SCSMR] = { 0x00, 16 },
198 [SCBRR] = { 0x04, 8 },
199 [SCSCR] = { 0x08, 16 },
200 [SCxTDR] = { 0x40, 8 },
201 [SCxSR] = { 0x14, 16 },
202 [SCxRDR] = { 0x60, 8 },
203 [SCFCR] = { 0x18, 16 },
204 [SCFDR] = { 0x1c, 16 },
205 [SCTFDR] = sci_reg_invalid,
206 [SCRFDR] = sci_reg_invalid,
207 [SCSPTR] = sci_reg_invalid,
208 [SCLSR] = sci_reg_invalid,
212 * Common SH-2(A) SCIF definitions for ports with FIFO data
213 * count registers.
215 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
216 [SCSMR] = { 0x00, 16 },
217 [SCBRR] = { 0x04, 8 },
218 [SCSCR] = { 0x08, 16 },
219 [SCxTDR] = { 0x0c, 8 },
220 [SCxSR] = { 0x10, 16 },
221 [SCxRDR] = { 0x14, 8 },
222 [SCFCR] = { 0x18, 16 },
223 [SCFDR] = { 0x1c, 16 },
224 [SCTFDR] = sci_reg_invalid,
225 [SCRFDR] = sci_reg_invalid,
226 [SCSPTR] = { 0x20, 16 },
227 [SCLSR] = { 0x24, 16 },
231 * Common SH-3 SCIF definitions.
233 [SCIx_SH3_SCIF_REGTYPE] = {
234 [SCSMR] = { 0x00, 8 },
235 [SCBRR] = { 0x02, 8 },
236 [SCSCR] = { 0x04, 8 },
237 [SCxTDR] = { 0x06, 8 },
238 [SCxSR] = { 0x08, 16 },
239 [SCxRDR] = { 0x0a, 8 },
240 [SCFCR] = { 0x0c, 8 },
241 [SCFDR] = { 0x0e, 16 },
242 [SCTFDR] = sci_reg_invalid,
243 [SCRFDR] = sci_reg_invalid,
244 [SCSPTR] = sci_reg_invalid,
245 [SCLSR] = sci_reg_invalid,
249 * Common SH-4(A) SCIF(B) definitions.
251 [SCIx_SH4_SCIF_REGTYPE] = {
252 [SCSMR] = { 0x00, 16 },
253 [SCBRR] = { 0x04, 8 },
254 [SCSCR] = { 0x08, 16 },
255 [SCxTDR] = { 0x0c, 8 },
256 [SCxSR] = { 0x10, 16 },
257 [SCxRDR] = { 0x14, 8 },
258 [SCFCR] = { 0x18, 16 },
259 [SCFDR] = { 0x1c, 16 },
260 [SCTFDR] = sci_reg_invalid,
261 [SCRFDR] = sci_reg_invalid,
262 [SCSPTR] = { 0x20, 16 },
263 [SCLSR] = { 0x24, 16 },
267 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
268 * register.
270 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
271 [SCSMR] = { 0x00, 16 },
272 [SCBRR] = { 0x04, 8 },
273 [SCSCR] = { 0x08, 16 },
274 [SCxTDR] = { 0x0c, 8 },
275 [SCxSR] = { 0x10, 16 },
276 [SCxRDR] = { 0x14, 8 },
277 [SCFCR] = { 0x18, 16 },
278 [SCFDR] = { 0x1c, 16 },
279 [SCTFDR] = sci_reg_invalid,
280 [SCRFDR] = sci_reg_invalid,
281 [SCSPTR] = sci_reg_invalid,
282 [SCLSR] = { 0x24, 16 },
286 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
287 * count registers.
289 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
290 [SCSMR] = { 0x00, 16 },
291 [SCBRR] = { 0x04, 8 },
292 [SCSCR] = { 0x08, 16 },
293 [SCxTDR] = { 0x0c, 8 },
294 [SCxSR] = { 0x10, 16 },
295 [SCxRDR] = { 0x14, 8 },
296 [SCFCR] = { 0x18, 16 },
297 [SCFDR] = { 0x1c, 16 },
298 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
299 [SCRFDR] = { 0x20, 16 },
300 [SCSPTR] = { 0x24, 16 },
301 [SCLSR] = { 0x28, 16 },
305 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
306 * registers.
308 [SCIx_SH7705_SCIF_REGTYPE] = {
309 [SCSMR] = { 0x00, 16 },
310 [SCBRR] = { 0x04, 8 },
311 [SCSCR] = { 0x08, 16 },
312 [SCxTDR] = { 0x20, 8 },
313 [SCxSR] = { 0x14, 16 },
314 [SCxRDR] = { 0x24, 8 },
315 [SCFCR] = { 0x18, 16 },
316 [SCFDR] = { 0x1c, 16 },
317 [SCTFDR] = sci_reg_invalid,
318 [SCRFDR] = sci_reg_invalid,
319 [SCSPTR] = sci_reg_invalid,
320 [SCLSR] = sci_reg_invalid,
324 #define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
327 * The "offset" here is rather misleading, in that it refers to an enum
328 * value relative to the port mapping rather than the fixed offset
329 * itself, which needs to be manually retrieved from the platform's
330 * register map for the given port.
332 static unsigned int sci_serial_in(struct uart_port *p, int offset)
334 struct plat_sci_reg *reg = sci_getreg(p, offset);
336 if (reg->size == 8)
337 return ioread8(p->membase + (reg->offset << p->regshift));
338 else if (reg->size == 16)
339 return ioread16(p->membase + (reg->offset << p->regshift));
340 else
341 WARN(1, "Invalid register access\n");
343 return 0;
346 static void sci_serial_out(struct uart_port *p, int offset, int value)
348 struct plat_sci_reg *reg = sci_getreg(p, offset);
350 if (reg->size == 8)
351 iowrite8(value, p->membase + (reg->offset << p->regshift));
352 else if (reg->size == 16)
353 iowrite16(value, p->membase + (reg->offset << p->regshift));
354 else
355 WARN(1, "Invalid register access\n");
358 #define sci_in(up, offset) (up->serial_in(up, offset))
359 #define sci_out(up, offset, value) (up->serial_out(up, offset, value))
361 static int sci_probe_regmap(struct plat_sci_port *cfg)
363 switch (cfg->type) {
364 case PORT_SCI:
365 cfg->regtype = SCIx_SCI_REGTYPE;
366 break;
367 case PORT_IRDA:
368 cfg->regtype = SCIx_IRDA_REGTYPE;
369 break;
370 case PORT_SCIFA:
371 cfg->regtype = SCIx_SCIFA_REGTYPE;
372 break;
373 case PORT_SCIFB:
374 cfg->regtype = SCIx_SCIFB_REGTYPE;
375 break;
376 case PORT_SCIF:
378 * The SH-4 is a bit of a misnomer here, although that's
379 * where this particular port layout originated. This
380 * configuration (or some slight variation thereof)
381 * remains the dominant model for all SCIFs.
