OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / fs / aio.c
blobb9d64d89a0437aa4db5b26bf07e1ecb870d6fba1
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
21 #define DEBUG 0
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
42 #if DEBUG > 1
43 #define dprintk printk
44 #else
45 #define dprintk(x...) do { ; } while (0)
46 #endif
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr; /* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
54 static struct kmem_cache *kiocb_cachep;
55 static struct kmem_cache *kioctx_cachep;
57 static struct workqueue_struct *aio_wq;
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
69 /* aio_setup
70 * Creates the slab caches used by the aio routines, panic on
71 * failure as this is done early during the boot sequence.
73 static int __init aio_setup(void)
75 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
78 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
79 BUG_ON(!aio_wq);
81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
83 return 0;
85 __initcall(aio_setup);
87 static void aio_free_ring(struct kioctx *ctx)
89 struct aio_ring_info *info = &ctx->ring_info;
90 long i;
92 for (i=0; i<info->nr_pages; i++)
93 put_page(info->ring_pages[i]);
95 if (info->mmap_size) {
96 down_write(&ctx->mm->mmap_sem);
97 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98 up_write(&ctx->mm->mmap_sem);
101 if (info->ring_pages && info->ring_pages != info->internal_pages)
102 kfree(info->ring_pages);
103 info->ring_pages = NULL;
104 info->nr = 0;
107 static int aio_setup_ring(struct kioctx *ctx)
109 struct aio_ring *ring;
110 struct aio_ring_info *info = &ctx->ring_info;
111 unsigned nr_events = ctx->max_reqs;
112 unsigned long size;
113 int nr_pages;
115 /* Compensate for the ring buffer's head/tail overlap entry */
116 nr_events += 2; /* 1 is required, 2 for good luck */
118 size = sizeof(struct aio_ring);
119 size += sizeof(struct io_event) * nr_events;
120 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
122 if (nr_pages < 0)
123 return -EINVAL;
125 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
127 info->nr = 0;
128 info->ring_pages = info->internal_pages;
129 if (nr_pages > AIO_RING_PAGES) {
130 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131 if (!info->ring_pages)
132 return -ENOMEM;
135 info->mmap_size = nr_pages * PAGE_SIZE;
136 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137 down_write(&ctx->mm->mmap_sem);
138 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
141 if (IS_ERR((void *)info->mmap_base)) {
142 up_write(&ctx->mm->mmap_sem);
143 info->mmap_size = 0;
144 aio_free_ring(ctx);
145 return -EAGAIN;
148 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149 info->nr_pages = get_user_pages(current, ctx->mm,
150 info->mmap_base, nr_pages,
151 1, 0, info->ring_pages, NULL);
152 up_write(&ctx->mm->mmap_sem);
154 if (unlikely(info->nr_pages != nr_pages)) {
155 aio_free_ring(ctx);
156 return -EAGAIN;
159 ctx->user_id = info->mmap_base;
161 info->nr = nr_events; /* trusted copy */
163 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
164 ring->nr = nr_events; /* user copy */
165 ring->id = ctx->user_id;
166 ring->head = ring->tail = 0;
167 ring->magic = AIO_RING_MAGIC;
168 ring->compat_features = AIO_RING_COMPAT_FEATURES;
169 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170 ring->header_length = sizeof(struct aio_ring);
171 kunmap_atomic(ring, KM_USER0);
173 return 0;
177 /* aio_ring_event: returns a pointer to the event at the given index from
178 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
184 #define aio_ring_event(info, nr, km) ({ \
185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
186 struct io_event *__event; \
187 __event = kmap_atomic( \
188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189 __event += pos % AIO_EVENTS_PER_PAGE; \
190 __event; \
193 #define put_aio_ring_event(event, km) do { \
194 struct io_event *__event = (event); \
195 (void)__event; \
196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 } while(0)
199 static void ctx_rcu_free(struct rcu_head *head)
201 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202 unsigned nr_events = ctx->max_reqs;
204 kmem_cache_free(kioctx_cachep, ctx);
206 if (nr_events) {
207 spin_lock(&aio_nr_lock);
208 BUG_ON(aio_nr - nr_events > aio_nr);
209 aio_nr -= nr_events;
210 spin_unlock(&aio_nr_lock);
214 /* __put_ioctx
215 * Called when the last user of an aio context has gone away,
216 * and the struct needs to be freed.
218 static void __put_ioctx(struct kioctx *ctx)
220 BUG_ON(ctx->reqs_active);
222 cancel_delayed_work(&ctx->wq);
223 cancel_work_sync(&ctx->wq.work);
224 aio_free_ring(ctx);
225 mmdrop(ctx->mm);
226 ctx->mm = NULL;
227 pr_debug("__put_ioctx: freeing %p\n", ctx);
228 call_rcu(&ctx->rcu_head, ctx_rcu_free);
231 static inline int try_get_ioctx(struct kioctx *kioctx)
233 return atomic_inc_not_zero(&kioctx->users);
236 static inline void put_ioctx(struct kioctx *kioctx)
238 BUG_ON(atomic_read(&kioctx->users) <= 0);
239 if (unlikely(atomic_dec_and_test(&kioctx->users)))
240 __put_ioctx(kioctx);
243 /* ioctx_alloc
244 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
246 static struct kioctx *ioctx_alloc(unsigned nr_events)
248 struct mm_struct *mm;
249 struct kioctx *ctx;
250 int did_sync = 0;
252 /* Prevent overflows */
253 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
254 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
255 pr_debug("ENOMEM: nr_events too high\n");
256 return ERR_PTR(-EINVAL);
259 if ((unsigned long)nr_events > aio_max_nr)
260 return ERR_PTR(-EAGAIN);
262 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
263 if (!ctx)
264 return ERR_PTR(-ENOMEM);
266 ctx->max_reqs = nr_events;
267 mm = ctx->mm = current->mm;
268 atomic_inc(&mm->mm_count);
270 atomic_set(&ctx->users, 2);
271 spin_lock_init(&ctx->ctx_lock);
272 spin_lock_init(&ctx->ring_info.ring_lock);
273 init_waitqueue_head(&ctx->wait);
275 INIT_LIST_HEAD(&ctx->active_reqs);
276 INIT_LIST_HEAD(&ctx->run_list);
277 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
279 if (aio_setup_ring(ctx) < 0)
280 goto out_freectx;
282 /* limit the number of system wide aios */
283 do {
284 spin_lock_bh(&aio_nr_lock);
285 if (aio_nr + nr_events > aio_max_nr ||
286 aio_nr + nr_events < aio_nr)
287 ctx->max_reqs = 0;
288 else
289 aio_nr += ctx->max_reqs;
290 spin_unlock_bh(&aio_nr_lock);
291 if (ctx->max_reqs || did_sync)
292 break;
294 /* wait for rcu callbacks to have completed before giving up */
295 synchronize_rcu();
296 did_sync = 1;
297 ctx->max_reqs = nr_events;
298 } while (1);
300 if (ctx->max_reqs == 0)
301 goto out_cleanup;
303 /* now link into global list. */
304 spin_lock(&mm->ioctx_lock);
305 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
306 spin_unlock(&mm->ioctx_lock);
308 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
309 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
310 return ctx;
312 out_cleanup:
313 __put_ioctx(ctx);
314 return ERR_PTR(-EAGAIN);
316 out_freectx:
317 mmdrop(mm);
318 kmem_cache_free(kioctx_cachep, ctx);
319 ctx = ERR_PTR(-ENOMEM);
321 dprintk("aio: error allocating ioctx %p\n", ctx);
322 return ctx;
325 /* aio_cancel_all
326 * Cancels all outstanding aio requests on an aio context. Used
327 * when the processes owning a context have all exited to encourage
328 * the rapid destruction of the kioctx.
