OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / kernel / kexec.c
blob7b0886786701b845cfbd8823252392e40b11a1c8
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35 #include <linux/syscore_ops.h>
37 #include <asm/page.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/system.h>
41 #include <asm/sections.h>
43 /* Per cpu memory for storing cpu states in case of system crash. */
44 note_buf_t __percpu *crash_notes;
46 /* vmcoreinfo stuff */
47 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
48 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
49 size_t vmcoreinfo_size;
50 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
52 /* Location of the reserved area for the crash kernel */
53 struct resource crashk_res = {
54 .name = "Crash kernel",
55 .start = 0,
56 .end = 0,
57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
60 int kexec_should_crash(struct task_struct *p)
62 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
63 return 1;
64 return 0;
68 * When kexec transitions to the new kernel there is a one-to-one
69 * mapping between physical and virtual addresses. On processors
70 * where you can disable the MMU this is trivial, and easy. For
71 * others it is still a simple predictable page table to setup.
73 * In that environment kexec copies the new kernel to its final
74 * resting place. This means I can only support memory whose
75 * physical address can fit in an unsigned long. In particular
76 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
77 * If the assembly stub has more restrictive requirements
78 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
79 * defined more restrictively in <asm/kexec.h>.
81 * The code for the transition from the current kernel to the
82 * the new kernel is placed in the control_code_buffer, whose size
83 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
84 * page of memory is necessary, but some architectures require more.
85 * Because this memory must be identity mapped in the transition from
86 * virtual to physical addresses it must live in the range
87 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
88 * modifiable.
90 * The assembly stub in the control code buffer is passed a linked list
91 * of descriptor pages detailing the source pages of the new kernel,
92 * and the destination addresses of those source pages. As this data
93 * structure is not used in the context of the current OS, it must
94 * be self-contained.
96 * The code has been made to work with highmem pages and will use a
97 * destination page in its final resting place (if it happens
98 * to allocate it). The end product of this is that most of the
99 * physical address space, and most of RAM can be used.
101 * Future directions include:
102 * - allocating a page table with the control code buffer identity
103 * mapped, to simplify machine_kexec and make kexec_on_panic more
104 * reliable.
108 * KIMAGE_NO_DEST is an impossible destination address..., for
109 * allocating pages whose destination address we do not care about.
111 #define KIMAGE_NO_DEST (-1UL)
113 static int kimage_is_destination_range(struct kimage *image,
114 unsigned long start, unsigned long end);
115 static struct page *kimage_alloc_page(struct kimage *image,
116 gfp_t gfp_mask,
117 unsigned long dest);
119 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
120 unsigned long nr_segments,
121 struct kexec_segment __user *segments)
123 size_t segment_bytes;
124 struct kimage *image;
125 unsigned long i;
126 int result;
128 /* Allocate a controlling structure */
129 result = -ENOMEM;
130 image = kzalloc(sizeof(*image), GFP_KERNEL);
131 if (!image)
132 goto out;
134 image->head = 0;
135 image->entry = &image->head;
136 image->last_entry = &image->head;
137 image->control_page = ~0; /* By default this does not apply */
138 image->start = entry;
139 image->type = KEXEC_TYPE_DEFAULT;
141 /* Initialize the list of control pages */
142 INIT_LIST_HEAD(&image->control_pages);
144 /* Initialize the list of destination pages */
145 INIT_LIST_HEAD(&image->dest_pages);
147 /* Initialize the list of unusable pages */
148 INIT_LIST_HEAD(&image->unuseable_pages);
150 /* Read in the segments */
151 image->nr_segments = nr_segments;
152 segment_bytes = nr_segments * sizeof(*segments);
153 result = copy_from_user(image->segment, segments, segment_bytes);
154 if (result) {
155 result = -EFAULT;
156 goto out;
160 * Verify we have good destination addresses. The caller is
161 * responsible for making certain we don't attempt to load
162 * the new image into invalid or reserved areas of RAM. This
163 * just verifies it is an address we can use.
165 * Since the kernel does everything in page size chunks ensure
166 * the destination addresses are page aligned. Too many
167 * special cases crop of when we don't do this. The most
168 * insidious is getting overlapping destination addresses
169 * simply because addresses are changed to page size
170 * granularity.
172 result = -EADDRNOTAVAIL;
173 for (i = 0; i < nr_segments; i++) {
174 unsigned long mstart, mend;
176 mstart = image->segment[i].mem;
177 mend = mstart + image->segment[i].memsz;
178 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
179 goto out;
180 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
181 goto out;
184 /* Verify our destination addresses do not overlap.
185 * If we alloed overlapping destination addresses
186 * through very weird things can happen with no
187 * easy explanation as one segment stops on another.
189 result = -EINVAL;
190 for (i = 0; i < nr_segments; i++) {
191 unsigned long mstart, mend;
192 unsigned long j;
194 mstart = image->segment[i].mem;
195 mend = mstart + image->segment[i].memsz;
196 for (j = 0; j < i; j++) {
197 unsigned long pstart, pend;
198 pstart = image->segment[j].mem;
199 pend = pstart + image->segment[j].memsz;
200 /* Do the segments overlap ? */
201 if ((mend > pstart) && (mstart < pend))
202 goto out;
206 /* Ensure our buffer sizes are strictly less than
207 * our memory sizes. This should always be the case,
208 * and it is easier to check up front than to be surprised
209 * later on.