383 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
384 break;
385 default:
386 printk(KERN_ERR "Can't probe register map for given port\n");
387 return -EINVAL;
390 return 0;
393 static void sci_port_enable(struct sci_port *sci_port)
395 if (!sci_port->port.dev)
396 return;
398 pm_runtime_get_sync(sci_port->port.dev);
400 clk_enable(sci_port->iclk);
401 sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
402 clk_enable(sci_port->fclk);
405 static void sci_port_disable(struct sci_port *sci_port)
407 if (!sci_port->port.dev)
408 return;
410 clk_disable(sci_port->fclk);
411 clk_disable(sci_port->iclk);
413 pm_runtime_put_sync(sci_port->port.dev);
416 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
418 #ifdef CONFIG_CONSOLE_POLL
419 static int sci_poll_get_char(struct uart_port *port)
421 unsigned short status;
422 int c;
424 do {
425 status = sci_in(port, SCxSR);
426 if (status & SCxSR_ERRORS(port)) {
427 sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
428 continue;
430 break;
431 } while (1);
433 if (!(status & SCxSR_RDxF(port)))
434 return NO_POLL_CHAR;
436 c = sci_in(port, SCxRDR);
438 /* Dummy read */
439 sci_in(port, SCxSR);
440 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
442 return c;
444 #endif
446 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
448 unsigned short status;
450 do {
451 status = sci_in(port, SCxSR);
452 } while (!(status & SCxSR_TDxE(port)));
454 sci_out(port, SCxTDR, c);
455 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
457 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
459 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
461 struct sci_port *s = to_sci_port(port);
462 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
465 * Use port-specific handler if provided.
467 if (s->cfg->ops && s->cfg->ops->init_pins) {
468 s->cfg->ops->init_pins(port, cflag);
469 return;
473 * For the generic path SCSPTR is necessary. Bail out if that's
474 * unavailable, too.
476 if (!reg->size)
477 return;
479 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
480 ((!(cflag & CRTSCTS)))) {
481 unsigned short status;
483 status = sci_in(port, SCSPTR);
484 status &= ~SCSPTR_CTSIO;
485 status |= SCSPTR_RTSIO;
486 sci_out(port, SCSPTR, status); /* Set RTS = 1 */
490 static int sci_txfill(struct uart_port *port)
492 struct plat_sci_reg *reg;
494 reg = sci_getreg(port, SCTFDR);
495 if (reg->size)
496 return sci_in(port, SCTFDR) & 0xff;
498 reg = sci_getreg(port, SCFDR);
499 if (reg->size)
500 return sci_in(port, SCFDR) >> 8;
502 return !(sci_in(port, SCxSR) & SCI_TDRE);
505 static int sci_txroom(struct uart_port *port)
507 return port->fifosize - sci_txfill(port);
510 static int sci_rxfill(struct uart_port *port)
512 struct plat_sci_reg *reg;
514 reg = sci_getreg(port, SCRFDR);
515 if (reg->size)
516 return sci_in(port, SCRFDR) & 0xff;
518 reg = sci_getreg(port, SCFDR);
519 if (reg->size)
520 return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
522 return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
526 * SCI helper for checking the state of the muxed port/RXD pins.
528 static inline int sci_rxd_in(struct uart_port *port)
530 struct sci_port *s = to_sci_port(port);
532 if (s->cfg->port_reg <= 0)
533 return 1;
535 return !!__raw_readb(s->cfg->port_reg);
538 /* ********************************************************************** *
539 * the interrupt related routines *
540 * ********************************************************************** */
542 static void sci_transmit_chars(struct uart_port *port)
544 struct circ_buf *xmit = &port->state->xmit;
545 unsigned int stopped = uart_tx_stopped(port);
546 unsigned short status;
547 unsigned short ctrl;
548 int count;
550 status = sci_in(port, SCxSR);
551 if (!(status & SCxSR_TDxE(port))) {
552 ctrl = sci_in(port, SCSCR);
553 if (uart_circ_empty(xmit))
554 ctrl &= ~SCSCR_TIE;
555 else
556 ctrl |= SCSCR_TIE;
557 sci_out(port, SCSCR, ctrl);
558 return;
561 count = sci_txroom(port);
563 do {
564 unsigned char c;
566 if (port->x_char) {
567 c = port->x_char;
568 port->x_char = 0;
569 } else if (!uart_circ_empty(xmit) && !stopped) {
570 c = xmit->buf[xmit->tail];
571 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
572 } else {
573 break;
576 sci_out(port, SCxTDR, c);
578 port->icount.tx++;
579 } while (--count > 0);
581 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
583 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
584 uart_write_wakeup(port);
585 if (uart_circ_empty(xmit)) {
586 sci_stop_tx(port);
587 } else {
588 ctrl = sci_in(port, SCSCR);
590 if (port->type != PORT_SCI) {
591 sci_in(port, SCxSR); /* Dummy read */
592 sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
595 ctrl |= SCSCR_TIE;
596 sci_out(port, SCSCR, ctrl);
600 /* On SH3, SCIF may read end-of-break as a space->mark char */
601 #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
603 static void sci_receive_chars(struct uart_port *port)
605 struct sci_port *sci_port = to_sci_port(port);
606 struct tty_struct *tty = port->state->port.tty;
607 int i, count, copied = 0;
608 unsigned short status;
609 unsigned char flag;
611 status = sci_in(port, SCxSR);
612 if (!(status & SCxSR_RDxF(port)))
613 return;
615 while (1) {
616 /* Don't copy more bytes than there is room for in the buffer */
617 count = tty_buffer_request_room(tty, sci_rxfill(port));
619 /* If for any reason we can't copy more data, we're done! */
620 if (count == 0)
621 break;
623 if (port->type == PORT_SCI) {
624 char c = sci_in(port, SCxRDR);
625 if (uart_handle_sysrq_char(port, c) ||
626 sci_port->break_flag)
627 count = 0;
628 else
629 tty_insert_flip_char(tty, c, TTY_NORMAL);
630 } else {
631 for (i = 0; i < count; i++) {
632 char c = sci_in(port, SCxRDR);
634 status = sci_in(port, SCxSR);
635 #if defined(CONFIG_CPU_SH3)
636 /* Skip "chars" during break */
637 if (sci_port->break_flag) {
638 if ((c == 0) &&
639 (status & SCxSR_FER(port))) {
640 count--; i--;
641 continue;
644 /* Nonzero => end-of-break */
645 dev_dbg(port->dev, "debounce<%02x>\n", c);
646 sci_port->break_flag = 0;
648 if (STEPFN(c)) {
649 count--; i--;
650 continue;
653 #endif /* CONFIG_CPU_SH3 */
654 if (uart_handle_sysrq_char(port, c)) {
655 count--; i--;
656 continue;
659 /* Store data and status */
660 if (status & SCxSR_FER(port)) {
661 flag = TTY_FRAME;
662 port->icount.frame++;
663 dev_notice(port->dev, "frame error\n");
664 } else if (status & SCxSR_PER(port)) {
665 flag = TTY_PARITY;
666 port->icount.parity++;
667 dev_notice(port->dev, "parity error\n");
668 } else
669 flag = TTY_NORMAL;
671 tty_insert_flip_char(tty, c, flag);
675 sci_in(port, SCxSR); /* dummy read */
676 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
678 copied += count;
679 port->icount.rx += count;
682 if (copied) {
683 /* Tell the rest of the system the news. New characters! */
684 tty_flip_buffer_push(tty);
685 } else {
686 sci_in(port, SCxSR); /* dummy read */
687 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
691 #define SCI_BREAK_JIFFIES (HZ/20)
694 * The sci generates interrupts during the break,
695 * 1 per millisecond or so during the break period, for 9600 baud.
696 * So dont bother disabling interrupts.
697 * But dont want more than 1 break event.
698 * Use a kernel timer to periodically poll the rx line until
699 * the break is finished.
