OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / kernel / sched / core.c
blob478a04c534f953e9fb1a2ec3a857331145242aac
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
82 #include "sched.h"
83 #include "../workqueue_sched.h"
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/sched.h>
88 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
90 unsigned long delta;
91 ktime_t soft, hard, now;
93 for (;;) {
94 if (hrtimer_active(period_timer))
95 break;
97 now = hrtimer_cb_get_time(period_timer);
98 hrtimer_forward(period_timer, now, period);
100 soft = hrtimer_get_softexpires(period_timer);
101 hard = hrtimer_get_expires(period_timer);
102 delta = ktime_to_ns(ktime_sub(hard, soft));
103 __hrtimer_start_range_ns(period_timer, soft, delta,
104 HRTIMER_MODE_ABS_PINNED, 0);
108 DEFINE_MUTEX(sched_domains_mutex);
109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
111 static void update_rq_clock_task(struct rq *rq, s64 delta);
113 void update_rq_clock(struct rq *rq)
115 s64 delta;
117 if (rq->skip_clock_update > 0)
118 return;
120 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121 rq->clock += delta;
122 update_rq_clock_task(rq, delta);
126 * Debugging: various feature bits
129 #define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
136 #undef SCHED_FEAT
138 #ifdef CONFIG_SCHED_DEBUG
139 #define SCHED_FEAT(name, enabled) \
140 #name ,
142 static __read_mostly char *sched_feat_names[] = {
143 #include "features.h"
144 NULL
147 #undef SCHED_FEAT
149 static int sched_feat_show(struct seq_file *m, void *v)
151 int i;
153 for (i = 0; i < __SCHED_FEAT_NR; i++) {
154 if (!(sysctl_sched_features & (1UL << i)))
155 seq_puts(m, "NO_");
156 seq_printf(m, "%s ", sched_feat_names[i]);
158 seq_puts(m, "\n");
160 return 0;
163 #ifdef HAVE_JUMP_LABEL
165 #define jump_label_key__true jump_label_key_enabled
166 #define jump_label_key__false jump_label_key_disabled
168 #define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
171 struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172 #include "features.h"
175 #undef SCHED_FEAT
177 static void sched_feat_disable(int i)
179 if (jump_label_enabled(&sched_feat_keys[i]))
180 jump_label_dec(&sched_feat_keys[i]);
183 static void sched_feat_enable(int i)
185 if (!jump_label_enabled(&sched_feat_keys[i]))
186 jump_label_inc(&sched_feat_keys[i]);
188 #else
189 static void sched_feat_disable(int i) { };
190 static void sched_feat_enable(int i) { };
191 #endif /* HAVE_JUMP_LABEL */
193 static ssize_t
194 sched_feat_write(struct file *filp, const char __user *ubuf,
195 size_t cnt, loff_t *ppos)
197 char buf[64];
198 char *cmp;
199 int neg = 0;
200 int i;
202 if (cnt > 63)
203 cnt = 63;
205 if (copy_from_user(&buf, ubuf, cnt))
206 return -EFAULT;
208 buf[cnt] = 0;
209 cmp = strstrip(buf);
211 if (strncmp(cmp, "NO_", 3) == 0) {
212 neg = 1;
213 cmp += 3;
216 for (i = 0; i < __SCHED_FEAT_NR; i++) {
217 if (strcmp(cmp, sched_feat_names[i]) == 0) {
218 if (neg) {
219 sysctl_sched_features &= ~(1UL << i);
220 sched_feat_disable(i);
221 } else {
222 sysctl_sched_features |= (1UL << i);
223 sched_feat_enable(i);
225 break;
229 if (i == __SCHED_FEAT_NR)
230 return -EINVAL;
232 *ppos += cnt;
234 return cnt;
237 static int sched_feat_open(struct inode *inode, struct file *filp)
239 return single_open(filp, sched_feat_show, NULL);
242 static const struct file_operations sched_feat_fops = {
243 .open = sched_feat_open,
244 .write = sched_feat_write,
245 .read = seq_read,
246 .llseek = seq_lseek,
247 .release = single_release,
250 static __init int sched_init_debug(void)
252 debugfs_create_file("sched_features", 0644, NULL, NULL,
253 &sched_feat_fops);
255 return 0;
257 late_initcall(sched_init_debug);
258 #endif /* CONFIG_SCHED_DEBUG */
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
264 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267 * period over which we average the RT time consumption, measured
268 * in ms.
270 * default: 1s
272 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275 * period over which we measure -rt task cpu usage in us.
276 * default: 1s
278 unsigned int sysctl_sched_rt_period = 1000000;
280 __read_mostly int scheduler_running;
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
286 int sysctl_sched_rt_runtime = 950000;
291 * __task_rq_lock - lock the rq @p resides on.
293 static inline struct rq *__task_rq_lock(struct task_struct *p)
294 __acquires(rq->lock)
296 struct rq *rq;
298 lockdep_assert_held(&p->pi_lock);
300 for (;;) {
301 rq = task_rq(p);
302 raw_spin_lock(&rq->lock);
303 if (likely(rq == task_rq(p)))
304 return rq;
305 raw_spin_unlock(&rq->lock);
310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
312 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313 __acquires(p->pi_lock)
314 __acquires(rq->lock)
316 struct rq *rq;
318 for (;;) {
319 raw_spin_lock_irqsave(&p->pi_lock, *flags);
320 rq = task_rq(p);
321 raw_spin_lock(&rq->lock);
322 if (likely(rq == task_rq(p)))
323 return rq;
324 raw_spin_unlock(&rq->lock);
325 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
329 static void __task_rq_unlock(struct rq *rq)
330 __releases(rq->lock)
332 raw_spin_unlock(&rq->lock);
335 static inline void
336 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
337 __releases(rq->lock)
338 __releases(p->pi_lock)
340 raw_spin_unlock(&rq->lock);
341 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
345 * this_rq_lock - lock this runqueue and disable interrupts.
347 static struct rq *this_rq_lock(void)
348 __acquires(rq->lock)
350 struct rq *rq;
352 local_irq_disable();
353 rq = this_rq();
354 raw_spin_lock(&rq->lock);
356 return rq;
359 #ifdef CONFIG_SCHED_HRTICK
361 * Use HR-timers to deliver accurate preemption points.
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
371 static void hrtick_clear(struct rq *rq)
373 if (hrtimer_active(&rq->hrtick_timer))
374 hrtimer_cancel(&rq->hrtick_timer);
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
381 static enum hrtimer_restart hrtick(struct hrtimer *timer)
383 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
385 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
387 raw_spin_lock(&rq->lock);
388 update_rq_clock(rq);
389 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390 raw_spin_unlock(&rq->lock);
392 return HRTIMER_NORESTART;
395 #ifdef CONFIG_SMP
397 * called from hardirq (IPI) context
399 static void __hrtick_start(void *arg)
401 struct rq *rq = arg;
403 raw_spin_lock(&rq->lock);
404 hrtimer_restart(&rq->hrtick_timer);
405 rq->hrtick_csd_pending = 0;
406 raw_spin_unlock(&rq->lock);
410 * Called to set the hrtick timer state.
412 * called with rq->lock held and irqs disabled
414 void hrtick_start(struct rq *rq, u64 delay)
416 struct hrtimer *timer = &rq->hrtick_timer;
417 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
419 hrtimer_set_expires(timer, time);
421 if (rq == this_rq()) {
422 hrtimer_restart(timer);
423 } else if (!rq->hrtick_csd_pending) {
424 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425 rq->hrtick_csd_pending = 1;
429 static int
430 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
432 int cpu = (int)(long)hcpu;
434 switch (action) {
435 case CPU_UP_CANCELED:
436 case CPU_UP_CANCELED_FROZEN:
437 case CPU_DOWN_PREPARE:
438 case CPU_DOWN_PREPARE_FROZEN:
439 case CPU_DEAD:
440 case CPU_DEAD_FROZEN:
441 hrtick_clear(cpu_rq(cpu));
442 return NOTIFY_OK;
445 return NOTIFY_DONE;
448 static __init void init_hrtick(void)
450 hotcpu_notifier(hotplug_hrtick, 0);
452 #else
454 * Called to set the hrtick timer state.
456 * called with rq->lock held and irqs disabled
458 void hrtick_start(struct rq *rq, u64 delay)
460 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461 HRTIMER_MODE_REL_PINNED, 0);
464 static inline void init_hrtick(void)
467 #endif /* CONFIG_SMP */
469 static void init_rq_hrtick(struct rq *rq)
471 #ifdef CONFIG_SMP
472 rq->hrtick_csd_pending = 0;
474 rq->hrtick_csd.flags = 0;
475 rq->hrtick_csd.func = __hrtick_start;
476 rq->hrtick_csd.info = rq;
477 #endif
479 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480 rq->hrtick_timer.function = hrtick;
482 #else /* CONFIG_SCHED_HRTICK */
483 static inline void hrtick_clear(struct rq *rq)
487 static inline void init_rq_hrtick(struct rq *rq)
491 static inline void init_hrtick(void)
494 #endif /* CONFIG_SCHED_HRTICK */
497 * resched_task - mark a task 'to be rescheduled now'.
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
503 #ifdef CONFIG_SMP
505 #ifndef tsk_is_polling
506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507 #endif
509 void resched_task(struct task_struct *p)
511 int cpu;
513 assert_raw_spin_locked(&task_rq(p)->lock);
515 if (test_tsk_need_resched(p))
516 return;
518 set_tsk_need_resched(p);
520 cpu = task_cpu(p);
521 if (cpu == smp_processor_id())
522 return;
524 /* NEED_RESCHED must be visible before we test polling */
525 smp_mb();
526 if (!tsk_is_polling(p))
527 smp_send_reschedule(cpu);
530 void resched_cpu(int cpu)
532 struct rq *rq = cpu_rq(cpu);
533 unsigned long flags;
535 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
536 return;
537 resched_task(cpu_curr(cpu));
538 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 #ifdef CONFIG_NO_HZ
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
550 int get_nohz_timer_target(void)
552 int cpu = smp_processor_id();
553 int i;
554 struct sched_domain *sd;
556 rcu_read_lock();
557 for_each_domain(cpu, sd) {
558 for_each_cpu(i, sched_domain_span(sd)) {
559 if (!idle_cpu(i)) {
560 cpu = i;
561 goto unlock;
565 unlock:
566 rcu_read_unlock();
567 return cpu;
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
579 void wake_up_idle_cpu(int cpu)
581 struct rq *rq = cpu_rq(cpu);
583 if (cpu == smp_processor_id())
584 return;
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
593 if (rq->curr != rq->idle)
594 return;
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
601 set_tsk_need_resched(rq->idle);
603 /* NEED_RESCHED must be visible before we test polling */
604 smp_mb();
605 if (!tsk_is_polling(rq->idle))
606 smp_send_reschedule(cpu);
609 static inline bool got_nohz_idle_kick(void)
611 int cpu = smp_processor_id();
612 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 #else /* CONFIG_NO_HZ */
617 static inline bool got_nohz_idle_kick(void)
619 return false;
622 #endif /* CONFIG_NO_HZ */
624 void sched_avg_update(struct rq *rq)
626 s64 period = sched_avg_period();
628 while ((s64)(rq->clock - rq->age_stamp) > period) {
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
634 asm("" : "+rm" (rq->age_stamp));
635 rq->age_stamp += period;
636 rq->rt_avg /= 2;
640 #else /* !CONFIG_SMP */
641 void resched_task(struct task_struct *p)
643 assert_raw_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
646 #endif /* CONFIG_SMP */
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
654 * Caller must hold rcu_lock or sufficient equivalent.