330 static void aio_cancel_all(struct kioctx *ctx)
332 int (*cancel)(struct kiocb *, struct io_event *);
333 struct io_event res;
334 spin_lock_irq(&ctx->ctx_lock);
335 ctx->dead = 1;
336 while (!list_empty(&ctx->active_reqs)) {
337 struct list_head *pos = ctx->active_reqs.next;
338 struct kiocb *iocb = list_kiocb(pos);
339 list_del_init(&iocb->ki_list);
340 cancel = iocb->ki_cancel;
341 kiocbSetCancelled(iocb);
342 if (cancel) {
343 iocb->ki_users++;
344 spin_unlock_irq(&ctx->ctx_lock);
345 cancel(iocb, &res);
346 spin_lock_irq(&ctx->ctx_lock);
349 spin_unlock_irq(&ctx->ctx_lock);
352 static void wait_for_all_aios(struct kioctx *ctx)
354 struct task_struct *tsk = current;
355 DECLARE_WAITQUEUE(wait, tsk);
357 spin_lock_irq(&ctx->ctx_lock);
358 if (!ctx->reqs_active)
359 goto out;
361 add_wait_queue(&ctx->wait, &wait);
362 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
363 while (ctx->reqs_active) {
364 spin_unlock_irq(&ctx->ctx_lock);
365 io_schedule();
366 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
367 spin_lock_irq(&ctx->ctx_lock);
369 __set_task_state(tsk, TASK_RUNNING);
370 remove_wait_queue(&ctx->wait, &wait);
372 out:
373 spin_unlock_irq(&ctx->ctx_lock);
376 /* wait_on_sync_kiocb:
377 * Waits on the given sync kiocb to complete.
379 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
381 while (iocb->ki_users) {
382 set_current_state(TASK_UNINTERRUPTIBLE);
383 if (!iocb->ki_users)
384 break;
385 io_schedule();
387 __set_current_state(TASK_RUNNING);
388 return iocb->ki_user_data;
390 EXPORT_SYMBOL(wait_on_sync_kiocb);
392 /* exit_aio: called when the last user of mm goes away. At this point,
393 * there is no way for any new requests to be submited or any of the
394 * io_* syscalls to be called on the context. However, there may be
395 * outstanding requests which hold references to the context; as they
396 * go away, they will call put_ioctx and release any pinned memory
397 * associated with the request (held via struct page * references).
399 void exit_aio(struct mm_struct *mm)
401 struct kioctx *ctx;
403 while (!hlist_empty(&mm->ioctx_list)) {
404 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
405 hlist_del_rcu(&ctx->list);
407 aio_cancel_all(ctx);
409 wait_for_all_aios(ctx);
411 * Ensure we don't leave the ctx on the aio_wq
413 cancel_work_sync(&ctx->wq.work);
415 if (1 != atomic_read(&ctx->users))
416 printk(KERN_DEBUG
417 "exit_aio:ioctx still alive: %d %d %d\n",
418 atomic_read(&ctx->users), ctx->dead,
419 ctx->reqs_active);
420 put_ioctx(ctx);
424 /* aio_get_req
425 * Allocate a slot for an aio request. Increments the users count
426 * of the kioctx so that the kioctx stays around until all requests are
427 * complete. Returns NULL if no requests are free.
429 * Returns with kiocb->users set to 2. The io submit code path holds
430 * an extra reference while submitting the i/o.
431 * This prevents races between the aio code path referencing the
432 * req (after submitting it) and aio_complete() freeing the req.
434 static struct kiocb *__aio_get_req(struct kioctx *ctx)
436 struct kiocb *req = NULL;
438 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
439 if (unlikely(!req))
440 return NULL;
442 req->ki_flags = 0;
443 req->ki_users = 2;
444 req->ki_key = 0;
445 req->ki_ctx = ctx;
446 req->ki_cancel = NULL;
447 req->ki_retry = NULL;
448 req->ki_dtor = NULL;
449 req->private = NULL;
450 req->ki_iovec = NULL;
451 INIT_LIST_HEAD(&req->ki_run_list);
452 req->ki_eventfd = NULL;
454 return req;
458 * struct kiocb's are allocated in batches to reduce the number of
459 * times the ctx lock is acquired and released.
461 #define KIOCB_BATCH_SIZE 32L
462 struct kiocb_batch {
463 struct list_head head;
464 long count; /* number of requests left to allocate */
467 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
469 INIT_LIST_HEAD(&batch->head);
470 batch->count = total;
473 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
475 struct kiocb *req, *n;
477 if (list_empty(&batch->head))
478 return;
480 spin_lock_irq(&ctx->ctx_lock);
481 list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
482 list_del(&req->ki_batch);
483 list_del(&req->ki_list);
484 kmem_cache_free(kiocb_cachep, req);
485 ctx->reqs_active--;
487 if (unlikely(!ctx->reqs_active && ctx->dead))
488 wake_up_all(&ctx->wait);
489 spin_unlock_irq(&ctx->ctx_lock);
493 * Allocate a batch of kiocbs. This avoids taking and dropping the
494 * context lock a lot during setup.
496 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
498 unsigned short allocated, to_alloc;
499 long avail;
500 bool called_fput = false;
501 struct kiocb *req, *n;
502 struct aio_ring *ring;
504 to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
505 for (allocated = 0; allocated < to_alloc; allocated++) {
506 req = __aio_get_req(ctx);
507 if (!req)
508 /* allocation failed, go with what we've got */
509 break;
510 list_add(&req->ki_batch, &batch->head);
513 if (allocated == 0)
514 goto out;
516 retry:
517 spin_lock_irq(&ctx->ctx_lock);
518 ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
520 avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
521 BUG_ON(avail < 0);
522 if (avail == 0 && !called_fput) {
524 * Handle a potential starvation case. It is possible that
525 * we hold the last reference on a struct file, causing us
526 * to delay the final fput to non-irq context. In this case,
527 * ctx->reqs_active is artificially high. Calling the fput
528 * routine here may free up a slot in the event completion
529 * ring, allowing this allocation to succeed.