701 static inline void sci_schedule_break_timer(struct sci_port *port)
703 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
706 /* Ensure that two consecutive samples find the break over. */
707 static void sci_break_timer(unsigned long data)
709 struct sci_port *port = (struct sci_port *)data;
711 sci_port_enable(port);
713 if (sci_rxd_in(&port->port) == 0) {
714 port->break_flag = 1;
715 sci_schedule_break_timer(port);
716 } else if (port->break_flag == 1) {
717 /* break is over. */
718 port->break_flag = 2;
719 sci_schedule_break_timer(port);
720 } else
721 port->break_flag = 0;
723 sci_port_disable(port);
726 static int sci_handle_errors(struct uart_port *port)
728 int copied = 0;
729 unsigned short status = sci_in(port, SCxSR);
730 struct tty_struct *tty = port->state->port.tty;
731 struct sci_port *s = to_sci_port(port);
734 * Handle overruns, if supported.
736 if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
737 if (status & (1 << s->cfg->overrun_bit)) {
738 port->icount.overrun++;
740 /* overrun error */
741 if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
742 copied++;
744 dev_notice(port->dev, "overrun error");
748 if (status & SCxSR_FER(port)) {
749 if (sci_rxd_in(port) == 0) {
750 /* Notify of BREAK */
751 struct sci_port *sci_port = to_sci_port(port);
753 if (!sci_port->break_flag) {
754 port->icount.brk++;
756 sci_port->break_flag = 1;
757 sci_schedule_break_timer(sci_port);
759 /* Do sysrq handling. */
760 if (uart_handle_break(port))
761 return 0;
763 dev_dbg(port->dev, "BREAK detected\n");
765 if (tty_insert_flip_char(tty, 0, TTY_BREAK))
766 copied++;
769 } else {
770 /* frame error */
771 port->icount.frame++;
773 if (tty_insert_flip_char(tty, 0, TTY_FRAME))
774 copied++;
776 dev_notice(port->dev, "frame error\n");
780 if (status & SCxSR_PER(port)) {
781 /* parity error */
782 port->icount.parity++;
784 if (tty_insert_flip_char(tty, 0, TTY_PARITY))
785 copied++;
787 dev_notice(port->dev, "parity error");
790 if (copied)
791 tty_flip_buffer_push(tty);
793 return copied;
796 static int sci_handle_fifo_overrun(struct uart_port *port)
798 struct tty_struct *tty = port->state->port.tty;
799 struct sci_port *s = to_sci_port(port);
800 struct plat_sci_reg *reg;
801 int copied = 0;
803 reg = sci_getreg(port, SCLSR);
804 if (!reg->size)
805 return 0;
807 if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
808 sci_out(port, SCLSR, 0);
810 port->icount.overrun++;
812 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
813 tty_flip_buffer_push(tty);
815 dev_notice(port->dev, "overrun error\n");
816 copied++;
819 return copied;
822 static int sci_handle_breaks(struct uart_port *port)
824 int copied = 0;
825 unsigned short status = sci_in(port, SCxSR);
826 struct tty_struct *tty = port->state->port.tty;
827 struct sci_port *s = to_sci_port(port);
829 if (uart_handle_break(port))
830 return 0;
832 if (!s->break_flag && status & SCxSR_BRK(port)) {
833 #if defined(CONFIG_CPU_SH3)
834 /* Debounce break */
835 s->break_flag = 1;
836 #endif
838 port->icount.brk++;
840 /* Notify of BREAK */
841 if (tty_insert_flip_char(tty, 0, TTY_BREAK))
842 copied++;
844 dev_dbg(port->dev, "BREAK detected\n");
847 if (copied)
848 tty_flip_buffer_push(tty);
850 copied += sci_handle_fifo_overrun(port);
852 return copied;
855 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
857 #ifdef CONFIG_SERIAL_SH_SCI_DMA
858 struct uart_port *port = ptr;
859 struct sci_port *s = to_sci_port(port);
861 if (s->chan_rx) {
862 u16 scr = sci_in(port, SCSCR);
863 u16 ssr = sci_in(port, SCxSR);
865 /* Disable future Rx interrupts */
866 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
867 disable_irq_nosync(irq);
868 scr |= 0x4000;
869 } else {
870 scr &= ~SCSCR_RIE;
872 sci_out(port, SCSCR, scr);
873 /* Clear current interrupt */
874 sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
875 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
876 jiffies, s->rx_timeout);
877 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
879 return IRQ_HANDLED;
881 #endif
883 /* I think sci_receive_chars has to be called irrespective
884 * of whether the I_IXOFF is set, otherwise, how is the interrupt
885 * to be disabled?
887 sci_receive_chars(ptr);
889 return IRQ_HANDLED;
892 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
894 struct uart_port *port = ptr;
895 unsigned long flags;
897 spin_lock_irqsave(&port->lock, flags);
898 sci_transmit_chars(port);
899 spin_unlock_irqrestore(&port->lock, flags);
901 return IRQ_HANDLED;
904 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
906 struct uart_port *port = ptr;
908 /* Handle errors */
909 if (port->type == PORT_SCI) {
910 if (sci_handle_errors(port)) {
911 /* discard character in rx buffer */
912 sci_in(port, SCxSR);
913 sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
915 } else {
916 sci_handle_fifo_overrun(port);
917 sci_rx_interrupt(irq, ptr);
920 sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
922 /* Kick the transmission */
923 sci_tx_interrupt(irq, ptr);
925 return IRQ_HANDLED;
928 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
930 struct uart_port *port = ptr;
932 /* Handle BREAKs */
933 sci_handle_breaks(port);
934 sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
936 return IRQ_HANDLED;
939 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
942 * Not all ports (such as SCIFA) will support REIE. Rather than
943 * special-casing the port type, we check the port initialization
944 * IRQ enable mask to see whether the IRQ is desired at all. If
945 * it's unset, it's logically inferred that there's no point in
946 * testing for it.
948 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
951 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
953 unsigned short ssr_status, scr_status, err_enabled;
954 struct uart_port *port = ptr;
955 struct sci_port *s = to_sci_port(port);
956 irqreturn_t ret = IRQ_NONE;
958 ssr_status = sci_in(port, SCxSR);
959 scr_status = sci_in(port, SCSCR);
960 err_enabled = scr_status & port_rx_irq_mask(port);
962 /* Tx Interrupt */
963 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
964 !s->chan_tx)
965 ret = sci_tx_interrupt(irq, ptr);
968 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
969 * DR flags
971 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
972 (scr_status & SCSCR_RIE))
973 ret = sci_rx_interrupt(irq, ptr);
975 /* Error Interrupt */
976 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
977 ret = sci_er_interrupt(irq, ptr);
979 /* Break Interrupt */
980 if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
981 ret = sci_br_interrupt(irq, ptr);
983 return ret;
987 * Here we define a transition notifier so that we can update all of our
988 * ports' baud rate when the peripheral clock changes.
990 static int sci_notifier(struct notifier_block *self,
991 unsigned long phase, void *p)
993 struct sci_port *sci_port;
994 unsigned long flags;
996 sci_port = container_of(self, struct sci_port, freq_transition);
998 if ((phase == CPUFREQ_POSTCHANGE) ||
999 (phase == CPUFREQ_RESUMECHANGE)) {
1000 struct uart_port *port = &sci_port->port;
1002 spin_lock_irqsave(&port->lock, flags);
1003 port->uartclk = clk_get_rate(sci_port->iclk);
1004 spin_unlock_irqrestore(&port->lock, flags);
1007 return NOTIFY_OK;
1010 static struct sci_irq_desc {
1011 const char *desc;
1012 irq_handler_t handler;
1013 } sci_irq_desc[] = {
1015 * Split out handlers, the default case.