656 int walk_tg_tree_from(struct task_group *from,
657 tg_visitor down, tg_visitor up, void *data)
659 struct task_group *parent, *child;
660 int ret;
662 parent = from;
664 down:
665 ret = (*down)(parent, data);
666 if (ret)
667 goto out;
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
669 parent = child;
670 goto down;
673 continue;
675 ret = (*up)(parent, data);
676 if (ret || parent == from)
677 goto out;
679 child = parent;
680 parent = parent->parent;
681 if (parent)
682 goto up;
683 out:
684 return ret;
687 int tg_nop(struct task_group *tg, void *data)
689 return 0;
691 #endif
693 void update_cpu_load(struct rq *this_rq);
695 static void set_load_weight(struct task_struct *p)
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
701 * SCHED_IDLE tasks get minimal weight:
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
732 enqueue_task(rq, p, flags);
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
740 dequeue_task(rq, p, flags);
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
762 void enable_sched_clock_irqtime(void)
764 sched_clock_irqtime = 1;
767 void disable_sched_clock_irqtime(void)
769 sched_clock_irqtime = 0;
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775 static inline void irq_time_write_begin(void)
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
781 static inline void irq_time_write_end(void)
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
787 static inline u64 irq_time_read(int cpu)
789 u64 irq_time;
790 unsigned seq;
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798 return irq_time;
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
805 static inline void irq_time_write_end(void)
809 static inline u64 irq_time_read(int cpu)
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 #endif /* CONFIG_64BIT */
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
819 void account_system_vtime(struct task_struct *curr)
821 unsigned long flags;
822 s64 delta;
823 int cpu;
825 if (!sched_clock_irqtime)
826 return;
828 local_irq_save(flags);
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
834 irq_time_write_begin();
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
846 irq_time_write_end();
847 local_irq_restore(flags);
849 EXPORT_SYMBOL_GPL(account_system_vtime);
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 #endif
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
890 if (irq_delta > delta)
891 irq_delta = delta;
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((&paravirt_steal_rq_enabled))) {
898 u64 st;
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
903 if (unlikely(steal > delta))
904 steal = delta;
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
909 rq->prev_steal_time_rq += steal;
911 delta -= steal;
913 #endif
915 rq->clock_task += delta;
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
939 static int irqtime_account_si_update(void)
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 #define sched_clock_irqtime (0)
958 #endif
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965 if (stop) {
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976 stop->sched_class = &stop_sched_class;
979 cpu_rq(cpu)->stop = stop;
981 if (old_stop) {
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
986 old_stop->sched_class = &rt_sched_class;
991 * __normal_prio - return the priority that is based on the static prio
993 static inline int __normal_prio(struct task_struct *p)
995 return p->static_prio;
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1005 static inline int normal_prio(struct task_struct *p)
1007 int prio;
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1023 static int effective_prio(struct task_struct *p)
1025 p->normal_prio = normal_prio(p);
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1040 inline int task_curr(const struct task_struct *p)
1042 return cpu_curr(task_cpu(p)) == p;
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 const struct sched_class *class;
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 #ifdef CONFIG_SCHED_DEBUG
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093 #ifdef CONFIG_LOCKDEP
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1109 trace_sched_migrate_task(p, new_cpu);
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 __set_task_cpu(p, new_cpu);
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1124 static int migration_cpu_stop(void *data);
1127 * wait_task_inactive - wait for a thread to unschedule.
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1149 for (;;) {
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1156 rq = task_rq(p);
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1190 * If it changed from the expected state, bail out now.
1192 if (unlikely(!ncsw))
1193 break;
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1199 * Oops. Go back and try again..
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1228 break;
1231 return ncsw;
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1247 void kick_process(struct task_struct *p)
1249 int cpu;
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1260 #ifdef CONFIG_SMP
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 int dest_cpu;
1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1271 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1272 return dest_cpu;
1274 /* Any allowed, online CPU? */
1275 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1276 if (dest_cpu < nr_cpu_ids)
1277 return dest_cpu;
1279 /* No more Mr. Nice Guy. */
1280 dest_cpu = cpuset_cpus_allowed_fallback(p);
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1284 * leave kernel.
1286 if (p->mm && printk_ratelimit()) {
1287 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1288 task_pid_nr(p), p->comm, cpu);
1291 return dest_cpu;
1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1297 static inline
1298 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1300 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305 * cpu.
1307 * Since this is common to all placement strategies, this lives here.
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1312 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1313 !cpu_online(cpu)))
1314 cpu = select_fallback_rq(task_cpu(p), p);
1316 return cpu;
1319 static void update_avg(u64 *avg, u64 sample)
1321 s64 diff = sample - *avg;
1322 *avg += diff >> 3;
1324 #endif
1326 static void
1327 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1329 #ifdef CONFIG_SCHEDSTATS
1330 struct rq *rq = this_rq();
1332 #ifdef CONFIG_SMP
1333 int this_cpu = smp_processor_id();
1335 if (cpu == this_cpu) {
1336 schedstat_inc(rq, ttwu_local);
1337 schedstat_inc(p, se.statistics.nr_wakeups_local);
1338 } else {
1339 struct sched_domain *sd;
1341 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1342 rcu_read_lock();
1343 for_each_domain(this_cpu, sd) {
1344 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345 schedstat_inc(sd, ttwu_wake_remote);
1346 break;
1349 rcu_read_unlock();
1352 if (wake_flags & WF_MIGRATED)
1353 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1355 #endif /* CONFIG_SMP */
1357 schedstat_inc(rq, ttwu_count);
1358 schedstat_inc(p, se.statistics.nr_wakeups);
1360 if (wake_flags & WF_SYNC)
1361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1363 #endif /* CONFIG_SCHEDSTATS */
1366 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1368 activate_task(rq, p, en_flags);
1369 p->on_rq = 1;
1371 /* if a worker is waking up, notify workqueue */
1372 if (p->flags & PF_WQ_WORKER)
1373 wq_worker_waking_up(p, cpu_of(rq));
1377 * Mark the task runnable and perform wakeup-preemption.
1379 static void
1380 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1382 trace_sched_wakeup(p, true);
1383 check_preempt_curr(rq, p, wake_flags);
1385 p->state = TASK_RUNNING;
1386 #ifdef CONFIG_SMP
1387 if (p->sched_class->task_woken)
1388 p->sched_class->task_woken(rq, p);
1390 if (rq->idle_stamp) {
1391 u64 delta = rq->clock - rq->idle_stamp;
1392 u64 max = 2*sysctl_sched_migration_cost;
1394 if (delta > max)
1395 rq->avg_idle = max;
1396 else
1397 update_avg(&rq->avg_idle, delta);
1398 rq->idle_stamp = 0;
1400 #endif
1403 static void
1404 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1406 #ifdef CONFIG_SMP
1407 if (p->sched_contributes_to_load)
1408 rq->nr_uninterruptible--;
1409 #endif
1411 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412 ttwu_do_wakeup(rq, p, wake_flags);
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1421 static int ttwu_remote(struct task_struct *p, int wake_flags)
1423 struct rq *rq;
1424 int ret = 0;
1426 rq = __task_rq_lock(p);
1427 if (p->on_rq) {
1428 ttwu_do_wakeup(rq, p, wake_flags);
1429 ret = 1;
1431 __task_rq_unlock(rq);
1433 return ret;
1436 #ifdef CONFIG_SMP
1437 static void sched_ttwu_pending(void)
1439 struct rq *rq = this_rq();
1440 struct llist_node *llist = llist_del_all(&rq->wake_list);
1441 struct task_struct *p;
1443 raw_spin_lock(&rq->lock);
1445 while (llist) {
1446 p = llist_entry(llist, struct task_struct, wake_entry);
1447 llist = llist_next(llist);
1448 ttwu_do_activate(rq, p, 0);
1451 raw_spin_unlock(&rq->lock);
1454 void scheduler_ipi(void)
1456 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1457 return;
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1463 * we do call them.
1465 * Some archs already do call them, luckily irq_enter/exit nest
1466 * properly.
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1472 irq_enter();
1473 sched_ttwu_pending();
1476 * Check if someone kicked us for doing the nohz idle load balance.
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance = 1;
1480 raise_softirq_irqoff(SCHED_SOFTIRQ);
1482 irq_exit();
1485 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1487 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1488 smp_send_reschedule(cpu);
1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1494 struct rq *rq;
1495 int ret = 0;
1497 rq = __task_rq_lock(p);
1498 if (p->on_cpu) {
1499 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500 ttwu_do_wakeup(rq, p, wake_flags);
1501 ret = 1;
1503 __task_rq_unlock(rq);
1505 return ret;
1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1510 static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1512 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1514 #endif /* CONFIG_SMP */
1516 static void ttwu_queue(struct task_struct *p, int cpu)
1518 struct rq *rq = cpu_rq(cpu);
1520 #if defined(CONFIG_SMP)
1521 if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1522 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523 ttwu_queue_remote(p, cpu);
1524 return;
1526 #endif
1528 raw_spin_lock(&rq->lock);
1529 ttwu_do_activate(rq, p, 0);
1530 raw_spin_unlock(&rq->lock);
1534 * try_to_wake_up - wake up a thread
1535 * @p: the thread to be awakened
1536 * @state: the mask of task states that can be woken
1537 * @wake_flags: wake modifier flags (WF_*)
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1548 static int
1549 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1551 unsigned long flags;
1552 int cpu, success = 0;
1554 smp_wmb();
1555 raw_spin_lock_irqsave(&p->pi_lock, flags);
1556 if (!(p->state & state))
1557 goto out;
1559 success = 1; /* we're going to change ->state */
1560 cpu = task_cpu(p);
1562 if (p->on_rq && ttwu_remote(p, wake_flags))
1563 goto stat;
1565 #ifdef CONFIG_SMP
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
1570 while (p->on_cpu) {
1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1577 * remote wakeup.