531 kunmap_atomic(ring);
532 spin_unlock_irq(&ctx->ctx_lock);
533 aio_fput_routine(NULL);
534 called_fput = true;
535 goto retry;
538 if (avail < allocated) {
539 /* Trim back the number of requests. */
540 list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
541 list_del(&req->ki_batch);
542 kmem_cache_free(kiocb_cachep, req);
543 if (--allocated <= avail)
544 break;
548 batch->count -= allocated;
549 list_for_each_entry(req, &batch->head, ki_batch) {
550 list_add(&req->ki_list, &ctx->active_reqs);
551 ctx->reqs_active++;
554 kunmap_atomic(ring);
555 spin_unlock_irq(&ctx->ctx_lock);
557 out:
558 return allocated;
561 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
562 struct kiocb_batch *batch)
564 struct kiocb *req;
566 if (list_empty(&batch->head))
567 if (kiocb_batch_refill(ctx, batch) == 0)
568 return NULL;
569 req = list_first_entry(&batch->head, struct kiocb, ki_batch);
570 list_del(&req->ki_batch);
571 return req;
574 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
576 assert_spin_locked(&ctx->ctx_lock);
578 if (req->ki_eventfd != NULL)
579 eventfd_ctx_put(req->ki_eventfd);
580 if (req->ki_dtor)
581 req->ki_dtor(req);
582 if (req->ki_iovec != &req->ki_inline_vec)
583 kfree(req->ki_iovec);
584 kmem_cache_free(kiocb_cachep, req);
585 ctx->reqs_active--;
587 if (unlikely(!ctx->reqs_active && ctx->dead))
588 wake_up_all(&ctx->wait);
591 static void aio_fput_routine(struct work_struct *data)
593 spin_lock_irq(&fput_lock);
594 while (likely(!list_empty(&fput_head))) {
595 struct kiocb *req = list_kiocb(fput_head.next);
596 struct kioctx *ctx = req->ki_ctx;
598 list_del(&req->ki_list);
599 spin_unlock_irq(&fput_lock);
601 /* Complete the fput(s) */
602 if (req->ki_filp != NULL)
603 fput(req->ki_filp);
605 /* Link the iocb into the context's free list */
606 rcu_read_lock();
607 spin_lock_irq(&ctx->ctx_lock);
608 really_put_req(ctx, req);
610 * at that point ctx might've been killed, but actual
611 * freeing is RCU'd
613 spin_unlock_irq(&ctx->ctx_lock);
614 rcu_read_unlock();
616 spin_lock_irq(&fput_lock);
618 spin_unlock_irq(&fput_lock);
621 /* __aio_put_req
622 * Returns true if this put was the last user of the request.
624 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
626 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
627 req, atomic_long_read(&req->ki_filp->f_count));
629 assert_spin_locked(&ctx->ctx_lock);
631 req->ki_users--;
632 BUG_ON(req->ki_users < 0);
633 if (likely(req->ki_users))
634 return 0;
635 list_del(&req->ki_list); /* remove from active_reqs */
636 req->ki_cancel = NULL;
637 req->ki_retry = NULL;
640 * Try to optimize the aio and eventfd file* puts, by avoiding to
641 * schedule work in case it is not final fput() time. In normal cases,
642 * we would not be holding the last reference to the file*, so
643 * this function will be executed w/out any aio kthread wakeup.
645 if (unlikely(!fput_atomic(req->ki_filp))) {
646 spin_lock(&fput_lock);
647 list_add(&req->ki_list, &fput_head);
648 spin_unlock(&fput_lock);
649 schedule_work(&fput_work);
650 } else {
651 req->ki_filp = NULL;
652 really_put_req(ctx, req);
654 return 1;
657 /* aio_put_req
658 * Returns true if this put was the last user of the kiocb,
659 * false if the request is still in use.
661 int aio_put_req(struct kiocb *req)
663 struct kioctx *ctx = req->ki_ctx;
664 int ret;
665 spin_lock_irq(&ctx->ctx_lock);
666 ret = __aio_put_req(ctx, req);
667 spin_unlock_irq(&ctx->ctx_lock);
668 return ret;
670 EXPORT_SYMBOL(aio_put_req);
672 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
674 struct mm_struct *mm = current->mm;
675 struct kioctx *ctx, *ret = NULL;
676 struct hlist_node *n;
678 rcu_read_lock();
680 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
682 * RCU protects us against accessing freed memory but
683 * we have to be careful not to get a reference when the
684 * reference count already dropped to 0 (ctx->dead test
685 * is unreliable because of races).
687 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
688 ret = ctx;
689 break;
693 rcu_read_unlock();
694 return ret;
698 * Queue up a kiocb to be retried. Assumes that the kiocb
699 * has already been marked as kicked, and places it on
700 * the retry run list for the corresponding ioctx, if it
701 * isn't already queued. Returns 1 if it actually queued
702 * the kiocb (to tell the caller to activate the work
703 * queue to process it), or 0, if it found that it was
704 * already queued.
706 static inline int __queue_kicked_iocb(struct kiocb *iocb)
708 struct kioctx *ctx = iocb->ki_ctx;
710 assert_spin_locked(&ctx->ctx_lock);
712 if (list_empty(&iocb->ki_run_list)) {
713 list_add_tail(&iocb->ki_run_list,
714 &ctx->run_list);
715 return 1;
717 return 0;
720 /* aio_run_iocb
721 * This is the core aio execution routine. It is
722 * invoked both for initial i/o submission and
723 * subsequent retries via the aio_kick_handler.
724 * Expects to be invoked with iocb->ki_ctx->lock
725 * already held. The lock is released and reacquired
726 * as needed during processing.
728 * Calls the iocb retry method (already setup for the
729 * iocb on initial submission) for operation specific
730 * handling, but takes care of most of common retry
731 * execution details for a given iocb. The retry method
732 * needs to be non-blocking as far as possible, to avoid
733 * holding up other iocbs waiting to be serviced by the
734 * retry kernel thread.
736 * The trickier parts in this code have to do with
737 * ensuring that only one retry instance is in progress
738 * for a given iocb at any time. Providing that guarantee
739 * simplifies the coding of individual aio operations as
740 * it avoids various potential races.