1017 [SCIx_ERI_IRQ] = {
1018 .desc = "rx err",
1019 .handler = sci_er_interrupt,
1022 [SCIx_RXI_IRQ] = {
1023 .desc = "rx full",
1024 .handler = sci_rx_interrupt,
1027 [SCIx_TXI_IRQ] = {
1028 .desc = "tx empty",
1029 .handler = sci_tx_interrupt,
1032 [SCIx_BRI_IRQ] = {
1033 .desc = "break",
1034 .handler = sci_br_interrupt,
1038 * Special muxed handler.
1040 [SCIx_MUX_IRQ] = {
1041 .desc = "mux",
1042 .handler = sci_mpxed_interrupt,
1046 static int sci_request_irq(struct sci_port *port)
1048 struct uart_port *up = &port->port;
1049 int i, j, ret = 0;
1051 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1052 struct sci_irq_desc *desc;
1053 unsigned int irq;
1055 if (SCIx_IRQ_IS_MUXED(port)) {
1056 i = SCIx_MUX_IRQ;
1057 irq = up->irq;
1058 } else
1059 irq = port->cfg->irqs[i];
1061 desc = sci_irq_desc + i;
1062 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1063 dev_name(up->dev), desc->desc);
1064 if (!port->irqstr[j]) {
1065 dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1066 desc->desc);
1067 goto out_nomem;
1070 ret = request_irq(irq, desc->handler, up->irqflags,
1071 port->irqstr[j], port);
1072 if (unlikely(ret)) {
1073 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1074 goto out_noirq;
1078 return 0;
1080 out_noirq:
1081 while (--i >= 0)
1082 free_irq(port->cfg->irqs[i], port);
1084 out_nomem:
1085 while (--j >= 0)
1086 kfree(port->irqstr[j]);
1088 return ret;
1091 static void sci_free_irq(struct sci_port *port)
1093 int i;
1096 * Intentionally in reverse order so we iterate over the muxed
1097 * IRQ first.
1099 for (i = 0; i < SCIx_NR_IRQS; i++) {
1100 free_irq(port->cfg->irqs[i], port);
1101 kfree(port->irqstr[i]);
1103 if (SCIx_IRQ_IS_MUXED(port)) {
1104 /* If there's only one IRQ, we're done. */
1105 return;
1110 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1111 "sck", "rxd", "txd", "cts", "rts",
1114 static const char *sci_gpio_str(unsigned int index)
1116 return sci_gpio_names[index];
1119 static void __devinit sci_init_gpios(struct sci_port *port)
1121 struct uart_port *up = &port->port;
1122 int i;
1124 if (!port->cfg)
1125 return;
1127 for (i = 0; i < SCIx_NR_FNS; i++) {
1128 const char *desc;
1129 int ret;
1131 if (!port->cfg->gpios[i])
1132 continue;
1134 desc = sci_gpio_str(i);
1136 port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1137 dev_name(up->dev), desc);
1140 * If we've failed the allocation, we can still continue
1141 * on with a NULL string.
1143 if (!port->gpiostr[i])
1144 dev_notice(up->dev, "%s string allocation failure\n",
1145 desc);
1147 ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1148 if (unlikely(ret != 0)) {
1149 dev_notice(up->dev, "failed %s gpio request\n", desc);
1152 * If we can't get the GPIO for whatever reason,
1153 * no point in keeping the verbose string around.
1155 kfree(port->gpiostr[i]);
1160 static void sci_free_gpios(struct sci_port *port)
1162 int i;
1164 for (i = 0; i < SCIx_NR_FNS; i++)
1165 if (port->cfg->gpios[i]) {
1166 gpio_free(port->cfg->gpios[i]);
1167 kfree(port->gpiostr[i]);
1171 static unsigned int sci_tx_empty(struct uart_port *port)
1173 unsigned short status = sci_in(port, SCxSR);
1174 unsigned short in_tx_fifo = sci_txfill(port);
1176 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1180 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1181 * CTS/RTS is supported in hardware by at least one port and controlled
1182 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1183 * handled via the ->init_pins() op, which is a bit of a one-way street,
1184 * lacking any ability to defer pin control -- this will later be
1185 * converted over to the GPIO framework).
1187 * Other modes (such as loopback) are supported generically on certain
1188 * port types, but not others. For these it's sufficient to test for the
1189 * existence of the support register and simply ignore the port type.
1191 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1193 if (mctrl & TIOCM_LOOP) {
1194 struct plat_sci_reg *reg;
1197 * Standard loopback mode for SCFCR ports.
1199 reg = sci_getreg(port, SCFCR);
1200 if (reg->size)
1201 sci_out(port, SCFCR, sci_in(port, SCFCR) | 1);
1205 static unsigned int sci_get_mctrl(struct uart_port *port)
1208 * CTS/RTS is handled in hardware when supported, while nothing
1209 * else is wired up. Keep it simple and simply assert DSR/CAR.
1211 return TIOCM_DSR | TIOCM_CAR;
1214 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1215 static void sci_dma_tx_complete(void *arg)
1217 struct sci_port *s = arg;
1218 struct uart_port *port = &s->port;
1219 struct circ_buf *xmit = &port->state->xmit;
1220 unsigned long flags;
1222 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1224 spin_lock_irqsave(&port->lock, flags);
1226 xmit->tail += sg_dma_len(&s->sg_tx);
1227 xmit->tail &= UART_XMIT_SIZE - 1;
1229 port->icount.tx += sg_dma_len(&s->sg_tx);
1231 async_tx_ack(s->desc_tx);
1232 s->desc_tx = NULL;
1234 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1235 uart_write_wakeup(port);
1237 if (!uart_circ_empty(xmit)) {
1238 s->cookie_tx = 0;
1239 schedule_work(&s->work_tx);
1240 } else {
1241 s->cookie_tx = -EINVAL;
1242 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1243 u16 ctrl = sci_in(port, SCSCR);
1244 sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1248 spin_unlock_irqrestore(&port->lock, flags);
1251 /* Locking: called with port lock held */
1252 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1253 size_t count)
1255 struct uart_port *port = &s->port;
1256 int i, active, room;
1258 room = tty_buffer_request_room(tty, count);
1260 if (s->active_rx == s->cookie_rx[0]) {
1261 active = 0;
1262 } else if (s->active_rx == s->cookie_rx[1]) {
1263 active = 1;
1264 } else {
1265 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1266 return 0;
1269 if (room < count)
1270 dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1271 count - room);
1272 if (!room)
1273 return room;
1275 for (i = 0; i < room; i++)
1276 tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1277 TTY_NORMAL);
1279 port->icount.rx += room;
1281 return room;
1284 static void sci_dma_rx_complete(void *arg)
1286 struct sci_port *s = arg;
1287 struct uart_port *port = &s->port;
1288 struct tty_struct *tty = port->state->port.tty;
1289 unsigned long flags;
1290 int count;
1292 dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1294 spin_lock_irqsave(&port->lock, flags);
1296 count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1298 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1300 spin_unlock_irqrestore(&port->lock, flags);
1302 if (count)
1303 tty_flip_buffer_push(tty);
1305 schedule_work(&s->work_rx);
1308 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1310 struct dma_chan *chan = s->chan_rx;
1311 struct uart_port *port = &s->port;
