4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
63 #include <trace/events/task.h>
67 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
68 unsigned int core_pipe_limit
;
69 int suid_dumpable
= 0;
75 static atomic_t call_count
= ATOMIC_INIT(1);
77 /* The maximal length of core_pattern is also specified in sysctl.c */
79 static LIST_HEAD(formats
);
80 static DEFINE_RWLOCK(binfmt_lock
);
82 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
86 write_lock(&binfmt_lock
);
87 insert
? list_add(&fmt
->lh
, &formats
) :
88 list_add_tail(&fmt
->lh
, &formats
);
89 write_unlock(&binfmt_lock
);
93 EXPORT_SYMBOL(__register_binfmt
);
95 void unregister_binfmt(struct linux_binfmt
* fmt
)
97 write_lock(&binfmt_lock
);
99 write_unlock(&binfmt_lock
);
102 EXPORT_SYMBOL(unregister_binfmt
);
104 static inline void put_binfmt(struct linux_binfmt
* fmt
)
106 module_put(fmt
->module
);
110 * Note that a shared library must be both readable and executable due to
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
118 char *tmp
= getname(library
);
119 int error
= PTR_ERR(tmp
);
120 static const struct open_flags uselib_flags
= {
121 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
122 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
123 .intent
= LOOKUP_OPEN
129 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
, LOOKUP_FOLLOW
);
131 error
= PTR_ERR(file
);
136 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
140 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
147 struct linux_binfmt
* fmt
;
149 read_lock(&binfmt_lock
);
150 list_for_each_entry(fmt
, &formats
, lh
) {
151 if (!fmt
->load_shlib
)
153 if (!try_module_get(fmt
->module
))
155 read_unlock(&binfmt_lock
);
156 error
= fmt
->load_shlib(file
);
157 read_lock(&binfmt_lock
);
159 if (error
!= -ENOEXEC
)
162 read_unlock(&binfmt_lock
);
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
179 struct mm_struct
*mm
= current
->mm
;
180 long diff
= (long)(pages
- bprm
->vma_pages
);
185 bprm
->vma_pages
= pages
;
186 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
189 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
195 #ifdef CONFIG_STACK_GROWSUP
197 ret
= expand_downwards(bprm
->vma
, pos
);
202 ret
= get_user_pages(current
, bprm
->mm
, pos
,
203 1, write
, 1, &page
, NULL
);
208 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
211 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
214 * We've historically supported up to 32 pages (ARG_MAX)
215 * of argument strings even with small stacks
221 * Limit to 1/4-th the stack size for the argv+env strings.
223 * - the remaining binfmt code will not run out of stack space,
224 * - the program will have a reasonable amount of stack left
227 rlim
= current
->signal
->rlim
;
228 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
237 static void put_arg_page(struct page
*page
)
242 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
246 static void free_arg_pages(struct linux_binprm
*bprm
)
250 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
253 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
256 static int __bprm_mm_init(struct linux_binprm
*bprm
)
259 struct vm_area_struct
*vma
= NULL
;
260 struct mm_struct
*mm
= bprm
->mm
;
262 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
266 down_write(&mm
->mmap_sem
);
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
275 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
276 vma
->vm_end
= STACK_TOP_MAX
;
277 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
278 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
279 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
280 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
282 err
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
286 err
= insert_vm_struct(mm
, vma
);
290 mm
->stack_vm
= mm
->total_vm
= 1;
291 up_write(&mm
->mmap_sem
);
292 bprm
->p
= vma
->vm_end
- sizeof(void *);
295 up_write(&mm
->mmap_sem
);
297 kmem_cache_free(vm_area_cachep
, vma
);
301 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
303 return len
<= MAX_ARG_STRLEN
;
308 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
312 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
317 page
= bprm
->page
[pos
/ PAGE_SIZE
];
318 if (!page
&& write
) {
319 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
322 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
328 static void put_arg_page(struct page
*page
)
332 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
335 __free_page(bprm
->page
[i
]);
336 bprm
->page
[i
] = NULL
;
340 static void free_arg_pages(struct linux_binprm
*bprm
)
344 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
345 free_arg_page(bprm
, i
);
348 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
353 static int __bprm_mm_init(struct linux_binprm
*bprm
)
355 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
359 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
361 return len
<= bprm
->p
;
364 #endif /* CONFIG_MMU */
367 * Create a new mm_struct and populate it with a temporary stack
368 * vm_area_struct. We don't have enough context at this point to set the stack
369 * flags, permissions, and offset, so we use temporary values. We'll update
370 * them later in setup_arg_pages().
372 int bprm_mm_init(struct linux_binprm
*bprm
)
375 struct mm_struct
*mm
= NULL
;
377 bprm
->mm
= mm
= mm_alloc();
382 err
= init_new_context(current
, mm
);
386 err
= __bprm_mm_init(bprm
);
401 struct user_arg_ptr
{
406 const char __user
*const __user
*native
;
408 compat_uptr_t __user
*compat
;
413 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
415 const char __user
*native
;
418 if (unlikely(argv
.is_compat
)) {
419 compat_uptr_t compat
;
421 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
422 return ERR_PTR(-EFAULT
);
424 return compat_ptr(compat
);
428 if (get_user(native
, argv
.ptr
.native
+ nr
))
429 return ERR_PTR(-EFAULT
);
435 * count() counts the number of strings in array ARGV.
437 static int count(struct user_arg_ptr argv
, int max
)
441 if (argv
.ptr
.native
!= NULL
) {
443 const char __user
*p
= get_user_arg_ptr(argv
, i
);
454 if (fatal_signal_pending(current
))
455 return -ERESTARTNOHAND
;
463 * 'copy_strings()' copies argument/environment strings from the old
464 * processes's memory to the new process's stack. The call to get_user_pages()
465 * ensures the destination page is created and not swapped out.