742 static ssize_t aio_run_iocb(struct kiocb *iocb)
744 struct kioctx *ctx = iocb->ki_ctx;
745 ssize_t (*retry)(struct kiocb *);
746 ssize_t ret;
748 if (!(retry = iocb->ki_retry)) {
749 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
750 return 0;
754 * We don't want the next retry iteration for this
755 * operation to start until this one has returned and
756 * updated the iocb state. However, wait_queue functions
757 * can trigger a kick_iocb from interrupt context in the
758 * meantime, indicating that data is available for the next
759 * iteration. We want to remember that and enable the
760 * next retry iteration _after_ we are through with
761 * this one.
763 * So, in order to be able to register a "kick", but
764 * prevent it from being queued now, we clear the kick
765 * flag, but make the kick code *think* that the iocb is
766 * still on the run list until we are actually done.
767 * When we are done with this iteration, we check if
768 * the iocb was kicked in the meantime and if so, queue
769 * it up afresh.
772 kiocbClearKicked(iocb);
775 * This is so that aio_complete knows it doesn't need to
776 * pull the iocb off the run list (We can't just call
777 * INIT_LIST_HEAD because we don't want a kick_iocb to
778 * queue this on the run list yet)
780 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
781 spin_unlock_irq(&ctx->ctx_lock);
783 /* Quit retrying if the i/o has been cancelled */
784 if (kiocbIsCancelled(iocb)) {
785 ret = -EINTR;
786 aio_complete(iocb, ret, 0);
787 /* must not access the iocb after this */
788 goto out;
792 * Now we are all set to call the retry method in async
793 * context.
795 ret = retry(iocb);
797 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
799 * There's no easy way to restart the syscall since other AIO's
800 * may be already running. Just fail this IO with EINTR.
802 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
803 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
804 ret = -EINTR;
805 aio_complete(iocb, ret, 0);
807 out:
808 spin_lock_irq(&ctx->ctx_lock);
810 if (-EIOCBRETRY == ret) {
812 * OK, now that we are done with this iteration
813 * and know that there is more left to go,
814 * this is where we let go so that a subsequent
815 * "kick" can start the next iteration
818 /* will make __queue_kicked_iocb succeed from here on */
819 INIT_LIST_HEAD(&iocb->ki_run_list);
820 /* we must queue the next iteration ourselves, if it
821 * has already been kicked */
822 if (kiocbIsKicked(iocb)) {
823 __queue_kicked_iocb(iocb);
826 * __queue_kicked_iocb will always return 1 here, because
827 * iocb->ki_run_list is empty at this point so it should
828 * be safe to unconditionally queue the context into the
829 * work queue.
831 aio_queue_work(ctx);
834 return ret;
838 * __aio_run_iocbs:
839 * Process all pending retries queued on the ioctx
840 * run list.
841 * Assumes it is operating within the aio issuer's mm
842 * context.
844 static int __aio_run_iocbs(struct kioctx *ctx)
846 struct kiocb *iocb;
847 struct list_head run_list;
849 assert_spin_locked(&ctx->ctx_lock);
851 list_replace_init(&ctx->run_list, &run_list);
852 while (!list_empty(&run_list)) {
853 iocb = list_entry(run_list.next, struct kiocb,
854 ki_run_list);
855 list_del(&iocb->ki_run_list);
857 * Hold an extra reference while retrying i/o.
859 iocb->ki_users++; /* grab extra reference */
860 aio_run_iocb(iocb);
861 __aio_put_req(ctx, iocb);
863 if (!list_empty(&ctx->run_list))
864 return 1;
865 return 0;
868 static void aio_queue_work(struct kioctx * ctx)
870 unsigned long timeout;
872 * if someone is waiting, get the work started right
873 * away, otherwise, use a longer delay
875 smp_mb();
876 if (waitqueue_active(&ctx->wait))
877 timeout = 1;
878 else
879 timeout = HZ/10;
880 queue_delayed_work(aio_wq, &ctx->wq, timeout);
884 * aio_run_all_iocbs:
885 * Process all pending retries queued on the ioctx
886 * run list, and keep running them until the list
887 * stays empty.
888 * Assumes it is operating within the aio issuer's mm context.
890 static inline void aio_run_all_iocbs(struct kioctx *ctx)
892 spin_lock_irq(&ctx->ctx_lock);
893 while (__aio_run_iocbs(ctx))
895 spin_unlock_irq(&ctx->ctx_lock);
899 * aio_kick_handler:
900 * Work queue handler triggered to process pending
901 * retries on an ioctx. Takes on the aio issuer's
902 * mm context before running the iocbs, so that
903 * copy_xxx_user operates on the issuer's address
904 * space.
905 * Run on aiod's context.
907 static void aio_kick_handler(struct work_struct *work)
909 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
910 mm_segment_t oldfs = get_fs();
911 struct mm_struct *mm;
912 int requeue;
914 set_fs(USER_DS);
915 use_mm(ctx->mm);
916 spin_lock_irq(&ctx->ctx_lock);
917 requeue =__aio_run_iocbs(ctx);
918 mm = ctx->mm;
919 spin_unlock_irq(&ctx->ctx_lock);
920 unuse_mm(mm);
921 set_fs(oldfs);
923 * we're in a worker thread already, don't use queue_delayed_work,
925 if (requeue)
926 queue_delayed_work(aio_wq, &ctx->wq, 0);
931 * Called by kick_iocb to queue the kiocb for retry
932 * and if required activate the aio work queue to process
933 * it
935 static void try_queue_kicked_iocb(struct kiocb *iocb)
937 struct kioctx *ctx = iocb->ki_ctx;
938 unsigned long flags;
939 int run = 0;
941 spin_lock_irqsave(&ctx->ctx_lock, flags);
942 /* set this inside the lock so that we can't race with aio_run_iocb()
943 * testing it and putting the iocb on the run list under the lock */
944 if (!kiocbTryKick(iocb))
945 run = __queue_kicked_iocb(iocb);
946 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
947 if (run)
948 aio_queue_work(ctx);
952 * kick_iocb:
953 * Called typically from a wait queue callback context
954 * to trigger a retry of the iocb.
955 * The retry is usually executed by aio workqueue
956 * threads (See aio_kick_handler).
958 void kick_iocb(struct kiocb *iocb)
960 /* sync iocbs are easy: they can only ever be executing from a
961 * single context. */
962 if (is_sync_kiocb(iocb)) {
963 kiocbSetKicked(iocb);
964 wake_up_process(iocb->ki_obj.tsk);
965 return;
968 try_queue_kicked_iocb(iocb);
970 EXPORT_SYMBOL(kick_iocb);
972 /* aio_complete
973 * Called when the io request on the given iocb is complete.