211 result = -EINVAL;
212 for (i = 0; i < nr_segments; i++) {
213 if (image->segment[i].bufsz > image->segment[i].memsz)
214 goto out;
217 result = 0;
218 out:
219 if (result == 0)
220 *rimage = image;
221 else
222 kfree(image);
224 return result;
228 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
229 unsigned long nr_segments,
230 struct kexec_segment __user *segments)
232 int result;
233 struct kimage *image;
235 /* Allocate and initialize a controlling structure */
236 image = NULL;
237 result = do_kimage_alloc(&image, entry, nr_segments, segments);
238 if (result)
239 goto out;
241 *rimage = image;
244 * Find a location for the control code buffer, and add it
245 * the vector of segments so that it's pages will also be
246 * counted as destination pages.
248 result = -ENOMEM;
249 image->control_code_page = kimage_alloc_control_pages(image,
250 get_order(KEXEC_CONTROL_PAGE_SIZE));
251 if (!image->control_code_page) {
252 printk(KERN_ERR "Could not allocate control_code_buffer\n");
253 goto out;
256 image->swap_page = kimage_alloc_control_pages(image, 0);
257 if (!image->swap_page) {
258 printk(KERN_ERR "Could not allocate swap buffer\n");
259 goto out;
262 result = 0;
263 out:
264 if (result == 0)
265 *rimage = image;
266 else
267 kfree(image);
269 return result;
272 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
273 unsigned long nr_segments,
274 struct kexec_segment __user *segments)
276 int result;
277 struct kimage *image;
278 unsigned long i;
280 image = NULL;
281 /* Verify we have a valid entry point */
282 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
283 result = -EADDRNOTAVAIL;
284 goto out;
287 /* Allocate and initialize a controlling structure */
288 result = do_kimage_alloc(&image, entry, nr_segments, segments);
289 if (result)
290 goto out;
292 /* Enable the special crash kernel control page
293 * allocation policy.
295 image->control_page = crashk_res.start;
296 image->type = KEXEC_TYPE_CRASH;
299 * Verify we have good destination addresses. Normally
300 * the caller is responsible for making certain we don't
301 * attempt to load the new image into invalid or reserved
302 * areas of RAM. But crash kernels are preloaded into a
303 * reserved area of ram. We must ensure the addresses
304 * are in the reserved area otherwise preloading the
305 * kernel could corrupt things.
307 result = -EADDRNOTAVAIL;
308 for (i = 0; i < nr_segments; i++) {
309 unsigned long mstart, mend;
311 mstart = image->segment[i].mem;
312 mend = mstart + image->segment[i].memsz - 1;
313 /* Ensure we are within the crash kernel limits */
314 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
315 goto out;
319 * Find a location for the control code buffer, and add
320 * the vector of segments so that it's pages will also be
321 * counted as destination pages.
323 result = -ENOMEM;
324 image->control_code_page = kimage_alloc_control_pages(image,
325 get_order(KEXEC_CONTROL_PAGE_SIZE));
326 if (!image->control_code_page) {
327 printk(KERN_ERR "Could not allocate control_code_buffer\n");
328 goto out;
331 result = 0;
332 out:
333 if (result == 0)
334 *rimage = image;
335 else
336 kfree(image);
338 return result;
341 static int kimage_is_destination_range(struct kimage *image,
342 unsigned long start,
343 unsigned long end)
345 unsigned long i;
347 for (i = 0; i < image->nr_segments; i++) {
348 unsigned long mstart, mend;
350 mstart = image->segment[i].mem;
351 mend = mstart + image->segment[i].memsz;
352 if ((end > mstart) && (start < mend))
353 return 1;
356 return 0;
359 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
361 struct page *pages;
363 pages = alloc_pages(gfp_mask, order);
364 if (pages) {
365 unsigned int count, i;
366 pages->mapping = NULL;
367 set_page_private(pages, order);
368 count = 1 << order;
369 for (i = 0; i < count; i++)
370 SetPageReserved(pages + i);
373 return pages;
376 static void kimage_free_pages(struct page *page)
378 unsigned int order, count, i;
380 order = page_private(page);
381 count = 1 << order;
382 for (i = 0; i < count; i++)
383 ClearPageReserved(page + i);
384 __free_pages(page, order);
387 static void kimage_free_page_list(struct list_head *list)
389 struct list_head *pos, *next;
391 list_for_each_safe(pos, next, list) {
392 struct page *page;
394 page = list_entry(pos, struct page, lru);
395 list_del(&page->lru);
396 kimage_free_pages(page);
400 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
401 unsigned int order)
403 /* Control pages are special, they are the intermediaries
404 * that are needed while we copy the rest of the pages
405 * to their final resting place. As such they must
406 * not conflict with either the destination addresses
407 * or memory the kernel is already using.
409 * The only case where we really need more than one of
410 * these are for architectures where we cannot disable
411 * the MMU and must instead generate an identity mapped
412 * page table for all of the memory.
414 * At worst this runs in O(N) of the image size.
416 struct list_head extra_pages;
417 struct page *pages;
418 unsigned int count;
420 count = 1 << order;
421 INIT_LIST_HEAD(&extra_pages);
423 /* Loop while I can allocate a page and the page allocated
424 * is a destination page.