467 static int copy_strings(int argc
, struct user_arg_ptr argv
,
468 struct linux_binprm
*bprm
)
470 struct page
*kmapped_page
= NULL
;
472 unsigned long kpos
= 0;
476 const char __user
*str
;
481 str
= get_user_arg_ptr(argv
, argc
);
485 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
490 if (!valid_arg_len(bprm
, len
))
493 /* We're going to work our way backwords. */
499 int offset
, bytes_to_copy
;
501 if (fatal_signal_pending(current
)) {
502 ret
= -ERESTARTNOHAND
;
507 offset
= pos
% PAGE_SIZE
;
511 bytes_to_copy
= offset
;
512 if (bytes_to_copy
> len
)
515 offset
-= bytes_to_copy
;
516 pos
-= bytes_to_copy
;
517 str
-= bytes_to_copy
;
518 len
-= bytes_to_copy
;
520 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
523 page
= get_arg_page(bprm
, pos
, 1);
530 flush_kernel_dcache_page(kmapped_page
);
531 kunmap(kmapped_page
);
532 put_arg_page(kmapped_page
);
535 kaddr
= kmap(kmapped_page
);
536 kpos
= pos
& PAGE_MASK
;
537 flush_arg_page(bprm
, kpos
, kmapped_page
);
539 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
548 flush_kernel_dcache_page(kmapped_page
);
549 kunmap(kmapped_page
);
550 put_arg_page(kmapped_page
);
556 * Like copy_strings, but get argv and its values from kernel memory.
558 int copy_strings_kernel(int argc
, const char *const *__argv
,
559 struct linux_binprm
*bprm
)
562 mm_segment_t oldfs
= get_fs();
563 struct user_arg_ptr argv
= {
564 .ptr
.native
= (const char __user
*const __user
*)__argv
,
568 r
= copy_strings(argc
, argv
, bprm
);
573 EXPORT_SYMBOL(copy_strings_kernel
);
578 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
579 * the binfmt code determines where the new stack should reside, we shift it to
580 * its final location. The process proceeds as follows:
582 * 1) Use shift to calculate the new vma endpoints.
583 * 2) Extend vma to cover both the old and new ranges. This ensures the
584 * arguments passed to subsequent functions are consistent.
585 * 3) Move vma's page tables to the new range.
586 * 4) Free up any cleared pgd range.
587 * 5) Shrink the vma to cover only the new range.
589 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
591 struct mm_struct
*mm
= vma
->vm_mm
;
592 unsigned long old_start
= vma
->vm_start
;
593 unsigned long old_end
= vma
->vm_end
;
594 unsigned long length
= old_end
- old_start
;
595 unsigned long new_start
= old_start
- shift
;
596 unsigned long new_end
= old_end
- shift
;
597 struct mmu_gather tlb
;
599 BUG_ON(new_start
> new_end
);
602 * ensure there are no vmas between where we want to go
605 if (vma
!= find_vma(mm
, new_start
))
609 * cover the whole range: [new_start, old_end)
611 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
615 * move the page tables downwards, on failure we rely on
616 * process cleanup to remove whatever mess we made.
618 if (length
!= move_page_tables(vma
, old_start
,
619 vma
, new_start
, length
))
623 tlb_gather_mmu(&tlb
, mm
, 0);
624 if (new_end
> old_start
) {
626 * when the old and new regions overlap clear from new_end.
628 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
629 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
632 * otherwise, clean from old_start; this is done to not touch
633 * the address space in [new_end, old_start) some architectures
634 * have constraints on va-space that make this illegal (IA64) -
635 * for the others its just a little faster.
637 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
638 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
640 tlb_finish_mmu(&tlb
, new_end
, old_end
);
643 * Shrink the vma to just the new range. Always succeeds.
645 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
651 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
652 * the stack is optionally relocated, and some extra space is added.
654 int setup_arg_pages(struct linux_binprm
*bprm
,
655 unsigned long stack_top
,
656 int executable_stack
)
659 unsigned long stack_shift
;
660 struct mm_struct
*mm
= current
->mm
;
661 struct vm_area_struct
*vma
= bprm
->vma
;
662 struct vm_area_struct
*prev
= NULL
;
663 unsigned long vm_flags
;
664 unsigned long stack_base
;
665 unsigned long stack_size
;
666 unsigned long stack_expand
;
667 unsigned long rlim_stack
;
669 #ifdef CONFIG_STACK_GROWSUP
670 /* Limit stack size to 1GB */
671 stack_base
= rlimit_max(RLIMIT_STACK
);
672 if (stack_base
> (1 << 30))
673 stack_base
= 1 << 30;
675 /* Make sure we didn't let the argument array grow too large. */
676 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
679 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
681 stack_shift
= vma
->vm_start
- stack_base
;
682 mm
->arg_start
= bprm
->p
- stack_shift
;
683 bprm
->p
= vma
->vm_end
- stack_shift
;
685 stack_top
= arch_align_stack(stack_top
);
686 stack_top
= PAGE_ALIGN(stack_top
);
688 if (unlikely(stack_top
< mmap_min_addr
) ||
689 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
692 stack_shift
= vma
->vm_end
- stack_top
;
694 bprm
->p
-= stack_shift
;
695 mm
->arg_start
= bprm
->p
;
699 bprm
->loader
-= stack_shift
;
700 bprm
->exec
-= stack_shift
;
702 down_write(&mm
->mmap_sem
);
703 vm_flags
= VM_STACK_FLAGS
;
706 * Adjust stack execute permissions; explicitly enable for
707 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
708 * (arch default) otherwise.
