OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / include / linux / usb.h
blob69d845739bc2304ff52bfac2f9e18f87b1002d8e
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
11 #ifdef __KERNEL__
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
29 /*-------------------------------------------------------------------------*/
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
42 * And there might be other descriptors mixed in with those.
44 * Devices may also have class-specific or vendor-specific descriptors.
47 struct ep_device;
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
80 /* array of desc.bNumEndpoint endpoints associated with this
81 * interface setting. these will be in no particular order.
83 struct usb_host_endpoint *endpoint;
85 char *string; /* iInterface string, if present */
86 unsigned char *extra; /* Extra descriptors */
87 int extralen;
90 enum usb_interface_condition {
91 USB_INTERFACE_UNBOUND = 0,
92 USB_INTERFACE_BINDING,
93 USB_INTERFACE_BOUND,
94 USB_INTERFACE_UNBINDING,
97 /**
98 * struct usb_interface - what usb device drivers talk to
99 * @altsetting: array of interface structures, one for each alternate
100 * setting that may be selected. Each one includes a set of
101 * endpoint configurations. They will be in no particular order.
102 * @cur_altsetting: the current altsetting.
103 * @num_altsetting: number of altsettings defined.
104 * @intf_assoc: interface association descriptor
105 * @minor: the minor number assigned to this interface, if this
106 * interface is bound to a driver that uses the USB major number.
107 * If this interface does not use the USB major, this field should
108 * be unused. The driver should set this value in the probe()
109 * function of the driver, after it has been assigned a minor
110 * number from the USB core by calling usb_register_dev().
111 * @condition: binding state of the interface: not bound, binding
112 * (in probe()), bound to a driver, or unbinding (in disconnect())
113 * @sysfs_files_created: sysfs attributes exist
114 * @ep_devs_created: endpoint child pseudo-devices exist
115 * @unregistering: flag set when the interface is being unregistered
116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117 * capability during autosuspend.
118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119 * has been deferred.
120 * @needs_binding: flag set when the driver should be re-probed or unbound
121 * following a reset or suspend operation it doesn't support.
122 * @dev: driver model's view of this device
123 * @usb_dev: if an interface is bound to the USB major, this will point
124 * to the sysfs representation for that device.
125 * @pm_usage_cnt: PM usage counter for this interface
126 * @reset_ws: Used for scheduling resets from atomic context.
127 * @reset_running: set to 1 if the interface is currently running a
128 * queued reset so that usb_cancel_queued_reset() doesn't try to
129 * remove from the workqueue when running inside the worker
130 * thread. See __usb_queue_reset_device().
131 * @resetting_device: USB core reset the device, so use alt setting 0 as
132 * current; needs bandwidth alloc after reset.
134 * USB device drivers attach to interfaces on a physical device. Each
135 * interface encapsulates a single high level function, such as feeding
136 * an audio stream to a speaker or reporting a change in a volume control.
137 * Many USB devices only have one interface. The protocol used to talk to
138 * an interface's endpoints can be defined in a usb "class" specification,
139 * or by a product's vendor. The (default) control endpoint is part of
140 * every interface, but is never listed among the interface's descriptors.
142 * The driver that is bound to the interface can use standard driver model
143 * calls such as dev_get_drvdata() on the dev member of this structure.
145 * Each interface may have alternate settings. The initial configuration
146 * of a device sets altsetting 0, but the device driver can change
147 * that setting using usb_set_interface(). Alternate settings are often
148 * used to control the use of periodic endpoints, such as by having
149 * different endpoints use different amounts of reserved USB bandwidth.
150 * All standards-conformant USB devices that use isochronous endpoints
151 * will use them in non-default settings.
153 * The USB specification says that alternate setting numbers must run from
154 * 0 to one less than the total number of alternate settings. But some
155 * devices manage to mess this up, and the structures aren't necessarily
156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
157 * look up an alternate setting in the altsetting array based on its number.
159 struct usb_interface {
160 /* array of alternate settings for this interface,
161 * stored in no particular order */
162 struct usb_host_interface *altsetting;
164 struct usb_host_interface *cur_altsetting; /* the currently
165 * active alternate setting */
166 unsigned num_altsetting; /* number of alternate settings */
168 /* If there is an interface association descriptor then it will list
169 * the associated interfaces */
170 struct usb_interface_assoc_descriptor *intf_assoc;
172 int minor; /* minor number this interface is
173 * bound to */
174 enum usb_interface_condition condition; /* state of binding */
175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
176 unsigned ep_devs_created:1; /* endpoint "devices" exist */
177 unsigned unregistering:1; /* unregistration is in progress */
178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
180 unsigned needs_binding:1; /* needs delayed unbind/rebind */
181 unsigned reset_running:1;
182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184 struct device dev; /* interface specific device info */
185 struct device *usb_dev;
186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
187 struct work_struct reset_ws; /* for resets in atomic context */
189 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 return dev_get_drvdata(&intf->dev);
196 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 dev_set_drvdata(&intf->dev, data);
201 struct usb_interface *usb_get_intf(struct usb_interface *intf);
202 void usb_put_intf(struct usb_interface *intf);
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES 32
206 #define USB_MAXIADS (USB_MAXINTERFACES/2)
209 * struct usb_interface_cache - long-term representation of a device interface
210 * @num_altsetting: number of altsettings defined.
211 * @ref: reference counter.
212 * @altsetting: variable-length array of interface structures, one for
213 * each alternate setting that may be selected. Each one includes a
214 * set of endpoint configurations. They will be in no particular order.
216 * These structures persist for the lifetime of a usb_device, unlike
217 * struct usb_interface (which persists only as long as its configuration
218 * is installed). The altsetting arrays can be accessed through these
219 * structures at any time, permitting comparison of configurations and
220 * providing support for the /proc/bus/usb/devices pseudo-file.
222 struct usb_interface_cache {
223 unsigned num_altsetting; /* number of alternate settings */
224 struct kref ref; /* reference counter */
226 /* variable-length array of alternate settings for this interface,
227 * stored in no particular order */
228 struct usb_host_interface altsetting[0];
230 #define ref_to_usb_interface_cache(r) \
231 container_of(r, struct usb_interface_cache, ref)
232 #define altsetting_to_usb_interface_cache(a) \
233 container_of(a, struct usb_interface_cache, altsetting[0])
236 * struct usb_host_config - representation of a device's configuration
237 * @desc: the device's configuration descriptor.
238 * @string: pointer to the cached version of the iConfiguration string, if
239 * present for this configuration.
240 * @intf_assoc: list of any interface association descriptors in this config
241 * @interface: array of pointers to usb_interface structures, one for each
242 * interface in the configuration. The number of interfaces is stored
243 * in desc.bNumInterfaces. These pointers are valid only while the
244 * the configuration is active.