426 do {
427 unsigned long pfn, epfn, addr, eaddr;
429 pages = kimage_alloc_pages(GFP_KERNEL, order);
430 if (!pages)
431 break;
432 pfn = page_to_pfn(pages);
433 epfn = pfn + count;
434 addr = pfn << PAGE_SHIFT;
435 eaddr = epfn << PAGE_SHIFT;
436 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
437 kimage_is_destination_range(image, addr, eaddr)) {
438 list_add(&pages->lru, &extra_pages);
439 pages = NULL;
441 } while (!pages);
443 if (pages) {
444 /* Remember the allocated page... */
445 list_add(&pages->lru, &image->control_pages);
447 /* Because the page is already in it's destination
448 * location we will never allocate another page at
449 * that address. Therefore kimage_alloc_pages
450 * will not return it (again) and we don't need
451 * to give it an entry in image->segment[].
454 /* Deal with the destination pages I have inadvertently allocated.
456 * Ideally I would convert multi-page allocations into single
457 * page allocations, and add everything to image->dest_pages.
459 * For now it is simpler to just free the pages.
461 kimage_free_page_list(&extra_pages);
463 return pages;
466 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
467 unsigned int order)
469 /* Control pages are special, they are the intermediaries
470 * that are needed while we copy the rest of the pages
471 * to their final resting place. As such they must
472 * not conflict with either the destination addresses
473 * or memory the kernel is already using.
475 * Control pages are also the only pags we must allocate
476 * when loading a crash kernel. All of the other pages
477 * are specified by the segments and we just memcpy
478 * into them directly.
480 * The only case where we really need more than one of
481 * these are for architectures where we cannot disable
482 * the MMU and must instead generate an identity mapped
483 * page table for all of the memory.
485 * Given the low demand this implements a very simple
486 * allocator that finds the first hole of the appropriate
487 * size in the reserved memory region, and allocates all
488 * of the memory up to and including the hole.
490 unsigned long hole_start, hole_end, size;
491 struct page *pages;
493 pages = NULL;
494 size = (1 << order) << PAGE_SHIFT;
495 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
496 hole_end = hole_start + size - 1;
497 while (hole_end <= crashk_res.end) {
498 unsigned long i;
500 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
501 break;
502 if (hole_end > crashk_res.end)
503 break;
504 /* See if I overlap any of the segments */
505 for (i = 0; i < image->nr_segments; i++) {
506 unsigned long mstart, mend;
508 mstart = image->segment[i].mem;
509 mend = mstart + image->segment[i].memsz - 1;
510 if ((hole_end >= mstart) && (hole_start <= mend)) {
511 /* Advance the hole to the end of the segment */
512 hole_start = (mend + (size - 1)) & ~(size - 1);
513 hole_end = hole_start + size - 1;
514 break;
517 /* If I don't overlap any segments I have found my hole! */
518 if (i == image->nr_segments) {
519 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
520 break;
523 if (pages)
524 image->control_page = hole_end;
526 return pages;
530 struct page *kimage_alloc_control_pages(struct kimage *image,
531 unsigned int order)
533 struct page *pages = NULL;
535 switch (image->type) {
536 case KEXEC_TYPE_DEFAULT:
537 pages = kimage_alloc_normal_control_pages(image, order);
538 break;
539 case KEXEC_TYPE_CRASH:
540 pages = kimage_alloc_crash_control_pages(image, order);
541 break;
544 return pages;
547 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
549 if (*image->entry != 0)
550 image->entry++;
552 if (image->entry == image->last_entry) {
553 kimage_entry_t *ind_page;
554 struct page *page;
556 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
557 if (!page)
558 return -ENOMEM;
560 ind_page = page_address(page);
561 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
562 image->entry = ind_page;
563 image->last_entry = ind_page +
564 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
566 *image->entry = entry;
567 image->entry++;
568 *image->entry = 0;
570 return 0;
573 static int kimage_set_destination(struct kimage *image,
574 unsigned long destination)
576 int result;
578 destination &= PAGE_MASK;
579 result = kimage_add_entry(image, destination | IND_DESTINATION);
580 if (result == 0)
581 image->destination = destination;
583 return result;
587 static int kimage_add_page(struct kimage *image, unsigned long page)
589 int result;
591 page &= PAGE_MASK;
592 result = kimage_add_entry(image, page | IND_SOURCE);
593 if (result == 0)
594 image->destination += PAGE_SIZE;
596 return result;
600 static void kimage_free_extra_pages(struct kimage *image)
602 /* Walk through and free any extra destination pages I may have */
603 kimage_free_page_list(&image->dest_pages);
605 /* Walk through and free any unusable pages I have cached */
606 kimage_free_page_list(&image->unuseable_pages);
609 static void kimage_terminate(struct kimage *image)
611 if (*image->entry != 0)
612 image->entry++;
614 *image->entry = IND_DONE;
617 #define for_each_kimage_entry(image, ptr, entry) \
618 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
619 ptr = (entry & IND_INDIRECTION)? \
620 phys_to_virt((entry & PAGE_MASK)): ptr +1)
622 static void kimage_free_entry(kimage_entry_t entry)
624 struct page *page;
626 page = pfn_to_page(entry >> PAGE_SHIFT);
627 kimage_free_pages(page);
630 static void kimage_free(struct kimage *image)
632 kimage_entry_t *ptr, entry;
633 kimage_entry_t ind = 0;
635 if (!image)
636 return;
638 kimage_free_extra_pages(image);
639 for_each_kimage_entry(image, ptr, entry) {
640 if (entry & IND_INDIRECTION) {
641 /* Free the previous indirection page */
642 if (ind & IND_INDIRECTION)
643 kimage_free_entry(ind);
644 /* Save this indirection page until we are
645 * done with it.