710 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
712 else if (executable_stack
== EXSTACK_DISABLE_X
)
713 vm_flags
&= ~VM_EXEC
;
714 vm_flags
|= mm
->def_flags
;
715 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
717 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
723 /* Move stack pages down in memory. */
725 ret
= shift_arg_pages(vma
, stack_shift
);
730 /* mprotect_fixup is overkill to remove the temporary stack flags */
731 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
733 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
734 stack_size
= vma
->vm_end
- vma
->vm_start
;
736 * Align this down to a page boundary as expand_stack
739 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
740 #ifdef CONFIG_STACK_GROWSUP
741 if (stack_size
+ stack_expand
> rlim_stack
)
742 stack_base
= vma
->vm_start
+ rlim_stack
;
744 stack_base
= vma
->vm_end
+ stack_expand
;
746 if (stack_size
+ stack_expand
> rlim_stack
)
747 stack_base
= vma
->vm_end
- rlim_stack
;
749 stack_base
= vma
->vm_start
- stack_expand
;
751 current
->mm
->start_stack
= bprm
->p
;
752 ret
= expand_stack(vma
, stack_base
);
757 up_write(&mm
->mmap_sem
);
760 EXPORT_SYMBOL(setup_arg_pages
);
762 #endif /* CONFIG_MMU */
764 struct file
*open_exec(const char *name
)
768 static const struct open_flags open_exec_flags
= {
769 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
770 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
771 .intent
= LOOKUP_OPEN
774 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
, LOOKUP_FOLLOW
);
779 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
782 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
787 err
= deny_write_access(file
);
798 EXPORT_SYMBOL(open_exec
);
800 int kernel_read(struct file
*file
, loff_t offset
,
801 char *addr
, unsigned long count
)
809 /* The cast to a user pointer is valid due to the set_fs() */
810 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
815 EXPORT_SYMBOL(kernel_read
);
817 static int exec_mmap(struct mm_struct
*mm
)
819 struct task_struct
*tsk
;
820 struct mm_struct
* old_mm
, *active_mm
;
822 /* Notify parent that we're no longer interested in the old VM */
824 old_mm
= current
->mm
;
825 sync_mm_rss(tsk
, old_mm
);
826 mm_release(tsk
, old_mm
);
830 * Make sure that if there is a core dump in progress
831 * for the old mm, we get out and die instead of going
832 * through with the exec. We must hold mmap_sem around
833 * checking core_state and changing tsk->mm.
835 down_read(&old_mm
->mmap_sem
);
836 if (unlikely(old_mm
->core_state
)) {
837 up_read(&old_mm
->mmap_sem
);
842 active_mm
= tsk
->active_mm
;
845 activate_mm(active_mm
, mm
);
847 arch_pick_mmap_layout(mm
);
849 up_read(&old_mm
->mmap_sem
);
850 BUG_ON(active_mm
!= old_mm
);
851 mm_update_next_owner(old_mm
);
860 * This function makes sure the current process has its own signal table,
861 * so that flush_signal_handlers can later reset the handlers without
862 * disturbing other processes. (Other processes might share the signal
863 * table via the CLONE_SIGHAND option to clone().)
865 static int de_thread(struct task_struct
*tsk
)
867 struct signal_struct
*sig
= tsk
->signal
;
868 struct sighand_struct
*oldsighand
= tsk
->sighand
;
869 spinlock_t
*lock
= &oldsighand
->siglock
;
871 if (thread_group_empty(tsk
))
872 goto no_thread_group
;
875 * Kill all other threads in the thread group.
878 if (signal_group_exit(sig
)) {
880 * Another group action in progress, just
881 * return so that the signal is processed.
883 spin_unlock_irq(lock
);
887 sig
->group_exit_task
= tsk
;
888 sig
->notify_count
= zap_other_threads(tsk
);
889 if (!thread_group_leader(tsk
))
892 while (sig
->notify_count
) {
893 __set_current_state(TASK_UNINTERRUPTIBLE
);
894 spin_unlock_irq(lock
);
898 spin_unlock_irq(lock
);
901 * At this point all other threads have exited, all we have to
902 * do is to wait for the thread group leader to become inactive,
903 * and to assume its PID:
905 if (!thread_group_leader(tsk
)) {
906 struct task_struct
*leader
= tsk
->group_leader
;
908 sig
->notify_count
= -1; /* for exit_notify() */
910 write_lock_irq(&tasklist_lock
);
911 if (likely(leader
->exit_state
))
913 __set_current_state(TASK_UNINTERRUPTIBLE
);
914 write_unlock_irq(&tasklist_lock
);
919 * The only record we have of the real-time age of a
920 * process, regardless of execs it's done, is start_time.
921 * All the past CPU time is accumulated in signal_struct
922 * from sister threads now dead. But in this non-leader
923 * exec, nothing survives from the original leader thread,
924 * whose birth marks the true age of this process now.
925 * When we take on its identity by switching to its PID, we
926 * also take its birthdate (always earlier than our own).
928 tsk
->start_time
= leader
->start_time
;
930 BUG_ON(!same_thread_group(leader
, tsk
));
931 BUG_ON(has_group_leader_pid(tsk
));
933 * An exec() starts a new thread group with the
934 * TGID of the previous thread group. Rehash the
935 * two threads with a switched PID, and release
936 * the former thread group leader:
939 /* Become a process group leader with the old leader's pid.
940 * The old leader becomes a thread of the this thread group.
941 * Note: The old leader also uses this pid until release_task
942 * is called. Odd but simple and correct.