245 * @intf_cache: array of pointers to usb_interface_cache structures, one
246 * for each interface in the configuration. These structures exist
247 * for the entire life of the device.
248 * @extra: pointer to buffer containing all extra descriptors associated
249 * with this configuration (those preceding the first interface
250 * descriptor).
251 * @extralen: length of the extra descriptors buffer.
253 * USB devices may have multiple configurations, but only one can be active
254 * at any time. Each encapsulates a different operational environment;
255 * for example, a dual-speed device would have separate configurations for
256 * full-speed and high-speed operation. The number of configurations
257 * available is stored in the device descriptor as bNumConfigurations.
259 * A configuration can contain multiple interfaces. Each corresponds to
260 * a different function of the USB device, and all are available whenever
261 * the configuration is active. The USB standard says that interfaces
262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263 * of devices get this wrong. In addition, the interface array is not
264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
265 * look up an interface entry based on its number.
267 * Device drivers should not attempt to activate configurations. The choice
268 * of which configuration to install is a policy decision based on such
269 * considerations as available power, functionality provided, and the user's
270 * desires (expressed through userspace tools). However, drivers can call
271 * usb_reset_configuration() to reinitialize the current configuration and
272 * all its interfaces.
274 struct usb_host_config {
275 struct usb_config_descriptor desc;
277 char *string; /* iConfiguration string, if present */
279 /* List of any Interface Association Descriptors in this
280 * configuration. */
281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283 /* the interfaces associated with this configuration,
284 * stored in no particular order */
285 struct usb_interface *interface[USB_MAXINTERFACES];
287 /* Interface information available even when this is not the
288 * active configuration */
289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291 unsigned char *extra; /* Extra descriptors */
292 int extralen;
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297 struct usb_bos_descriptor *desc;
299 /* wireless cap descriptor is handled by wusb */
300 struct usb_ext_cap_descriptor *ext_cap;
301 struct usb_ss_cap_descriptor *ss_cap;
302 struct usb_ss_container_id_descriptor *ss_id;
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306 unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308 __usb_get_extra_descriptor((ifpoint)->extra, \
309 (ifpoint)->extralen, \
310 type, (void **)ptr)
312 /* ----------------------------------------------------------------------- */
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
320 * Allocated per bus (tree of devices) we have:
322 struct usb_bus {
323 struct device *controller; /* host/master side hardware */
324 int busnum; /* Bus number (in order of reg) */
325 const char *bus_name; /* stable id (PCI slot_name etc) */
326 u8 uses_dma; /* Does the host controller use DMA? */
327 u8 uses_pio_for_control; /*
328 * Does the host controller use PIO
329 * for control transfers?
331 u8 otg_port; /* 0, or number of OTG/HNP port */
332 unsigned is_b_host:1; /* true during some HNP roleswitches */
333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
334 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
336 int devnum_next; /* Next open device number in
337 * round-robin allocation */
339 struct usb_devmap devmap; /* device address allocation map */
340 struct usb_device *root_hub; /* Root hub */
341 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
342 struct list_head bus_list; /* list of busses */
344 int bandwidth_allocated; /* on this bus: how much of the time
345 * reserved for periodic (intr/iso)
346 * requests is used, on average?
347 * Units: microseconds/frame.
348 * Limits: Full/low speed reserve 90%,
349 * while high speed reserves 80%.
351 int bandwidth_int_reqs; /* number of Interrupt requests */
352 int bandwidth_isoc_reqs; /* number of Isoc. requests */
354 #ifdef CONFIG_USB_DEVICEFS
355 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
356 #endif
358 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
359 struct mon_bus *mon_bus; /* non-null when associated */
360 int monitored; /* non-zero when monitored */
361 #endif
364 /* ----------------------------------------------------------------------- */
366 /* This is arbitrary.
367 * From USB 2.0 spec Table 11-13, offset 7, a hub can
368 * have up to 255 ports. The most yet reported is 10.
370 * Current Wireless USB host hardware (Intel i1480 for example) allows
371 * up to 22 devices to connect. Upcoming hardware might raise that
372 * limit. Because the arrays need to add a bit for hub status data, we
373 * do 31, so plus one evens out to four bytes.
375 #define USB_MAXCHILDREN (31)
377 struct usb_tt;
380 * struct usb_device - kernel's representation of a USB device
381 * @devnum: device number; address on a USB bus
382 * @devpath: device ID string for use in messages (e.g., /port/...)
383 * @route: tree topology hex string for use with xHCI
384 * @state: device state: configured, not attached, etc.
385 * @speed: device speed: high/full/low (or error)
386 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
387 * @ttport: device port on that tt hub
388 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
389 * @parent: our hub, unless we're the root
390 * @bus: bus we're part of
391 * @ep0: endpoint 0 data (default control pipe)
392 * @dev: generic device interface
393 * @descriptor: USB device descriptor
394 * @bos: USB device BOS descriptor set
395 * @config: all of the device's configs
396 * @actconfig: the active configuration
397 * @ep_in: array of IN endpoints
398 * @ep_out: array of OUT endpoints
399 * @rawdescriptors: raw descriptors for each config
400 * @bus_mA: Current available from the bus
401 * @portnum: parent port number (origin 1)
402 * @level: number of USB hub ancestors
403 * @can_submit: URBs may be submitted
404 * @persist_enabled: USB_PERSIST enabled for this device
405 * @have_langid: whether string_langid is valid
406 * @authorized: policy has said we can use it;
407 * (user space) policy determines if we authorize this device to be
408 * used or not. By default, wired USB devices are authorized.
409 * WUSB devices are not, until we authorize them from user space.
410 * FIXME -- complete doc
411 * @authenticated: Crypto authentication passed
412 * @wusb: device is Wireless USB
413 * @lpm_capable: device supports LPM
414 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
415 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
416 * @string_langid: language ID for strings
417 * @product: iProduct string, if present (static)
418 * @manufacturer: iManufacturer string, if present (static)
419 * @serial: iSerialNumber string, if present (static)
420 * @filelist: usbfs files that are open to this device
421 * @usb_classdev: USB class device that was created for usbfs device
422 * access from userspace
423 * @usbfs_dentry: usbfs dentry entry for the device
424 * @maxchild: number of ports if hub
425 * @children: child devices - USB devices that are attached to this hub
426 * @quirks: quirks of the whole device
427 * @urbnum: number of URBs submitted for the whole device
428 * @active_duration: total time device is not suspended
429 * @connect_time: time device was first connected
430 * @do_remote_wakeup: remote wakeup should be enabled
431 * @reset_resume: needs reset instead of resume
432 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
433 * specific data for the device.
