1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
7 #include <linux/mm_types.h>
9 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
10 extern int ptep_set_access_flags(struct vm_area_struct
*vma
,
11 unsigned long address
, pte_t
*ptep
,
12 pte_t entry
, int dirty
);
15 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
16 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
17 unsigned long address
, pmd_t
*pmdp
,
18 pmd_t entry
, int dirty
);
21 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
22 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
23 unsigned long address
,
31 set_pte_at(vma
->vm_mm
, address
, ptep
, pte_mkold(pte
));
36 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
38 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
39 unsigned long address
,
47 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd_mkold(pmd
));
50 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
51 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
52 unsigned long address
,
58 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
61 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
62 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
63 unsigned long address
, pte_t
*ptep
);
66 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
67 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
68 unsigned long address
, pmd_t
*pmdp
);
71 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
72 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
73 unsigned long address
,
77 pte_clear(mm
, address
, ptep
);
82 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
83 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
84 static inline pmd_t
pmdp_get_and_clear(struct mm_struct
*mm
,
85 unsigned long address
,
89 pmd_clear(mm
, address
, pmdp
);
92 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
95 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
96 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
97 unsigned long address
, pte_t
*ptep
,
101 pte
= ptep_get_and_clear(mm
, address
, ptep
);
107 * Some architectures may be able to avoid expensive synchronization
108 * primitives when modifications are made to PTE's which are already
109 * not present, or in the process of an address space destruction.
111 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
112 static inline void pte_clear_not_present_full(struct mm_struct
*mm
,
113 unsigned long address
,
117 pte_clear(mm
, address
, ptep
);
121 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
122 extern pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
123 unsigned long address
,
127 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
128 extern pmd_t
pmdp_clear_flush(struct vm_area_struct
*vma
,
129 unsigned long address
,
133 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
137 pte_t old_pte
= *ptep
;
138 set_pte_at(mm
, address
, ptep
, pte_wrprotect(old_pte
));
142 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
144 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
145 unsigned long address
, pmd_t
*pmdp
)
147 pmd_t old_pmd
= *pmdp
;
148 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(old_pmd
));
150 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
151 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
152 unsigned long address
, pmd_t
*pmdp
)
156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
159 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
160 extern pmd_t
pmdp_splitting_flush(struct vm_area_struct
*vma
,
161 unsigned long address
,
165 #ifndef __HAVE_ARCH_PTE_SAME
166 static inline int pte_same(pte_t pte_a
, pte_t pte_b
)
168 return pte_val(pte_a
) == pte_val(pte_b
);
172 #ifndef __HAVE_ARCH_PMD_SAME
173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
174 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
176 return pmd_val(pmd_a
) == pmd_val(pmd_b
);
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
179 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
187 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
188 #define page_test_and_clear_dirty(pfn, mapped) (0)
191 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
192 #define pte_maybe_dirty(pte) pte_dirty(pte)
194 #define pte_maybe_dirty(pte) (1)
197 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
198 #define page_test_and_clear_young(pfn) (0)
201 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
202 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
205 #ifndef __HAVE_ARCH_MOVE_PTE
206 #define move_pte(pte, prot, old_addr, new_addr) (pte)
209 #ifndef flush_tlb_fix_spurious_fault
210 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
213 #ifndef pgprot_noncached
214 #define pgprot_noncached(prot) (prot)
217 #ifndef pgprot_writecombine
218 #define pgprot_writecombine pgprot_noncached
222 * When walking page tables, get the address of the next boundary,
223 * or the end address of the range if that comes earlier. Although no
224 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
227 #define pgd_addr_end(addr, end) \
228 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
229 (__boundary - 1 < (end) - 1)? __boundary: (end); \
233 #define pud_addr_end(addr, end) \
234 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
235 (__boundary - 1 < (end) - 1)? __boundary: (end); \
240 #define pmd_addr_end(addr, end) \
241 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
242 (__boundary - 1 < (end) - 1)? __boundary: (end); \
247 * When walking page tables, we usually want to skip any p?d_none entries;
248 * and any p?d_bad entries - reporting the error before resetting to none.
249 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
251 void pgd_clear_bad(pgd_t
*);
252 void pud_clear_bad(pud_t
*);
253 void pmd_clear_bad(pmd_t
*);
255 static inline int pgd_none_or_clear_bad(pgd_t
*pgd
)
259 if (unlikely(pgd_bad(*pgd
))) {
266 static inline int pud_none_or_clear_bad(pud_t
*pud
)
270 if (unlikely(pud_bad(*pud
))) {
277 static inline int pmd_none_or_clear_bad(pmd_t
*pmd
)
281 if (unlikely(pmd_bad(*pmd
))) {
288 static inline pte_t
__ptep_modify_prot_start(struct mm_struct
*mm
,
293 * Get the current pte state, but zero it out to make it
294 * non-present, preventing the hardware from asynchronously
297 return ptep_get_and_clear(mm
, addr
, ptep
);
300 static inline void __ptep_modify_prot_commit(struct mm_struct
*mm
,
302 pte_t
*ptep
, pte_t pte
)
305 * The pte is non-present, so there's no hardware state to
308 set_pte_at(mm
, addr
, ptep
, pte
);
311 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
313 * Start a pte protection read-modify-write transaction, which
314 * protects against asynchronous hardware modifications to the pte.
315 * The intention is not to prevent the hardware from making pte
316 * updates, but to prevent any updates it may make from being lost.
318 * This does not protect against other software modifications of the
319 * pte; the appropriate pte lock must be held over the transation.
