OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / fs / ext4 / ialloc.c
blob25d8c9781ad94ea758781f906a34412743b3cda0
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 int i;
57 if (start_bit >= end_bit)
58 return;
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
75 J_ASSERT_BH(bh, buffer_locked(bh));
77 /* If checksum is bad mark all blocks and inodes use to prevent
78 * allocation, essentially implementing a per-group read-only flag. */
79 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
80 ext4_error(sb, "Checksum bad for group %u", block_group);
81 ext4_free_group_clusters_set(sb, gdp, 0);
82 ext4_free_inodes_set(sb, gdp, 0);
83 ext4_itable_unused_set(sb, gdp, 0);
84 memset(bh->b_data, 0xff, sb->s_blocksize);
85 return 0;
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
92 return EXT4_INODES_PER_GROUP(sb);
96 * Read the inode allocation bitmap for a given block_group, reading
97 * into the specified slot in the superblock's bitmap cache.
99 * Return buffer_head of bitmap on success or NULL.
101 static struct buffer_head *
102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
104 struct ext4_group_desc *desc;
105 struct buffer_head *bh = NULL;
106 ext4_fsblk_t bitmap_blk;
108 desc = ext4_get_group_desc(sb, block_group, NULL);
109 if (!desc)
110 return NULL;
112 bitmap_blk = ext4_inode_bitmap(sb, desc);
113 bh = sb_getblk(sb, bitmap_blk);
114 if (unlikely(!bh)) {
115 ext4_error(sb, "Cannot read inode bitmap - "
116 "block_group = %u, inode_bitmap = %llu",
117 block_group, bitmap_blk);
118 return NULL;
120 if (bitmap_uptodate(bh))
121 return bh;
123 lock_buffer(bh);
124 if (bitmap_uptodate(bh)) {
125 unlock_buffer(bh);
126 return bh;
129 ext4_lock_group(sb, block_group);
130 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
131 ext4_init_inode_bitmap(sb, bh, block_group, desc);
132 set_bitmap_uptodate(bh);
133 set_buffer_uptodate(bh);
134 ext4_unlock_group(sb, block_group);
135 unlock_buffer(bh);
136 return bh;
138 ext4_unlock_group(sb, block_group);
140 if (buffer_uptodate(bh)) {
142 * if not uninit if bh is uptodate,
143 * bitmap is also uptodate
145 set_bitmap_uptodate(bh);
146 unlock_buffer(bh);
147 return bh;
150 * submit the buffer_head for read. We can
151 * safely mark the bitmap as uptodate now.
152 * We do it here so the bitmap uptodate bit
153 * get set with buffer lock held.
155 trace_ext4_load_inode_bitmap(sb, block_group);
156 set_bitmap_uptodate(bh);
157 if (bh_submit_read(bh) < 0) {
158 put_bh(bh);
159 ext4_error(sb, "Cannot read inode bitmap - "
160 "block_group = %u, inode_bitmap = %llu",
161 block_group, bitmap_blk);
162 return NULL;
164 return bh;
168 * NOTE! When we get the inode, we're the only people
169 * that have access to it, and as such there are no
170 * race conditions we have to worry about. The inode
171 * is not on the hash-lists, and it cannot be reached
172 * through the filesystem because the directory entry
173 * has been deleted earlier.
175 * HOWEVER: we must make sure that we get no aliases,
176 * which means that we have to call "clear_inode()"
177 * _before_ we mark the inode not in use in the inode
178 * bitmaps. Otherwise a newly created file might use
179 * the same inode number (not actually the same pointer
180 * though), and then we'd have two inodes sharing the
181 * same inode number and space on the harddisk.
183 void ext4_free_inode(handle_t *handle, struct inode *inode)
185 struct super_block *sb = inode->i_sb;
186 int is_directory;
187 unsigned long ino;
188 struct buffer_head *bitmap_bh = NULL;
189 struct buffer_head *bh2;
190 ext4_group_t block_group;
191 unsigned long bit;
192 struct ext4_group_desc *gdp;
193 struct ext4_super_block *es;
194 struct ext4_sb_info *sbi;
195 int fatal = 0, err, count, cleared;
197 if (atomic_read(&inode->i_count) > 1) {
198 printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
199 atomic_read(&inode->i_count));
200 return;
202 if (inode->i_nlink) {
203 printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
204 inode->i_nlink);
205 return;
207 if (!sb) {
208 printk(KERN_ERR "ext4_free_inode: inode on "
209 "nonexistent device\n");
210 return;
212 sbi = EXT4_SB(sb);
214 ino = inode->i_ino;
215 ext4_debug("freeing inode %lu\n", ino);
216 trace_ext4_free_inode(inode);
219 * Note: we must free any quota before locking the superblock,
220 * as writing the quota to disk may need the lock as well.