1579 if (ttwu_activate_remote(p, wake_flags))
1580 goto stat;
1581 #else
1582 cpu_relax();
1583 #endif
1586 * Pairs with the smp_wmb() in finish_lock_switch().
1588 smp_rmb();
1590 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591 p->state = TASK_WAKING;
1593 if (p->sched_class->task_waking)
1594 p->sched_class->task_waking(p);
1596 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597 if (task_cpu(p) != cpu) {
1598 wake_flags |= WF_MIGRATED;
1599 set_task_cpu(p, cpu);
1601 #endif /* CONFIG_SMP */
1603 ttwu_queue(p, cpu);
1604 stat:
1605 ttwu_stat(p, cpu, wake_flags);
1606 out:
1607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1609 return success;
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1616 * Put @p on the run-queue if it's not already there. The caller must
1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618 * the current task.
1620 static void try_to_wake_up_local(struct task_struct *p)
1622 struct rq *rq = task_rq(p);
1624 BUG_ON(rq != this_rq());
1625 BUG_ON(p == current);
1626 lockdep_assert_held(&rq->lock);
1628 if (!raw_spin_trylock(&p->pi_lock)) {
1629 raw_spin_unlock(&rq->lock);
1630 raw_spin_lock(&p->pi_lock);
1631 raw_spin_lock(&rq->lock);
1634 if (!(p->state & TASK_NORMAL))
1635 goto out;
1637 if (!p->on_rq)
1638 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1640 ttwu_do_wakeup(rq, p, 0);
1641 ttwu_stat(p, smp_processor_id(), 0);
1642 out:
1643 raw_spin_unlock(&p->pi_lock);
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1657 int wake_up_process(struct task_struct *p)
1659 return try_to_wake_up(p, TASK_ALL, 0);
1661 EXPORT_SYMBOL(wake_up_process);
1663 int wake_up_state(struct task_struct *p, unsigned int state)
1665 return try_to_wake_up(p, state, 0);
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
1672 * __sched_fork() is basic setup used by init_idle() too:
1674 static void __sched_fork(struct task_struct *p)
1676 p->on_rq = 0;
1678 p->se.on_rq = 0;
1679 p->se.exec_start = 0;
1680 p->se.sum_exec_runtime = 0;
1681 p->se.prev_sum_exec_runtime = 0;
1682 p->se.nr_migrations = 0;
1683 p->se.vruntime = 0;
1684 INIT_LIST_HEAD(&p->se.group_node);
1686 #ifdef CONFIG_SCHEDSTATS
1687 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688 #endif
1690 INIT_LIST_HEAD(&p->rt.run_list);
1692 #ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p->preempt_notifiers);
1694 #endif
1698 * fork()/clone()-time setup:
1700 void sched_fork(struct task_struct *p)
1702 unsigned long flags;
1703 int cpu = get_cpu();
1705 __sched_fork(p);
1707 * We mark the process as running here. This guarantees that
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1711 p->state = TASK_RUNNING;
1714 * Make sure we do not leak PI boosting priority to the child.
1716 p->prio = current->normal_prio;
1719 * Revert to default priority/policy on fork if requested.
1721 if (unlikely(p->sched_reset_on_fork)) {
1722 if (task_has_rt_policy(p)) {
1723 p->policy = SCHED_NORMAL;
1724 p->static_prio = NICE_TO_PRIO(0);
1725 p->rt_priority = 0;
1726 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1727 p->static_prio = NICE_TO_PRIO(0);
1729 p->prio = p->normal_prio = __normal_prio(p);
1730 set_load_weight(p);
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1736 p->sched_reset_on_fork = 0;
1739 if (!rt_prio(p->prio))
1740 p->sched_class = &fair_sched_class;
1742 if (p->sched_class->task_fork)
1743 p->sched_class->task_fork(p);
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1750 * Silence PROVE_RCU.
1752 raw_spin_lock_irqsave(&p->pi_lock, flags);
1753 set_task_cpu(p, cpu);
1754 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 if (likely(sched_info_on()))
1758 memset(&p->sched_info, 0, sizeof(p->sched_info));
1759 #endif
1760 #if defined(CONFIG_SMP)
1761 p->on_cpu = 0;
1762 #endif
1763 #ifdef CONFIG_PREEMPT_COUNT
1764 /* Want to start with kernel preemption disabled. */
1765 task_thread_info(p)->preempt_count = 1;
1766 #endif
1767 #ifdef CONFIG_SMP
1768 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769 #endif
1771 put_cpu();
1775 * wake_up_new_task - wake up a newly created task for the first time.
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1781 void wake_up_new_task(struct task_struct *p)
1783 unsigned long flags;
1784 struct rq *rq;
1786 raw_spin_lock_irqsave(&p->pi_lock, flags);
1787 #ifdef CONFIG_SMP
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
1793 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794 #endif
1796 rq = __task_rq_lock(p);
1797 activate_task(rq, p, 0);
1798 p->on_rq = 1;
1799 trace_sched_wakeup_new(p, true);
1800 check_preempt_curr(rq, p, WF_FORK);
1801 #ifdef CONFIG_SMP
1802 if (p->sched_class->task_woken)
1803 p->sched_class->task_woken(rq, p);
1804 #endif
1805 task_rq_unlock(rq, p, &flags);
1808 #ifdef CONFIG_PREEMPT_NOTIFIERS
1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812 * @notifier: notifier struct to register
1814 void preempt_notifier_register(struct preempt_notifier *notifier)
1816 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1818 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
1822 * @notifier: notifier struct to unregister
1824 * This is safe to call from within a preemption notifier.
1826 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1828 hlist_del(&notifier->link);
1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1832 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1834 struct preempt_notifier *notifier;
1835 struct hlist_node *node;
1837 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1841 static void
1842 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843 struct task_struct *next)
1845 struct preempt_notifier *notifier;
1846 struct hlist_node *node;
1848 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_out(notifier, next);
1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1854 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1858 static void
1859 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860 struct task_struct *next)
1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
1869 * @prev: the current task that is being switched out
1870 * @next: the task we are going to switch to.
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1879 static inline void
1880 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881 struct task_struct *next)
1883 sched_info_switch(prev, next);
1884 perf_event_task_sched_out(prev, next);
1885 fire_sched_out_preempt_notifiers(prev, next);
1886 prepare_lock_switch(rq, next);
1887 prepare_arch_switch(next);
1888 trace_sched_switch(prev, next);
1892 * finish_task_switch - clean up after a task-switch
1893 * @rq: runqueue associated with task-switch
1894 * @prev: the thread we just switched away from.
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1901 * Note that we may have delayed dropping an mm in context_switch(). If
1902 * so, we finish that here outside of the runqueue lock. (Doing it
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1906 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907 __releases(rq->lock)
1909 struct mm_struct *mm = rq->prev_mm;
1910 long prev_state;
1912 rq->prev_mm = NULL;
1915 * A task struct has one reference for the use as "current".
1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
1919 * The test for TASK_DEAD must occur while the runqueue locks are
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1922 * be dropped twice.
1923 * Manfred Spraul <manfred@colorfullife.com>
1925 prev_state = prev->state;
1926 finish_arch_switch(prev);
1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 perf_event_task_sched_in(prev, current);
1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932 local_irq_enable();
1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 finish_lock_switch(rq, prev);
1936 fire_sched_in_preempt_notifiers(current);
1937 if (mm)
1938 mmdrop(mm);
1939 if (unlikely(prev_state == TASK_DEAD)) {
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
1944 kprobe_flush_task(prev);
1945 put_task_struct(prev);
1949 #ifdef CONFIG_SMP
1951 /* assumes rq->lock is held */
1952 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1954 if (prev->sched_class->pre_schedule)
1955 prev->sched_class->pre_schedule(rq, prev);
1958 /* rq->lock is NOT held, but preemption is disabled */
1959 static inline void post_schedule(struct rq *rq)
1961 if (rq->post_schedule) {
1962 unsigned long flags;
1964 raw_spin_lock_irqsave(&rq->lock, flags);
1965 if (rq->curr->sched_class->post_schedule)
1966 rq->curr->sched_class->post_schedule(rq);
1967 raw_spin_unlock_irqrestore(&rq->lock, flags);
1969 rq->post_schedule = 0;
1973 #else
1975 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1979 static inline void post_schedule(struct rq *rq)
1983 #endif
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1989 asmlinkage void schedule_tail(struct task_struct *prev)
1990 __releases(rq->lock)
1992 struct rq *rq = this_rq();
1994 finish_task_switch(rq, prev);
1997 * FIXME: do we need to worry about rq being invalidated by the
1998 * task_switch?
2000 post_schedule(rq);
2002 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2004 preempt_enable();
2005 #endif
2006 if (current->set_child_tid)
2007 put_user(task_pid_vnr(current), current->set_child_tid);
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2014 static inline void
2015 context_switch(struct rq *rq, struct task_struct *prev,
2016 struct task_struct *next)
2018 struct mm_struct *mm, *oldmm;
2020 prepare_task_switch(rq, prev, next);
2022 mm = next->mm;
2023 oldmm = prev->active_mm;
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2027 * one hypercall.
2029 arch_start_context_switch(prev);
2031 if (!mm) {
2032 next->active_mm = oldmm;
2033 atomic_inc(&oldmm->mm_count);
2034 enter_lazy_tlb(oldmm, next);
2035 } else
2036 switch_mm(oldmm, mm, next);
2038 if (!prev->mm) {
2039 prev->active_mm = NULL;
2040 rq->prev_mm = oldmm;
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2048 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050 #endif
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev, next, prev);
2055 barrier();
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2061 finish_task_switch(this_rq(), prev);
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2071 unsigned long nr_running(void)
2073 unsigned long i, sum = 0;
2075 for_each_online_cpu(i)
2076 sum += cpu_rq(i)->nr_running;
2078 return sum;
2081 unsigned long nr_uninterruptible(void)
2083 unsigned long i, sum = 0;
2085 for_each_possible_cpu(i)
2086 sum += cpu_rq(i)->nr_uninterruptible;
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
2092 if (unlikely((long)sum < 0))
2093 sum = 0;
2095 return sum;
2098 unsigned long long nr_context_switches(void)
2100 int i;
2101 unsigned long long sum = 0;
2103 for_each_possible_cpu(i)
2104 sum += cpu_rq(i)->nr_switches;
2106 return sum;
2109 unsigned long nr_iowait(void)
2111 unsigned long i, sum = 0;
2113 for_each_possible_cpu(i)
2114 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2116 return sum;
2119 unsigned long nr_iowait_cpu(int cpu)
2121 struct rq *this = cpu_rq(cpu);
2122 return atomic_read(&this->nr_iowait);
2125 unsigned long this_cpu_load(void)
2127 struct rq *this = this_rq();
2128 return this->cpu_load[0];
2132 /* Variables and functions for calc_load */
2133 static atomic_long_t calc_load_tasks;
2134 static unsigned long calc_load_update;
2135 unsigned long avenrun[3];
2136 EXPORT_SYMBOL(avenrun);
2138 static long calc_load_fold_active(struct rq *this_rq)
2140 long nr_active, delta = 0;
2142 nr_active = this_rq->nr_running;
2143 nr_active += (long) this_rq->nr_uninterruptible;
2145 if (nr_active != this_rq->calc_load_active) {
2146 delta = nr_active - this_rq->calc_load_active;
2147 this_rq->calc_load_active = nr_active;
2150 return delta;
2153 static unsigned long
2154 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2156 load *= exp;
2157 load += active * (FIXED_1 - exp);
2158 load += 1UL << (FSHIFT - 1);
2159 return load >> FSHIFT;
2162 #ifdef CONFIG_NO_HZ
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2166 * When making the ILB scale, we should try to pull this in as well.