1313 s->chan_rx = NULL;
1314 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1315 dma_release_channel(chan);
1316 if (sg_dma_address(&s->sg_rx[0]))
1317 dma_free_coherent(port->dev, s->buf_len_rx * 2,
1318 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1319 if (enable_pio)
1320 sci_start_rx(port);
1323 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1325 struct dma_chan *chan = s->chan_tx;
1326 struct uart_port *port = &s->port;
1328 s->chan_tx = NULL;
1329 s->cookie_tx = -EINVAL;
1330 dma_release_channel(chan);
1331 if (enable_pio)
1332 sci_start_tx(port);
1335 static void sci_submit_rx(struct sci_port *s)
1337 struct dma_chan *chan = s->chan_rx;
1338 int i;
1340 for (i = 0; i < 2; i++) {
1341 struct scatterlist *sg = &s->sg_rx[i];
1342 struct dma_async_tx_descriptor *desc;
1344 desc = chan->device->device_prep_slave_sg(chan,
1345 sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1347 if (desc) {
1348 s->desc_rx[i] = desc;
1349 desc->callback = sci_dma_rx_complete;
1350 desc->callback_param = s;
1351 s->cookie_rx[i] = desc->tx_submit(desc);
1354 if (!desc || s->cookie_rx[i] < 0) {
1355 if (i) {
1356 async_tx_ack(s->desc_rx[0]);
1357 s->cookie_rx[0] = -EINVAL;
1359 if (desc) {
1360 async_tx_ack(desc);
1361 s->cookie_rx[i] = -EINVAL;
1363 dev_warn(s->port.dev,
1364 "failed to re-start DMA, using PIO\n");
1365 sci_rx_dma_release(s, true);
1366 return;
1368 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1369 s->cookie_rx[i], i);
1372 s->active_rx = s->cookie_rx[0];
1374 dma_async_issue_pending(chan);
1377 static void work_fn_rx(struct work_struct *work)
1379 struct sci_port *s = container_of(work, struct sci_port, work_rx);
1380 struct uart_port *port = &s->port;
1381 struct dma_async_tx_descriptor *desc;
1382 int new;
1384 if (s->active_rx == s->cookie_rx[0]) {
1385 new = 0;
1386 } else if (s->active_rx == s->cookie_rx[1]) {
1387 new = 1;
1388 } else {
1389 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1390 return;
1392 desc = s->desc_rx[new];
1394 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1395 DMA_SUCCESS) {
1396 /* Handle incomplete DMA receive */
1397 struct tty_struct *tty = port->state->port.tty;
1398 struct dma_chan *chan = s->chan_rx;
1399 struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1400 async_tx);
1401 unsigned long flags;
1402 int count;
1404 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1405 dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1406 sh_desc->partial, sh_desc->cookie);
1408 spin_lock_irqsave(&port->lock, flags);
1409 count = sci_dma_rx_push(s, tty, sh_desc->partial);
1410 spin_unlock_irqrestore(&port->lock, flags);
1412 if (count)
1413 tty_flip_buffer_push(tty);
1415 sci_submit_rx(s);
1417 return;
1420 s->cookie_rx[new] = desc->tx_submit(desc);
1421 if (s->cookie_rx[new] < 0) {
1422 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1423 sci_rx_dma_release(s, true);
1424 return;
1427 s->active_rx = s->cookie_rx[!new];
1429 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1430 s->cookie_rx[new], new, s->active_rx);
1433 static void work_fn_tx(struct work_struct *work)
1435 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1436 struct dma_async_tx_descriptor *desc;
1437 struct dma_chan *chan = s->chan_tx;
1438 struct uart_port *port = &s->port;
1439 struct circ_buf *xmit = &port->state->xmit;
1440 struct scatterlist *sg = &s->sg_tx;
1443 * DMA is idle now.
1444 * Port xmit buffer is already mapped, and it is one page... Just adjust
1445 * offsets and lengths. Since it is a circular buffer, we have to
1446 * transmit till the end, and then the rest. Take the port lock to get a
1447 * consistent xmit buffer state.
1449 spin_lock_irq(&port->lock);
1450 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1451 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1452 sg->offset;
1453 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1454 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1455 spin_unlock_irq(&port->lock);
1457 BUG_ON(!sg_dma_len(sg));
1459 desc = chan->device->device_prep_slave_sg(chan,
1460 sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1461 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1462 if (!desc) {
1463 /* switch to PIO */
1464 sci_tx_dma_release(s, true);
1465 return;
1468 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1470 spin_lock_irq(&port->lock);
1471 s->desc_tx = desc;
1472 desc->callback = sci_dma_tx_complete;
1473 desc->callback_param = s;
1474 spin_unlock_irq(&port->lock);
1475 s->cookie_tx = desc->tx_submit(desc);
1476 if (s->cookie_tx < 0) {
1477 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1478 /* switch to PIO */
1479 sci_tx_dma_release(s, true);
1480 return;
1483 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1484 xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1486 dma_async_issue_pending(chan);
1488 #endif
1490 static void sci_start_tx(struct uart_port *port)
1492 struct sci_port *s = to_sci_port(port);
1493 unsigned short ctrl;
1495 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1496 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1497 u16 new, scr = sci_in(port, SCSCR);
1498 if (s->chan_tx)
1499 new = scr | 0x8000;
1500 else
1501 new = scr & ~0x8000;
1502 if (new != scr)
1503 sci_out(port, SCSCR, new);
1506 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1507 s->cookie_tx < 0) {
1508 s->cookie_tx = 0;
1509 schedule_work(&s->work_tx);
1511 #endif
1513 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1514 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1515 ctrl = sci_in(port, SCSCR);
1516 sci_out(port, SCSCR, ctrl | SCSCR_TIE);
1520 static void sci_stop_tx(struct uart_port *port)
1522 unsigned short ctrl;
1524 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1525 ctrl = sci_in(port, SCSCR);
1527 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1528 ctrl &= ~0x8000;
1530 ctrl &= ~SCSCR_TIE;
1532 sci_out(port, SCSCR, ctrl);
1535 static void sci_start_rx(struct uart_port *port)
1537 unsigned short ctrl;
1539 ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
1541 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1542 ctrl &= ~0x4000;
1544 sci_out(port, SCSCR, ctrl);
1547 static void sci_stop_rx(struct uart_port *port)
1549 unsigned short ctrl;
1551 ctrl = sci_in(port, SCSCR);
1553 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1554 ctrl &= ~0x4000;
1556 ctrl &= ~port_rx_irq_mask(port);
1558 sci_out(port, SCSCR, ctrl);
1561 static void sci_enable_ms(struct uart_port *port)
1564 * Not supported by hardware, always a nop.
1568 static void sci_break_ctl(struct uart_port *port, int break_state)
1571 * Not supported by hardware. Most parts couple break and rx
1572 * interrupts together, with break detection always enabled.