222 dquot_initialize(inode);
223 ext4_xattr_delete_inode(handle, inode);
224 dquot_free_inode(inode);
225 dquot_drop(inode);
227 is_directory = S_ISDIR(inode->i_mode);
229 /* Do this BEFORE marking the inode not in use or returning an error */
230 ext4_clear_inode(inode);
232 es = EXT4_SB(sb)->s_es;
233 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
234 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
235 goto error_return;
237 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
238 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
239 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
240 if (!bitmap_bh)
241 goto error_return;
243 BUFFER_TRACE(bitmap_bh, "get_write_access");
244 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
245 if (fatal)
246 goto error_return;
248 fatal = -ESRCH;
249 gdp = ext4_get_group_desc(sb, block_group, &bh2);
250 if (gdp) {
251 BUFFER_TRACE(bh2, "get_write_access");
252 fatal = ext4_journal_get_write_access(handle, bh2);
254 ext4_lock_group(sb, block_group);
255 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
256 if (fatal || !cleared) {
257 ext4_unlock_group(sb, block_group);
258 goto out;
261 count = ext4_free_inodes_count(sb, gdp) + 1;
262 ext4_free_inodes_set(sb, gdp, count);
263 if (is_directory) {
264 count = ext4_used_dirs_count(sb, gdp) - 1;
265 ext4_used_dirs_set(sb, gdp, count);
266 percpu_counter_dec(&sbi->s_dirs_counter);
268 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
269 ext4_unlock_group(sb, block_group);
271 percpu_counter_inc(&sbi->s_freeinodes_counter);
272 if (sbi->s_log_groups_per_flex) {
273 ext4_group_t f = ext4_flex_group(sbi, block_group);
275 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
276 if (is_directory)
277 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
279 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
280 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
281 out:
282 if (cleared) {
283 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
284 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
285 if (!fatal)
286 fatal = err;
287 ext4_mark_super_dirty(sb);
288 } else
289 ext4_error(sb, "bit already cleared for inode %lu", ino);
291 error_return:
292 brelse(bitmap_bh);
293 ext4_std_error(sb, fatal);
296 struct orlov_stats {
297 __u32 free_inodes;
298 __u32 free_clusters;
299 __u32 used_dirs;
303 * Helper function for Orlov's allocator; returns critical information
304 * for a particular block group or flex_bg. If flex_size is 1, then g
305 * is a block group number; otherwise it is flex_bg number.
307 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
308 int flex_size, struct orlov_stats *stats)
310 struct ext4_group_desc *desc;
311 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
313 if (flex_size > 1) {
314 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
315 stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
316 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
317 return;
320 desc = ext4_get_group_desc(sb, g, NULL);
321 if (desc) {
322 stats->free_inodes = ext4_free_inodes_count(sb, desc);
323 stats->free_clusters = ext4_free_group_clusters(sb, desc);
324 stats->used_dirs = ext4_used_dirs_count(sb, desc);
325 } else {
326 stats->free_inodes = 0;
327 stats->free_clusters = 0;
328 stats->used_dirs = 0;
333 * Orlov's allocator for directories.
335 * We always try to spread first-level directories.
337 * If there are blockgroups with both free inodes and free blocks counts
338 * not worse than average we return one with smallest directory count.
339 * Otherwise we simply return a random group.
341 * For the rest rules look so:
343 * It's OK to put directory into a group unless
344 * it has too many directories already (max_dirs) or
345 * it has too few free inodes left (min_inodes) or
346 * it has too few free blocks left (min_blocks) or
347 * Parent's group is preferred, if it doesn't satisfy these
348 * conditions we search cyclically through the rest. If none
349 * of the groups look good we just look for a group with more
350 * free inodes than average (starting at parent's group).