974 * Returns true if this is the last user of the request. The
975 * only other user of the request can be the cancellation code.
977 int aio_complete(struct kiocb *iocb, long res, long res2)
979 struct kioctx *ctx = iocb->ki_ctx;
980 struct aio_ring_info *info;
981 struct aio_ring *ring;
982 struct io_event *event;
983 unsigned long flags;
984 unsigned long tail;
985 int ret;
988 * Special case handling for sync iocbs:
989 * - events go directly into the iocb for fast handling
990 * - the sync task with the iocb in its stack holds the single iocb
991 * ref, no other paths have a way to get another ref
992 * - the sync task helpfully left a reference to itself in the iocb
994 if (is_sync_kiocb(iocb)) {
995 BUG_ON(iocb->ki_users != 1);
996 iocb->ki_user_data = res;
997 iocb->ki_users = 0;
998 wake_up_process(iocb->ki_obj.tsk);
999 return 1;
1002 info = &ctx->ring_info;
1004 /* add a completion event to the ring buffer.
1005 * must be done holding ctx->ctx_lock to prevent
1006 * other code from messing with the tail
1007 * pointer since we might be called from irq
1008 * context.
1010 spin_lock_irqsave(&ctx->ctx_lock, flags);
1012 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
1013 list_del_init(&iocb->ki_run_list);
1016 * cancelled requests don't get events, userland was given one
1017 * when the event got cancelled.
1019 if (kiocbIsCancelled(iocb))
1020 goto put_rq;
1022 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
1024 tail = info->tail;
1025 event = aio_ring_event(info, tail, KM_IRQ0);
1026 if (++tail >= info->nr)
1027 tail = 0;
1029 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1030 event->data = iocb->ki_user_data;
1031 event->res = res;
1032 event->res2 = res2;
1034 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1035 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1036 res, res2);
1038 /* after flagging the request as done, we
1039 * must never even look at it again
1041 smp_wmb(); /* make event visible before updating tail */
1043 info->tail = tail;
1044 ring->tail = tail;
1046 put_aio_ring_event(event, KM_IRQ0);
1047 kunmap_atomic(ring, KM_IRQ1);
1049 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1052 * Check if the user asked us to deliver the result through an
1053 * eventfd. The eventfd_signal() function is safe to be called
1054 * from IRQ context.
1056 if (iocb->ki_eventfd != NULL)
1057 eventfd_signal(iocb->ki_eventfd, 1);
1059 put_rq:
1060 /* everything turned out well, dispose of the aiocb. */
1061 ret = __aio_put_req(ctx, iocb);
1064 * We have to order our ring_info tail store above and test
1065 * of the wait list below outside the wait lock. This is
1066 * like in wake_up_bit() where clearing a bit has to be
1067 * ordered with the unlocked test.
1069 smp_mb();
1071 if (waitqueue_active(&ctx->wait))
1072 wake_up(&ctx->wait);
1074 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1075 return ret;
1077 EXPORT_SYMBOL(aio_complete);
1079 /* aio_read_evt
1080 * Pull an event off of the ioctx's event ring. Returns the number of
1081 * events fetched (0 or 1 ;-)
1082 * FIXME: make this use cmpxchg.
1083 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1085 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1087 struct aio_ring_info *info = &ioctx->ring_info;
1088 struct aio_ring *ring;
1089 unsigned long head;
1090 int ret = 0;
1092 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1093 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1094 (unsigned long)ring->head, (unsigned long)ring->tail,
1095 (unsigned long)ring->nr);
1097 if (ring->head == ring->tail)
1098 goto out;
1100 spin_lock(&info->ring_lock);
1102 head = ring->head % info->nr;
1103 if (head != ring->tail) {
1104 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1105 *ent = *evp;
1106 head = (head + 1) % info->nr;
1107 smp_mb(); /* finish reading the event before updatng the head */
1108 ring->head = head;
1109 ret = 1;
1110 put_aio_ring_event(evp, KM_USER1);
1112 spin_unlock(&info->ring_lock);
1114 out:
1115 kunmap_atomic(ring, KM_USER0);
1116 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1117 (unsigned long)ring->head, (unsigned long)ring->tail);
1118 return ret;
1121 struct aio_timeout {
1122 struct timer_list timer;
1123 int timed_out;
1124 struct task_struct *p;
1127 static void timeout_func(unsigned long data)
1129 struct aio_timeout *to = (struct aio_timeout *)data;
1131 to->timed_out = 1;
1132 wake_up_process(to->p);
1135 static inline void init_timeout(struct aio_timeout *to)
1137 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1138 to->timed_out = 0;
1139 to->p = current;
1142 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1143 const struct timespec *ts)
1145 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1146 if (time_after(to->timer.expires, jiffies))
1147 add_timer(&to->timer);
1148 else
1149 to->timed_out = 1;
1152 static inline void clear_timeout(struct aio_timeout *to)
1154 del_singleshot_timer_sync(&to->timer);
1157 static int read_events(struct kioctx *ctx,
1158 long min_nr, long nr,
1159 struct io_event __user *event,
1160 struct timespec __user *timeout)
1162 long start_jiffies = jiffies;
1163 struct task_struct *tsk = current;
1164 DECLARE_WAITQUEUE(wait, tsk);
1165 int ret;
1166 int i = 0;
1167 struct io_event ent;
1168 struct aio_timeout to;
1169 int retry = 0;
1171 /* needed to zero any padding within an entry (there shouldn't be
1172 * any, but C is fun!