1576 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1577 static bool filter(struct dma_chan *chan, void *slave)
1579 struct sh_dmae_slave *param = slave;
1581 dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1582 param->slave_id);
1584 chan->private = param;
1585 return true;
1588 static void rx_timer_fn(unsigned long arg)
1590 struct sci_port *s = (struct sci_port *)arg;
1591 struct uart_port *port = &s->port;
1592 u16 scr = sci_in(port, SCSCR);
1594 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1595 scr &= ~0x4000;
1596 enable_irq(s->cfg->irqs[1]);
1598 sci_out(port, SCSCR, scr | SCSCR_RIE);
1599 dev_dbg(port->dev, "DMA Rx timed out\n");
1600 schedule_work(&s->work_rx);
1603 static void sci_request_dma(struct uart_port *port)
1605 struct sci_port *s = to_sci_port(port);
1606 struct sh_dmae_slave *param;
1607 struct dma_chan *chan;
1608 dma_cap_mask_t mask;
1609 int nent;
1611 dev_dbg(port->dev, "%s: port %d\n", __func__,
1612 port->line);
1614 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1615 return;
1617 dma_cap_zero(mask);
1618 dma_cap_set(DMA_SLAVE, mask);
1620 param = &s->param_tx;
1622 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1623 param->slave_id = s->cfg->dma_slave_tx;
1625 s->cookie_tx = -EINVAL;
1626 chan = dma_request_channel(mask, filter, param);
1627 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1628 if (chan) {
1629 s->chan_tx = chan;
1630 sg_init_table(&s->sg_tx, 1);
1631 /* UART circular tx buffer is an aligned page. */
1632 BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1633 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1634 UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1635 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1636 if (!nent)
1637 sci_tx_dma_release(s, false);
1638 else
1639 dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1640 sg_dma_len(&s->sg_tx),
1641 port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1643 s->sg_len_tx = nent;
1645 INIT_WORK(&s->work_tx, work_fn_tx);
1648 param = &s->param_rx;
1650 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1651 param->slave_id = s->cfg->dma_slave_rx;
1653 chan = dma_request_channel(mask, filter, param);
1654 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1655 if (chan) {
1656 dma_addr_t dma[2];
1657 void *buf[2];
1658 int i;
1660 s->chan_rx = chan;
1662 s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1663 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1664 &dma[0], GFP_KERNEL);
1666 if (!buf[0]) {
1667 dev_warn(port->dev,
1668 "failed to allocate dma buffer, using PIO\n");
1669 sci_rx_dma_release(s, true);
1670 return;
1673 buf[1] = buf[0] + s->buf_len_rx;
1674 dma[1] = dma[0] + s->buf_len_rx;
1676 for (i = 0; i < 2; i++) {
1677 struct scatterlist *sg = &s->sg_rx[i];
1679 sg_init_table(sg, 1);
1680 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1681 (int)buf[i] & ~PAGE_MASK);
1682 sg_dma_address(sg) = dma[i];
1685 INIT_WORK(&s->work_rx, work_fn_rx);
1686 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1688 sci_submit_rx(s);
1692 static void sci_free_dma(struct uart_port *port)
1694 struct sci_port *s = to_sci_port(port);
1696 if (s->chan_tx)
1697 sci_tx_dma_release(s, false);
1698 if (s->chan_rx)
1699 sci_rx_dma_release(s, false);
1701 #else
1702 static inline void sci_request_dma(struct uart_port *port)
1706 static inline void sci_free_dma(struct uart_port *port)
1709 #endif
1711 static int sci_startup(struct uart_port *port)
1713 struct sci_port *s = to_sci_port(port);
1714 int ret;
1716 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1718 pm_runtime_put_noidle(port->dev);
1720 sci_port_enable(s);
1722 ret = sci_request_irq(s);
1723 if (unlikely(ret < 0))
1724 return ret;
1726 sci_request_dma(port);
1728 sci_start_tx(port);
1729 sci_start_rx(port);
1731 return 0;
1734 static void sci_shutdown(struct uart_port *port)
1736 struct sci_port *s = to_sci_port(port);
1738 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1740 sci_stop_rx(port);
1741 sci_stop_tx(port);
1743 sci_free_dma(port);
1744 sci_free_irq(s);
1746 sci_port_disable(s);
1748 pm_runtime_get_noresume(port->dev);
1751 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1752 unsigned long freq)
1754 switch (algo_id) {
1755 case SCBRR_ALGO_1:
1756 return ((freq + 16 * bps) / (16 * bps) - 1);
1757 case SCBRR_ALGO_2:
1758 return ((freq + 16 * bps) / (32 * bps) - 1);
1759 case SCBRR_ALGO_3:
1760 return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1761 case SCBRR_ALGO_4:
1762 return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1763 case SCBRR_ALGO_5:
1764 return (((freq * 1000 / 32) / bps) - 1);
1767 /* Warn, but use a safe default */
1768 WARN_ON(1);
1770 return ((freq + 16 * bps) / (32 * bps) - 1);
1773 static void sci_reset(struct uart_port *port)
1775 struct plat_sci_reg *reg;
1776 unsigned int status;
1778 do {
1779 status = sci_in(port, SCxSR);
1780 } while (!(status & SCxSR_TEND(port)));
1782 sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
1784 reg = sci_getreg(port, SCFCR);
1785 if (reg->size)
1786 sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1789 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1790 struct ktermios *old)
1792 struct sci_port *s = to_sci_port(port);
1793 struct plat_sci_reg *reg;
1794 unsigned int baud, smr_val, max_baud;
1795 int t = -1;
1798 * earlyprintk comes here early on with port->uartclk set to zero.
1799 * the clock framework is not up and running at this point so here
1800 * we assume that 115200 is the maximum baud rate. please note that
1801 * the baud rate is not programmed during earlyprintk - it is assumed
1802 * that the previous boot loader has enabled required clocks and
1803 * setup the baud rate generator hardware for us already.
1805 max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1807 baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1808 if (likely(baud && port->uartclk))
1809 t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1811 sci_port_enable(s);
1813 sci_reset(port);
1815 smr_val = sci_in(port, SCSMR) & 3;
1817 if ((termios->c_cflag & CSIZE) == CS7)
1818 smr_val |= 0x40;
1819 if (termios->c_cflag & PARENB)
1820 smr_val |= 0x20;
1821 if (termios->c_cflag & PARODD)
1822 smr_val |= 0x30;
1823 if (termios->c_cflag & CSTOPB)
1824 smr_val |= 0x08;
1826 uart_update_timeout(port, termios->c_cflag, baud);
1828 sci_out(port, SCSMR, smr_val);
1830 dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1831 s->cfg->scscr);
1833 if (t > 0) {
1834 if (t >= 256) {
1835 sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
1836 t >>= 2;
1837 } else
1838 sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
1840 sci_out(port, SCBRR, t);
1841 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1844 sci_init_pins(port, termios->c_cflag);
1846 reg = sci_getreg(port, SCFCR);
1847 if (reg->size) {
1848 unsigned short ctrl = sci_in(port, SCFCR);
1850 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1851 if (termios->c_cflag & CRTSCTS)
1852 ctrl |= SCFCR_MCE;
1853 else
1854 ctrl &= ~SCFCR_MCE;
1858 * As we've done a sci_reset() above, ensure we don't
1859 * interfere with the FIFOs while toggling MCE. As the
1860 * reset values could still be set, simply mask them out.
1862 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1864 sci_out(port, SCFCR, ctrl);
1867 sci_out(port, SCSCR, s->cfg->scscr);
1869 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1871 * Calculate delay for 1.5 DMA buffers: see
1872 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1873 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1874 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1875 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1876 * sizes), but it has been found out experimentally, that this is not
1877 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1878 * as a minimum seem to work perfectly.
1880 if (s->chan_rx) {
1881 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1882 port->fifosize / 2;
1883 dev_dbg(port->dev,
1884 "DMA Rx t-out %ums, tty t-out %u jiffies\n",
1885 s->rx_timeout * 1000 / HZ, port->timeout);
1886 if (s->rx_timeout < msecs_to_jiffies(20))
1887 s->rx_timeout = msecs_to_jiffies(20);
1889 #endif
1891 if ((termios->c_cflag & CREAD) != 0)
1892 sci_start_rx(port);
1894 sci_port_disable(s);
1897 static const char *sci_type(struct uart_port *port)
1899 switch (port->type) {
1900 case PORT_IRDA:
1901 return "irda";
1902 case PORT_SCI:
1903 return "sci";
1904 case PORT_SCIF:
1905 return "scif";
1906 case PORT_SCIFA:
1907 return "scifa";
1908 case PORT_SCIFB:
1909 return "scifb";
1912 return NULL;
1915 static inline unsigned long sci_port_size(struct uart_port *port)
1918 * Pick an arbitrary size that encapsulates all of the base
1919 * registers by default. This can be optimized later, or derived
1920 * from platform resource data at such a time that ports begin to
1921 * behave more erratically.