434 * @slot_id: Slot ID assigned by xHCI
436 * Notes:
437 * Usbcore drivers should not set usbdev->state directly. Instead use
438 * usb_set_device_state().
440 struct usb_device {
441 int devnum;
442 char devpath[16];
443 u32 route;
444 enum usb_device_state state;
445 enum usb_device_speed speed;
447 struct usb_tt *tt;
448 int ttport;
450 unsigned int toggle[2];
452 struct usb_device *parent;
453 struct usb_bus *bus;
454 struct usb_host_endpoint ep0;
456 struct device dev;
458 struct usb_device_descriptor descriptor;
459 struct usb_host_bos *bos;
460 struct usb_host_config *config;
462 struct usb_host_config *actconfig;
463 struct usb_host_endpoint *ep_in[16];
464 struct usb_host_endpoint *ep_out[16];
466 char **rawdescriptors;
468 unsigned short bus_mA;
469 u8 portnum;
470 u8 level;
472 unsigned can_submit:1;
473 unsigned persist_enabled:1;
474 unsigned have_langid:1;
475 unsigned authorized:1;
476 unsigned authenticated:1;
477 unsigned wusb:1;
478 unsigned lpm_capable:1;
479 unsigned usb2_hw_lpm_capable:1;
480 unsigned usb2_hw_lpm_enabled:1;
481 int string_langid;
483 /* static strings from the device */
484 char *product;
485 char *manufacturer;
486 char *serial;
488 struct list_head filelist;
489 #ifdef CONFIG_USB_DEVICE_CLASS
490 struct device *usb_classdev;
491 #endif
492 #ifdef CONFIG_USB_DEVICEFS
493 struct dentry *usbfs_dentry;
494 #endif
496 int maxchild;
497 struct usb_device *children[USB_MAXCHILDREN];
499 u32 quirks;
500 atomic_t urbnum;
502 unsigned long active_duration;
504 #ifdef CONFIG_PM
505 unsigned long connect_time;
507 unsigned do_remote_wakeup:1;
508 unsigned reset_resume:1;
509 #endif
510 struct wusb_dev *wusb_dev;
511 int slot_id;
513 #define to_usb_device(d) container_of(d, struct usb_device, dev)
515 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
517 return to_usb_device(intf->dev.parent);
520 extern struct usb_device *usb_get_dev(struct usb_device *dev);
521 extern void usb_put_dev(struct usb_device *dev);
523 /* USB device locking */
524 #define usb_lock_device(udev) device_lock(&(udev)->dev)
525 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
526 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
527 extern int usb_lock_device_for_reset(struct usb_device *udev,
528 const struct usb_interface *iface);
530 /* USB port reset for device reinitialization */
531 extern int usb_reset_device(struct usb_device *dev);
532 extern void usb_queue_reset_device(struct usb_interface *dev);
535 /* USB autosuspend and autoresume */
536 #ifdef CONFIG_USB_SUSPEND
537 extern void usb_enable_autosuspend(struct usb_device *udev);
538 extern void usb_disable_autosuspend(struct usb_device *udev);
540 extern int usb_autopm_get_interface(struct usb_interface *intf);
541 extern void usb_autopm_put_interface(struct usb_interface *intf);
542 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
543 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
544 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
545 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
547 static inline void usb_mark_last_busy(struct usb_device *udev)
549 pm_runtime_mark_last_busy(&udev->dev);
552 #else
554 static inline int usb_enable_autosuspend(struct usb_device *udev)
555 { return 0; }
556 static inline int usb_disable_autosuspend(struct usb_device *udev)
557 { return 0; }
559 static inline int usb_autopm_get_interface(struct usb_interface *intf)
560 { return 0; }
561 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
562 { return 0; }
564 static inline void usb_autopm_put_interface(struct usb_interface *intf)
566 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
568 static inline void usb_autopm_get_interface_no_resume(
569 struct usb_interface *intf)
571 static inline void usb_autopm_put_interface_no_suspend(
572 struct usb_interface *intf)
574 static inline void usb_mark_last_busy(struct usb_device *udev)
576 #endif
578 /*-------------------------------------------------------------------------*/
580 /* for drivers using iso endpoints */
581 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
583 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
584 extern int usb_alloc_streams(struct usb_interface *interface,
585 struct usb_host_endpoint **eps, unsigned int num_eps,
586 unsigned int num_streams, gfp_t mem_flags);
588 /* Reverts a group of bulk endpoints back to not using stream IDs. */
589 extern void usb_free_streams(struct usb_interface *interface,
590 struct usb_host_endpoint **eps, unsigned int num_eps,
591 gfp_t mem_flags);
593 /* used these for multi-interface device registration */
594 extern int usb_driver_claim_interface(struct usb_driver *driver,
595 struct usb_interface *iface, void *priv);
598 * usb_interface_claimed - returns true iff an interface is claimed
599 * @iface: the interface being checked
601 * Returns true (nonzero) iff the interface is claimed, else false (zero).
602 * Callers must own the driver model's usb bus readlock. So driver
603 * probe() entries don't need extra locking, but other call contexts
604 * may need to explicitly claim that lock.
607 static inline int usb_interface_claimed(struct usb_interface *iface)
609 return (iface->dev.driver != NULL);
612 extern void usb_driver_release_interface(struct usb_driver *driver,
613 struct usb_interface *iface);
614 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
615 const struct usb_device_id *id);
616 extern int usb_match_one_id(struct usb_interface *interface,
617 const struct usb_device_id *id);
619 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
620 int minor);
621 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
622 unsigned ifnum);
623 extern struct usb_host_interface *usb_altnum_to_altsetting(
624 const struct usb_interface *intf, unsigned int altnum);
625 extern struct usb_host_interface *usb_find_alt_setting(
626 struct usb_host_config *config,
627 unsigned int iface_num,
628 unsigned int alt_num);
632 * usb_make_path - returns stable device path in the usb tree
633 * @dev: the device whose path is being constructed
634 * @buf: where to put the string
635 * @size: how big is "buf"?
637 * Returns length of the string (> 0) or negative if size was too small.
639 * This identifier is intended to be "stable", reflecting physical paths in
640 * hardware such as physical bus addresses for host controllers or ports on
641 * USB hubs. That makes it stay the same until systems are physically
642 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
643 * controllers. Adding and removing devices, including virtual root hubs
644 * in host controller driver modules, does not change these path identifiers;
645 * neither does rebooting or re-enumerating. These are more useful identifiers
646 * than changeable ("unstable") ones like bus numbers or device addresses.
648 * With a partial exception for devices connected to USB 2.0 root hubs, these
649 * identifiers are also predictable. So long as the device tree isn't changed,
650 * plugging any USB device into a given hub port always gives it the same path.