944 detach_pid(tsk
, PIDTYPE_PID
);
945 tsk
->pid
= leader
->pid
;
946 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
947 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
948 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
950 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
951 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
953 tsk
->group_leader
= tsk
;
954 leader
->group_leader
= tsk
;
956 tsk
->exit_signal
= SIGCHLD
;
957 leader
->exit_signal
= -1;
959 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
960 leader
->exit_state
= EXIT_DEAD
;
963 * We are going to release_task()->ptrace_unlink() silently,
964 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
965 * the tracer wont't block again waiting for this thread.
967 if (unlikely(leader
->ptrace
))
968 __wake_up_parent(leader
, leader
->parent
);
969 write_unlock_irq(&tasklist_lock
);
971 release_task(leader
);
974 sig
->group_exit_task
= NULL
;
975 sig
->notify_count
= 0;
978 /* we have changed execution domain */
979 tsk
->exit_signal
= SIGCHLD
;
982 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
985 flush_itimer_signals();
987 if (atomic_read(&oldsighand
->count
) != 1) {
988 struct sighand_struct
*newsighand
;
990 * This ->sighand is shared with the CLONE_SIGHAND
991 * but not CLONE_THREAD task, switch to the new one.
993 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
997 atomic_set(&newsighand
->count
, 1);
998 memcpy(newsighand
->action
, oldsighand
->action
,
999 sizeof(newsighand
->action
));
1001 write_lock_irq(&tasklist_lock
);
1002 spin_lock(&oldsighand
->siglock
);
1003 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1004 spin_unlock(&oldsighand
->siglock
);
1005 write_unlock_irq(&tasklist_lock
);
1007 __cleanup_sighand(oldsighand
);
1010 BUG_ON(!thread_group_leader(tsk
));
1015 * These functions flushes out all traces of the currently running executable
1016 * so that a new one can be started
1018 static void flush_old_files(struct files_struct
* files
)
1021 struct fdtable
*fdt
;
1023 spin_lock(&files
->file_lock
);
1025 unsigned long set
, i
;
1029 fdt
= files_fdtable(files
);
1030 if (i
>= fdt
->max_fds
)
1032 set
= fdt
->close_on_exec
->fds_bits
[j
];
1035 fdt
->close_on_exec
->fds_bits
[j
] = 0;
1036 spin_unlock(&files
->file_lock
);
1037 for ( ; set
; i
++,set
>>= 1) {
1042 spin_lock(&files
->file_lock
);
1045 spin_unlock(&files
->file_lock
);
1048 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1050 /* buf must be at least sizeof(tsk->comm) in size */
1052 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1056 EXPORT_SYMBOL_GPL(get_task_comm
);
1058 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1062 trace_task_rename(tsk
, buf
);
1065 * Threads may access current->comm without holding
1066 * the task lock, so write the string carefully.
1067 * Readers without a lock may see incomplete new
1068 * names but are safe from non-terminating string reads.
1070 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
1072 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1074 perf_event_comm(tsk
);
1077 static void filename_to_taskname(char *tcomm
, const char *fn
, unsigned int len
)
1081 /* Copies the binary name from after last slash */
1082 for (i
= 0; (ch
= *(fn
++)) != '\0';) {
1084 i
= 0; /* overwrite what we wrote */
1092 int flush_old_exec(struct linux_binprm
* bprm
)
1097 * Make sure we have a private signal table and that
1098 * we are unassociated from the previous thread group.
1100 retval
= de_thread(current
);
1104 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1106 filename_to_taskname(bprm
->tcomm
, bprm
->filename
, sizeof(bprm
->tcomm
));
1108 * Release all of the old mmap stuff
1110 acct_arg_size(bprm
, 0);
1111 retval
= exec_mmap(bprm
->mm
);
1115 bprm
->mm
= NULL
; /* We're using it now */
1118 current
->flags
&= ~(PF_RANDOMIZE
| PF_KTHREAD
);
1120 current
->personality
&= ~bprm
->per_clear
;
1127 EXPORT_SYMBOL(flush_old_exec
);
1129 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1131 if (inode_permission(file
->f_path
.dentry
->d_inode
, MAY_READ
) < 0)
1132 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1134 EXPORT_SYMBOL(would_dump
);
1136 void setup_new_exec(struct linux_binprm
* bprm
)
1138 arch_pick_mmap_layout(current
->mm
);
1140 /* This is the point of no return */
1141 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1143 if (current_euid() == current_uid() && current_egid() == current_gid())
1144 set_dumpable(current
->mm
, 1);
1146 set_dumpable(current
->mm
, suid_dumpable
);
1148 set_task_comm(current
, bprm
->tcomm
);
1150 /* Set the new mm task size. We have to do that late because it may
1151 * depend on TIF_32BIT which is only updated in flush_thread() on
1152 * some architectures like powerpc
1154 current
->mm
->task_size
= TASK_SIZE
;
1156 /* install the new credentials */
1157 if (bprm
->cred
->uid
!= current_euid() ||
1158 bprm
->cred
->gid
!= current_egid()) {
1159 current
->pdeath_signal
= 0;
1161 would_dump(bprm
, bprm
->file
);
1162 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1163 set_dumpable(current
->mm
, suid_dumpable
);
1167 * Flush performance counters when crossing a
1170 if (!get_dumpable(current
->mm
))
1171 perf_event_exit_task(current
);
1173 /* An exec changes our domain. We are no longer part of the thread
1176 current
->self_exec_id
++;
1178 flush_signal_handlers(current
, 0);
1179 flush_old_files(current
->files
);
1181 EXPORT_SYMBOL(setup_new_exec
);
1184 * Prepare credentials and lock ->cred_guard_mutex.