647 ind = entry;
649 else if (entry & IND_SOURCE)
650 kimage_free_entry(entry);
652 /* Free the final indirection page */
653 if (ind & IND_INDIRECTION)
654 kimage_free_entry(ind);
656 /* Handle any machine specific cleanup */
657 machine_kexec_cleanup(image);
659 /* Free the kexec control pages... */
660 kimage_free_page_list(&image->control_pages);
661 kfree(image);
664 static kimage_entry_t *kimage_dst_used(struct kimage *image,
665 unsigned long page)
667 kimage_entry_t *ptr, entry;
668 unsigned long destination = 0;
670 for_each_kimage_entry(image, ptr, entry) {
671 if (entry & IND_DESTINATION)
672 destination = entry & PAGE_MASK;
673 else if (entry & IND_SOURCE) {
674 if (page == destination)
675 return ptr;
676 destination += PAGE_SIZE;
680 return NULL;
683 static struct page *kimage_alloc_page(struct kimage *image,
684 gfp_t gfp_mask,
685 unsigned long destination)
688 * Here we implement safeguards to ensure that a source page
689 * is not copied to its destination page before the data on
690 * the destination page is no longer useful.
692 * To do this we maintain the invariant that a source page is
693 * either its own destination page, or it is not a
694 * destination page at all.
696 * That is slightly stronger than required, but the proof
697 * that no problems will not occur is trivial, and the
698 * implementation is simply to verify.
700 * When allocating all pages normally this algorithm will run
701 * in O(N) time, but in the worst case it will run in O(N^2)
702 * time. If the runtime is a problem the data structures can
703 * be fixed.
705 struct page *page;
706 unsigned long addr;
709 * Walk through the list of destination pages, and see if I
710 * have a match.
712 list_for_each_entry(page, &image->dest_pages, lru) {
713 addr = page_to_pfn(page) << PAGE_SHIFT;
714 if (addr == destination) {
715 list_del(&page->lru);
716 return page;
719 page = NULL;
720 while (1) {
721 kimage_entry_t *old;
723 /* Allocate a page, if we run out of memory give up */
724 page = kimage_alloc_pages(gfp_mask, 0);
725 if (!page)
726 return NULL;
727 /* If the page cannot be used file it away */
728 if (page_to_pfn(page) >
729 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
730 list_add(&page->lru, &image->unuseable_pages);
731 continue;
733 addr = page_to_pfn(page) << PAGE_SHIFT;
735 /* If it is the destination page we want use it */
736 if (addr == destination)
737 break;
739 /* If the page is not a destination page use it */
740 if (!kimage_is_destination_range(image, addr,
741 addr + PAGE_SIZE))
742 break;
745 * I know that the page is someones destination page.
746 * See if there is already a source page for this
747 * destination page. And if so swap the source pages.
749 old = kimage_dst_used(image, addr);
750 if (old) {
751 /* If so move it */
752 unsigned long old_addr;
753 struct page *old_page;
755 old_addr = *old & PAGE_MASK;
756 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
757 copy_highpage(page, old_page);
758 *old = addr | (*old & ~PAGE_MASK);
760 /* The old page I have found cannot be a
761 * destination page, so return it if it's
762 * gfp_flags honor the ones passed in.
764 if (!(gfp_mask & __GFP_HIGHMEM) &&
765 PageHighMem(old_page)) {
766 kimage_free_pages(old_page);
767 continue;
769 addr = old_addr;
770 page = old_page;
771 break;
773 else {
774 /* Place the page on the destination list I
775 * will use it later.
777 list_add(&page->lru, &image->dest_pages);
781 return page;
784 static int kimage_load_normal_segment(struct kimage *image,
785 struct kexec_segment *segment)
787 unsigned long maddr;
788 unsigned long ubytes, mbytes;
789 int result;
790 unsigned char __user *buf;
792 result = 0;
793 buf = segment->buf;
794 ubytes = segment->bufsz;
795 mbytes = segment->memsz;
796 maddr = segment->mem;
798 result = kimage_set_destination(image, maddr);
799 if (result < 0)
800 goto out;
802 while (mbytes) {
803 struct page *page;
804 char *ptr;
805 size_t uchunk, mchunk;
807 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
808 if (!page) {
809 result = -ENOMEM;
810 goto out;
812 result = kimage_add_page(image, page_to_pfn(page)
813 << PAGE_SHIFT);
814 if (result < 0)
815 goto out;
817 ptr = kmap(page);
818 /* Start with a clear page */
819 clear_page(ptr);
820 ptr += maddr & ~PAGE_MASK;
821 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
822 if (mchunk > mbytes)
823 mchunk = mbytes;
825 uchunk = mchunk;
826 if (uchunk > ubytes)
827 uchunk = ubytes;
829 result = copy_from_user(ptr, buf, uchunk);
830 kunmap(page);
831 if (result) {
832 result = -EFAULT;
833 goto out;
835 ubytes -= uchunk;
836 maddr += mchunk;
837 buf += mchunk;
838 mbytes -= mchunk;
840 out:
841 return result;
844 static int kimage_load_crash_segment(struct kimage *image,
845 struct kexec_segment *segment)
847 /* For crash dumps kernels we simply copy the data from
848 * user space to it's destination.