353 static int find_group_orlov(struct super_block *sb, struct inode *parent,
354 ext4_group_t *group, umode_t mode,
355 const struct qstr *qstr)
357 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
358 struct ext4_sb_info *sbi = EXT4_SB(sb);
359 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
360 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
361 unsigned int freei, avefreei, grp_free;
362 ext4_fsblk_t freeb, avefreec;
363 unsigned int ndirs;
364 int max_dirs, min_inodes;
365 ext4_grpblk_t min_clusters;
366 ext4_group_t i, grp, g, ngroups;
367 struct ext4_group_desc *desc;
368 struct orlov_stats stats;
369 int flex_size = ext4_flex_bg_size(sbi);
370 struct dx_hash_info hinfo;
372 ngroups = real_ngroups;
373 if (flex_size > 1) {
374 ngroups = (real_ngroups + flex_size - 1) >>
375 sbi->s_log_groups_per_flex;
376 parent_group >>= sbi->s_log_groups_per_flex;
379 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
380 avefreei = freei / ngroups;
381 freeb = EXT4_C2B(sbi,
382 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
383 avefreec = freeb;
384 do_div(avefreec, ngroups);
385 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
387 if (S_ISDIR(mode) &&
388 ((parent == sb->s_root->d_inode) ||
389 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
390 int best_ndir = inodes_per_group;
391 int ret = -1;
393 if (qstr) {
394 hinfo.hash_version = DX_HASH_HALF_MD4;
395 hinfo.seed = sbi->s_hash_seed;
396 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
397 grp = hinfo.hash;
398 } else
399 get_random_bytes(&grp, sizeof(grp));
400 parent_group = (unsigned)grp % ngroups;
401 for (i = 0; i < ngroups; i++) {
402 g = (parent_group + i) % ngroups;
403 get_orlov_stats(sb, g, flex_size, &stats);
404 if (!stats.free_inodes)
405 continue;
406 if (stats.used_dirs >= best_ndir)
407 continue;
408 if (stats.free_inodes < avefreei)
409 continue;
410 if (stats.free_clusters < avefreec)
411 continue;
412 grp = g;
413 ret = 0;
414 best_ndir = stats.used_dirs;
416 if (ret)
417 goto fallback;
418 found_flex_bg:
419 if (flex_size == 1) {
420 *group = grp;
421 return 0;
425 * We pack inodes at the beginning of the flexgroup's
426 * inode tables. Block allocation decisions will do
427 * something similar, although regular files will
428 * start at 2nd block group of the flexgroup. See
429 * ext4_ext_find_goal() and ext4_find_near().
431 grp *= flex_size;
432 for (i = 0; i < flex_size; i++) {
433 if (grp+i >= real_ngroups)
434 break;
435 desc = ext4_get_group_desc(sb, grp+i, NULL);
436 if (desc && ext4_free_inodes_count(sb, desc)) {
437 *group = grp+i;
438 return 0;
441 goto fallback;
444 max_dirs = ndirs / ngroups + inodes_per_group / 16;
445 min_inodes = avefreei - inodes_per_group*flex_size / 4;
446 if (min_inodes < 1)
447 min_inodes = 1;
448 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
451 * Start looking in the flex group where we last allocated an
452 * inode for this parent directory
454 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
455 parent_group = EXT4_I(parent)->i_last_alloc_group;
456 if (flex_size > 1)
457 parent_group >>= sbi->s_log_groups_per_flex;
460 for (i = 0; i < ngroups; i++) {
461 grp = (parent_group + i) % ngroups;
462 get_orlov_stats(sb, grp, flex_size, &stats);
463 if (stats.used_dirs >= max_dirs)
464 continue;
465 if (stats.free_inodes < min_inodes)
466 continue;
467 if (stats.free_clusters < min_clusters)
468 continue;
469 goto found_flex_bg;
472 fallback:
473 ngroups = real_ngroups;
474 avefreei = freei / ngroups;
475 fallback_retry:
476 parent_group = EXT4_I(parent)->i_block_group;
477 for (i = 0; i < ngroups; i++) {
478 grp = (parent_group + i) % ngroups;
479 desc = ext4_get_group_desc(sb, grp, NULL);
480 grp_free = ext4_free_inodes_count(sb, desc);
481 if (desc && grp_free && grp_free >= avefreei) {
482 *group = grp;
483 return 0;
487 if (avefreei) {
489 * The free-inodes counter is approximate, and for really small
490 * filesystems the above test can fail to find any blockgroups
492 avefreei = 0;
493 goto fallback_retry;
496 return -1;
499 static int find_group_other(struct super_block *sb, struct inode *parent,
500 ext4_group_t *group, umode_t mode)
502 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
503 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
504 struct ext4_group_desc *desc;
505 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
508 * Try to place the inode is the same flex group as its
509 * parent. If we can't find space, use the Orlov algorithm to
510 * find another flex group, and store that information in the
511 * parent directory's inode information so that use that flex
512 * group for future allocations.