1185 * install_exec_creds() commits the new creds and drops the lock.
1186 * Or, if exec fails before, free_bprm() should release ->cred and
1189 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1191 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1192 return -ERESTARTNOINTR
;
1194 bprm
->cred
= prepare_exec_creds();
1195 if (likely(bprm
->cred
))
1198 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1202 void free_bprm(struct linux_binprm
*bprm
)
1204 free_arg_pages(bprm
);
1206 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1207 abort_creds(bprm
->cred
);
1213 * install the new credentials for this executable
1215 void install_exec_creds(struct linux_binprm
*bprm
)
1217 security_bprm_committing_creds(bprm
);
1219 commit_creds(bprm
->cred
);
1222 * cred_guard_mutex must be held at least to this point to prevent
1223 * ptrace_attach() from altering our determination of the task's
1224 * credentials; any time after this it may be unlocked.
1226 security_bprm_committed_creds(bprm
);
1227 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1229 EXPORT_SYMBOL(install_exec_creds
);
1232 * determine how safe it is to execute the proposed program
1233 * - the caller must hold ->cred_guard_mutex to protect against
1236 static int check_unsafe_exec(struct linux_binprm
*bprm
)
1238 struct task_struct
*p
= current
, *t
;
1243 if (p
->ptrace
& PT_PTRACE_CAP
)
1244 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1246 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1250 spin_lock(&p
->fs
->lock
);
1252 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1258 if (p
->fs
->users
> n_fs
) {
1259 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1262 if (!p
->fs
->in_exec
) {
1267 spin_unlock(&p
->fs
->lock
);
1273 * Fill the binprm structure from the inode.
1274 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1276 * This may be called multiple times for binary chains (scripts for example).
1278 int prepare_binprm(struct linux_binprm
*bprm
)
1281 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1284 mode
= inode
->i_mode
;
1285 if (bprm
->file
->f_op
== NULL
)
1288 /* clear any previous set[ug]id data from a previous binary */
1289 bprm
->cred
->euid
= current_euid();
1290 bprm
->cred
->egid
= current_egid();
1292 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1294 if (mode
& S_ISUID
) {
1295 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1296 bprm
->cred
->euid
= inode
->i_uid
;
1301 * If setgid is set but no group execute bit then this
1302 * is a candidate for mandatory locking, not a setgid
1305 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1306 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1307 bprm
->cred
->egid
= inode
->i_gid
;
1311 /* fill in binprm security blob */
1312 retval
= security_bprm_set_creds(bprm
);
1315 bprm
->cred_prepared
= 1;
1317 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1318 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1321 EXPORT_SYMBOL(prepare_binprm
);
1324 * Arguments are '\0' separated strings found at the location bprm->p
1325 * points to; chop off the first by relocating brpm->p to right after
1326 * the first '\0' encountered.
1328 int remove_arg_zero(struct linux_binprm
*bprm
)
1331 unsigned long offset
;
1339 offset
= bprm
->p
& ~PAGE_MASK
;
1340 page
= get_arg_page(bprm
, bprm
->p
, 0);
1345 kaddr
= kmap_atomic(page
, KM_USER0
);
1347 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1348 offset
++, bprm
->p
++)
1351 kunmap_atomic(kaddr
, KM_USER0
);
1354 if (offset
== PAGE_SIZE
)
1355 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1356 } while (offset
== PAGE_SIZE
);
1365 EXPORT_SYMBOL(remove_arg_zero
);
1368 * cycle the list of binary formats handler, until one recognizes the image
1370 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1372 unsigned int depth
= bprm
->recursion_depth
;
1374 struct linux_binfmt
*fmt
;
1377 retval
= security_bprm_check(bprm
);
1381 retval
= audit_bprm(bprm
);
1385 /* Need to fetch pid before load_binary changes it */
1387 old_pid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1391 for (try=0; try<2; try++) {
1392 read_lock(&binfmt_lock
);
1393 list_for_each_entry(fmt
, &formats
, lh
) {
1394 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1397 if (!try_module_get(fmt
->module
))
1399 read_unlock(&binfmt_lock
);
1400 retval
= fn(bprm
, regs
);
1402 * Restore the depth counter to its starting value
1403 * in this call, so we don't have to rely on every
1404 * load_binary function to restore it on return.
1406 bprm
->recursion_depth
= depth
;
1409 ptrace_event(PTRACE_EVENT_EXEC
,
1412 allow_write_access(bprm
->file
);
1416 current
->did_exec
= 1;
1417 proc_exec_connector(current
);
1420 read_lock(&binfmt_lock
);
1422 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1425 read_unlock(&binfmt_lock
);
1429 read_unlock(&binfmt_lock
);
1430 #ifdef CONFIG_MODULES
1431 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1434 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1435 if (printable(bprm
->buf
[0]) &&
1436 printable(bprm
->buf
[1]) &&
1437 printable(bprm
->buf
[2]) &&
1438 printable(bprm
->buf
[3]))
1439 break; /* -ENOEXEC */
1441 break; /* -ENOEXEC */
1442 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1451 EXPORT_SYMBOL(search_binary_handler
);
1454 * sys_execve() executes a new program.
1456 static int do_execve_common(const char *filename
,
1457 struct user_arg_ptr argv
,
1458 struct user_arg_ptr envp
,
1459 struct pt_regs
*regs
)
1461 struct linux_binprm
*bprm
;
1463 struct files_struct
*displaced
;
1466 const struct cred
*cred
= current_cred();
1469 * We move the actual failure in case of RLIMIT_NPROC excess from
1470 * set*uid() to execve() because too many poorly written programs
1471 * don't check setuid() return code. Here we additionally recheck
1472 * whether NPROC limit is still exceeded.