1174 memset(&ent, 0, sizeof(ent));
1175 retry:
1176 ret = 0;
1177 while (likely(i < nr)) {
1178 ret = aio_read_evt(ctx, &ent);
1179 if (unlikely(ret <= 0))
1180 break;
1182 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1183 ent.data, ent.obj, ent.res, ent.res2);
1185 /* Could we split the check in two? */
1186 ret = -EFAULT;
1187 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1188 dprintk("aio: lost an event due to EFAULT.\n");
1189 break;
1191 ret = 0;
1193 /* Good, event copied to userland, update counts. */
1194 event ++;
1195 i ++;
1198 if (min_nr <= i)
1199 return i;
1200 if (ret)
1201 return ret;
1203 /* End fast path */
1205 /* racey check, but it gets redone */
1206 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1207 retry = 1;
1208 aio_run_all_iocbs(ctx);
1209 goto retry;
1212 init_timeout(&to);
1213 if (timeout) {
1214 struct timespec ts;
1215 ret = -EFAULT;
1216 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1217 goto out;
1219 set_timeout(start_jiffies, &to, &ts);
1222 while (likely(i < nr)) {
1223 add_wait_queue_exclusive(&ctx->wait, &wait);
1224 do {
1225 set_task_state(tsk, TASK_INTERRUPTIBLE);
1226 ret = aio_read_evt(ctx, &ent);
1227 if (ret)
1228 break;
1229 if (min_nr <= i)
1230 break;
1231 if (unlikely(ctx->dead)) {
1232 ret = -EINVAL;
1233 break;
1235 if (to.timed_out) /* Only check after read evt */
1236 break;
1237 /* Try to only show up in io wait if there are ops
1238 * in flight */
1239 if (ctx->reqs_active)
1240 io_schedule();
1241 else
1242 schedule();
1243 if (signal_pending(tsk)) {
1244 ret = -EINTR;
1245 break;
1247 /*ret = aio_read_evt(ctx, &ent);*/
1248 } while (1) ;
1250 set_task_state(tsk, TASK_RUNNING);
1251 remove_wait_queue(&ctx->wait, &wait);
1253 if (unlikely(ret <= 0))
1254 break;
1256 ret = -EFAULT;
1257 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1258 dprintk("aio: lost an event due to EFAULT.\n");
1259 break;
1262 /* Good, event copied to userland, update counts. */
1263 event ++;
1264 i ++;
1267 if (timeout)
1268 clear_timeout(&to);
1269 out:
1270 destroy_timer_on_stack(&to.timer);
1271 return i ? i : ret;
1274 /* Take an ioctx and remove it from the list of ioctx's. Protects
1275 * against races with itself via ->dead.
1277 static void io_destroy(struct kioctx *ioctx)
1279 struct mm_struct *mm = current->mm;
1280 int was_dead;
1282 /* delete the entry from the list is someone else hasn't already */
1283 spin_lock(&mm->ioctx_lock);
1284 was_dead = ioctx->dead;
1285 ioctx->dead = 1;
1286 hlist_del_rcu(&ioctx->list);
1287 spin_unlock(&mm->ioctx_lock);
1289 dprintk("aio_release(%p)\n", ioctx);
1290 if (likely(!was_dead))
1291 put_ioctx(ioctx); /* twice for the list */
1293 aio_cancel_all(ioctx);
1294 wait_for_all_aios(ioctx);
1297 * Wake up any waiters. The setting of ctx->dead must be seen
1298 * by other CPUs at this point. Right now, we rely on the
1299 * locking done by the above calls to ensure this consistency.
1301 wake_up_all(&ioctx->wait);
1302 put_ioctx(ioctx); /* once for the lookup */
1305 /* sys_io_setup:
1306 * Create an aio_context capable of receiving at least nr_events.
1307 * ctxp must not point to an aio_context that already exists, and
1308 * must be initialized to 0 prior to the call. On successful
1309 * creation of the aio_context, *ctxp is filled in with the resulting
1310 * handle. May fail with -EINVAL if *ctxp is not initialized,
1311 * if the specified nr_events exceeds internal limits. May fail
1312 * with -EAGAIN if the specified nr_events exceeds the user's limit
1313 * of available events. May fail with -ENOMEM if insufficient kernel
1314 * resources are available. May fail with -EFAULT if an invalid
1315 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1316 * implemented.
1318 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1320 struct kioctx *ioctx = NULL;
1321 unsigned long ctx;
1322 long ret;
1324 ret = get_user(ctx, ctxp);
1325 if (unlikely(ret))
1326 goto out;
1328 ret = -EINVAL;
1329 if (unlikely(ctx || nr_events == 0)) {
1330 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1331 ctx, nr_events);
1332 goto out;
1335 ioctx = ioctx_alloc(nr_events);
1336 ret = PTR_ERR(ioctx);
1337 if (!IS_ERR(ioctx)) {
1338 ret = put_user(ioctx->user_id, ctxp);
1339 if (!ret) {
1340 put_ioctx(ioctx);
1341 return 0;
1343 io_destroy(ioctx);
1346 out:
1347 return ret;
1350 /* sys_io_destroy:
1351 * Destroy the aio_context specified. May cancel any outstanding
1352 * AIOs and block on completion. Will fail with -ENOSYS if not
1353 * implemented. May fail with -EINVAL if the context pointed to
1354 * is invalid.
1356 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1358 struct kioctx *ioctx = lookup_ioctx(ctx);
1359 if (likely(NULL != ioctx)) {
1360 io_destroy(ioctx);
1361 return 0;
1363 pr_debug("EINVAL: io_destroy: invalid context id\n");
1364 return -EINVAL;
1367 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1369 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1371 BUG_ON(ret <= 0);
1373 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1374 ssize_t this = min((ssize_t)iov->iov_len, ret);
1375 iov->iov_base += this;
1376 iov->iov_len -= this;
1377 iocb->ki_left -= this;
1378 ret -= this;
1379 if (iov->iov_len == 0) {
1380 iocb->ki_cur_seg++;
1381 iov++;
1385 /* the caller should not have done more io than what fit in
1386 * the remaining iovecs */
1387 BUG_ON(ret > 0 && iocb->ki_left == 0);
1390 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1392 struct file *file = iocb->ki_filp;
1393 struct address_space *mapping = file->f_mapping;
1394 struct inode *inode = mapping->host;
1395 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1396 unsigned long, loff_t);
1397 ssize_t ret = 0;
1398 unsigned short opcode;
1400 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1401 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1402 rw_op = file->f_op->aio_read;
1403 opcode = IOCB_CMD_PREADV;
1404 } else {
1405 rw_op = file->f_op->aio_write;
1406 opcode = IOCB_CMD_PWRITEV;
1409 /* This matches the pread()/pwrite() logic */
1410 if (iocb->ki_pos < 0)
1411 return -EINVAL;
1413 do {
1414 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1415 iocb->ki_nr_segs - iocb->ki_cur_seg,
1416 iocb->ki_pos);
1417 if (ret > 0)
1418 aio_advance_iovec(iocb, ret);
1420 /* retry all partial writes. retry partial reads as long as its a
1421 * regular file. */
1422 } while (ret > 0 && iocb->ki_left > 0 &&
1423 (opcode == IOCB_CMD_PWRITEV ||
1424 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1426 /* This means we must have transferred all that we could */
1427 /* No need to retry anymore */
1428 if ((ret == 0) || (iocb->ki_left == 0))
1429 ret = iocb->ki_nbytes - iocb->ki_left;
1431 /* If we managed to write some out we return that, rather than
1432 * the eventual error. */
1433 if (opcode == IOCB_CMD_PWRITEV
1434 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1435 && iocb->ki_nbytes - iocb->ki_left)
1436 ret = iocb->ki_nbytes - iocb->ki_left;
1438 return ret;
1441 static ssize_t aio_fdsync(struct kiocb *iocb)
1443 struct file *file = iocb->ki_filp;
1444 ssize_t ret = -EINVAL;
1446 if (file->f_op->aio_fsync)
1447 ret = file->f_op->aio_fsync(iocb, 1);
1448 return ret;
1451 static ssize_t aio_fsync(struct kiocb *iocb)
1453 struct file *file = iocb->ki_filp;
1454 ssize_t ret = -EINVAL;
1456 if (file->f_op->aio_fsync)
1457 ret = file->f_op->aio_fsync(iocb, 0);
1458 return ret;
1461 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1463 ssize_t ret;
1465 #ifdef CONFIG_COMPAT
1466 if (compat)
1467 ret = compat_rw_copy_check_uvector(type,
1468 (struct compat_iovec __user *)kiocb->ki_buf,
1469 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1470 &kiocb->ki_iovec, 1);
1471 else
1472 #endif
1473 ret = rw_copy_check_uvector(type,
1474 (struct iovec __user *)kiocb->ki_buf,
1475 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1476 &kiocb->ki_iovec, 1);
1477 if (ret < 0)
1478 goto out;
1480 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1481 kiocb->ki_cur_seg = 0;
1482 /* ki_nbytes/left now reflect bytes instead of segs */
1483 kiocb->ki_nbytes = ret;
1484 kiocb->ki_left = ret;
1486 ret = 0;
1487 out:
1488 return ret;
1491 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1493 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1494 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1495 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1496 kiocb->ki_nr_segs = 1;
1497 kiocb->ki_cur_seg = 0;
1498 return 0;
1502 * aio_setup_iocb:
1503 * Performs the initial checks and aio retry method
1504 * setup for the kiocb at the time of io submission.