651 * Because of the use of "companion" controllers, devices connected to ports on
652 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
653 * high speed, and a different one if they are full or low speed.
655 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
657 int actual;
658 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
659 dev->devpath);
660 return (actual >= (int)size) ? -1 : actual;
663 /*-------------------------------------------------------------------------*/
665 #define USB_DEVICE_ID_MATCH_DEVICE \
666 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
667 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
668 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
669 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
670 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
671 #define USB_DEVICE_ID_MATCH_DEV_INFO \
672 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
673 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
674 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
675 #define USB_DEVICE_ID_MATCH_INT_INFO \
676 (USB_DEVICE_ID_MATCH_INT_CLASS | \
677 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
678 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
681 * USB_DEVICE - macro used to describe a specific usb device
682 * @vend: the 16 bit USB Vendor ID
683 * @prod: the 16 bit USB Product ID
685 * This macro is used to create a struct usb_device_id that matches a
686 * specific device.
688 #define USB_DEVICE(vend, prod) \
689 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
690 .idVendor = (vend), \
691 .idProduct = (prod)
693 * USB_DEVICE_VER - describe a specific usb device with a version range
694 * @vend: the 16 bit USB Vendor ID
695 * @prod: the 16 bit USB Product ID
696 * @lo: the bcdDevice_lo value
697 * @hi: the bcdDevice_hi value
699 * This macro is used to create a struct usb_device_id that matches a
700 * specific device, with a version range.
702 #define USB_DEVICE_VER(vend, prod, lo, hi) \
703 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
704 .idVendor = (vend), \
705 .idProduct = (prod), \
706 .bcdDevice_lo = (lo), \
707 .bcdDevice_hi = (hi)
710 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
711 * @vend: the 16 bit USB Vendor ID
712 * @prod: the 16 bit USB Product ID
713 * @pr: bInterfaceProtocol value
715 * This macro is used to create a struct usb_device_id that matches a
716 * specific interface protocol of devices.
718 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
719 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
720 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
721 .idVendor = (vend), \
722 .idProduct = (prod), \
723 .bInterfaceProtocol = (pr)
726 * USB_DEVICE_INFO - macro used to describe a class of usb devices
727 * @cl: bDeviceClass value
728 * @sc: bDeviceSubClass value
729 * @pr: bDeviceProtocol value
731 * This macro is used to create a struct usb_device_id that matches a
732 * specific class of devices.
734 #define USB_DEVICE_INFO(cl, sc, pr) \
735 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
736 .bDeviceClass = (cl), \
737 .bDeviceSubClass = (sc), \
738 .bDeviceProtocol = (pr)
741 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
742 * @cl: bInterfaceClass value
743 * @sc: bInterfaceSubClass value
744 * @pr: bInterfaceProtocol value
746 * This macro is used to create a struct usb_device_id that matches a
747 * specific class of interfaces.
749 #define USB_INTERFACE_INFO(cl, sc, pr) \
750 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
751 .bInterfaceClass = (cl), \
752 .bInterfaceSubClass = (sc), \
753 .bInterfaceProtocol = (pr)
756 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
757 * @vend: the 16 bit USB Vendor ID
758 * @prod: the 16 bit USB Product ID
759 * @cl: bInterfaceClass value
760 * @sc: bInterfaceSubClass value
761 * @pr: bInterfaceProtocol value
763 * This macro is used to create a struct usb_device_id that matches a
764 * specific device with a specific class of interfaces.
766 * This is especially useful when explicitly matching devices that have
767 * vendor specific bDeviceClass values, but standards-compliant interfaces.
769 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
770 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
771 | USB_DEVICE_ID_MATCH_DEVICE, \
772 .idVendor = (vend), \
773 .idProduct = (prod), \
774 .bInterfaceClass = (cl), \
775 .bInterfaceSubClass = (sc), \
776 .bInterfaceProtocol = (pr)
778 /* ----------------------------------------------------------------------- */
780 /* Stuff for dynamic usb ids */
781 struct usb_dynids {
782 spinlock_t lock;
783 struct list_head list;
786 struct usb_dynid {
787 struct list_head node;
788 struct usb_device_id id;
791 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
792 struct device_driver *driver,
793 const char *buf, size_t count);
796 * struct usbdrv_wrap - wrapper for driver-model structure
797 * @driver: The driver-model core driver structure.
798 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
800 struct usbdrv_wrap {
801 struct device_driver driver;
802 int for_devices;
806 * struct usb_driver - identifies USB interface driver to usbcore
807 * @name: The driver name should be unique among USB drivers,
808 * and should normally be the same as the module name.
809 * @probe: Called to see if the driver is willing to manage a particular
810 * interface on a device. If it is, probe returns zero and uses
811 * usb_set_intfdata() to associate driver-specific data with the
812 * interface. It may also use usb_set_interface() to specify the
813 * appropriate altsetting. If unwilling to manage the interface,
814 * return -ENODEV, if genuine IO errors occurred, an appropriate
815 * negative errno value.
816 * @disconnect: Called when the interface is no longer accessible, usually
817 * because its device has been (or is being) disconnected or the
818 * driver module is being unloaded.
819 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
820 * the "usbfs" filesystem. This lets devices provide ways to
821 * expose information to user space regardless of where they
822 * do (or don't) show up otherwise in the filesystem.
823 * @suspend: Called when the device is going to be suspended by the system.
824 * @resume: Called when the device is being resumed by the system.
825 * @reset_resume: Called when the suspended device has been reset instead
826 * of being resumed.
827 * @pre_reset: Called by usb_reset_device() when the device is about to be
828 * reset. This routine must not return until the driver has no active
829 * URBs for the device, and no more URBs may be submitted until the
830 * post_reset method is called.
831 * @post_reset: Called by usb_reset_device() after the device
832 * has been reset
833 * @id_table: USB drivers use ID table to support hotplugging.
834 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
835 * or your driver's probe function will never get called.
836 * @dynids: used internally to hold the list of dynamically added device
837 * ids for this driver.
838 * @drvwrap: Driver-model core structure wrapper.
839 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
840 * added to this driver by preventing the sysfs file from being created.
841 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
842 * for interfaces bound to this driver.
843 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
844 * endpoints before calling the driver's disconnect method.
846 * USB interface drivers must provide a name, probe() and disconnect()
847 * methods, and an id_table. Other driver fields are optional.
849 * The id_table is used in hotplugging. It holds a set of descriptors,
850 * and specialized data may be associated with each entry. That table
851 * is used by both user and kernel mode hotplugging support.