1474 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1475 atomic_read(&cred
->user
->processes
) > rlimit(RLIMIT_NPROC
)) {
1480 /* We're below the limit (still or again), so we don't want to make
1481 * further execve() calls fail. */
1482 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1484 retval
= unshare_files(&displaced
);
1489 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1493 retval
= prepare_bprm_creds(bprm
);
1497 retval
= check_unsafe_exec(bprm
);
1500 clear_in_exec
= retval
;
1501 current
->in_execve
= 1;
1503 file
= open_exec(filename
);
1504 retval
= PTR_ERR(file
);
1511 bprm
->filename
= filename
;
1512 bprm
->interp
= filename
;
1514 retval
= bprm_mm_init(bprm
);
1518 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1519 if ((retval
= bprm
->argc
) < 0)
1522 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1523 if ((retval
= bprm
->envc
) < 0)
1526 retval
= prepare_binprm(bprm
);
1530 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1534 bprm
->exec
= bprm
->p
;
1535 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1539 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1543 retval
= search_binary_handler(bprm
,regs
);
1547 /* execve succeeded */
1548 current
->fs
->in_exec
= 0;
1549 current
->in_execve
= 0;
1550 acct_update_integrals(current
);
1553 put_files_struct(displaced
);
1558 acct_arg_size(bprm
, 0);
1564 allow_write_access(bprm
->file
);
1570 current
->fs
->in_exec
= 0;
1571 current
->in_execve
= 0;
1578 reset_files_struct(displaced
);
1583 int do_execve(const char *filename
,
1584 const char __user
*const __user
*__argv
,
1585 const char __user
*const __user
*__envp
,
1586 struct pt_regs
*regs
)
1588 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1589 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1590 return do_execve_common(filename
, argv
, envp
, regs
);
1593 #ifdef CONFIG_COMPAT
1594 int compat_do_execve(char *filename
,
1595 compat_uptr_t __user
*__argv
,
1596 compat_uptr_t __user
*__envp
,
1597 struct pt_regs
*regs
)
1599 struct user_arg_ptr argv
= {
1601 .ptr
.compat
= __argv
,
1603 struct user_arg_ptr envp
= {
1605 .ptr
.compat
= __envp
,
1607 return do_execve_common(filename
, argv
, envp
, regs
);
1611 void set_binfmt(struct linux_binfmt
*new)
1613 struct mm_struct
*mm
= current
->mm
;
1616 module_put(mm
->binfmt
->module
);
1620 __module_get(new->module
);
1623 EXPORT_SYMBOL(set_binfmt
);
1625 static int expand_corename(struct core_name
*cn
)
1627 char *old_corename
= cn
->corename
;
1629 cn
->size
= CORENAME_MAX_SIZE
* atomic_inc_return(&call_count
);
1630 cn
->corename
= krealloc(old_corename
, cn
->size
, GFP_KERNEL
);
1632 if (!cn
->corename
) {
1633 kfree(old_corename
);
1640 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
1648 need
= vsnprintf(NULL
, 0, fmt
, arg
);
1651 if (likely(need
< cn
->size
- cn
->used
- 1))
1654 ret
= expand_corename(cn
);
1659 cur
= cn
->corename
+ cn
->used
;
1661 vsnprintf(cur
, need
+ 1, fmt
, arg
);
1670 static void cn_escape(char *str
)
1677 static int cn_print_exe_file(struct core_name
*cn
)
1679 struct file
*exe_file
;
1680 char *pathbuf
, *path
;
1683 exe_file
= get_mm_exe_file(current
->mm
);
1685 char *commstart
= cn
->corename
+ cn
->used
;
1686 ret
= cn_printf(cn
, "%s (path unknown)", current
->comm
);
1687 cn_escape(commstart
);
1691 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
1697 path
= d_path(&exe_file
->f_path
, pathbuf
, PATH_MAX
);
1699 ret
= PTR_ERR(path
);
1705 ret
= cn_printf(cn
, "%s", path
);
1714 /* format_corename will inspect the pattern parameter, and output a
1715 * name into corename, which must have space for at least
1716 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1718 static int format_corename(struct core_name
*cn
, long signr
)
1720 const struct cred
*cred
= current_cred();
1721 const char *pat_ptr
= core_pattern
;
1722 int ispipe
= (*pat_ptr
== '|');
1723 int pid_in_pattern
= 0;
1726 cn
->size
= CORENAME_MAX_SIZE
* atomic_read(&call_count
);
1727 cn
->corename
= kmalloc(cn
->size
, GFP_KERNEL
);
1733 /* Repeat as long as we have more pattern to process and more output
1736 if (*pat_ptr
!= '%') {
1739 err
= cn_printf(cn
, "%c", *pat_ptr
++);
1741 switch (*++pat_ptr
) {
1742 /* single % at the end, drop that */
1745 /* Double percent, output one percent */
1747 err
= cn_printf(cn
, "%c", '%');
1752 err
= cn_printf(cn
, "%d",
1753 task_tgid_vnr(current
));
1757 err
= cn_printf(cn
, "%d", cred
->uid
);
1761 err
= cn_printf(cn
, "%d", cred
->gid
);
1763 /* signal that caused the coredump */
1765 err
= cn_printf(cn
, "%ld", signr
);
1767 /* UNIX time of coredump */
1770 do_gettimeofday(&tv
);
1771 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
1776 char *namestart
= cn
->corename
+ cn
->used
;
1777 down_read(&uts_sem
);
1778 err
= cn_printf(cn
, "%s",
1779 utsname()->nodename
);
1781 cn_escape(namestart
);
1786 char *commstart
= cn
->corename
+ cn
->used
;
1787 err
= cn_printf(cn
, "%s", current
->comm
);
1788 cn_escape(commstart
);
1792 err
= cn_print_exe_file(cn
);
1794 /* core limit size */
1796 err
= cn_printf(cn
, "%lu",
1797 rlimit(RLIMIT_CORE
));
1809 /* Backward compatibility with core_uses_pid:
1811 * If core_pattern does not include a %p (as is the default)