1506 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1508 struct file *file = kiocb->ki_filp;
1509 ssize_t ret = 0;
1511 switch (kiocb->ki_opcode) {
1512 case IOCB_CMD_PREAD:
1513 ret = -EBADF;
1514 if (unlikely(!(file->f_mode & FMODE_READ)))
1515 break;
1516 ret = -EFAULT;
1517 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1518 kiocb->ki_left)))
1519 break;
1520 ret = security_file_permission(file, MAY_READ);
1521 if (unlikely(ret))
1522 break;
1523 ret = aio_setup_single_vector(kiocb);
1524 if (ret)
1525 break;
1526 ret = -EINVAL;
1527 if (file->f_op->aio_read)
1528 kiocb->ki_retry = aio_rw_vect_retry;
1529 break;
1530 case IOCB_CMD_PWRITE:
1531 ret = -EBADF;
1532 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1533 break;
1534 ret = -EFAULT;
1535 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1536 kiocb->ki_left)))
1537 break;
1538 ret = security_file_permission(file, MAY_WRITE);
1539 if (unlikely(ret))
1540 break;
1541 ret = aio_setup_single_vector(kiocb);
1542 if (ret)
1543 break;
1544 ret = -EINVAL;
1545 if (file->f_op->aio_write)
1546 kiocb->ki_retry = aio_rw_vect_retry;
1547 break;
1548 case IOCB_CMD_PREADV:
1549 ret = -EBADF;
1550 if (unlikely(!(file->f_mode & FMODE_READ)))
1551 break;
1552 ret = security_file_permission(file, MAY_READ);
1553 if (unlikely(ret))
1554 break;
1555 ret = aio_setup_vectored_rw(READ, kiocb, compat);
1556 if (ret)
1557 break;
1558 ret = -EINVAL;
1559 if (file->f_op->aio_read)
1560 kiocb->ki_retry = aio_rw_vect_retry;
1561 break;
1562 case IOCB_CMD_PWRITEV:
1563 ret = -EBADF;
1564 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1565 break;
1566 ret = security_file_permission(file, MAY_WRITE);
1567 if (unlikely(ret))
1568 break;
1569 ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1570 if (ret)
1571 break;
1572 ret = -EINVAL;
1573 if (file->f_op->aio_write)
1574 kiocb->ki_retry = aio_rw_vect_retry;
1575 break;
1576 case IOCB_CMD_FDSYNC:
1577 ret = -EINVAL;
1578 if (file->f_op->aio_fsync)
1579 kiocb->ki_retry = aio_fdsync;
1580 break;
1581 case IOCB_CMD_FSYNC:
1582 ret = -EINVAL;
1583 if (file->f_op->aio_fsync)
1584 kiocb->ki_retry = aio_fsync;
1585 break;
1586 default:
1587 dprintk("EINVAL: io_submit: no operation provided\n");
1588 ret = -EINVAL;
1591 if (!kiocb->ki_retry)
1592 return ret;
1594 return 0;
1597 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1598 struct iocb *iocb, struct kiocb_batch *batch,
1599 bool compat)
1601 struct kiocb *req;
1602 struct file *file;
1603 ssize_t ret;
1605 /* enforce forwards compatibility on users */
1606 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1607 pr_debug("EINVAL: io_submit: reserve field set\n");
1608 return -EINVAL;
1611 /* prevent overflows */
1612 if (unlikely(
1613 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1614 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1615 ((ssize_t)iocb->aio_nbytes < 0)
1616 )) {
1617 pr_debug("EINVAL: io_submit: overflow check\n");
1618 return -EINVAL;
1621 file = fget(iocb->aio_fildes);
1622 if (unlikely(!file))
1623 return -EBADF;
1625 req = aio_get_req(ctx, batch); /* returns with 2 references to req */
1626 if (unlikely(!req)) {
1627 fput(file);
1628 return -EAGAIN;
1630 req->ki_filp = file;
1631 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1633 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1634 * instance of the file* now. The file descriptor must be
1635 * an eventfd() fd, and will be signaled for each completed
1636 * event using the eventfd_signal() function.
1638 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1639 if (IS_ERR(req->ki_eventfd)) {
1640 ret = PTR_ERR(req->ki_eventfd);
1641 req->ki_eventfd = NULL;
1642 goto out_put_req;
1646 ret = put_user(req->ki_key, &user_iocb->aio_key);
1647 if (unlikely(ret)) {
1648 dprintk("EFAULT: aio_key\n");
1649 goto out_put_req;
1652 req->ki_obj.user = user_iocb;
1653 req->ki_user_data = iocb->aio_data;
1654 req->ki_pos = iocb->aio_offset;
1656 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1657 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1658 req->ki_opcode = iocb->aio_lio_opcode;
1660 ret = aio_setup_iocb(req, compat);
1662 if (ret)
1663 goto out_put_req;
1665 spin_lock_irq(&ctx->ctx_lock);
1667 * We could have raced with io_destroy() and are currently holding a
1668 * reference to ctx which should be destroyed. We cannot submit IO
1669 * since ctx gets freed as soon as io_submit() puts its reference. The
1670 * check here is reliable: io_destroy() sets ctx->dead before waiting
1671 * for outstanding IO and the barrier between these two is realized by
1672 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1673 * increment ctx->reqs_active before checking for ctx->dead and the
1674 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1675 * don't see ctx->dead set here, io_destroy() waits for our IO to
1676 * finish.