853 * The probe() and disconnect() methods are called in a context where
854 * they can sleep, but they should avoid abusing the privilege. Most
855 * work to connect to a device should be done when the device is opened,
856 * and undone at the last close. The disconnect code needs to address
857 * concurrency issues with respect to open() and close() methods, as
858 * well as forcing all pending I/O requests to complete (by unlinking
859 * them as necessary, and blocking until the unlinks complete).
861 struct usb_driver {
862 const char *name;
864 int (*probe) (struct usb_interface *intf,
865 const struct usb_device_id *id);
867 void (*disconnect) (struct usb_interface *intf);
869 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
870 void *buf);
872 int (*suspend) (struct usb_interface *intf, pm_message_t message);
873 int (*resume) (struct usb_interface *intf);
874 int (*reset_resume)(struct usb_interface *intf);
876 int (*pre_reset)(struct usb_interface *intf);
877 int (*post_reset)(struct usb_interface *intf);
879 const struct usb_device_id *id_table;
881 struct usb_dynids dynids;
882 struct usbdrv_wrap drvwrap;
883 unsigned int no_dynamic_id:1;
884 unsigned int supports_autosuspend:1;
885 unsigned int soft_unbind:1;
887 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
890 * struct usb_device_driver - identifies USB device driver to usbcore
891 * @name: The driver name should be unique among USB drivers,
892 * and should normally be the same as the module name.
893 * @probe: Called to see if the driver is willing to manage a particular
894 * device. If it is, probe returns zero and uses dev_set_drvdata()
895 * to associate driver-specific data with the device. If unwilling
896 * to manage the device, return a negative errno value.
897 * @disconnect: Called when the device is no longer accessible, usually
898 * because it has been (or is being) disconnected or the driver's
899 * module is being unloaded.
900 * @suspend: Called when the device is going to be suspended by the system.
901 * @resume: Called when the device is being resumed by the system.
902 * @drvwrap: Driver-model core structure wrapper.
903 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
904 * for devices bound to this driver.
906 * USB drivers must provide all the fields listed above except drvwrap.
908 struct usb_device_driver {
909 const char *name;
911 int (*probe) (struct usb_device *udev);
912 void (*disconnect) (struct usb_device *udev);
914 int (*suspend) (struct usb_device *udev, pm_message_t message);
915 int (*resume) (struct usb_device *udev, pm_message_t message);
916 struct usbdrv_wrap drvwrap;
917 unsigned int supports_autosuspend:1;
919 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
920 drvwrap.driver)
922 extern struct bus_type usb_bus_type;
925 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
926 * @name: the usb class device name for this driver. Will show up in sysfs.
927 * @devnode: Callback to provide a naming hint for a possible
928 * device node to create.
929 * @fops: pointer to the struct file_operations of this driver.
930 * @minor_base: the start of the minor range for this driver.
932 * This structure is used for the usb_register_dev() and
933 * usb_unregister_dev() functions, to consolidate a number of the
934 * parameters used for them.
936 struct usb_class_driver {
937 char *name;
938 char *(*devnode)(struct device *dev, umode_t *mode);
939 const struct file_operations *fops;
940 int minor_base;
944 * use these in module_init()/module_exit()
945 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
947 extern int usb_register_driver(struct usb_driver *, struct module *,
948 const char *);
950 /* use a define to avoid include chaining to get THIS_MODULE & friends */
951 #define usb_register(driver) \
952 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
954 extern void usb_deregister(struct usb_driver *);
957 * module_usb_driver() - Helper macro for registering a USB driver
958 * @__usb_driver: usb_driver struct
960 * Helper macro for USB drivers which do not do anything special in module
961 * init/exit. This eliminates a lot of boilerplate. Each module may only
962 * use this macro once, and calling it replaces module_init() and module_exit()
964 #define module_usb_driver(__usb_driver) \
965 module_driver(__usb_driver, usb_register, \
966 usb_deregister)
968 extern int usb_register_device_driver(struct usb_device_driver *,
969 struct module *);
970 extern void usb_deregister_device_driver(struct usb_device_driver *);
972 extern int usb_register_dev(struct usb_interface *intf,
973 struct usb_class_driver *class_driver);
974 extern void usb_deregister_dev(struct usb_interface *intf,
975 struct usb_class_driver *class_driver);
977 extern int usb_disabled(void);
979 /* ----------------------------------------------------------------------- */
982 * URB support, for asynchronous request completions
986 * urb->transfer_flags:
988 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
990 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
991 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
992 * ignored */
993 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
994 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
995 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
996 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
997 * needed */
998 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1000 /* The following flags are used internally by usbcore and HCDs */
1001 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1002 #define URB_DIR_OUT 0
1003 #define URB_DIR_MASK URB_DIR_IN
1005 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1006 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1007 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1008 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1009 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1010 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1011 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1012 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1014 struct usb_iso_packet_descriptor {
1015 unsigned int offset;
1016 unsigned int length; /* expected length */
1017 unsigned int actual_length;
1018 int status;
1021 struct urb;
1023 struct usb_anchor {
1024 struct list_head urb_list;
1025 wait_queue_head_t wait;
1026 spinlock_t lock;
1027 unsigned int poisoned:1;
1030 static inline void init_usb_anchor(struct usb_anchor *anchor)
1032 INIT_LIST_HEAD(&anchor->urb_list);
1033 init_waitqueue_head(&anchor->wait);
1034 spin_lock_init(&anchor->lock);
1037 typedef void (*usb_complete_t)(struct urb *);
1040 * struct urb - USB Request Block
1041 * @urb_list: For use by current owner of the URB.
1042 * @anchor_list: membership in the list of an anchor
1043 * @anchor: to anchor URBs to a common mooring
1044 * @ep: Points to the endpoint's data structure. Will eventually
1045 * replace @pipe.
1046 * @pipe: Holds endpoint number, direction, type, and more.
1047 * Create these values with the eight macros available;
1048 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1049 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1050 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1051 * numbers range from zero to fifteen. Note that "in" endpoint two
1052 * is a different endpoint (and pipe) from "out" endpoint two.
1053 * The current configuration controls the existence, type, and
1054 * maximum packet size of any given endpoint.
1055 * @stream_id: the endpoint's stream ID for bulk streams
1056 * @dev: Identifies the USB device to perform the request.
1057 * @status: This is read in non-iso completion functions to get the
1058 * status of the particular request. ISO requests only use it
1059 * to tell whether the URB was unlinked; detailed status for
1060 * each frame is in the fields of the iso_frame-desc.
1061 * @transfer_flags: A variety of flags may be used to affect how URB
1062 * submission, unlinking, or operation are handled. Different
1063 * kinds of URB can use different flags.
1064 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1065 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1066 * (however, do not leave garbage in transfer_buffer even then).
1067 * This buffer must be suitable for DMA; allocate it with
1068 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1069 * of this buffer will be modified. This buffer is used for the data
1070 * stage of control transfers.