2168 static atomic_long_t calc_load_tasks_idle;
2170 void calc_load_account_idle(struct rq *this_rq)
2172 long delta;
2174 delta = calc_load_fold_active(this_rq);
2175 if (delta)
2176 atomic_long_add(delta, &calc_load_tasks_idle);
2179 static long calc_load_fold_idle(void)
2181 long delta = 0;
2184 * Its got a race, we don't care...
2186 if (atomic_long_read(&calc_load_tasks_idle))
2187 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2189 return delta;
2193 * fixed_power_int - compute: x^n, in O(log n) time
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2207 static unsigned long
2208 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2210 unsigned long result = 1UL << frac_bits;
2212 if (n) for (;;) {
2213 if (n & 1) {
2214 result *= x;
2215 result += 1UL << (frac_bits - 1);
2216 result >>= frac_bits;
2218 n >>= 1;
2219 if (!n)
2220 break;
2221 x *= x;
2222 x += 1UL << (frac_bits - 1);
2223 x >>= frac_bits;
2226 return result;
2230 * a1 = a0 * e + a * (1 - e)
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2240 * ...
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2246 * [1] application of the geometric series:
2248 * n 1 - x^(n+1)
2249 * S_n := \Sum x^i = -------------
2250 * i=0 1 - x
2252 static unsigned long
2253 calc_load_n(unsigned long load, unsigned long exp,
2254 unsigned long active, unsigned int n)
2257 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2269 static void calc_global_nohz(void)
2271 long delta, active, n;
2274 * If we crossed a calc_load_update boundary, make sure to fold
2275 * any pending idle changes, the respective CPUs might have
2276 * missed the tick driven calc_load_account_active() update
2277 * due to NO_HZ.
2279 delta = calc_load_fold_idle();
2280 if (delta)
2281 atomic_long_add(delta, &calc_load_tasks);
2284 * It could be the one fold was all it took, we done!
2286 if (time_before(jiffies, calc_load_update + 10))
2287 return;
2290 * Catch-up, fold however many we are behind still
2292 delta = jiffies - calc_load_update - 10;
2293 n = 1 + (delta / LOAD_FREQ);
2295 active = atomic_long_read(&calc_load_tasks);
2296 active = active > 0 ? active * FIXED_1 : 0;
2298 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2299 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2300 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2302 calc_load_update += n * LOAD_FREQ;
2304 #else
2305 void calc_load_account_idle(struct rq *this_rq)
2309 static inline long calc_load_fold_idle(void)
2311 return 0;
2314 static void calc_global_nohz(void)
2317 #endif
2320 * get_avenrun - get the load average array
2321 * @loads: pointer to dest load array
2322 * @offset: offset to add
2323 * @shift: shift count to shift the result left
2325 * These values are estimates at best, so no need for locking.
2327 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2329 loads[0] = (avenrun[0] + offset) << shift;
2330 loads[1] = (avenrun[1] + offset) << shift;
2331 loads[2] = (avenrun[2] + offset) << shift;
2335 * calc_load - update the avenrun load estimates 10 ticks after the
2336 * CPUs have updated calc_load_tasks.
2338 void calc_global_load(unsigned long ticks)
2340 long active;
2342 if (time_before(jiffies, calc_load_update + 10))
2343 return;
2345 active = atomic_long_read(&calc_load_tasks);
2346 active = active > 0 ? active * FIXED_1 : 0;
2348 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2349 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2350 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2352 calc_load_update += LOAD_FREQ;
2355 * Account one period with whatever state we found before
2356 * folding in the nohz state and ageing the entire idle period.
2358 * This avoids loosing a sample when we go idle between
2359 * calc_load_account_active() (10 ticks ago) and now and thus
2360 * under-accounting.
2362 calc_global_nohz();
2366 * Called from update_cpu_load() to periodically update this CPU's
2367 * active count.
2369 static void calc_load_account_active(struct rq *this_rq)
2371 long delta;
2373 if (time_before(jiffies, this_rq->calc_load_update))
2374 return;
2376 delta = calc_load_fold_active(this_rq);
2377 delta += calc_load_fold_idle();
2378 if (delta)
2379 atomic_long_add(delta, &calc_load_tasks);
2381 this_rq->calc_load_update += LOAD_FREQ;
2385 * The exact cpuload at various idx values, calculated at every tick would be
2386 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2389 * on nth tick when cpu may be busy, then we have:
2390 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2391 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 * decay_load_missed() below does efficient calculation of
2394 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2395 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 * The calculation is approximated on a 128 point scale.
2398 * degrade_zero_ticks is the number of ticks after which load at any
2399 * particular idx is approximated to be zero.
2400 * degrade_factor is a precomputed table, a row for each load idx.
2401 * Each column corresponds to degradation factor for a power of two ticks,
2402 * based on 128 point scale.
2403 * Example:
2404 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2405 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 * With this power of 2 load factors, we can degrade the load n times
2408 * by looking at 1 bits in n and doing as many mult/shift instead of
2409 * n mult/shifts needed by the exact degradation.
2411 #define DEGRADE_SHIFT 7
2412 static const unsigned char
2413 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2414 static const unsigned char
2415 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2416 {0, 0, 0, 0, 0, 0, 0, 0},
2417 {64, 32, 8, 0, 0, 0, 0, 0},
2418 {96, 72, 40, 12, 1, 0, 0},
2419 {112, 98, 75, 43, 15, 1, 0},
2420 {120, 112, 98, 76, 45, 16, 2} };
2423 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2424 * would be when CPU is idle and so we just decay the old load without
2425 * adding any new load.
2427 static unsigned long
2428 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430 int j = 0;
2432 if (!missed_updates)
2433 return load;
2435 if (missed_updates >= degrade_zero_ticks[idx])
2436 return 0;
2438 if (idx == 1)
2439 return load >> missed_updates;
2441 while (missed_updates) {
2442 if (missed_updates % 2)
2443 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445 missed_updates >>= 1;
2446 j++;
2448 return load;
2452 * Update rq->cpu_load[] statistics. This function is usually called every
2453 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2454 * every tick. We fix it up based on jiffies.
2456 void update_cpu_load(struct rq *this_rq)
2458 unsigned long this_load = this_rq->load.weight;
2459 unsigned long curr_jiffies = jiffies;
2460 unsigned long pending_updates;
2461 int i, scale;
2463 this_rq->nr_load_updates++;
2465 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2466 if (curr_jiffies == this_rq->last_load_update_tick)
2467 return;
2469 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2470 this_rq->last_load_update_tick = curr_jiffies;
2472 /* Update our load: */
2473 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2474 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2475 unsigned long old_load, new_load;
2477 /* scale is effectively 1 << i now, and >> i divides by scale */
2479 old_load = this_rq->cpu_load[i];
2480 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2481 new_load = this_load;
2483 * Round up the averaging division if load is increasing. This
2484 * prevents us from getting stuck on 9 if the load is 10, for
2485 * example.
2487 if (new_load > old_load)
2488 new_load += scale - 1;
2490 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2493 sched_avg_update(this_rq);
2496 static void update_cpu_load_active(struct rq *this_rq)
2498 update_cpu_load(this_rq);
2500 calc_load_account_active(this_rq);
2503 #ifdef CONFIG_SMP
2506 * sched_exec - execve() is a valuable balancing opportunity, because at
2507 * this point the task has the smallest effective memory and cache footprint.
2509 void sched_exec(void)
2511 struct task_struct *p = current;
2512 unsigned long flags;
2513 int dest_cpu;
2515 raw_spin_lock_irqsave(&p->pi_lock, flags);
2516 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2517 if (dest_cpu == smp_processor_id())
2518 goto unlock;
2520 if (likely(cpu_active(dest_cpu))) {
2521 struct migration_arg arg = { p, dest_cpu };
2523 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2524 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2525 return;
2527 unlock:
2528 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2531 #endif
2533 DEFINE_PER_CPU(struct kernel_stat, kstat);
2534 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536 EXPORT_PER_CPU_SYMBOL(kstat);
2537 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2540 * Return any ns on the sched_clock that have not yet been accounted in
2541 * @p in case that task is currently running.
2543 * Called with task_rq_lock() held on @rq.
2545 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547 u64 ns = 0;
2549 if (task_current(rq, p)) {
2550 update_rq_clock(rq);
2551 ns = rq->clock_task - p->se.exec_start;
2552 if ((s64)ns < 0)
2553 ns = 0;
2556 return ns;
2559 unsigned long long task_delta_exec(struct task_struct *p)
2561 unsigned long flags;
2562 struct rq *rq;
2563 u64 ns = 0;
2565 rq = task_rq_lock(p, &flags);
2566 ns = do_task_delta_exec(p, rq);
2567 task_rq_unlock(rq, p, &flags);
2569 return ns;
2573 * Return accounted runtime for the task.
2574 * In case the task is currently running, return the runtime plus current's
2575 * pending runtime that have not been accounted yet.
2577 unsigned long long task_sched_runtime(struct task_struct *p)
2579 unsigned long flags;
2580 struct rq *rq;
2581 u64 ns = 0;
2583 rq = task_rq_lock(p, &flags);
2584 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2585 task_rq_unlock(rq, p, &flags);
2587 return ns;
2590 #ifdef CONFIG_CGROUP_CPUACCT
2591 struct cgroup_subsys cpuacct_subsys;
2592 struct cpuacct root_cpuacct;
2593 #endif
2595 static inline void task_group_account_field(struct task_struct *p, int index,
2596 u64 tmp)
2598 #ifdef CONFIG_CGROUP_CPUACCT
2599 struct kernel_cpustat *kcpustat;
2600 struct cpuacct *ca;
2601 #endif
2603 * Since all updates are sure to touch the root cgroup, we
2604 * get ourselves ahead and touch it first. If the root cgroup
2605 * is the only cgroup, then nothing else should be necessary.