321 * Note that this interface is intended to be batchable, meaning that
322 * ptep_modify_prot_commit may not actually update the pte, but merely
323 * queue the update to be done at some later time. The update must be
324 * actually committed before the pte lock is released, however.
326 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
330 return __ptep_modify_prot_start(mm
, addr
, ptep
);
334 * Commit an update to a pte, leaving any hardware-controlled bits in
335 * the PTE unmodified.
337 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
339 pte_t
*ptep
, pte_t pte
)
341 __ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
343 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
344 #endif /* CONFIG_MMU */
347 * A facility to provide lazy MMU batching. This allows PTE updates and
348 * page invalidations to be delayed until a call to leave lazy MMU mode
349 * is issued. Some architectures may benefit from doing this, and it is
350 * beneficial for both shadow and direct mode hypervisors, which may batch
351 * the PTE updates which happen during this window. Note that using this
352 * interface requires that read hazards be removed from the code. A read
353 * hazard could result in the direct mode hypervisor case, since the actual
354 * write to the page tables may not yet have taken place, so reads though
355 * a raw PTE pointer after it has been modified are not guaranteed to be
356 * up to date. This mode can only be entered and left under the protection of
357 * the page table locks for all page tables which may be modified. In the UP
358 * case, this is required so that preemption is disabled, and in the SMP case,
359 * it must synchronize the delayed page table writes properly on other CPUs.
361 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
362 #define arch_enter_lazy_mmu_mode() do {} while (0)
363 #define arch_leave_lazy_mmu_mode() do {} while (0)
364 #define arch_flush_lazy_mmu_mode() do {} while (0)
368 * A facility to provide batching of the reload of page tables and
369 * other process state with the actual context switch code for
370 * paravirtualized guests. By convention, only one of the batched
371 * update (lazy) modes (CPU, MMU) should be active at any given time,
372 * entry should never be nested, and entry and exits should always be
373 * paired. This is for sanity of maintaining and reasoning about the
374 * kernel code. In this case, the exit (end of the context switch) is
375 * in architecture-specific code, and so doesn't need a generic
378 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
379 #define arch_start_context_switch(prev) do {} while (0)
382 #ifndef __HAVE_PFNMAP_TRACKING
384 * Interface that can be used by architecture code to keep track of
385 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
387 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
388 * for physical range indicated by pfn and size.
390 static inline int track_pfn_vma_new(struct vm_area_struct
*vma
, pgprot_t
*prot
,
391 unsigned long pfn
, unsigned long size
)
397 * Interface that can be used by architecture code to keep track of
398 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
400 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
401 * copied through copy_page_range().
403 static inline int track_pfn_vma_copy(struct vm_area_struct
*vma
)
409 * Interface that can be used by architecture code to keep track of
410 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
412 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
413 * untrack can be called for a specific region indicated by pfn and size or
414 * can be for the entire vma (in which case size can be zero).
416 static inline void untrack_pfn_vma(struct vm_area_struct
*vma
,
417 unsigned long pfn
, unsigned long size
)
421 extern int track_pfn_vma_new(struct vm_area_struct
*vma
, pgprot_t
*prot
,
422 unsigned long pfn
, unsigned long size
);
423 extern int track_pfn_vma_copy(struct vm_area_struct
*vma
);
424 extern void untrack_pfn_vma(struct vm_area_struct
*vma
, unsigned long pfn
,
430 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
431 static inline int pmd_trans_huge(pmd_t pmd
)
435 static inline int pmd_trans_splitting(pmd_t pmd
)
439 #ifndef __HAVE_ARCH_PMD_WRITE
440 static inline int pmd_write(pmd_t pmd
)
445 #endif /* __HAVE_ARCH_PMD_WRITE */
446 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
449 * This function is meant to be used by sites walking pagetables with
450 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
451 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
452 * into a null pmd and the transhuge page fault can convert a null pmd
453 * into an hugepmd or into a regular pmd (if the hugepage allocation
454 * fails). While holding the mmap_sem in read mode the pmd becomes
455 * stable and stops changing under us only if it's not null and not a
456 * transhuge pmd. When those races occurs and this function makes a
457 * difference vs the standard pmd_none_or_clear_bad, the result is
458 * undefined so behaving like if the pmd was none is safe (because it
459 * can return none anyway). The compiler level barrier() is critically
460 * important to compute the two checks atomically on the same pmdval.
462 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd
)
464 /* depend on compiler for an atomic pmd read */
467 * The barrier will stabilize the pmdval in a register or on
468 * the stack so that it will stop changing under the code.
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 if (pmd_none(pmdval
))
475 if (unlikely(pmd_bad(pmdval
))) {
476 if (!pmd_trans_huge(pmdval
))
484 * This is a noop if Transparent Hugepage Support is not built into
485 * the kernel. Otherwise it is equivalent to
486 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
487 * places that already verified the pmd is not none and they want to
488 * walk ptes while holding the mmap sem in read mode (write mode don't
489 * need this). If THP is not enabled, the pmd can't go away under the
490 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
491 * run a pmd_trans_unstable before walking the ptes after
492 * split_huge_page_pmd returns (because it may have run when the pmd
493 * become null, but then a page fault can map in a THP and not a
496 static inline int pmd_trans_unstable(pmd_t
*pmd
)
498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
499 return pmd_none_or_trans_huge_or_clear_bad(pmd
);
505 #endif /* CONFIG_MMU */
507 #endif /* !__ASSEMBLY__ */
509 #endif /* _ASM_GENERIC_PGTABLE_H */