1812 * and core_uses_pid is set, then .%pid will be appended to
1813 * the filename. Do not do this for piped commands. */
1814 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1815 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
1823 static int zap_process(struct task_struct
*start
, int exit_code
)
1825 struct task_struct
*t
;
1828 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1829 start
->signal
->group_exit_code
= exit_code
;
1830 start
->signal
->group_stop_count
= 0;
1834 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1835 if (t
!= current
&& t
->mm
) {
1836 sigaddset(&t
->pending
.signal
, SIGKILL
);
1837 signal_wake_up(t
, 1);
1840 } while_each_thread(start
, t
);
1845 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1846 struct core_state
*core_state
, int exit_code
)
1848 struct task_struct
*g
, *p
;
1849 unsigned long flags
;
1852 spin_lock_irq(&tsk
->sighand
->siglock
);
1853 if (!signal_group_exit(tsk
->signal
)) {
1854 mm
->core_state
= core_state
;
1855 nr
= zap_process(tsk
, exit_code
);
1857 spin_unlock_irq(&tsk
->sighand
->siglock
);
1858 if (unlikely(nr
< 0))
1861 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1864 * We should find and kill all tasks which use this mm, and we should
1865 * count them correctly into ->nr_threads. We don't take tasklist
1866 * lock, but this is safe wrt:
1869 * None of sub-threads can fork after zap_process(leader). All
1870 * processes which were created before this point should be
1871 * visible to zap_threads() because copy_process() adds the new
1872 * process to the tail of init_task.tasks list, and lock/unlock
1873 * of ->siglock provides a memory barrier.
1876 * The caller holds mm->mmap_sem. This means that the task which
1877 * uses this mm can't pass exit_mm(), so it can't exit or clear
1881 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1882 * we must see either old or new leader, this does not matter.
1883 * However, it can change p->sighand, so lock_task_sighand(p)
1884 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1887 * Note also that "g" can be the old leader with ->mm == NULL
1888 * and already unhashed and thus removed from ->thread_group.
1889 * This is OK, __unhash_process()->list_del_rcu() does not
1890 * clear the ->next pointer, we will find the new leader via
1894 for_each_process(g
) {
1895 if (g
== tsk
->group_leader
)
1897 if (g
->flags
& PF_KTHREAD
)
1902 if (unlikely(p
->mm
== mm
)) {
1903 lock_task_sighand(p
, &flags
);
1904 nr
+= zap_process(p
, exit_code
);
1905 unlock_task_sighand(p
, &flags
);
1909 } while_each_thread(g
, p
);
1913 atomic_set(&core_state
->nr_threads
, nr
);
1917 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1919 struct task_struct
*tsk
= current
;
1920 struct mm_struct
*mm
= tsk
->mm
;
1921 int core_waiters
= -EBUSY
;
1923 init_completion(&core_state
->startup
);
1924 core_state
->dumper
.task
= tsk
;
1925 core_state
->dumper
.next
= NULL
;
1927 down_write(&mm
->mmap_sem
);
1928 if (!mm
->core_state
)
1929 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1930 up_write(&mm
->mmap_sem
);
1932 if (core_waiters
> 0)
1933 wait_for_completion(&core_state
->startup
);
1935 return core_waiters
;
1938 static void coredump_finish(struct mm_struct
*mm
)
1940 struct core_thread
*curr
, *next
;
1941 struct task_struct
*task
;
1943 next
= mm
->core_state
->dumper
.next
;
1944 while ((curr
= next
) != NULL
) {
1948 * see exit_mm(), curr->task must not see
1949 * ->task == NULL before we read ->next.
1953 wake_up_process(task
);
1956 mm
->core_state
= NULL
;
1960 * set_dumpable converts traditional three-value dumpable to two flags and
1961 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1962 * these bits are not changed atomically. So get_dumpable can observe the
1963 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1964 * return either old dumpable or new one by paying attention to the order of
1965 * modifying the bits.
1967 * dumpable | mm->flags (binary)
1968 * old new | initial interim final
1969 * ---------+-----------------------
1977 * (*) get_dumpable regards interim value of 10 as 11.
1979 void set_dumpable(struct mm_struct
*mm
, int value
)
1983 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1985 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1988 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1990 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1993 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1995 set_bit(MMF_DUMPABLE
, &mm
->flags
);
2000 static int __get_dumpable(unsigned long mm_flags
)
2004 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
2005 return (ret
>= 2) ? 2 : ret
;
2008 int get_dumpable(struct mm_struct
*mm
)
2010 return __get_dumpable(mm
->flags
);
2013 static void wait_for_dump_helpers(struct file
*file
)
2015 struct pipe_inode_info
*pipe
;
2017 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
2023 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
2024 wake_up_interruptible_sync(&pipe
->wait
);
2025 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
2038 * helper function to customize the process used
2039 * to collect the core in userspace. Specifically
2040 * it sets up a pipe and installs it as fd 0 (stdin)
2041 * for the process. Returns 0 on success, or
2042 * PTR_ERR on failure.