2608 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610 #ifdef CONFIG_CGROUP_CPUACCT
2611 if (unlikely(!cpuacct_subsys.active))
2612 return;
2614 rcu_read_lock();
2615 ca = task_ca(p);
2616 while (ca && (ca != &root_cpuacct)) {
2617 kcpustat = this_cpu_ptr(ca->cpustat);
2618 kcpustat->cpustat[index] += tmp;
2619 ca = parent_ca(ca);
2621 rcu_read_unlock();
2622 #endif
2627 * Account user cpu time to a process.
2628 * @p: the process that the cpu time gets accounted to
2629 * @cputime: the cpu time spent in user space since the last update
2630 * @cputime_scaled: cputime scaled by cpu frequency
2632 void account_user_time(struct task_struct *p, cputime_t cputime,
2633 cputime_t cputime_scaled)
2635 int index;
2637 /* Add user time to process. */
2638 p->utime += cputime;
2639 p->utimescaled += cputime_scaled;
2640 account_group_user_time(p, cputime);
2642 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644 /* Add user time to cpustat. */
2645 task_group_account_field(p, index, (__force u64) cputime);
2647 /* Account for user time used */
2648 acct_update_integrals(p);
2652 * Account guest cpu time to a process.
2653 * @p: the process that the cpu time gets accounted to
2654 * @cputime: the cpu time spent in virtual machine since the last update
2655 * @cputime_scaled: cputime scaled by cpu frequency
2657 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2658 cputime_t cputime_scaled)
2660 u64 *cpustat = kcpustat_this_cpu->cpustat;
2662 /* Add guest time to process. */
2663 p->utime += cputime;
2664 p->utimescaled += cputime_scaled;
2665 account_group_user_time(p, cputime);
2666 p->gtime += cputime;
2668 /* Add guest time to cpustat. */
2669 if (TASK_NICE(p) > 0) {
2670 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2671 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2672 } else {
2673 cpustat[CPUTIME_USER] += (__force u64) cputime;
2674 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2679 * Account system cpu time to a process and desired cpustat field
2680 * @p: the process that the cpu time gets accounted to
2681 * @cputime: the cpu time spent in kernel space since the last update
2682 * @cputime_scaled: cputime scaled by cpu frequency
2683 * @target_cputime64: pointer to cpustat field that has to be updated
2685 static inline
2686 void __account_system_time(struct task_struct *p, cputime_t cputime,
2687 cputime_t cputime_scaled, int index)
2689 /* Add system time to process. */
2690 p->stime += cputime;
2691 p->stimescaled += cputime_scaled;
2692 account_group_system_time(p, cputime);
2694 /* Add system time to cpustat. */
2695 task_group_account_field(p, index, (__force u64) cputime);
2697 /* Account for system time used */
2698 acct_update_integrals(p);
2702 * Account system cpu time to a process.
2703 * @p: the process that the cpu time gets accounted to
2704 * @hardirq_offset: the offset to subtract from hardirq_count()
2705 * @cputime: the cpu time spent in kernel space since the last update
2706 * @cputime_scaled: cputime scaled by cpu frequency
2708 void account_system_time(struct task_struct *p, int hardirq_offset,
2709 cputime_t cputime, cputime_t cputime_scaled)
2711 int index;
2713 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2714 account_guest_time(p, cputime, cputime_scaled);
2715 return;
2718 if (hardirq_count() - hardirq_offset)
2719 index = CPUTIME_IRQ;
2720 else if (in_serving_softirq())
2721 index = CPUTIME_SOFTIRQ;
2722 else
2723 index = CPUTIME_SYSTEM;
2725 __account_system_time(p, cputime, cputime_scaled, index);
2729 * Account for involuntary wait time.
2730 * @cputime: the cpu time spent in involuntary wait
2732 void account_steal_time(cputime_t cputime)
2734 u64 *cpustat = kcpustat_this_cpu->cpustat;
2736 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2740 * Account for idle time.
2741 * @cputime: the cpu time spent in idle wait
2743 void account_idle_time(cputime_t cputime)
2745 u64 *cpustat = kcpustat_this_cpu->cpustat;
2746 struct rq *rq = this_rq();
2748 if (atomic_read(&rq->nr_iowait) > 0)
2749 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2750 else
2751 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2754 static __always_inline bool steal_account_process_tick(void)
2756 #ifdef CONFIG_PARAVIRT
2757 if (static_branch(&paravirt_steal_enabled)) {
2758 u64 steal, st = 0;
2760 steal = paravirt_steal_clock(smp_processor_id());
2761 steal -= this_rq()->prev_steal_time;
2763 st = steal_ticks(steal);
2764 this_rq()->prev_steal_time += st * TICK_NSEC;
2766 account_steal_time(st);
2767 return st;
2769 #endif
2770 return false;
2773 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777 * Account a tick to a process and cpustat
2778 * @p: the process that the cpu time gets accounted to
2779 * @user_tick: is the tick from userspace
2780 * @rq: the pointer to rq
2782 * Tick demultiplexing follows the order
2783 * - pending hardirq update
2784 * - pending softirq update
2785 * - user_time
2786 * - idle_time
2787 * - system time
2788 * - check for guest_time
2789 * - else account as system_time
2791 * Check for hardirq is done both for system and user time as there is
2792 * no timer going off while we are on hardirq and hence we may never get an
2793 * opportunity to update it solely in system time.
2794 * p->stime and friends are only updated on system time and not on irq
2795 * softirq as those do not count in task exec_runtime any more.
2797 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2798 struct rq *rq)
2800 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2801 u64 *cpustat = kcpustat_this_cpu->cpustat;
2803 if (steal_account_process_tick())
2804 return;
2806 if (irqtime_account_hi_update()) {
2807 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2808 } else if (irqtime_account_si_update()) {
2809 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2810 } else if (this_cpu_ksoftirqd() == p) {
2812 * ksoftirqd time do not get accounted in cpu_softirq_time.
2813 * So, we have to handle it separately here.
2814 * Also, p->stime needs to be updated for ksoftirqd.
2816 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2817 CPUTIME_SOFTIRQ);
2818 } else if (user_tick) {
2819 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2820 } else if (p == rq->idle) {
2821 account_idle_time(cputime_one_jiffy);
2822 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2823 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2824 } else {
2825 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2826 CPUTIME_SYSTEM);
2830 static void irqtime_account_idle_ticks(int ticks)
2832 int i;
2833 struct rq *rq = this_rq();
2835 for (i = 0; i < ticks; i++)
2836 irqtime_account_process_tick(current, 0, rq);
2838 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2839 static void irqtime_account_idle_ticks(int ticks) {}
2840 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2841 struct rq *rq) {}
2842 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2845 * Account a single tick of cpu time.
2846 * @p: the process that the cpu time gets accounted to
2847 * @user_tick: indicates if the tick is a user or a system tick
2849 void account_process_tick(struct task_struct *p, int user_tick)
2851 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2852 struct rq *rq = this_rq();
2854 if (sched_clock_irqtime) {
2855 irqtime_account_process_tick(p, user_tick, rq);
2856 return;
2859 if (steal_account_process_tick())
2860 return;
2862 if (user_tick)
2863 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2864 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2865 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2866 one_jiffy_scaled);
2867 else
2868 account_idle_time(cputime_one_jiffy);
2872 * Account multiple ticks of steal time.
2873 * @p: the process from which the cpu time has been stolen
2874 * @ticks: number of stolen ticks
2876 void account_steal_ticks(unsigned long ticks)
2878 account_steal_time(jiffies_to_cputime(ticks));
2882 * Account multiple ticks of idle time.
2883 * @ticks: number of stolen ticks
2885 void account_idle_ticks(unsigned long ticks)
2888 if (sched_clock_irqtime) {
2889 irqtime_account_idle_ticks(ticks);
2890 return;
2893 account_idle_time(jiffies_to_cputime(ticks));
2896 #endif
2899 * Use precise platform statistics if available:
2901 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2902 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904 *ut = p->utime;
2905 *st = p->stime;
2908 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910 struct task_cputime cputime;
2912 thread_group_cputime(p, &cputime);
2914 *ut = cputime.utime;
2915 *st = cputime.stime;
2917 #else
2919 #ifndef nsecs_to_cputime
2920 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2921 #endif
2923 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2928 * Use CFS's precise accounting:
2930 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932 if (total) {
2933 u64 temp = (__force u64) rtime;
2935 temp *= (__force u64) utime;
2936 do_div(temp, (__force u32) total);
2937 utime = (__force cputime_t) temp;
2938 } else
2939 utime = rtime;
2942 * Compare with previous values, to keep monotonicity:
2944 p->prev_utime = max(p->prev_utime, utime);
2945 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947 *ut = p->prev_utime;
2948 *st = p->prev_stime;
2952 * Must be called with siglock held.
2954 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 struct signal_struct *sig = p->signal;
2957 struct task_cputime cputime;
2958 cputime_t rtime, utime, total;
2960 thread_group_cputime(p, &cputime);
2962 total = cputime.utime + cputime.stime;
2963 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965 if (total) {
2966 u64 temp = (__force u64) rtime;
2968 temp *= (__force u64) cputime.utime;
2969 do_div(temp, (__force u32) total);
2970 utime = (__force cputime_t) temp;
2971 } else
2972 utime = rtime;
2974 sig->prev_utime = max(sig->prev_utime, utime);
2975 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977 *ut = sig->prev_utime;
2978 *st = sig->prev_stime;
2980 #endif
2983 * This function gets called by the timer code, with HZ frequency.
2984 * We call it with interrupts disabled.
2986 void scheduler_tick(void)
2988 int cpu = smp_processor_id();
2989 struct rq *rq = cpu_rq(cpu);
2990 struct task_struct *curr = rq->curr;
2992 sched_clock_tick();
2994 raw_spin_lock(&rq->lock);
2995 update_rq_clock(rq);
2996 update_cpu_load_active(rq);
2997 curr->sched_class->task_tick(rq, curr, 0);
2998 raw_spin_unlock(&rq->lock);
3000 perf_event_task_tick();
3002 #ifdef CONFIG_SMP
3003 rq->idle_balance = idle_cpu(cpu);
3004 trigger_load_balance(rq, cpu);
3005 #endif
3008 notrace unsigned long get_parent_ip(unsigned long addr)
3010 if (in_lock_functions(addr)) {
3011 addr = CALLER_ADDR2;
3012 if (in_lock_functions(addr))
3013 addr = CALLER_ADDR3;
3015 return addr;
3018 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3019 defined(CONFIG_PREEMPT_TRACER))
3021 void __kprobes add_preempt_count(int val)
3023 #ifdef CONFIG_DEBUG_PREEMPT
3025 * Underflow?