1678 if (ctx->dead) {
1679 spin_unlock_irq(&ctx->ctx_lock);
1680 ret = -EINVAL;
1681 goto out_put_req;
1683 aio_run_iocb(req);
1684 if (!list_empty(&ctx->run_list)) {
1685 /* drain the run list */
1686 while (__aio_run_iocbs(ctx))
1689 spin_unlock_irq(&ctx->ctx_lock);
1691 aio_put_req(req); /* drop extra ref to req */
1692 return 0;
1694 out_put_req:
1695 aio_put_req(req); /* drop extra ref to req */
1696 aio_put_req(req); /* drop i/o ref to req */
1697 return ret;
1700 long do_io_submit(aio_context_t ctx_id, long nr,
1701 struct iocb __user *__user *iocbpp, bool compat)
1703 struct kioctx *ctx;
1704 long ret = 0;
1705 int i = 0;
1706 struct blk_plug plug;
1707 struct kiocb_batch batch;
1709 if (unlikely(nr < 0))
1710 return -EINVAL;
1712 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1713 nr = LONG_MAX/sizeof(*iocbpp);
1715 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1716 return -EFAULT;
1718 ctx = lookup_ioctx(ctx_id);
1719 if (unlikely(!ctx)) {
1720 pr_debug("EINVAL: io_submit: invalid context id\n");
1721 return -EINVAL;
1724 kiocb_batch_init(&batch, nr);
1726 blk_start_plug(&plug);
1729 * AKPM: should this return a partial result if some of the IOs were
1730 * successfully submitted?
1732 for (i=0; i<nr; i++) {
1733 struct iocb __user *user_iocb;
1734 struct iocb tmp;
1736 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1737 ret = -EFAULT;
1738 break;
1741 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1742 ret = -EFAULT;
1743 break;
1746 ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1747 if (ret)
1748 break;
1750 blk_finish_plug(&plug);
1752 kiocb_batch_free(ctx, &batch);
1753 put_ioctx(ctx);
1754 return i ? i : ret;
1757 /* sys_io_submit:
1758 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1759 * the number of iocbs queued. May return -EINVAL if the aio_context
1760 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1761 * *iocbpp[0] is not properly initialized, if the operation specified
1762 * is invalid for the file descriptor in the iocb. May fail with
1763 * -EFAULT if any of the data structures point to invalid data. May
1764 * fail with -EBADF if the file descriptor specified in the first
1765 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1766 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1767 * fail with -ENOSYS if not implemented.
1769 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1770 struct iocb __user * __user *, iocbpp)
1772 return do_io_submit(ctx_id, nr, iocbpp, 0);
1775 /* lookup_kiocb
1776 * Finds a given iocb for cancellation.
1778 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1779 u32 key)
1781 struct list_head *pos;
1783 assert_spin_locked(&ctx->ctx_lock);
1785 /* TODO: use a hash or array, this sucks. */
1786 list_for_each(pos, &ctx->active_reqs) {
1787 struct kiocb *kiocb = list_kiocb(pos);
1788 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1789 return kiocb;
1791 return NULL;
1794 /* sys_io_cancel:
1795 * Attempts to cancel an iocb previously passed to io_submit. If
1796 * the operation is successfully cancelled, the resulting event is
1797 * copied into the memory pointed to by result without being placed
1798 * into the completion queue and 0 is returned. May fail with
1799 * -EFAULT if any of the data structures pointed to are invalid.
1800 * May fail with -EINVAL if aio_context specified by ctx_id is
1801 * invalid. May fail with -EAGAIN if the iocb specified was not
1802 * cancelled. Will fail with -ENOSYS if not implemented.
1804 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1805 struct io_event __user *, result)
1807 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1808 struct kioctx *ctx;
1809 struct kiocb *kiocb;
1810 u32 key;
1811 int ret;
1813 ret = get_user(key, &iocb->aio_key);
1814 if (unlikely(ret))
1815 return -EFAULT;
1817 ctx = lookup_ioctx(ctx_id);
1818 if (unlikely(!ctx))
1819 return -EINVAL;
1821 spin_lock_irq(&ctx->ctx_lock);
1822 ret = -EAGAIN;
1823 kiocb = lookup_kiocb(ctx, iocb, key);
1824 if (kiocb && kiocb->ki_cancel) {
1825 cancel = kiocb->ki_cancel;
1826 kiocb->ki_users ++;
1827 kiocbSetCancelled(kiocb);
1828 } else
1829 cancel = NULL;
1830 spin_unlock_irq(&ctx->ctx_lock);
1832 if (NULL != cancel) {
1833 struct io_event tmp;
1834 pr_debug("calling cancel\n");
1835 memset(&tmp, 0, sizeof(tmp));
1836 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1837 tmp.data = kiocb->ki_user_data;
1838 ret = cancel(kiocb, &tmp);
1839 if (!ret) {
1840 /* Cancellation succeeded -- copy the result
1841 * into the user's buffer.
1843 if (copy_to_user(result, &tmp, sizeof(tmp)))
1844 ret = -EFAULT;
1846 } else
1847 ret = -EINVAL;
1849 put_ioctx(ctx);
1851 return ret;
1854 /* io_getevents:
1855 * Attempts to read at least min_nr events and up to nr events from
1856 * the completion queue for the aio_context specified by ctx_id. If
1857 * it succeeds, the number of read events is returned. May fail with
1858 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1859 * out of range, if timeout is out of range. May fail with -EFAULT
1860 * if any of the memory specified is invalid. May return 0 or
1861 * < min_nr if the timeout specified by timeout has elapsed
1862 * before sufficient events are available, where timeout == NULL
1863 * specifies an infinite timeout. Note that the timeout pointed to by
1864 * timeout is relative and will be updated if not NULL and the
1865 * operation blocks. Will fail with -ENOSYS if not implemented.
1867 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1868 long, min_nr,
1869 long, nr,
1870 struct io_event __user *, events,
1871 struct timespec __user *, timeout)
1873 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1874 long ret = -EINVAL;
1876 if (likely(ioctx)) {
1877 if (likely(min_nr <= nr && min_nr >= 0))
1878 ret = read_events(ioctx, min_nr, nr, events, timeout);
1879 put_ioctx(ioctx);
1882 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1883 return ret;