514 if (flex_size > 1) {
515 int retry = 0;
517 try_again:
518 parent_group &= ~(flex_size-1);
519 last = parent_group + flex_size;
520 if (last > ngroups)
521 last = ngroups;
522 for (i = parent_group; i < last; i++) {
523 desc = ext4_get_group_desc(sb, i, NULL);
524 if (desc && ext4_free_inodes_count(sb, desc)) {
525 *group = i;
526 return 0;
529 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
530 retry = 1;
531 parent_group = EXT4_I(parent)->i_last_alloc_group;
532 goto try_again;
535 * If this didn't work, use the Orlov search algorithm
536 * to find a new flex group; we pass in the mode to
537 * avoid the topdir algorithms.
539 *group = parent_group + flex_size;
540 if (*group > ngroups)
541 *group = 0;
542 return find_group_orlov(sb, parent, group, mode, NULL);
546 * Try to place the inode in its parent directory
548 *group = parent_group;
549 desc = ext4_get_group_desc(sb, *group, NULL);
550 if (desc && ext4_free_inodes_count(sb, desc) &&
551 ext4_free_group_clusters(sb, desc))
552 return 0;
555 * We're going to place this inode in a different blockgroup from its
556 * parent. We want to cause files in a common directory to all land in
557 * the same blockgroup. But we want files which are in a different
558 * directory which shares a blockgroup with our parent to land in a
559 * different blockgroup.
561 * So add our directory's i_ino into the starting point for the hash.
563 *group = (*group + parent->i_ino) % ngroups;
566 * Use a quadratic hash to find a group with a free inode and some free
567 * blocks.
569 for (i = 1; i < ngroups; i <<= 1) {
570 *group += i;
571 if (*group >= ngroups)
572 *group -= ngroups;
573 desc = ext4_get_group_desc(sb, *group, NULL);
574 if (desc && ext4_free_inodes_count(sb, desc) &&
575 ext4_free_group_clusters(sb, desc))
576 return 0;
580 * That failed: try linear search for a free inode, even if that group
581 * has no free blocks.
583 *group = parent_group;
584 for (i = 0; i < ngroups; i++) {
585 if (++*group >= ngroups)
586 *group = 0;
587 desc = ext4_get_group_desc(sb, *group, NULL);
588 if (desc && ext4_free_inodes_count(sb, desc))
589 return 0;
592 return -1;
596 * claim the inode from the inode bitmap. If the group
597 * is uninit we need to take the groups's ext4_group_lock
598 * and clear the uninit flag. The inode bitmap update
599 * and group desc uninit flag clear should be done
600 * after holding ext4_group_lock so that ext4_read_inode_bitmap
601 * doesn't race with the ext4_claim_inode
603 static int ext4_claim_inode(struct super_block *sb,
604 struct buffer_head *inode_bitmap_bh,
605 unsigned long ino, ext4_group_t group, umode_t mode)
607 int free = 0, retval = 0, count;
608 struct ext4_sb_info *sbi = EXT4_SB(sb);
609 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
610 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
613 * We have to be sure that new inode allocation does not race with
614 * inode table initialization, because otherwise we may end up
615 * allocating and writing new inode right before sb_issue_zeroout
616 * takes place and overwriting our new inode with zeroes. So we
617 * take alloc_sem to prevent it.