1071 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1072 * the device driver is saying that it provided this DMA address,
1073 * which the host controller driver should use in preference to the
1074 * transfer_buffer.
1075 * @sg: scatter gather buffer list
1076 * @num_mapped_sgs: (internal) number of mapped sg entries
1077 * @num_sgs: number of entries in the sg list
1078 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1079 * be broken up into chunks according to the current maximum packet
1080 * size for the endpoint, which is a function of the configuration
1081 * and is encoded in the pipe. When the length is zero, neither
1082 * transfer_buffer nor transfer_dma is used.
1083 * @actual_length: This is read in non-iso completion functions, and
1084 * it tells how many bytes (out of transfer_buffer_length) were
1085 * transferred. It will normally be the same as requested, unless
1086 * either an error was reported or a short read was performed.
1087 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1088 * short reads be reported as errors.
1089 * @setup_packet: Only used for control transfers, this points to eight bytes
1090 * of setup data. Control transfers always start by sending this data
1091 * to the device. Then transfer_buffer is read or written, if needed.
1092 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1093 * this field; setup_packet must point to a valid buffer.
1094 * @start_frame: Returns the initial frame for isochronous transfers.
1095 * @number_of_packets: Lists the number of ISO transfer buffers.
1096 * @interval: Specifies the polling interval for interrupt or isochronous
1097 * transfers. The units are frames (milliseconds) for full and low
1098 * speed devices, and microframes (1/8 millisecond) for highspeed
1099 * and SuperSpeed devices.
1100 * @error_count: Returns the number of ISO transfers that reported errors.
1101 * @context: For use in completion functions. This normally points to
1102 * request-specific driver context.
1103 * @complete: Completion handler. This URB is passed as the parameter to the
1104 * completion function. The completion function may then do what
1105 * it likes with the URB, including resubmitting or freeing it.
1106 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1107 * collect the transfer status for each buffer.
1109 * This structure identifies USB transfer requests. URBs must be allocated by
1110 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1111 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1112 * are submitted using usb_submit_urb(), and pending requests may be canceled
1113 * using usb_unlink_urb() or usb_kill_urb().
1115 * Data Transfer Buffers:
1117 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1118 * taken from the general page pool. That is provided by transfer_buffer
1119 * (control requests also use setup_packet), and host controller drivers
1120 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1121 * mapping operations can be expensive on some platforms (perhaps using a dma
1122 * bounce buffer or talking to an IOMMU),
1123 * although they're cheap on commodity x86 and ppc hardware.
1125 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1126 * which tells the host controller driver that no such mapping is needed for
1127 * the transfer_buffer since
1128 * the device driver is DMA-aware. For example, a device driver might
1129 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1130 * When this transfer flag is provided, host controller drivers will
1131 * attempt to use the dma address found in the transfer_dma
1132 * field rather than determining a dma address themselves.
1134 * Note that transfer_buffer must still be set if the controller
1135 * does not support DMA (as indicated by bus.uses_dma) and when talking
1136 * to root hub. If you have to trasfer between highmem zone and the device
1137 * on such controller, create a bounce buffer or bail out with an error.
1138 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1139 * capable, assign NULL to it, so that usbmon knows not to use the value.
1140 * The setup_packet must always be set, so it cannot be located in highmem.
1142 * Initialization:
1144 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1145 * zero), and complete fields. All URBs must also initialize
1146 * transfer_buffer and transfer_buffer_length. They may provide the
1147 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1148 * to be treated as errors; that flag is invalid for write requests.
1150 * Bulk URBs may
1151 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1152 * should always terminate with a short packet, even if it means adding an
1153 * extra zero length packet.
1155 * Control URBs must provide a valid pointer in the setup_packet field.
1156 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1157 * beforehand.
1159 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1160 * or, for highspeed devices, 125 microsecond units)
1161 * to poll for transfers. After the URB has been submitted, the interval
1162 * field reflects how the transfer was actually scheduled.
1163 * The polling interval may be more frequent than requested.
1164 * For example, some controllers have a maximum interval of 32 milliseconds,
1165 * while others support intervals of up to 1024 milliseconds.
1166 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1167 * endpoints, as well as high speed interrupt endpoints, the encoding of
1168 * the transfer interval in the endpoint descriptor is logarithmic.
1169 * Device drivers must convert that value to linear units themselves.)
1171 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1172 * the host controller to schedule the transfer as soon as bandwidth
1173 * utilization allows, and then set start_frame to reflect the actual frame
1174 * selected during submission. Otherwise drivers must specify the start_frame
1175 * and handle the case where the transfer can't begin then. However, drivers
1176 * won't know how bandwidth is currently allocated, and while they can
1177 * find the current frame using usb_get_current_frame_number () they can't
1178 * know the range for that frame number. (Ranges for frame counter values
1179 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1181 * Isochronous URBs have a different data transfer model, in part because
1182 * the quality of service is only "best effort". Callers provide specially
1183 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1184 * at the end. Each such packet is an individual ISO transfer. Isochronous
1185 * URBs are normally queued, submitted by drivers to arrange that
1186 * transfers are at least double buffered, and then explicitly resubmitted
1187 * in completion handlers, so
1188 * that data (such as audio or video) streams at as constant a rate as the
1189 * host controller scheduler can support.
1191 * Completion Callbacks:
1193 * The completion callback is made in_interrupt(), and one of the first
1194 * things that a completion handler should do is check the status field.
1195 * The status field is provided for all URBs. It is used to report
1196 * unlinked URBs, and status for all non-ISO transfers. It should not
1197 * be examined before the URB is returned to the completion handler.
1199 * The context field is normally used to link URBs back to the relevant
1200 * driver or request state.
1202 * When the completion callback is invoked for non-isochronous URBs, the
1203 * actual_length field tells how many bytes were transferred. This field
1204 * is updated even when the URB terminated with an error or was unlinked.
1206 * ISO transfer status is reported in the status and actual_length fields
1207 * of the iso_frame_desc array, and the number of errors is reported in
1208 * error_count. Completion callbacks for ISO transfers will normally
1209 * (re)submit URBs to ensure a constant transfer rate.
1211 * Note that even fields marked "public" should not be touched by the driver
1212 * when the urb is owned by the hcd, that is, since the call to
1213 * usb_submit_urb() till the entry into the completion routine.