1923 return 64;
1926 static int sci_remap_port(struct uart_port *port)
1928 unsigned long size = sci_port_size(port);
1931 * Nothing to do if there's already an established membase.
1933 if (port->membase)
1934 return 0;
1936 if (port->flags & UPF_IOREMAP) {
1937 port->membase = ioremap_nocache(port->mapbase, size);
1938 if (unlikely(!port->membase)) {
1939 dev_err(port->dev, "can't remap port#%d\n", port->line);
1940 return -ENXIO;
1942 } else {
1944 * For the simple (and majority of) cases where we don't
1945 * need to do any remapping, just cast the cookie
1946 * directly.
1948 port->membase = (void __iomem *)port->mapbase;
1951 return 0;
1954 static void sci_release_port(struct uart_port *port)
1956 if (port->flags & UPF_IOREMAP) {
1957 iounmap(port->membase);
1958 port->membase = NULL;
1961 release_mem_region(port->mapbase, sci_port_size(port));
1964 static int sci_request_port(struct uart_port *port)
1966 unsigned long size = sci_port_size(port);
1967 struct resource *res;
1968 int ret;
1970 res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1971 if (unlikely(res == NULL))
1972 return -EBUSY;
1974 ret = sci_remap_port(port);
1975 if (unlikely(ret != 0)) {
1976 release_resource(res);
1977 return ret;
1980 return 0;
1983 static void sci_config_port(struct uart_port *port, int flags)
1985 if (flags & UART_CONFIG_TYPE) {
1986 struct sci_port *sport = to_sci_port(port);
1988 port->type = sport->cfg->type;
1989 sci_request_port(port);
1993 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1995 struct sci_port *s = to_sci_port(port);
1997 if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1998 return -EINVAL;
1999 if (ser->baud_base < 2400)
2000 /* No paper tape reader for Mitch.. */
2001 return -EINVAL;
2003 return 0;
2006 static struct uart_ops sci_uart_ops = {
2007 .tx_empty = sci_tx_empty,
2008 .set_mctrl = sci_set_mctrl,
2009 .get_mctrl = sci_get_mctrl,
2010 .start_tx = sci_start_tx,
2011 .stop_tx = sci_stop_tx,
2012 .stop_rx = sci_stop_rx,
2013 .enable_ms = sci_enable_ms,
2014 .break_ctl = sci_break_ctl,
2015 .startup = sci_startup,
2016 .shutdown = sci_shutdown,
2017 .set_termios = sci_set_termios,
2018 .type = sci_type,
2019 .release_port = sci_release_port,
2020 .request_port = sci_request_port,
2021 .config_port = sci_config_port,
2022 .verify_port = sci_verify_port,
2023 #ifdef CONFIG_CONSOLE_POLL
2024 .poll_get_char = sci_poll_get_char,
2025 .poll_put_char = sci_poll_put_char,
2026 #endif
2029 static int __devinit sci_init_single(struct platform_device *dev,
2030 struct sci_port *sci_port,
2031 unsigned int index,
2032 struct plat_sci_port *p)
2034 struct uart_port *port = &sci_port->port;
2035 int ret;
2037 sci_port->cfg = p;
2039 port->ops = &sci_uart_ops;
2040 port->iotype = UPIO_MEM;
2041 port->line = index;
2043 switch (p->type) {
2044 case PORT_SCIFB:
2045 port->fifosize = 256;
2046 break;
2047 case PORT_SCIFA:
2048 port->fifosize = 64;
2049 break;
2050 case PORT_SCIF:
2051 port->fifosize = 16;
2052 break;
2053 default:
2054 port->fifosize = 1;
2055 break;
2058 if (p->regtype == SCIx_PROBE_REGTYPE) {
2059 ret = sci_probe_regmap(p);
2060 if (unlikely(ret))
2061 return ret;
2064 if (dev) {
2065 sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2066 if (IS_ERR(sci_port->iclk)) {
2067 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2068 if (IS_ERR(sci_port->iclk)) {
2069 dev_err(&dev->dev, "can't get iclk\n");
2070 return PTR_ERR(sci_port->iclk);
2075 * The function clock is optional, ignore it if we can't
2076 * find it.
2078 sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2079 if (IS_ERR(sci_port->fclk))
2080 sci_port->fclk = NULL;
2082 port->dev = &dev->dev;
2084 sci_init_gpios(sci_port);
2086 pm_runtime_irq_safe(&dev->dev);
2087 pm_runtime_get_noresume(&dev->dev);
2088 pm_runtime_enable(&dev->dev);
2091 sci_port->break_timer.data = (unsigned long)sci_port;
2092 sci_port->break_timer.function = sci_break_timer;
2093 init_timer(&sci_port->break_timer);
2096 * Establish some sensible defaults for the error detection.
2098 if (!p->error_mask)
2099 p->error_mask = (p->type == PORT_SCI) ?
2100 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2103 * Establish sensible defaults for the overrun detection, unless
2104 * the part has explicitly disabled support for it.
2106 if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2107 if (p->type == PORT_SCI)
2108 p->overrun_bit = 5;
2109 else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2110 p->overrun_bit = 9;
2111 else
2112 p->overrun_bit = 0;
2115 * Make the error mask inclusive of overrun detection, if
2116 * supported.
2118 p->error_mask |= (1 << p->overrun_bit);
2121 port->mapbase = p->mapbase;
2122 port->type = p->type;
2123 port->flags = p->flags;
2124 port->regshift = p->regshift;
2127 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2128 * for the multi-IRQ ports, which is where we are primarily
2129 * concerned with the shutdown path synchronization.
2131 * For the muxed case there's nothing more to do.
2133 port->irq = p->irqs[SCIx_RXI_IRQ];
2134 port->irqflags = 0;
2136 port->serial_in = sci_serial_in;
2137 port->serial_out = sci_serial_out;
2139 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2140 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2141 p->dma_slave_tx, p->dma_slave_rx);
2143 return 0;
2146 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2147 static void serial_console_putchar(struct uart_port *port, int ch)
2149 sci_poll_put_char(port, ch);
2153 * Print a string to the serial port trying not to disturb
2154 * any possible real use of the port...
2156 static void serial_console_write(struct console *co, const char *s,
2157 unsigned count)
2159 struct sci_port *sci_port = &sci_ports[co->index];
2160 struct uart_port *port = &sci_port->port;
2161 unsigned short bits;
2163 sci_port_enable(sci_port);
2165 uart_console_write(port, s, count, serial_console_putchar);
2167 /* wait until fifo is empty and last bit has been transmitted */
2168 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2169 while ((sci_in(port, SCxSR) & bits) != bits)
2170 cpu_relax();
2172 sci_port_disable(sci_port);
2175 static int __devinit serial_console_setup(struct console *co, char *options)
2177 struct sci_port *sci_port;
2178 struct uart_port *port;
2179 int baud = 115200;
2180 int bits = 8;
2181 int parity = 'n';
2182 int flow = 'n';
2183 int ret;
2186 * Refuse to handle any bogus ports.
2188 if (co->index < 0 || co->index >= SCI_NPORTS)
2189 return -ENODEV;
2191 sci_port = &sci_ports[co->index];
2192 port = &sci_port->port;
2195 * Refuse to handle uninitialized ports.