619 down_read(&grp->alloc_sem);
620 ext4_lock_group(sb, group);
621 if (ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data)) {
622 /* not a free inode */
623 retval = 1;
624 goto err_ret;
626 ino++;
627 if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
628 ino > EXT4_INODES_PER_GROUP(sb)) {
629 ext4_unlock_group(sb, group);
630 up_read(&grp->alloc_sem);
631 ext4_error(sb, "reserved inode or inode > inodes count - "
632 "block_group = %u, inode=%lu", group,
633 ino + group * EXT4_INODES_PER_GROUP(sb));
634 return 1;
636 /* If we didn't allocate from within the initialized part of the inode
637 * table then we need to initialize up to this inode. */
638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
640 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
641 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
642 /* When marking the block group with
643 * ~EXT4_BG_INODE_UNINIT we don't want to depend
644 * on the value of bg_itable_unused even though
645 * mke2fs could have initialized the same for us.
646 * Instead we calculated the value below
649 free = 0;
650 } else {
651 free = EXT4_INODES_PER_GROUP(sb) -
652 ext4_itable_unused_count(sb, gdp);
656 * Check the relative inode number against the last used
657 * relative inode number in this group. if it is greater
658 * we need to update the bg_itable_unused count
661 if (ino > free)
662 ext4_itable_unused_set(sb, gdp,
663 (EXT4_INODES_PER_GROUP(sb) - ino));
665 count = ext4_free_inodes_count(sb, gdp) - 1;
666 ext4_free_inodes_set(sb, gdp, count);
667 if (S_ISDIR(mode)) {
668 count = ext4_used_dirs_count(sb, gdp) + 1;
669 ext4_used_dirs_set(sb, gdp, count);
670 if (sbi->s_log_groups_per_flex) {
671 ext4_group_t f = ext4_flex_group(sbi, group);
673 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
676 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
677 err_ret:
678 ext4_unlock_group(sb, group);
679 up_read(&grp->alloc_sem);
680 return retval;
684 * There are two policies for allocating an inode. If the new inode is
685 * a directory, then a forward search is made for a block group with both
686 * free space and a low directory-to-inode ratio; if that fails, then of
687 * the groups with above-average free space, that group with the fewest
688 * directories already is chosen.
690 * For other inodes, search forward from the parent directory's block
691 * group to find a free inode.
693 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode,
694 const struct qstr *qstr, __u32 goal, uid_t *owner)
696 struct super_block *sb;
697 struct buffer_head *inode_bitmap_bh = NULL;
698 struct buffer_head *group_desc_bh;
699 ext4_group_t ngroups, group = 0;
700 unsigned long ino = 0;
701 struct inode *inode;
702 struct ext4_group_desc *gdp = NULL;
703 struct ext4_inode_info *ei;
704 struct ext4_sb_info *sbi;
705 int ret2, err = 0;
706 struct inode *ret;
707 ext4_group_t i;
708 ext4_group_t flex_group;
710 /* Cannot create files in a deleted directory */
711 if (!dir || !dir->i_nlink)
712 return ERR_PTR(-EPERM);
714 sb = dir->i_sb;
715 ngroups = ext4_get_groups_count(sb);
716 trace_ext4_request_inode(dir, mode);
717 inode = new_inode(sb);
718 if (!inode)
719 return ERR_PTR(-ENOMEM);
720 ei = EXT4_I(inode);
721 sbi = EXT4_SB(sb);
723 if (!goal)
724 goal = sbi->s_inode_goal;
726 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
727 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
728 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
729 ret2 = 0;
730 goto got_group;
733 if (S_ISDIR(mode))
734 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
735 else
736 ret2 = find_group_other(sb, dir, &group, mode);
738 got_group:
739 EXT4_I(dir)->i_last_alloc_group = group;
740 err = -ENOSPC;
741 if (ret2 == -1)
742 goto out;
744 for (i = 0; i < ngroups; i++, ino = 0) {
745 err = -EIO;
747 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
748 if (!gdp)
749 goto fail;
751 brelse(inode_bitmap_bh);
752 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
753 if (!inode_bitmap_bh)