1215 struct urb {
1216 /* private: usb core and host controller only fields in the urb */
1217 struct kref kref; /* reference count of the URB */
1218 void *hcpriv; /* private data for host controller */
1219 atomic_t use_count; /* concurrent submissions counter */
1220 atomic_t reject; /* submissions will fail */
1221 int unlinked; /* unlink error code */
1223 /* public: documented fields in the urb that can be used by drivers */
1224 struct list_head urb_list; /* list head for use by the urb's
1225 * current owner */
1226 struct list_head anchor_list; /* the URB may be anchored */
1227 struct usb_anchor *anchor;
1228 struct usb_device *dev; /* (in) pointer to associated device */
1229 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1230 unsigned int pipe; /* (in) pipe information */
1231 unsigned int stream_id; /* (in) stream ID */
1232 int status; /* (return) non-ISO status */
1233 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1234 void *transfer_buffer; /* (in) associated data buffer */
1235 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1236 struct scatterlist *sg; /* (in) scatter gather buffer list */
1237 int num_mapped_sgs; /* (internal) mapped sg entries */
1238 int num_sgs; /* (in) number of entries in the sg list */
1239 u32 transfer_buffer_length; /* (in) data buffer length */
1240 u32 actual_length; /* (return) actual transfer length */
1241 unsigned char *setup_packet; /* (in) setup packet (control only) */
1242 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1243 int start_frame; /* (modify) start frame (ISO) */
1244 int number_of_packets; /* (in) number of ISO packets */
1245 int interval; /* (modify) transfer interval
1246 * (INT/ISO) */
1247 int error_count; /* (return) number of ISO errors */
1248 void *context; /* (in) context for completion */
1249 usb_complete_t complete; /* (in) completion routine */
1250 struct usb_iso_packet_descriptor iso_frame_desc[0];
1251 /* (in) ISO ONLY */
1254 /* ----------------------------------------------------------------------- */
1257 * usb_fill_control_urb - initializes a control urb
1258 * @urb: pointer to the urb to initialize.
1259 * @dev: pointer to the struct usb_device for this urb.
1260 * @pipe: the endpoint pipe
1261 * @setup_packet: pointer to the setup_packet buffer
1262 * @transfer_buffer: pointer to the transfer buffer
1263 * @buffer_length: length of the transfer buffer
1264 * @complete_fn: pointer to the usb_complete_t function
1265 * @context: what to set the urb context to.
1267 * Initializes a control urb with the proper information needed to submit
1268 * it to a device.
1270 static inline void usb_fill_control_urb(struct urb *urb,
1271 struct usb_device *dev,
1272 unsigned int pipe,
1273 unsigned char *setup_packet,
1274 void *transfer_buffer,
1275 int buffer_length,
1276 usb_complete_t complete_fn,
1277 void *context)
1279 urb->dev = dev;
1280 urb->pipe = pipe;
1281 urb->setup_packet = setup_packet;
1282 urb->transfer_buffer = transfer_buffer;
1283 urb->transfer_buffer_length = buffer_length;
1284 urb->complete = complete_fn;
1285 urb->context = context;
1289 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1290 * @urb: pointer to the urb to initialize.
1291 * @dev: pointer to the struct usb_device for this urb.
1292 * @pipe: the endpoint pipe
1293 * @transfer_buffer: pointer to the transfer buffer
1294 * @buffer_length: length of the transfer buffer
1295 * @complete_fn: pointer to the usb_complete_t function
1296 * @context: what to set the urb context to.
1298 * Initializes a bulk urb with the proper information needed to submit it
1299 * to a device.
1301 static inline void usb_fill_bulk_urb(struct urb *urb,
1302 struct usb_device *dev,
1303 unsigned int pipe,
1304 void *transfer_buffer,
1305 int buffer_length,
1306 usb_complete_t complete_fn,
1307 void *context)
1309 urb->dev = dev;
1310 urb->pipe = pipe;
1311 urb->transfer_buffer = transfer_buffer;
1312 urb->transfer_buffer_length = buffer_length;
1313 urb->complete = complete_fn;
1314 urb->context = context;
1318 * usb_fill_int_urb - macro to help initialize a interrupt urb
1319 * @urb: pointer to the urb to initialize.
1320 * @dev: pointer to the struct usb_device for this urb.
1321 * @pipe: the endpoint pipe
1322 * @transfer_buffer: pointer to the transfer buffer
1323 * @buffer_length: length of the transfer buffer
1324 * @complete_fn: pointer to the usb_complete_t function
1325 * @context: what to set the urb context to.
1326 * @interval: what to set the urb interval to, encoded like
1327 * the endpoint descriptor's bInterval value.
1329 * Initializes a interrupt urb with the proper information needed to submit
1330 * it to a device.
1332 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1333 * encoding of the endpoint interval, and express polling intervals in
1334 * microframes (eight per millisecond) rather than in frames (one per
1335 * millisecond).
1337 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1338 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1339 * through to the host controller, rather than being translated into microframe
1340 * units.
1342 static inline void usb_fill_int_urb(struct urb *urb,
1343 struct usb_device *dev,
1344 unsigned int pipe,
1345 void *transfer_buffer,
1346 int buffer_length,
1347 usb_complete_t complete_fn,
1348 void *context,
1349 int interval)
1351 urb->dev = dev;
1352 urb->pipe = pipe;
1353 urb->transfer_buffer = transfer_buffer;
1354 urb->transfer_buffer_length = buffer_length;
1355 urb->complete = complete_fn;
1356 urb->context = context;
1357 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1358 urb->interval = 1 << (interval - 1);
1359 else
1360 urb->interval = interval;
1361 urb->start_frame = -1;
1364 extern void usb_init_urb(struct urb *urb);
1365 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1366 extern void usb_free_urb(struct urb *urb);
1367 #define usb_put_urb usb_free_urb
1368 extern struct urb *usb_get_urb(struct urb *urb);
1369 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1370 extern int usb_unlink_urb(struct urb *urb);
1371 extern void usb_kill_urb(struct urb *urb);
1372 extern void usb_poison_urb(struct urb *urb);
1373 extern void usb_unpoison_urb(struct urb *urb);
1374 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1375 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1376 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1377 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1378 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1379 extern void usb_unanchor_urb(struct urb *urb);
1380 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1381 unsigned int timeout);
1382 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1383 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1384 extern int usb_anchor_empty(struct usb_anchor *anchor);
1387 * usb_urb_dir_in - check if an URB describes an IN transfer
1388 * @urb: URB to be checked
1390 * Returns 1 if @urb describes an IN transfer (device-to-host),
1391 * otherwise 0.
1393 static inline int usb_urb_dir_in(struct urb *urb)
1395 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1399 * usb_urb_dir_out - check if an URB describes an OUT transfer
1400 * @urb: URB to be checked
1402 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1403 * otherwise 0.