849 * We do things a page at a time for the sake of kmap.
851 unsigned long maddr;
852 unsigned long ubytes, mbytes;
853 int result;
854 unsigned char __user *buf;
856 result = 0;
857 buf = segment->buf;
858 ubytes = segment->bufsz;
859 mbytes = segment->memsz;
860 maddr = segment->mem;
861 while (mbytes) {
862 struct page *page;
863 char *ptr;
864 size_t uchunk, mchunk;
866 page = pfn_to_page(maddr >> PAGE_SHIFT);
867 if (!page) {
868 result = -ENOMEM;
869 goto out;
871 ptr = kmap(page);
872 ptr += maddr & ~PAGE_MASK;
873 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
874 if (mchunk > mbytes)
875 mchunk = mbytes;
877 uchunk = mchunk;
878 if (uchunk > ubytes) {
879 uchunk = ubytes;
880 /* Zero the trailing part of the page */
881 memset(ptr + uchunk, 0, mchunk - uchunk);
883 result = copy_from_user(ptr, buf, uchunk);
884 kexec_flush_icache_page(page);
885 kunmap(page);
886 if (result) {
887 result = -EFAULT;
888 goto out;
890 ubytes -= uchunk;
891 maddr += mchunk;
892 buf += mchunk;
893 mbytes -= mchunk;
895 out:
896 return result;
899 static int kimage_load_segment(struct kimage *image,
900 struct kexec_segment *segment)
902 int result = -ENOMEM;
904 switch (image->type) {
905 case KEXEC_TYPE_DEFAULT:
906 result = kimage_load_normal_segment(image, segment);
907 break;
908 case KEXEC_TYPE_CRASH:
909 result = kimage_load_crash_segment(image, segment);
910 break;
913 return result;
917 * Exec Kernel system call: for obvious reasons only root may call it.
919 * This call breaks up into three pieces.
920 * - A generic part which loads the new kernel from the current
921 * address space, and very carefully places the data in the
922 * allocated pages.
924 * - A generic part that interacts with the kernel and tells all of
925 * the devices to shut down. Preventing on-going dmas, and placing
926 * the devices in a consistent state so a later kernel can
927 * reinitialize them.
929 * - A machine specific part that includes the syscall number
930 * and the copies the image to it's final destination. And
931 * jumps into the image at entry.
933 * kexec does not sync, or unmount filesystems so if you need
934 * that to happen you need to do that yourself.
936 struct kimage *kexec_image;
937 struct kimage *kexec_crash_image;
939 static DEFINE_MUTEX(kexec_mutex);
941 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
942 struct kexec_segment __user *, segments, unsigned long, flags)
944 struct kimage **dest_image, *image;
945 int result;
947 /* We only trust the superuser with rebooting the system. */
948 if (!capable(CAP_SYS_BOOT))
949 return -EPERM;
952 * Verify we have a legal set of flags
953 * This leaves us room for future extensions.
955 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
956 return -EINVAL;
958 /* Verify we are on the appropriate architecture */
959 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
960 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
961 return -EINVAL;
963 /* Put an artificial cap on the number
964 * of segments passed to kexec_load.
966 if (nr_segments > KEXEC_SEGMENT_MAX)
967 return -EINVAL;
969 image = NULL;
970 result = 0;
972 /* Because we write directly to the reserved memory
973 * region when loading crash kernels we need a mutex here to
974 * prevent multiple crash kernels from attempting to load
975 * simultaneously, and to prevent a crash kernel from loading
976 * over the top of a in use crash kernel.
978 * KISS: always take the mutex.
980 if (!mutex_trylock(&kexec_mutex))
981 return -EBUSY;
983 dest_image = &kexec_image;
984 if (flags & KEXEC_ON_CRASH)
985 dest_image = &kexec_crash_image;
986 if (nr_segments > 0) {
987 unsigned long i;
989 /* Loading another kernel to reboot into */
990 if ((flags & KEXEC_ON_CRASH) == 0)
991 result = kimage_normal_alloc(&image, entry,
992 nr_segments, segments);
993 /* Loading another kernel to switch to if this one crashes */
994 else if (flags & KEXEC_ON_CRASH) {
995 /* Free any current crash dump kernel before
996 * we corrupt it.
998 kimage_free(xchg(&kexec_crash_image, NULL));
999 result = kimage_crash_alloc(&image, entry,
1000 nr_segments, segments);
1001 crash_map_reserved_pages();
1003 if (result)
1004 goto out;
1006 if (flags & KEXEC_PRESERVE_CONTEXT)
1007 image->preserve_context = 1;
1008 result = machine_kexec_prepare(image);
1009 if (result)
1010 goto out;
1012 for (i = 0; i < nr_segments; i++) {
1013 result = kimage_load_segment(image, &image->segment[i]);
1014 if (result)
1015 goto out;
1017 kimage_terminate(image);
1018 if (flags & KEXEC_ON_CRASH)
1019 crash_unmap_reserved_pages();
1021 /* Install the new kernel, and Uninstall the old */
1022 image = xchg(dest_image, image);
1024 out:
1025 mutex_unlock(&kexec_mutex);
1026 kimage_free(image);
1028 return result;
1032 * Add and remove page tables for crashkernel memory
1034 * Provide an empty default implementation here -- architecture
1035 * code may override this
1037 void __weak crash_map_reserved_pages(void)
1040 void __weak crash_unmap_reserved_pages(void)
1043 #ifdef CONFIG_COMPAT
1044 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1045 unsigned long nr_segments,
1046 struct compat_kexec_segment __user *segments,
1047 unsigned long flags)
1049 struct compat_kexec_segment in;
1050 struct kexec_segment out, __user *ksegments;
1051 unsigned long i, result;
1053 /* Don't allow clients that don't understand the native
1054 * architecture to do anything.