2043 * Note that it also sets the core limit to 1. This
2044 * is a special value that we use to trap recursive
2047 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
2049 struct file
*rp
, *wp
;
2050 struct fdtable
*fdt
;
2051 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
2052 struct files_struct
*cf
= current
->files
;
2054 wp
= create_write_pipe(0);
2058 rp
= create_read_pipe(wp
, 0);
2060 free_write_pipe(wp
);
2068 spin_lock(&cf
->file_lock
);
2069 fdt
= files_fdtable(cf
);
2070 FD_SET(0, fdt
->open_fds
);
2071 FD_CLR(0, fdt
->close_on_exec
);
2072 spin_unlock(&cf
->file_lock
);
2074 /* and disallow core files too */
2075 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
2080 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
2082 struct core_state core_state
;
2083 struct core_name cn
;
2084 struct mm_struct
*mm
= current
->mm
;
2085 struct linux_binfmt
* binfmt
;
2086 const struct cred
*old_cred
;
2091 static atomic_t core_dump_count
= ATOMIC_INIT(0);
2092 struct coredump_params cprm
= {
2095 .limit
= rlimit(RLIMIT_CORE
),
2097 * We must use the same mm->flags while dumping core to avoid
2098 * inconsistency of bit flags, since this flag is not protected
2101 .mm_flags
= mm
->flags
,
2104 audit_core_dumps(signr
);
2106 binfmt
= mm
->binfmt
;
2107 if (!binfmt
|| !binfmt
->core_dump
)
2109 if (!__get_dumpable(cprm
.mm_flags
))
2112 cred
= prepare_creds();
2116 * We cannot trust fsuid as being the "true" uid of the
2117 * process nor do we know its entire history. We only know it
2118 * was tainted so we dump it as root in mode 2.
2120 if (__get_dumpable(cprm
.mm_flags
) == 2) {
2121 /* Setuid core dump mode */
2122 flag
= O_EXCL
; /* Stop rewrite attacks */
2123 cred
->fsuid
= 0; /* Dump root private */
2126 retval
= coredump_wait(exit_code
, &core_state
);
2130 old_cred
= override_creds(cred
);
2133 * Clear any false indication of pending signals that might
2134 * be seen by the filesystem code called to write the core file.
2136 clear_thread_flag(TIF_SIGPENDING
);
2138 ispipe
= format_corename(&cn
, signr
);
2145 printk(KERN_WARNING
"format_corename failed\n");
2146 printk(KERN_WARNING
"Aborting core\n");
2150 if (cprm
.limit
== 1) {
2152 * Normally core limits are irrelevant to pipes, since
2153 * we're not writing to the file system, but we use
2154 * cprm.limit of 1 here as a speacial value. Any
2155 * non-1 limit gets set to RLIM_INFINITY below, but
2156 * a limit of 0 skips the dump. This is a consistent
2157 * way to catch recursive crashes. We can still crash
2158 * if the core_pattern binary sets RLIM_CORE = !1
2159 * but it runs as root, and can do lots of stupid things
2160 * Note that we use task_tgid_vnr here to grab the pid
2161 * of the process group leader. That way we get the
2162 * right pid if a thread in a multi-threaded
2163 * core_pattern process dies.
2166 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2167 task_tgid_vnr(current
), current
->comm
);
2168 printk(KERN_WARNING
"Aborting core\n");
2171 cprm
.limit
= RLIM_INFINITY
;
2173 dump_count
= atomic_inc_return(&core_dump_count
);
2174 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
2175 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
2176 task_tgid_vnr(current
), current
->comm
);
2177 printk(KERN_WARNING
"Skipping core dump\n");
2178 goto fail_dropcount
;
2181 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
+1, NULL
);
2183 printk(KERN_WARNING
"%s failed to allocate memory\n",
2185 goto fail_dropcount
;
2188 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
2189 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
2191 argv_free(helper_argv
);
2193 printk(KERN_INFO
"Core dump to %s pipe failed\n",
2198 struct inode
*inode
;
2200 if (cprm
.limit
< binfmt
->min_coredump
)
2203 cprm
.file
= filp_open(cn
.corename
,
2204 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
2206 if (IS_ERR(cprm
.file
))
2209 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
2210 if (inode
->i_nlink
> 1)
2212 if (d_unhashed(cprm
.file
->f_path
.dentry
))
2215 * AK: actually i see no reason to not allow this for named
2216 * pipes etc, but keep the previous behaviour for now.
2218 if (!S_ISREG(inode
->i_mode
))
2221 * Dont allow local users get cute and trick others to coredump
2222 * into their pre-created files.
2224 if (inode
->i_uid
!= current_fsuid())
2226 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
2228 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
2232 retval
= binfmt
->core_dump(&cprm
);
2234 current
->signal
->group_exit_code
|= 0x80;
2236 if (ispipe
&& core_pipe_limit
)
2237 wait_for_dump_helpers(cprm
.file
);
2240 filp_close(cprm
.file
, NULL
);
2243 atomic_dec(&core_dump_count
);
2247 coredump_finish(mm
);
2248 revert_creds(old_cred
);
2256 * Core dumping helper functions. These are the only things you should
2257 * do on a core-file: use only these functions to write out all the
2260 int dump_write(struct file
*file
, const void *addr
, int nr
)
2262 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2264 EXPORT_SYMBOL(dump_write
);
2266 int dump_seek(struct file
*file
, loff_t off
)
2270 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2271 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2274 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2279 unsigned long n
= off
;
2283 if (!dump_write(file
, buf
, n
)) {
2289 free_page((unsigned long)buf
);
2293 EXPORT_SYMBOL(dump_seek
);