3027 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3028 return;
3029 #endif
3030 preempt_count() += val;
3031 #ifdef CONFIG_DEBUG_PREEMPT
3033 * Spinlock count overflowing soon?
3035 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3036 PREEMPT_MASK - 10);
3037 #endif
3038 if (preempt_count() == val)
3039 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041 EXPORT_SYMBOL(add_preempt_count);
3043 void __kprobes sub_preempt_count(int val)
3045 #ifdef CONFIG_DEBUG_PREEMPT
3047 * Underflow?
3049 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3050 return;
3052 * Is the spinlock portion underflowing?
3054 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3055 !(preempt_count() & PREEMPT_MASK)))
3056 return;
3057 #endif
3059 if (preempt_count() == val)
3060 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3061 preempt_count() -= val;
3063 EXPORT_SYMBOL(sub_preempt_count);
3065 #endif
3068 * Print scheduling while atomic bug:
3070 static noinline void __schedule_bug(struct task_struct *prev)
3072 struct pt_regs *regs = get_irq_regs();
3074 if (oops_in_progress)
3075 return;
3077 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3078 prev->comm, prev->pid, preempt_count());
3080 debug_show_held_locks(prev);
3081 print_modules();
3082 if (irqs_disabled())
3083 print_irqtrace_events(prev);
3085 if (regs)
3086 show_regs(regs);
3087 else
3088 dump_stack();
3092 * Various schedule()-time debugging checks and statistics:
3094 static inline void schedule_debug(struct task_struct *prev)
3097 * Test if we are atomic. Since do_exit() needs to call into
3098 * schedule() atomically, we ignore that path for now.
3099 * Otherwise, whine if we are scheduling when we should not be.
3101 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3102 __schedule_bug(prev);
3103 rcu_sleep_check();
3105 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107 schedstat_inc(this_rq(), sched_count);
3110 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3112 if (prev->on_rq || rq->skip_clock_update < 0)
3113 update_rq_clock(rq);
3114 prev->sched_class->put_prev_task(rq, prev);
3118 * Pick up the highest-prio task:
3120 static inline struct task_struct *
3121 pick_next_task(struct rq *rq)
3123 const struct sched_class *class;
3124 struct task_struct *p;
3127 * Optimization: we know that if all tasks are in
3128 * the fair class we can call that function directly:
3130 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3131 p = fair_sched_class.pick_next_task(rq);
3132 if (likely(p))
3133 return p;
3136 for_each_class(class) {
3137 p = class->pick_next_task(rq);
3138 if (p)
3139 return p;
3142 BUG(); /* the idle class will always have a runnable task */
3146 * __schedule() is the main scheduler function.
3148 static void __sched __schedule(void)
3150 struct task_struct *prev, *next;
3151 unsigned long *switch_count;
3152 struct rq *rq;
3153 int cpu;
3155 need_resched:
3156 preempt_disable();
3157 cpu = smp_processor_id();
3158 rq = cpu_rq(cpu);
3159 rcu_note_context_switch(cpu);
3160 prev = rq->curr;
3162 schedule_debug(prev);
3164 if (sched_feat(HRTICK))
3165 hrtick_clear(rq);
3167 raw_spin_lock_irq(&rq->lock);
3169 switch_count = &prev->nivcsw;
3170 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3171 if (unlikely(signal_pending_state(prev->state, prev))) {
3172 prev->state = TASK_RUNNING;
3173 } else {
3174 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3175 prev->on_rq = 0;
3178 * If a worker went to sleep, notify and ask workqueue
3179 * whether it wants to wake up a task to maintain
3180 * concurrency.
3182 if (prev->flags & PF_WQ_WORKER) {
3183 struct task_struct *to_wakeup;
3185 to_wakeup = wq_worker_sleeping(prev, cpu);
3186 if (to_wakeup)
3187 try_to_wake_up_local(to_wakeup);
3190 switch_count = &prev->nvcsw;
3193 pre_schedule(rq, prev);
3195 if (unlikely(!rq->nr_running))
3196 idle_balance(cpu, rq);
3198 put_prev_task(rq, prev);
3199 next = pick_next_task(rq);
3200 clear_tsk_need_resched(prev);
3201 rq->skip_clock_update = 0;
3203 if (likely(prev != next)) {
3204 rq->nr_switches++;
3205 rq->curr = next;
3206 ++*switch_count;
3208 context_switch(rq, prev, next); /* unlocks the rq */
3210 * The context switch have flipped the stack from under us
3211 * and restored the local variables which were saved when
3212 * this task called schedule() in the past. prev == current
3213 * is still correct, but it can be moved to another cpu/rq.
3215 cpu = smp_processor_id();
3216 rq = cpu_rq(cpu);
3217 } else
3218 raw_spin_unlock_irq(&rq->lock);
3220 post_schedule(rq);
3222 preempt_enable_no_resched();
3223 if (need_resched())
3224 goto need_resched;
3227 static inline void sched_submit_work(struct task_struct *tsk)
3229 if (!tsk->state)
3230 return;
3232 * If we are going to sleep and we have plugged IO queued,
3233 * make sure to submit it to avoid deadlocks.
3235 if (blk_needs_flush_plug(tsk))
3236 blk_schedule_flush_plug(tsk);
3239 asmlinkage void __sched schedule(void)
3241 struct task_struct *tsk = current;
3243 sched_submit_work(tsk);
3244 __schedule();
3246 EXPORT_SYMBOL(schedule);
3248 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3250 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3252 if (lock->owner != owner)
3253 return false;
3256 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3257 * lock->owner still matches owner, if that fails, owner might
3258 * point to free()d memory, if it still matches, the rcu_read_lock()
3259 * ensures the memory stays valid.
3261 barrier();
3263 return owner->on_cpu;
3267 * Look out! "owner" is an entirely speculative pointer
3268 * access and not reliable.
3270 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3272 if (!sched_feat(OWNER_SPIN))
3273 return 0;
3275 rcu_read_lock();
3276 while (owner_running(lock, owner)) {
3277 if (need_resched())
3278 break;
3280 arch_mutex_cpu_relax();
3282 rcu_read_unlock();
3285 * We break out the loop above on need_resched() and when the
3286 * owner changed, which is a sign for heavy contention. Return
3287 * success only when lock->owner is NULL.
3289 return lock->owner == NULL;
3291 #endif
3293 #ifdef CONFIG_PREEMPT
3295 * this is the entry point to schedule() from in-kernel preemption
3296 * off of preempt_enable. Kernel preemptions off return from interrupt
3297 * occur there and call schedule directly.
3299 asmlinkage void __sched notrace preempt_schedule(void)
3301 struct thread_info *ti = current_thread_info();
3304 * If there is a non-zero preempt_count or interrupts are disabled,
3305 * we do not want to preempt the current task. Just return..
3307 if (likely(ti->preempt_count || irqs_disabled()))
3308 return;
3310 do {
3311 add_preempt_count_notrace(PREEMPT_ACTIVE);
3312 __schedule();
3313 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3316 * Check again in case we missed a preemption opportunity
3317 * between schedule and now.
3319 barrier();
3320 } while (need_resched());
3322 EXPORT_SYMBOL(preempt_schedule);
3325 * this is the entry point to schedule() from kernel preemption
3326 * off of irq context.
3327 * Note, that this is called and return with irqs disabled. This will
3328 * protect us against recursive calling from irq.
3330 asmlinkage void __sched preempt_schedule_irq(void)
3332 struct thread_info *ti = current_thread_info();
3334 /* Catch callers which need to be fixed */
3335 BUG_ON(ti->preempt_count || !irqs_disabled());
3337 do {
3338 add_preempt_count(PREEMPT_ACTIVE);
3339 local_irq_enable();
3340 __schedule();
3341 local_irq_disable();
3342 sub_preempt_count(PREEMPT_ACTIVE);
3345 * Check again in case we missed a preemption opportunity
3346 * between schedule and now.
3348 barrier();
3349 } while (need_resched());
3352 #endif /* CONFIG_PREEMPT */
3354 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3355 void *key)
3357 return try_to_wake_up(curr->private, mode, wake_flags);
3359 EXPORT_SYMBOL(default_wake_function);
3362 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3363 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3364 * number) then we wake all the non-exclusive tasks and one exclusive task.
3366 * There are circumstances in which we can try to wake a task which has already
3367 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3368 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3370 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3371 int nr_exclusive, int wake_flags, void *key)
3373 wait_queue_t *curr, *next;
3375 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3376 unsigned flags = curr->flags;
3378 if (curr->func(curr, mode, wake_flags, key) &&
3379 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3380 break;
3385 * __wake_up - wake up threads blocked on a waitqueue.
3386 * @q: the waitqueue
3387 * @mode: which threads
3388 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3389 * @key: is directly passed to the wakeup function
3391 * It may be assumed that this function implies a write memory barrier before
3392 * changing the task state if and only if any tasks are woken up.
3394 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3395 int nr_exclusive, void *key)
3397 unsigned long flags;
3399 spin_lock_irqsave(&q->lock, flags);
3400 __wake_up_common(q, mode, nr_exclusive, 0, key);
3401 spin_unlock_irqrestore(&q->lock, flags);
3403 EXPORT_SYMBOL(__wake_up);
3406 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3408 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3410 __wake_up_common(q, mode, 1, 0, NULL);
3412 EXPORT_SYMBOL_GPL(__wake_up_locked);
3414 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3416 __wake_up_common(q, mode, 1, 0, key);
3418 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3421 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3422 * @q: the waitqueue
3423 * @mode: which threads
3424 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3425 * @key: opaque value to be passed to wakeup targets
3427 * The sync wakeup differs that the waker knows that it will schedule
3428 * away soon, so while the target thread will be woken up, it will not
3429 * be migrated to another CPU - ie. the two threads are 'synchronized'
3430 * with each other. This can prevent needless bouncing between CPUs.
3432 * On UP it can prevent extra preemption.
3434 * It may be assumed that this function implies a write memory barrier before
3435 * changing the task state if and only if any tasks are woken up.
3437 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3438 int nr_exclusive, void *key)
3440 unsigned long flags;
3441 int wake_flags = WF_SYNC;
3443 if (unlikely(!q))
3444 return;
3446 if (unlikely(!nr_exclusive))
3447 wake_flags = 0;
3449 spin_lock_irqsave(&q->lock, flags);
3450 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3451 spin_unlock_irqrestore(&q->lock, flags);
3453 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3456 * __wake_up_sync - see __wake_up_sync_key()
3458 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3460 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3462 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3465 * complete: - signals a single thread waiting on this completion
3466 * @x: holds the state of this particular completion
3468 * This will wake up a single thread waiting on this completion. Threads will be
3469 * awakened in the same order in which they were queued.
3471 * See also complete_all(), wait_for_completion() and related routines.