1056 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1057 return -EINVAL;
1059 if (nr_segments > KEXEC_SEGMENT_MAX)
1060 return -EINVAL;
1062 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1063 for (i=0; i < nr_segments; i++) {
1064 result = copy_from_user(&in, &segments[i], sizeof(in));
1065 if (result)
1066 return -EFAULT;
1068 out.buf = compat_ptr(in.buf);
1069 out.bufsz = in.bufsz;
1070 out.mem = in.mem;
1071 out.memsz = in.memsz;
1073 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1074 if (result)
1075 return -EFAULT;
1078 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1080 #endif
1082 void crash_kexec(struct pt_regs *regs)
1084 /* Take the kexec_mutex here to prevent sys_kexec_load
1085 * running on one cpu from replacing the crash kernel
1086 * we are using after a panic on a different cpu.
1088 * If the crash kernel was not located in a fixed area
1089 * of memory the xchg(&kexec_crash_image) would be
1090 * sufficient. But since I reuse the memory...
1092 if (mutex_trylock(&kexec_mutex)) {
1093 if (kexec_crash_image) {
1094 struct pt_regs fixed_regs;
1096 crash_setup_regs(&fixed_regs, regs);
1097 crash_save_vmcoreinfo();
1098 machine_crash_shutdown(&fixed_regs);
1099 machine_kexec(kexec_crash_image);
1101 mutex_unlock(&kexec_mutex);
1105 size_t crash_get_memory_size(void)
1107 size_t size = 0;
1108 mutex_lock(&kexec_mutex);
1109 if (crashk_res.end != crashk_res.start)
1110 size = resource_size(&crashk_res);
1111 mutex_unlock(&kexec_mutex);
1112 return size;
1115 void __weak crash_free_reserved_phys_range(unsigned long begin,
1116 unsigned long end)
1118 unsigned long addr;
1120 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1121 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1122 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1123 free_page((unsigned long)__va(addr));
1124 totalram_pages++;
1128 int crash_shrink_memory(unsigned long new_size)
1130 int ret = 0;
1131 unsigned long start, end;
1132 unsigned long old_size;
1133 struct resource *ram_res;
1135 mutex_lock(&kexec_mutex);
1137 if (kexec_crash_image) {
1138 ret = -ENOENT;
1139 goto unlock;
1141 start = crashk_res.start;
1142 end = crashk_res.end;
1143 old_size = (end == 0) ? 0 : end - start + 1;
1144 if (new_size >= old_size) {
1145 ret = (new_size == old_size) ? 0 : -EINVAL;
1146 goto unlock;
1149 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1150 if (!ram_res) {
1151 ret = -ENOMEM;
1152 goto unlock;
1155 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1156 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1158 crash_map_reserved_pages();
1159 crash_free_reserved_phys_range(end, crashk_res.end);
1161 if ((start == end) && (crashk_res.parent != NULL))
1162 release_resource(&crashk_res);
1164 ram_res->start = end;
1165 ram_res->end = crashk_res.end;
1166 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1167 ram_res->name = "System RAM";
1169 crashk_res.end = end - 1;
1171 insert_resource(&iomem_resource, ram_res);
1172 crash_unmap_reserved_pages();
1174 unlock:
1175 mutex_unlock(&kexec_mutex);
1176 return ret;
1179 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1180 size_t data_len)
1182 struct elf_note note;
1184 note.n_namesz = strlen(name) + 1;
1185 note.n_descsz = data_len;
1186 note.n_type = type;
1187 memcpy(buf, &note, sizeof(note));
1188 buf += (sizeof(note) + 3)/4;
1189 memcpy(buf, name, note.n_namesz);
1190 buf += (note.n_namesz + 3)/4;
1191 memcpy(buf, data, note.n_descsz);
1192 buf += (note.n_descsz + 3)/4;
1194 return buf;
1197 static void final_note(u32 *buf)
1199 struct elf_note note;
1201 note.n_namesz = 0;
1202 note.n_descsz = 0;
1203 note.n_type = 0;
1204 memcpy(buf, &note, sizeof(note));
1207 void crash_save_cpu(struct pt_regs *regs, int cpu)
1209 struct elf_prstatus prstatus;
1210 u32 *buf;
1212 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1213 return;
1215 /* Using ELF notes here is opportunistic.
1216 * I need a well defined structure format
1217 * for the data I pass, and I need tags
1218 * on the data to indicate what information I have
1219 * squirrelled away. ELF notes happen to provide
1220 * all of that, so there is no need to invent something new.