2197 if (!port->ops)
2198 return -ENODEV;
2200 ret = sci_remap_port(port);
2201 if (unlikely(ret != 0))
2202 return ret;
2204 sci_port_enable(sci_port);
2206 if (options)
2207 uart_parse_options(options, &baud, &parity, &bits, &flow);
2209 sci_port_disable(sci_port);
2211 return uart_set_options(port, co, baud, parity, bits, flow);
2214 static struct console serial_console = {
2215 .name = "ttySC",
2216 .device = uart_console_device,
2217 .write = serial_console_write,
2218 .setup = serial_console_setup,
2219 .flags = CON_PRINTBUFFER,
2220 .index = -1,
2221 .data = &sci_uart_driver,
2224 static struct console early_serial_console = {
2225 .name = "early_ttySC",
2226 .write = serial_console_write,
2227 .flags = CON_PRINTBUFFER,
2228 .index = -1,
2231 static char early_serial_buf[32];
2233 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2235 struct plat_sci_port *cfg = pdev->dev.platform_data;
2237 if (early_serial_console.data)
2238 return -EEXIST;
2240 early_serial_console.index = pdev->id;
2242 sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2244 serial_console_setup(&early_serial_console, early_serial_buf);
2246 if (!strstr(early_serial_buf, "keep"))
2247 early_serial_console.flags |= CON_BOOT;
2249 register_console(&early_serial_console);
2250 return 0;
2253 #define uart_console(port) ((port)->cons->index == (port)->line)
2255 static int sci_runtime_suspend(struct device *dev)
2257 struct sci_port *sci_port = dev_get_drvdata(dev);
2258 struct uart_port *port = &sci_port->port;
2260 if (uart_console(port)) {
2261 struct plat_sci_reg *reg;
2263 sci_port->saved_smr = sci_in(port, SCSMR);
2264 sci_port->saved_brr = sci_in(port, SCBRR);
2266 reg = sci_getreg(port, SCFCR);
2267 if (reg->size)
2268 sci_port->saved_fcr = sci_in(port, SCFCR);
2269 else
2270 sci_port->saved_fcr = 0;
2272 return 0;
2275 static int sci_runtime_resume(struct device *dev)
2277 struct sci_port *sci_port = dev_get_drvdata(dev);
2278 struct uart_port *port = &sci_port->port;
2280 if (uart_console(port)) {
2281 sci_reset(port);
2282 sci_out(port, SCSMR, sci_port->saved_smr);
2283 sci_out(port, SCBRR, sci_port->saved_brr);
2285 if (sci_port->saved_fcr)
2286 sci_out(port, SCFCR, sci_port->saved_fcr);
2288 sci_out(port, SCSCR, sci_port->cfg->scscr);
2290 return 0;
2293 #define SCI_CONSOLE (&serial_console)
2295 #else
2296 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2298 return -EINVAL;
2301 #define SCI_CONSOLE NULL
2302 #define sci_runtime_suspend NULL
2303 #define sci_runtime_resume NULL
2305 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2307 static char banner[] __initdata =
2308 KERN_INFO "SuperH SCI(F) driver initialized\n";
2310 static struct uart_driver sci_uart_driver = {
2311 .owner = THIS_MODULE,
2312 .driver_name = "sci",
2313 .dev_name = "ttySC",
2314 .major = SCI_MAJOR,
2315 .minor = SCI_MINOR_START,
2316 .nr = SCI_NPORTS,
2317 .cons = SCI_CONSOLE,
2320 static int sci_remove(struct platform_device *dev)
2322 struct sci_port *port = platform_get_drvdata(dev);
2324 cpufreq_unregister_notifier(&port->freq_transition,
2325 CPUFREQ_TRANSITION_NOTIFIER);
2327 sci_free_gpios(port);
2329 uart_remove_one_port(&sci_uart_driver, &port->port);
2331 clk_put(port->iclk);
2332 clk_put(port->fclk);
2334 pm_runtime_disable(&dev->dev);
2335 return 0;
2338 static int __devinit sci_probe_single(struct platform_device *dev,
2339 unsigned int index,
2340 struct plat_sci_port *p,
2341 struct sci_port *sciport)
2343 int ret;
2345 /* Sanity check */
2346 if (unlikely(index >= SCI_NPORTS)) {
2347 dev_notice(&dev->dev, "Attempting to register port "
2348 "%d when only %d are available.\n",
2349 index+1, SCI_NPORTS);
2350 dev_notice(&dev->dev, "Consider bumping "
2351 "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2352 return 0;
2355 ret = sci_init_single(dev, sciport, index, p);
2356 if (ret)
2357 return ret;
2359 return uart_add_one_port(&sci_uart_driver, &sciport->port);
2362 static int __devinit sci_probe(struct platform_device *dev)
2364 struct plat_sci_port *p = dev->dev.platform_data;
2365 struct sci_port *sp = &sci_ports[dev->id];
2366 int ret;
2369 * If we've come here via earlyprintk initialization, head off to
2370 * the special early probe. We don't have sufficient device state
2371 * to make it beyond this yet.
2373 if (is_early_platform_device(dev))
2374 return sci_probe_earlyprintk(dev);
2376 platform_set_drvdata(dev, sp);
2378 ret = sci_probe_single(dev, dev->id, p, sp);
2379 if (ret)
2380 goto err_unreg;
2382 sp->freq_transition.notifier_call = sci_notifier;
2384 ret = cpufreq_register_notifier(&sp->freq_transition,
2385 CPUFREQ_TRANSITION_NOTIFIER);
2386 if (unlikely(ret < 0))
2387 goto err_unreg;
2389 #ifdef CONFIG_SH_STANDARD_BIOS
2390 sh_bios_gdb_detach();
2391 #endif
2393 return 0;
2395 err_unreg:
2396 sci_remove(dev);
2397 return ret;
2400 static int sci_suspend(struct device *dev)
2402 struct sci_port *sport = dev_get_drvdata(dev);
2404 if (sport)
2405 uart_suspend_port(&sci_uart_driver, &sport->port);
2407 return 0;
2410 static int sci_resume(struct device *dev)
2412 struct sci_port *sport = dev_get_drvdata(dev);
2414 if (sport)
2415 uart_resume_port(&sci_uart_driver, &sport->port);
2417 return 0;
2420 static const struct dev_pm_ops sci_dev_pm_ops = {
2421 .runtime_suspend = sci_runtime_suspend,
2422 .runtime_resume = sci_runtime_resume,
2423 .suspend = sci_suspend,
2424 .resume = sci_resume,
2427 static struct platform_driver sci_driver = {
2428 .probe = sci_probe,
2429 .remove = sci_remove,
2430 .driver = {
2431 .name = "sh-sci",
2432 .owner = THIS_MODULE,
2433 .pm = &sci_dev_pm_ops,
2437 static int __init sci_init(void)
2439 int ret;
2441 printk(banner);
2443 ret = uart_register_driver(&sci_uart_driver);
2444 if (likely(ret == 0)) {
2445 ret = platform_driver_register(&sci_driver);
2446 if (unlikely(ret))
2447 uart_unregister_driver(&sci_uart_driver);
2450 return ret;
2453 static void __exit sci_exit(void)
2455 platform_driver_unregister(&sci_driver);
2456 uart_unregister_driver(&sci_uart_driver);
2459 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2460 early_platform_init_buffer("earlyprintk", &sci_driver,
2461 early_serial_buf, ARRAY_SIZE(early_serial_buf));
2462 #endif
2463 module_init(sci_init);
2464 module_exit(sci_exit);
2466 MODULE_LICENSE("GPL");
2467 MODULE_ALIAS("platform:sh-sci");
2468 MODULE_AUTHOR("Paul Mundt");
2469 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");