3473 * It may be assumed that this function implies a write memory barrier before
3474 * changing the task state if and only if any tasks are woken up.
3476 void complete(struct completion *x)
3478 unsigned long flags;
3480 spin_lock_irqsave(&x->wait.lock, flags);
3481 x->done++;
3482 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3483 spin_unlock_irqrestore(&x->wait.lock, flags);
3485 EXPORT_SYMBOL(complete);
3488 * complete_all: - signals all threads waiting on this completion
3489 * @x: holds the state of this particular completion
3491 * This will wake up all threads waiting on this particular completion event.
3493 * It may be assumed that this function implies a write memory barrier before
3494 * changing the task state if and only if any tasks are woken up.
3496 void complete_all(struct completion *x)
3498 unsigned long flags;
3500 spin_lock_irqsave(&x->wait.lock, flags);
3501 x->done += UINT_MAX/2;
3502 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3503 spin_unlock_irqrestore(&x->wait.lock, flags);
3505 EXPORT_SYMBOL(complete_all);
3507 static inline long __sched
3508 do_wait_for_common(struct completion *x, long timeout, int state)
3510 if (!x->done) {
3511 DECLARE_WAITQUEUE(wait, current);
3513 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3514 do {
3515 if (signal_pending_state(state, current)) {
3516 timeout = -ERESTARTSYS;
3517 break;
3519 __set_current_state(state);
3520 spin_unlock_irq(&x->wait.lock);
3521 timeout = schedule_timeout(timeout);
3522 spin_lock_irq(&x->wait.lock);
3523 } while (!x->done && timeout);
3524 __remove_wait_queue(&x->wait, &wait);
3525 if (!x->done)
3526 return timeout;
3528 x->done--;
3529 return timeout ?: 1;
3532 static long __sched
3533 wait_for_common(struct completion *x, long timeout, int state)
3535 might_sleep();
3537 spin_lock_irq(&x->wait.lock);
3538 timeout = do_wait_for_common(x, timeout, state);
3539 spin_unlock_irq(&x->wait.lock);
3540 return timeout;
3544 * wait_for_completion: - waits for completion of a task
3545 * @x: holds the state of this particular completion
3547 * This waits to be signaled for completion of a specific task. It is NOT
3548 * interruptible and there is no timeout.
3550 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3551 * and interrupt capability. Also see complete().
3553 void __sched wait_for_completion(struct completion *x)
3555 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3557 EXPORT_SYMBOL(wait_for_completion);
3560 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3561 * @x: holds the state of this particular completion
3562 * @timeout: timeout value in jiffies
3564 * This waits for either a completion of a specific task to be signaled or for a
3565 * specified timeout to expire. The timeout is in jiffies. It is not
3566 * interruptible.
3568 * The return value is 0 if timed out, and positive (at least 1, or number of
3569 * jiffies left till timeout) if completed.
3571 unsigned long __sched
3572 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3574 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3576 EXPORT_SYMBOL(wait_for_completion_timeout);
3579 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3580 * @x: holds the state of this particular completion
3582 * This waits for completion of a specific task to be signaled. It is
3583 * interruptible.
3585 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3587 int __sched wait_for_completion_interruptible(struct completion *x)
3589 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3590 if (t == -ERESTARTSYS)
3591 return t;
3592 return 0;
3594 EXPORT_SYMBOL(wait_for_completion_interruptible);
3597 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3598 * @x: holds the state of this particular completion
3599 * @timeout: timeout value in jiffies
3601 * This waits for either a completion of a specific task to be signaled or for a
3602 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3604 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3605 * positive (at least 1, or number of jiffies left till timeout) if completed.
3607 long __sched
3608 wait_for_completion_interruptible_timeout(struct completion *x,
3609 unsigned long timeout)
3611 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3613 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3616 * wait_for_completion_killable: - waits for completion of a task (killable)
3617 * @x: holds the state of this particular completion
3619 * This waits to be signaled for completion of a specific task. It can be
3620 * interrupted by a kill signal.
3622 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3624 int __sched wait_for_completion_killable(struct completion *x)
3626 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3627 if (t == -ERESTARTSYS)
3628 return t;
3629 return 0;
3631 EXPORT_SYMBOL(wait_for_completion_killable);
3634 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3635 * @x: holds the state of this particular completion
3636 * @timeout: timeout value in jiffies
3638 * This waits for either a completion of a specific task to be
3639 * signaled or for a specified timeout to expire. It can be
3640 * interrupted by a kill signal. The timeout is in jiffies.
3642 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3643 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645 long __sched
3646 wait_for_completion_killable_timeout(struct completion *x,
3647 unsigned long timeout)
3649 return wait_for_common(x, timeout, TASK_KILLABLE);
3651 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3654 * try_wait_for_completion - try to decrement a completion without blocking
3655 * @x: completion structure
3657 * Returns: 0 if a decrement cannot be done without blocking
3658 * 1 if a decrement succeeded.
3660 * If a completion is being used as a counting completion,
3661 * attempt to decrement the counter without blocking. This
3662 * enables us to avoid waiting if the resource the completion
3663 * is protecting is not available.
3665 bool try_wait_for_completion(struct completion *x)
3667 unsigned long flags;
3668 int ret = 1;
3670 spin_lock_irqsave(&x->wait.lock, flags);
3671 if (!x->done)
3672 ret = 0;
3673 else
3674 x->done--;
3675 spin_unlock_irqrestore(&x->wait.lock, flags);
3676 return ret;
3678 EXPORT_SYMBOL(try_wait_for_completion);
3681 * completion_done - Test to see if a completion has any waiters
3682 * @x: completion structure
3684 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3685 * 1 if there are no waiters.
3688 bool completion_done(struct completion *x)
3690 unsigned long flags;
3691 int ret = 1;
3693 spin_lock_irqsave(&x->wait.lock, flags);
3694 if (!x->done)
3695 ret = 0;
3696 spin_unlock_irqrestore(&x->wait.lock, flags);
3697 return ret;
3699 EXPORT_SYMBOL(completion_done);
3701 static long __sched
3702 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3704 unsigned long flags;
3705 wait_queue_t wait;
3707 init_waitqueue_entry(&wait, current);
3709 __set_current_state(state);
3711 spin_lock_irqsave(&q->lock, flags);
3712 __add_wait_queue(q, &wait);
3713 spin_unlock(&q->lock);
3714 timeout = schedule_timeout(timeout);
3715 spin_lock_irq(&q->lock);
3716 __remove_wait_queue(q, &wait);
3717 spin_unlock_irqrestore(&q->lock, flags);
3719 return timeout;
3722 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3724 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3726 EXPORT_SYMBOL(interruptible_sleep_on);
3728 long __sched
3729 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3731 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3733 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3735 void __sched sleep_on(wait_queue_head_t *q)
3737 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3739 EXPORT_SYMBOL(sleep_on);
3741 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3745 EXPORT_SYMBOL(sleep_on_timeout);
3747 #ifdef CONFIG_RT_MUTEXES
3750 * rt_mutex_setprio - set the current priority of a task
3751 * @p: task
3752 * @prio: prio value (kernel-internal form)
3754 * This function changes the 'effective' priority of a task. It does
3755 * not touch ->normal_prio like __setscheduler().
3757 * Used by the rt_mutex code to implement priority inheritance logic.
3759 void rt_mutex_setprio(struct task_struct *p, int prio)
3761 int oldprio, on_rq, running;
3762 struct rq *rq;
3763 const struct sched_class *prev_class;
3765 BUG_ON(prio < 0 || prio > MAX_PRIO);
3767 rq = __task_rq_lock(p);
3769 trace_sched_pi_setprio(p, prio);
3770 oldprio = p->prio;
3771 prev_class = p->sched_class;
3772 on_rq = p->on_rq;
3773 running = task_current(rq, p);
3774 if (on_rq)
3775 dequeue_task(rq, p, 0);
3776 if (running)
3777 p->sched_class->put_prev_task(rq, p);
3779 if (rt_prio(prio))
3780 p->sched_class = &rt_sched_class;
3781 else
3782 p->sched_class = &fair_sched_class;
3784 p->prio = prio;
3786 if (running)
3787 p->sched_class->set_curr_task(rq);
3788 if (on_rq)
3789 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3791 check_class_changed(rq, p, prev_class, oldprio);
3792 __task_rq_unlock(rq);
3795 #endif
3797 void set_user_nice(struct task_struct *p, long nice)
3799 int old_prio, delta, on_rq;
3800 unsigned long flags;
3801 struct rq *rq;
3803 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3804 return;
3806 * We have to be careful, if called from sys_setpriority(),
3807 * the task might be in the middle of scheduling on another CPU.
3809 rq = task_rq_lock(p, &flags);
3811 * The RT priorities are set via sched_setscheduler(), but we still
3812 * allow the 'normal' nice value to be set - but as expected
3813 * it wont have any effect on scheduling until the task is
3814 * SCHED_FIFO/SCHED_RR:
3816 if (task_has_rt_policy(p)) {
3817 p->static_prio = NICE_TO_PRIO(nice);
3818 goto out_unlock;
3820 on_rq = p->on_rq;
3821 if (on_rq)
3822 dequeue_task(rq, p, 0);
3824 p->static_prio = NICE_TO_PRIO(nice);
3825 set_load_weight(p);
3826 old_prio = p->prio;
3827 p->prio = effective_prio(p);
3828 delta = p->prio - old_prio;
3830 if (on_rq) {
3831 enqueue_task(rq, p, 0);
3833 * If the task increased its priority or is running and
3834 * lowered its priority, then reschedule its CPU:
3836 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3837 resched_task(rq->curr);
3839 out_unlock:
3840 task_rq_unlock(rq, p, &flags);
3842 EXPORT_SYMBOL(set_user_nice);
3845 * can_nice - check if a task can reduce its nice value
3846 * @p: task
3847 * @nice: nice value
3849 int can_nice(const struct task_struct *p, const int nice)
3851 /* convert nice value [19,-20] to rlimit style value [1,40] */
3852 int nice_rlim = 20 - nice;
3854 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3855 capable(CAP_SYS_NICE));
3858 #ifdef __ARCH_WANT_SYS_NICE
3861 * sys_nice - change the priority of the current process.
3862 * @increment: priority increment
3864 * sys_setpriority is a more generic, but much slower function that
3865 * does similar things.
3867 SYSCALL_DEFINE1(nice, int, increment)
3869 long nice, retval;
3872 * Setpriority might change our priority at the same moment.
3873 * We don't have to worry. Conceptually one call occurs first
3874 * and we have a single winner.