754 goto fail;
756 repeat_in_this_group:
757 ino = ext4_find_next_zero_bit((unsigned long *)
758 inode_bitmap_bh->b_data,
759 EXT4_INODES_PER_GROUP(sb), ino);
761 if (ino < EXT4_INODES_PER_GROUP(sb)) {
763 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
764 err = ext4_journal_get_write_access(handle,
765 inode_bitmap_bh);
766 if (err)
767 goto fail;
769 BUFFER_TRACE(group_desc_bh, "get_write_access");
770 err = ext4_journal_get_write_access(handle,
771 group_desc_bh);
772 if (err)
773 goto fail;
774 if (!ext4_claim_inode(sb, inode_bitmap_bh,
775 ino, group, mode)) {
776 /* we won it */
777 BUFFER_TRACE(inode_bitmap_bh,
778 "call ext4_handle_dirty_metadata");
779 err = ext4_handle_dirty_metadata(handle,
780 NULL,
781 inode_bitmap_bh);
782 if (err)
783 goto fail;
784 /* zero bit is inode number 1*/
785 ino++;
786 goto got;
788 /* we lost it */
789 ext4_handle_release_buffer(handle, inode_bitmap_bh);
790 ext4_handle_release_buffer(handle, group_desc_bh);
792 if (++ino < EXT4_INODES_PER_GROUP(sb))
793 goto repeat_in_this_group;
797 * This case is possible in concurrent environment. It is very
798 * rare. We cannot repeat the find_group_xxx() call because
799 * that will simply return the same blockgroup, because the
800 * group descriptor metadata has not yet been updated.
801 * So we just go onto the next blockgroup.
803 if (++group == ngroups)
804 group = 0;
806 err = -ENOSPC;
807 goto out;
809 got:
810 /* We may have to initialize the block bitmap if it isn't already */
811 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
812 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
813 struct buffer_head *block_bitmap_bh;
815 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
816 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
817 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
818 if (err) {
819 brelse(block_bitmap_bh);
820 goto fail;
823 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
824 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
825 brelse(block_bitmap_bh);
827 /* recheck and clear flag under lock if we still need to */
828 ext4_lock_group(sb, group);
829 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
830 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
831 ext4_free_group_clusters_set(sb, gdp,
832 ext4_free_clusters_after_init(sb, group, gdp));
833 gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
834 gdp);
836 ext4_unlock_group(sb, group);
838 if (err)
839 goto fail;
841 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
842 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
843 if (err)
844 goto fail;
846 percpu_counter_dec(&sbi->s_freeinodes_counter);
847 if (S_ISDIR(mode))
848 percpu_counter_inc(&sbi->s_dirs_counter);
849 ext4_mark_super_dirty(sb);
851 if (sbi->s_log_groups_per_flex) {
852 flex_group = ext4_flex_group(sbi, group);
853 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
855 if (owner) {
856 inode->i_mode = mode;
857 inode->i_uid = owner[0];
858 inode->i_gid = owner[1];
859 } else if (test_opt(sb, GRPID)) {
860 inode->i_mode = mode;
861 inode->i_uid = current_fsuid();
862 inode->i_gid = dir->i_gid;
863 } else
864 inode_init_owner(inode, dir, mode);
866 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
867 /* This is the optimal IO size (for stat), not the fs block size */
868 inode->i_blocks = 0;
869 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
870 ext4_current_time(inode);
872 memset(ei->i_data, 0, sizeof(ei->i_data));
873 ei->i_dir_start_lookup = 0;
874 ei->i_disksize = 0;
876 /* Don't inherit extent flag from directory, amongst others. */
877 ei->i_flags =
878 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
879 ei->i_file_acl = 0;
880 ei->i_dtime = 0;
881 ei->i_block_group = group;
882 ei->i_last_alloc_group = ~0;
884 ext4_set_inode_flags(inode);
885 if (IS_DIRSYNC(inode))
886 ext4_handle_sync(handle);
887 if (insert_inode_locked(inode) < 0) {
889 * Likely a bitmap corruption causing inode to be allocated
890 * twice.