1222 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1223 if (!buf)
1224 return;
1225 memset(&prstatus, 0, sizeof(prstatus));
1226 prstatus.pr_pid = current->pid;
1227 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1228 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1229 &prstatus, sizeof(prstatus));
1230 final_note(buf);
1233 static int __init crash_notes_memory_init(void)
1235 /* Allocate memory for saving cpu registers. */
1236 crash_notes = alloc_percpu(note_buf_t);
1237 if (!crash_notes) {
1238 printk("Kexec: Memory allocation for saving cpu register"
1239 " states failed\n");
1240 return -ENOMEM;
1242 return 0;
1244 module_init(crash_notes_memory_init)
1248 * parsing the "crashkernel" commandline
1250 * this code is intended to be called from architecture specific code
1255 * This function parses command lines in the format
1257 * crashkernel=ramsize-range:size[,...][@offset]
1259 * The function returns 0 on success and -EINVAL on failure.
1261 static int __init parse_crashkernel_mem(char *cmdline,
1262 unsigned long long system_ram,
1263 unsigned long long *crash_size,
1264 unsigned long long *crash_base)
1266 char *cur = cmdline, *tmp;
1268 /* for each entry of the comma-separated list */
1269 do {
1270 unsigned long long start, end = ULLONG_MAX, size;
1272 /* get the start of the range */
1273 start = memparse(cur, &tmp);
1274 if (cur == tmp) {
1275 pr_warning("crashkernel: Memory value expected\n");
1276 return -EINVAL;
1278 cur = tmp;
1279 if (*cur != '-') {
1280 pr_warning("crashkernel: '-' expected\n");
1281 return -EINVAL;
1283 cur++;
1285 /* if no ':' is here, than we read the end */
1286 if (*cur != ':') {
1287 end = memparse(cur, &tmp);
1288 if (cur == tmp) {
1289 pr_warning("crashkernel: Memory "
1290 "value expected\n");
1291 return -EINVAL;
1293 cur = tmp;
1294 if (end <= start) {
1295 pr_warning("crashkernel: end <= start\n");
1296 return -EINVAL;
1300 if (*cur != ':') {
1301 pr_warning("crashkernel: ':' expected\n");
1302 return -EINVAL;
1304 cur++;
1306 size = memparse(cur, &tmp);
1307 if (cur == tmp) {
1308 pr_warning("Memory value expected\n");
1309 return -EINVAL;
1311 cur = tmp;
1312 if (size >= system_ram) {
1313 pr_warning("crashkernel: invalid size\n");
1314 return -EINVAL;
1317 /* match ? */
1318 if (system_ram >= start && system_ram < end) {
1319 *crash_size = size;
1320 break;
1322 } while (*cur++ == ',');
1324 if (*crash_size > 0) {
1325 while (*cur && *cur != ' ' && *cur != '@')
1326 cur++;
1327 if (*cur == '@') {
1328 cur++;
1329 *crash_base = memparse(cur, &tmp);
1330 if (cur == tmp) {
1331 pr_warning("Memory value expected "
1332 "after '@'\n");
1333 return -EINVAL;
1338 return 0;
1342 * That function parses "simple" (old) crashkernel command lines like
1344 * crashkernel=size[@offset]
1346 * It returns 0 on success and -EINVAL on failure.
1348 static int __init parse_crashkernel_simple(char *cmdline,
1349 unsigned long long *crash_size,
1350 unsigned long long *crash_base)
1352 char *cur = cmdline;
1354 *crash_size = memparse(cmdline, &cur);
1355 if (cmdline == cur) {
1356 pr_warning("crashkernel: memory value expected\n");
1357 return -EINVAL;
1360 if (*cur == '@')
1361 *crash_base = memparse(cur+1, &cur);
1363 return 0;
1367 * That function is the entry point for command line parsing and should be
1368 * called from the arch-specific code.
1370 int __init parse_crashkernel(char *cmdline,
1371 unsigned long long system_ram,
1372 unsigned long long *crash_size,
1373 unsigned long long *crash_base)
1375 char *p = cmdline, *ck_cmdline = NULL;
1376 char *first_colon, *first_space;
1378 BUG_ON(!crash_size || !crash_base);
1379 *crash_size = 0;
1380 *crash_base = 0;
1382 /* find crashkernel and use the last one if there are more */
1383 p = strstr(p, "crashkernel=");
1384 while (p) {
1385 ck_cmdline = p;
1386 p = strstr(p+1, "crashkernel=");
1389 if (!ck_cmdline)
1390 return -EINVAL;
1392 ck_cmdline += 12; /* strlen("crashkernel=") */
1395 * if the commandline contains a ':', then that's the extended
1396 * syntax -- if not, it must be the classic syntax
1398 first_colon = strchr(ck_cmdline, ':');
1399 first_space = strchr(ck_cmdline, ' ');
1400 if (first_colon && (!first_space || first_colon < first_space))
1401 return parse_crashkernel_mem(ck_cmdline, system_ram,
1402 crash_size, crash_base);
1403 else
1404 return parse_crashkernel_simple(ck_cmdline, crash_size,
1405 crash_base);
1407 return 0;
1411 static void update_vmcoreinfo_note(void)
1413 u32 *buf = vmcoreinfo_note;
1415 if (!vmcoreinfo_size)
1416 return;
1417 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1418 vmcoreinfo_size);
1419 final_note(buf);
1422 void crash_save_vmcoreinfo(void)
1424 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1425 update_vmcoreinfo_note();
1428 void vmcoreinfo_append_str(const char *fmt, ...)