1405 static inline int usb_urb_dir_out(struct urb *urb)
1407 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1410 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1411 gfp_t mem_flags, dma_addr_t *dma);
1412 void usb_free_coherent(struct usb_device *dev, size_t size,
1413 void *addr, dma_addr_t dma);
1415 #if 0
1416 struct urb *usb_buffer_map(struct urb *urb);
1417 void usb_buffer_dmasync(struct urb *urb);
1418 void usb_buffer_unmap(struct urb *urb);
1419 #endif
1421 struct scatterlist;
1422 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1423 struct scatterlist *sg, int nents);
1424 #if 0
1425 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1426 struct scatterlist *sg, int n_hw_ents);
1427 #endif
1428 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1429 struct scatterlist *sg, int n_hw_ents);
1431 /*-------------------------------------------------------------------*
1432 * SYNCHRONOUS CALL SUPPORT *
1433 *-------------------------------------------------------------------*/
1435 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1436 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1437 void *data, __u16 size, int timeout);
1438 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1439 void *data, int len, int *actual_length, int timeout);
1440 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1441 void *data, int len, int *actual_length,
1442 int timeout);
1444 /* wrappers around usb_control_msg() for the most common standard requests */
1445 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1446 unsigned char descindex, void *buf, int size);
1447 extern int usb_get_status(struct usb_device *dev,
1448 int type, int target, void *data);
1449 extern int usb_string(struct usb_device *dev, int index,
1450 char *buf, size_t size);
1452 /* wrappers that also update important state inside usbcore */
1453 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1454 extern int usb_reset_configuration(struct usb_device *dev);
1455 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1456 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1458 /* this request isn't really synchronous, but it belongs with the others */
1459 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1462 * timeouts, in milliseconds, used for sending/receiving control messages
1463 * they typically complete within a few frames (msec) after they're issued
1464 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1465 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1467 #define USB_CTRL_GET_TIMEOUT 5000
1468 #define USB_CTRL_SET_TIMEOUT 5000
1472 * struct usb_sg_request - support for scatter/gather I/O
1473 * @status: zero indicates success, else negative errno
1474 * @bytes: counts bytes transferred.
1476 * These requests are initialized using usb_sg_init(), and then are used
1477 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1478 * members of the request object aren't for driver access.
1480 * The status and bytecount values are valid only after usb_sg_wait()
1481 * returns. If the status is zero, then the bytecount matches the total
1482 * from the request.
1484 * After an error completion, drivers may need to clear a halt condition
1485 * on the endpoint.
1487 struct usb_sg_request {
1488 int status;
1489 size_t bytes;
1491 /* private:
1492 * members below are private to usbcore,
1493 * and are not provided for driver access!
1495 spinlock_t lock;
1497 struct usb_device *dev;
1498 int pipe;
1500 int entries;
1501 struct urb **urbs;
1503 int count;
1504 struct completion complete;
1507 int usb_sg_init(
1508 struct usb_sg_request *io,
1509 struct usb_device *dev,
1510 unsigned pipe,
1511 unsigned period,
1512 struct scatterlist *sg,
1513 int nents,
1514 size_t length,
1515 gfp_t mem_flags
1517 void usb_sg_cancel(struct usb_sg_request *io);
1518 void usb_sg_wait(struct usb_sg_request *io);
1521 /* ----------------------------------------------------------------------- */
1524 * For various legacy reasons, Linux has a small cookie that's paired with
1525 * a struct usb_device to identify an endpoint queue. Queue characteristics
1526 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1527 * an unsigned int encoded as:
1529 * - direction: bit 7 (0 = Host-to-Device [Out],
1530 * 1 = Device-to-Host [In] ...
1531 * like endpoint bEndpointAddress)
1532 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1533 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1534 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1535 * 10 = control, 11 = bulk)
1537 * Given the device address and endpoint descriptor, pipes are redundant.
1540 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1541 /* (yet ... they're the values used by usbfs) */
1542 #define PIPE_ISOCHRONOUS 0
1543 #define PIPE_INTERRUPT 1
1544 #define PIPE_CONTROL 2
1545 #define PIPE_BULK 3
1547 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1548 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1550 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1551 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1553 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1554 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1555 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1556 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1557 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1559 static inline unsigned int __create_pipe(struct usb_device *dev,
1560 unsigned int endpoint)
1562 return (dev->devnum << 8) | (endpoint << 15);
1565 /* Create various pipes... */
1566 #define usb_sndctrlpipe(dev, endpoint) \
1567 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1568 #define usb_rcvctrlpipe(dev, endpoint) \
1569 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1570 #define usb_sndisocpipe(dev, endpoint) \
1571 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1572 #define usb_rcvisocpipe(dev, endpoint) \
1573 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1574 #define usb_sndbulkpipe(dev, endpoint) \
1575 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1576 #define usb_rcvbulkpipe(dev, endpoint) \
1577 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1578 #define usb_sndintpipe(dev, endpoint) \
1579 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1580 #define usb_rcvintpipe(dev, endpoint) \
1581 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1583 static inline struct usb_host_endpoint *
1584 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1586 struct usb_host_endpoint **eps;
1587 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1588 return eps[usb_pipeendpoint(pipe)];
1591 /*-------------------------------------------------------------------------*/
1593 static inline __u16
1594 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1596 struct usb_host_endpoint *ep;
1597 unsigned epnum = usb_pipeendpoint(pipe);
1599 if (is_out) {
1600 WARN_ON(usb_pipein(pipe));
1601 ep = udev->ep_out[epnum];
1602 } else {
1603 WARN_ON(usb_pipeout(pipe));
1604 ep = udev->ep_in[epnum];
1606 if (!ep)
1607 return 0;
1609 /* NOTE: only 0x07ff bits are for packet size... */
1610 return usb_endpoint_maxp(&ep->desc);
1613 /* ----------------------------------------------------------------------- */
1615 /* translate USB error codes to codes user space understands */
1616 static inline int usb_translate_errors(int error_code)
1618 switch (error_code) {
1619 case 0:
1620 case -ENOMEM:
1621 case -ENODEV:
1622 return error_code;
1623 default:
1624 return -EIO;
1628 /* Events from the usb core */
1629 #define USB_DEVICE_ADD 0x0001
1630 #define USB_DEVICE_REMOVE 0x0002
1631 #define USB_BUS_ADD 0x0003
1632 #define USB_BUS_REMOVE 0x0004
1633 extern void usb_register_notify(struct notifier_block *nb);
1634 extern void usb_unregister_notify(struct notifier_block *nb);
1636 #ifdef DEBUG
1637 #define dbg(format, arg...) \
1638 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1639 #else
1640 #define dbg(format, arg...) \
1641 do { \
1642 if (0) \
1643 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1644 } while (0)
1645 #endif
1647 #define err(format, arg...) \
1648 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1650 /* debugfs stuff */
1651 extern struct dentry *usb_debug_root;
1653 #endif /* __KERNEL__ */
1655 #endif