892 err = -EIO;
893 goto fail;
895 spin_lock(&sbi->s_next_gen_lock);
896 inode->i_generation = sbi->s_next_generation++;
897 spin_unlock(&sbi->s_next_gen_lock);
899 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
900 ext4_set_inode_state(inode, EXT4_STATE_NEW);
902 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
904 ret = inode;
905 dquot_initialize(inode);
906 err = dquot_alloc_inode(inode);
907 if (err)
908 goto fail_drop;
910 err = ext4_init_acl(handle, inode, dir);
911 if (err)
912 goto fail_free_drop;
914 err = ext4_init_security(handle, inode, dir, qstr);
915 if (err)
916 goto fail_free_drop;
918 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
919 /* set extent flag only for directory, file and normal symlink*/
920 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
921 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
922 ext4_ext_tree_init(handle, inode);
926 if (ext4_handle_valid(handle)) {
927 ei->i_sync_tid = handle->h_transaction->t_tid;
928 ei->i_datasync_tid = handle->h_transaction->t_tid;
931 err = ext4_mark_inode_dirty(handle, inode);
932 if (err) {
933 ext4_std_error(sb, err);
934 goto fail_free_drop;
937 ext4_debug("allocating inode %lu\n", inode->i_ino);
938 trace_ext4_allocate_inode(inode, dir, mode);
939 goto really_out;
940 fail:
941 ext4_std_error(sb, err);
942 out:
943 iput(inode);
944 ret = ERR_PTR(err);
945 really_out:
946 brelse(inode_bitmap_bh);
947 return ret;
949 fail_free_drop:
950 dquot_free_inode(inode);
952 fail_drop:
953 dquot_drop(inode);
954 inode->i_flags |= S_NOQUOTA;
955 clear_nlink(inode);
956 unlock_new_inode(inode);
957 iput(inode);
958 brelse(inode_bitmap_bh);
959 return ERR_PTR(err);
962 /* Verify that we are loading a valid orphan from disk */
963 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
965 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
966 ext4_group_t block_group;
967 int bit;
968 struct buffer_head *bitmap_bh;
969 struct inode *inode = NULL;
970 long err = -EIO;
972 /* Error cases - e2fsck has already cleaned up for us */
973 if (ino > max_ino) {
974 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
975 goto error;
978 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
979 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
980 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
981 if (!bitmap_bh) {
982 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
983 goto error;
986 /* Having the inode bit set should be a 100% indicator that this
987 * is a valid orphan (no e2fsck run on fs). Orphans also include
988 * inodes that were being truncated, so we can't check i_nlink==0.
990 if (!ext4_test_bit(bit, bitmap_bh->b_data))
991 goto bad_orphan;
993 inode = ext4_iget(sb, ino);
994 if (IS_ERR(inode))
995 goto iget_failed;
998 * If the orphans has i_nlinks > 0 then it should be able to be
999 * truncated, otherwise it won't be removed from the orphan list
1000 * during processing and an infinite loop will result.
1002 if (inode->i_nlink && !ext4_can_truncate(inode))
1003 goto bad_orphan;
1005 if (NEXT_ORPHAN(inode) > max_ino)
1006 goto bad_orphan;
1007 brelse(bitmap_bh);
1008 return inode;
1010 iget_failed:
1011 err = PTR_ERR(inode);
1012 inode = NULL;
1013 bad_orphan:
1014 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1015 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1016 bit, (unsigned long long)bitmap_bh->b_blocknr,
1017 ext4_test_bit(bit, bitmap_bh->b_data));
1018 printk(KERN_NOTICE "inode=%p\n", inode);
1019 if (inode) {
1020 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1021 is_bad_inode(inode));
1022 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1023 NEXT_ORPHAN(inode));
1024 printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1025 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1026 /* Avoid freeing blocks if we got a bad deleted inode */
1027 if (inode->i_nlink == 0)
1028 inode->i_blocks = 0;
1029 iput(inode);
1031 brelse(bitmap_bh);
1032 error:
1033 return ERR_PTR(err);
1036 unsigned long ext4_count_free_inodes(struct super_block *sb)
1038 unsigned long desc_count;
1039 struct ext4_group_desc *gdp;
1040 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1041 #ifdef EXT4FS_DEBUG
1042 struct ext4_super_block *es;
1043 unsigned long bitmap_count, x;
1044 struct buffer_head *bitmap_bh = NULL;
1046 es = EXT4_SB(sb)->s_es;
1047 desc_count = 0;
1048 bitmap_count = 0;
1049 gdp = NULL;