1430 va_list args;
1431 char buf[0x50];
1432 int r;
1434 va_start(args, fmt);
1435 r = vsnprintf(buf, sizeof(buf), fmt, args);
1436 va_end(args);
1438 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1439 r = vmcoreinfo_max_size - vmcoreinfo_size;
1441 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1443 vmcoreinfo_size += r;
1447 * provide an empty default implementation here -- architecture
1448 * code may override this
1450 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1453 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1455 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1458 static int __init crash_save_vmcoreinfo_init(void)
1460 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1461 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1463 VMCOREINFO_SYMBOL(init_uts_ns);
1464 VMCOREINFO_SYMBOL(node_online_map);
1465 VMCOREINFO_SYMBOL(swapper_pg_dir);
1466 VMCOREINFO_SYMBOL(_stext);
1467 VMCOREINFO_SYMBOL(vmlist);
1469 #ifndef CONFIG_NEED_MULTIPLE_NODES
1470 VMCOREINFO_SYMBOL(mem_map);
1471 VMCOREINFO_SYMBOL(contig_page_data);
1472 #endif
1473 #ifdef CONFIG_SPARSEMEM
1474 VMCOREINFO_SYMBOL(mem_section);
1475 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1476 VMCOREINFO_STRUCT_SIZE(mem_section);
1477 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1478 #endif
1479 VMCOREINFO_STRUCT_SIZE(page);
1480 VMCOREINFO_STRUCT_SIZE(pglist_data);
1481 VMCOREINFO_STRUCT_SIZE(zone);
1482 VMCOREINFO_STRUCT_SIZE(free_area);
1483 VMCOREINFO_STRUCT_SIZE(list_head);
1484 VMCOREINFO_SIZE(nodemask_t);
1485 VMCOREINFO_OFFSET(page, flags);
1486 VMCOREINFO_OFFSET(page, _count);
1487 VMCOREINFO_OFFSET(page, mapping);
1488 VMCOREINFO_OFFSET(page, lru);
1489 VMCOREINFO_OFFSET(pglist_data, node_zones);
1490 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1491 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1492 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1493 #endif
1494 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1495 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1496 VMCOREINFO_OFFSET(pglist_data, node_id);
1497 VMCOREINFO_OFFSET(zone, free_area);
1498 VMCOREINFO_OFFSET(zone, vm_stat);
1499 VMCOREINFO_OFFSET(zone, spanned_pages);
1500 VMCOREINFO_OFFSET(free_area, free_list);
1501 VMCOREINFO_OFFSET(list_head, next);
1502 VMCOREINFO_OFFSET(list_head, prev);
1503 VMCOREINFO_OFFSET(vm_struct, addr);
1504 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1505 log_buf_kexec_setup();
1506 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1507 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1508 VMCOREINFO_NUMBER(PG_lru);
1509 VMCOREINFO_NUMBER(PG_private);
1510 VMCOREINFO_NUMBER(PG_swapcache);
1512 arch_crash_save_vmcoreinfo();
1513 update_vmcoreinfo_note();
1515 return 0;
1518 module_init(crash_save_vmcoreinfo_init)
1521 * Move into place and start executing a preloaded standalone
1522 * executable. If nothing was preloaded return an error.
1524 int kernel_kexec(void)
1526 int error = 0;
1528 if (!mutex_trylock(&kexec_mutex))
1529 return -EBUSY;
1530 if (!kexec_image) {
1531 error = -EINVAL;
1532 goto Unlock;
1535 #ifdef CONFIG_KEXEC_JUMP
1536 if (kexec_image->preserve_context) {
1537 lock_system_sleep();
1538 pm_prepare_console();
1539 error = freeze_processes();
1540 if (error) {
1541 error = -EBUSY;
1542 goto Restore_console;
1544 suspend_console();
1545 error = dpm_suspend_start(PMSG_FREEZE);
1546 if (error)
1547 goto Resume_console;
1548 /* At this point, dpm_suspend_start() has been called,
1549 * but *not* dpm_suspend_noirq(). We *must* call
1550 * dpm_suspend_noirq() now. Otherwise, drivers for
1551 * some devices (e.g. interrupt controllers) become
1552 * desynchronized with the actual state of the
1553 * hardware at resume time, and evil weirdness ensues.
1555 error = dpm_suspend_noirq(PMSG_FREEZE);
1556 if (error)
1557 goto Resume_devices;
1558 error = disable_nonboot_cpus();
1559 if (error)
1560 goto Enable_cpus;
1561 local_irq_disable();
1562 error = syscore_suspend();
1563 if (error)
1564 goto Enable_irqs;
1565 } else
1566 #endif
1568 kernel_restart_prepare(NULL);
1569 printk(KERN_EMERG "Starting new kernel\n");
1570 machine_shutdown();
1573 machine_kexec(kexec_image);
1575 #ifdef CONFIG_KEXEC_JUMP
1576 if (kexec_image->preserve_context) {
1577 syscore_resume();
1578 Enable_irqs:
1579 local_irq_enable();
1580 Enable_cpus:
1581 enable_nonboot_cpus();
1582 dpm_resume_noirq(PMSG_RESTORE);
1583 Resume_devices:
1584 dpm_resume_end(PMSG_RESTORE);
1585 Resume_console:
1586 resume_console();
1587 thaw_processes();
1588 Restore_console:
1589 pm_restore_console();
1590 unlock_system_sleep();
1592 #endif
1594 Unlock:
1595 mutex_unlock(&kexec_mutex);
1596 return error;