1050 for (i = 0; i < ngroups; i++) {
1051 gdp = ext4_get_group_desc(sb, i, NULL);
1052 if (!gdp)
1053 continue;
1054 desc_count += ext4_free_inodes_count(sb, gdp);
1055 brelse(bitmap_bh);
1056 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1057 if (!bitmap_bh)
1058 continue;
1060 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1061 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1062 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1063 bitmap_count += x;
1065 brelse(bitmap_bh);
1066 printk(KERN_DEBUG "ext4_count_free_inodes: "
1067 "stored = %u, computed = %lu, %lu\n",
1068 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1069 return desc_count;
1070 #else
1071 desc_count = 0;
1072 for (i = 0; i < ngroups; i++) {
1073 gdp = ext4_get_group_desc(sb, i, NULL);
1074 if (!gdp)
1075 continue;
1076 desc_count += ext4_free_inodes_count(sb, gdp);
1077 cond_resched();
1079 return desc_count;
1080 #endif
1083 /* Called at mount-time, super-block is locked */
1084 unsigned long ext4_count_dirs(struct super_block * sb)
1086 unsigned long count = 0;
1087 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1089 for (i = 0; i < ngroups; i++) {
1090 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1091 if (!gdp)
1092 continue;
1093 count += ext4_used_dirs_count(sb, gdp);
1095 return count;
1099 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1100 * inode table. Must be called without any spinlock held. The only place
1101 * where it is called from on active part of filesystem is ext4lazyinit
1102 * thread, so we do not need any special locks, however we have to prevent
1103 * inode allocation from the current group, so we take alloc_sem lock, to
1104 * block ext4_claim_inode until we are finished.
1106 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1107 int barrier)
1109 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1110 struct ext4_sb_info *sbi = EXT4_SB(sb);
1111 struct ext4_group_desc *gdp = NULL;
1112 struct buffer_head *group_desc_bh;
1113 handle_t *handle;
1114 ext4_fsblk_t blk;
1115 int num, ret = 0, used_blks = 0;
1117 /* This should not happen, but just to be sure check this */
1118 if (sb->s_flags & MS_RDONLY) {
1119 ret = 1;
1120 goto out;
1123 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1124 if (!gdp)
1125 goto out;
1128 * We do not need to lock this, because we are the only one
1129 * handling this flag.
1131 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1132 goto out;
1134 handle = ext4_journal_start_sb(sb, 1);
1135 if (IS_ERR(handle)) {
1136 ret = PTR_ERR(handle);
1137 goto out;
1140 down_write(&grp->alloc_sem);
1142 * If inode bitmap was already initialized there may be some
1143 * used inodes so we need to skip blocks with used inodes in
1144 * inode table.
1146 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1147 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1148 ext4_itable_unused_count(sb, gdp)),
1149 sbi->s_inodes_per_block);
1151 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1152 ext4_error(sb, "Something is wrong with group %u\n"
1153 "Used itable blocks: %d"
1154 "itable unused count: %u\n",
1155 group, used_blks,
1156 ext4_itable_unused_count(sb, gdp));
1157 ret = 1;
1158 goto err_out;
1161 blk = ext4_inode_table(sb, gdp) + used_blks;
1162 num = sbi->s_itb_per_group - used_blks;
1164 BUFFER_TRACE(group_desc_bh, "get_write_access");
1165 ret = ext4_journal_get_write_access(handle,
1166 group_desc_bh);
1167 if (ret)
1168 goto err_out;
1171 * Skip zeroout if the inode table is full. But we set the ZEROED
1172 * flag anyway, because obviously, when it is full it does not need
1173 * further zeroing.
1175 if (unlikely(num == 0))
1176 goto skip_zeroout;
1178 ext4_debug("going to zero out inode table in group %d\n",
1179 group);
1180 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1181 if (ret < 0)
1182 goto err_out;
1183 if (barrier)
1184 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1186 skip_zeroout:
1187 ext4_lock_group(sb, group);
1188 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1189 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1190 ext4_unlock_group(sb, group);
1192 BUFFER_TRACE(group_desc_bh,
1193 "call ext4_handle_dirty_metadata");
1194 ret = ext4_handle_dirty_metadata(handle, NULL,
1195 group_desc_bh);
1197 err_out:
1198 up_write(&grp->alloc_sem);
1199 ext4_journal_stop(handle);
1200 out:
1201 return ret;