3876 if (increment < -40)
3877 increment = -40;
3878 if (increment > 40)
3879 increment = 40;
3881 nice = TASK_NICE(current) + increment;
3882 if (nice < -20)
3883 nice = -20;
3884 if (nice > 19)
3885 nice = 19;
3887 if (increment < 0 && !can_nice(current, nice))
3888 return -EPERM;
3890 retval = security_task_setnice(current, nice);
3891 if (retval)
3892 return retval;
3894 set_user_nice(current, nice);
3895 return 0;
3898 #endif
3901 * task_prio - return the priority value of a given task.
3902 * @p: the task in question.
3904 * This is the priority value as seen by users in /proc.
3905 * RT tasks are offset by -200. Normal tasks are centered
3906 * around 0, value goes from -16 to +15.
3908 int task_prio(const struct task_struct *p)
3910 return p->prio - MAX_RT_PRIO;
3914 * task_nice - return the nice value of a given task.
3915 * @p: the task in question.
3917 int task_nice(const struct task_struct *p)
3919 return TASK_NICE(p);
3921 EXPORT_SYMBOL(task_nice);
3924 * idle_cpu - is a given cpu idle currently?
3925 * @cpu: the processor in question.
3927 int idle_cpu(int cpu)
3929 struct rq *rq = cpu_rq(cpu);
3931 if (rq->curr != rq->idle)
3932 return 0;
3934 if (rq->nr_running)
3935 return 0;
3937 #ifdef CONFIG_SMP
3938 if (!llist_empty(&rq->wake_list))
3939 return 0;
3940 #endif
3942 return 1;
3946 * idle_task - return the idle task for a given cpu.
3947 * @cpu: the processor in question.
3949 struct task_struct *idle_task(int cpu)
3951 return cpu_rq(cpu)->idle;
3955 * find_process_by_pid - find a process with a matching PID value.
3956 * @pid: the pid in question.
3958 static struct task_struct *find_process_by_pid(pid_t pid)
3960 return pid ? find_task_by_vpid(pid) : current;
3963 /* Actually do priority change: must hold rq lock. */
3964 static void
3965 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3967 p->policy = policy;
3968 p->rt_priority = prio;
3969 p->normal_prio = normal_prio(p);
3970 /* we are holding p->pi_lock already */
3971 p->prio = rt_mutex_getprio(p);
3972 if (rt_prio(p->prio))
3973 p->sched_class = &rt_sched_class;
3974 else
3975 p->sched_class = &fair_sched_class;
3976 set_load_weight(p);
3980 * check the target process has a UID that matches the current process's
3982 static bool check_same_owner(struct task_struct *p)
3984 const struct cred *cred = current_cred(), *pcred;
3985 bool match;
3987 rcu_read_lock();
3988 pcred = __task_cred(p);
3989 if (cred->user->user_ns == pcred->user->user_ns)
3990 match = (cred->euid == pcred->euid ||
3991 cred->euid == pcred->uid);
3992 else
3993 match = false;
3994 rcu_read_unlock();
3995 return match;
3998 static int __sched_setscheduler(struct task_struct *p, int policy,
3999 const struct sched_param *param, bool user)
4001 int retval, oldprio, oldpolicy = -1, on_rq, running;
4002 unsigned long flags;
4003 const struct sched_class *prev_class;
4004 struct rq *rq;
4005 int reset_on_fork;
4007 /* may grab non-irq protected spin_locks */
4008 BUG_ON(in_interrupt());
4009 recheck:
4010 /* double check policy once rq lock held */
4011 if (policy < 0) {
4012 reset_on_fork = p->sched_reset_on_fork;
4013 policy = oldpolicy = p->policy;
4014 } else {
4015 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4016 policy &= ~SCHED_RESET_ON_FORK;
4018 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4019 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4020 policy != SCHED_IDLE)
4021 return -EINVAL;
4025 * Valid priorities for SCHED_FIFO and SCHED_RR are
4026 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4027 * SCHED_BATCH and SCHED_IDLE is 0.
4029 if (param->sched_priority < 0 ||
4030 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4031 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4032 return -EINVAL;
4033 if (rt_policy(policy) != (param->sched_priority != 0))
4034 return -EINVAL;
4037 * Allow unprivileged RT tasks to decrease priority:
4039 if (user && !capable(CAP_SYS_NICE)) {
4040 if (rt_policy(policy)) {
4041 unsigned long rlim_rtprio =
4042 task_rlimit(p, RLIMIT_RTPRIO);
4044 /* can't set/change the rt policy */
4045 if (policy != p->policy && !rlim_rtprio)
4046 return -EPERM;
4048 /* can't increase priority */
4049 if (param->sched_priority > p->rt_priority &&
4050 param->sched_priority > rlim_rtprio)
4051 return -EPERM;
4055 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4056 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4058 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4059 if (!can_nice(p, TASK_NICE(p)))
4060 return -EPERM;
4063 /* can't change other user's priorities */
4064 if (!check_same_owner(p))
4065 return -EPERM;
4067 /* Normal users shall not reset the sched_reset_on_fork flag */
4068 if (p->sched_reset_on_fork && !reset_on_fork)
4069 return -EPERM;
4072 if (user) {
4073 retval = security_task_setscheduler(p);
4074 if (retval)
4075 return retval;
4079 * make sure no PI-waiters arrive (or leave) while we are
4080 * changing the priority of the task:
4082 * To be able to change p->policy safely, the appropriate
4083 * runqueue lock must be held.
4085 rq = task_rq_lock(p, &flags);
4088 * Changing the policy of the stop threads its a very bad idea
4090 if (p == rq->stop) {
4091 task_rq_unlock(rq, p, &flags);
4092 return -EINVAL;
4096 * If not changing anything there's no need to proceed further:
4098 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4099 param->sched_priority == p->rt_priority))) {
4101 __task_rq_unlock(rq);
4102 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4103 return 0;
4106 #ifdef CONFIG_RT_GROUP_SCHED
4107 if (user) {
4109 * Do not allow realtime tasks into groups that have no runtime
4110 * assigned.
4112 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4113 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4114 !task_group_is_autogroup(task_group(p))) {
4115 task_rq_unlock(rq, p, &flags);
4116 return -EPERM;
4119 #endif
4121 /* recheck policy now with rq lock held */
4122 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4123 policy = oldpolicy = -1;
4124 task_rq_unlock(rq, p, &flags);
4125 goto recheck;
4127 on_rq = p->on_rq;
4128 running = task_current(rq, p);
4129 if (on_rq)
4130 dequeue_task(rq, p, 0);
4131 if (running)
4132 p->sched_class->put_prev_task(rq, p);
4134 p->sched_reset_on_fork = reset_on_fork;
4136 oldprio = p->prio;
4137 prev_class = p->sched_class;
4138 __setscheduler(rq, p, policy, param->sched_priority);
4140 if (running)
4141 p->sched_class->set_curr_task(rq);
4142 if (on_rq)
4143 enqueue_task(rq, p, 0);
4145 check_class_changed(rq, p, prev_class, oldprio);
4146 task_rq_unlock(rq, p, &flags);
4148 rt_mutex_adjust_pi(p);
4150 return 0;
4154 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4155 * @p: the task in question.
4156 * @policy: new policy.
4157 * @param: structure containing the new RT priority.
4159 * NOTE that the task may be already dead.
4161 int sched_setscheduler(struct task_struct *p, int policy,
4162 const struct sched_param *param)
4164 return __sched_setscheduler(p, policy, param, true);
4166 EXPORT_SYMBOL_GPL(sched_setscheduler);
4169 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4170 * @p: the task in question.
4171 * @policy: new policy.
4172 * @param: structure containing the new RT priority.
4174 * Just like sched_setscheduler, only don't bother checking if the
4175 * current context has permission. For example, this is needed in
4176 * stop_machine(): we create temporary high priority worker threads,
4177 * but our caller might not have that capability.
4179 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4180 const struct sched_param *param)
4182 return __sched_setscheduler(p, policy, param, false);
4185 static int
4186 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4188 struct sched_param lparam;
4189 struct task_struct *p;
4190 int retval;
4192 if (!param || pid < 0)
4193 return -EINVAL;
4194 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4195 return -EFAULT;
4197 rcu_read_lock();
4198 retval = -ESRCH;
4199 p = find_process_by_pid(pid);
4200 if (p != NULL)
4201 retval = sched_setscheduler(p, policy, &lparam);
4202 rcu_read_unlock();
4204 return retval;
4208 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4209 * @pid: the pid in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4213 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4214 struct sched_param __user *, param)
4216 /* negative values for policy are not valid */
4217 if (policy < 0)
4218 return -EINVAL;
4220 return do_sched_setscheduler(pid, policy, param);
4224 * sys_sched_setparam - set/change the RT priority of a thread
4225 * @pid: the pid in question.
4226 * @param: structure containing the new RT priority.
4228 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4230 return do_sched_setscheduler(pid, -1, param);
4234 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4235 * @pid: the pid in question.
4237 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4239 struct task_struct *p;
4240 int retval;
4242 if (pid < 0)
4243 return -EINVAL;
4245 retval = -ESRCH;
4246 rcu_read_lock();
4247 p = find_process_by_pid(pid);
4248 if (p) {
4249 retval = security_task_getscheduler(p);
4250 if (!retval)
4251 retval = p->policy
4252 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4254 rcu_read_unlock();
4255 return retval;
4259 * sys_sched_getparam - get the RT priority of a thread
4260 * @pid: the pid in question.
4261 * @param: structure containing the RT priority.
4263 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4265 struct sched_param lp;
4266 struct task_struct *p;
4267 int retval;
4269 if (!param || pid < 0)
4270 return -EINVAL;
4272 rcu_read_lock();
4273 p = find_process_by_pid(pid);
4274 retval = -ESRCH;
4275 if (!p)
4276 goto out_unlock;
4278 retval = security_task_getscheduler(p);
4279 if (retval)
4280 goto out_unlock;
4282 lp.sched_priority = p->rt_priority;
4283 rcu_read_unlock();
4286 * This one might sleep, we cannot do it with a spinlock held ...
4288 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4290 return retval;
4292 out_unlock:
4293 rcu_read_unlock();
4294 return retval;
4297 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4299 cpumask_var_t cpus_allowed, new_mask;
4300 struct task_struct *p;
4301 int retval;
4303 get_online_cpus();
4304 rcu_read_lock();
4306 p = find_process_by_pid(pid);
4307 if (!p) {
4308 rcu_read_unlock();
4309 put_online_cpus();
4310 return -ESRCH;
4313 /* Prevent p going away */
4314 get_task_struct(p);
4315 rcu_read_unlock();
4317 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4318 retval = -ENOMEM;
4319 goto out_put_task;
4321 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4322 retval = -ENOMEM;
4323 goto out_free_cpus_allowed;
4325 retval = -EPERM;
4326 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4327 goto out_unlock;
4329 retval = security_task_setscheduler(p);
4330 if (retval)
4331 goto out_unlock;
4333 cpuset_cpus_allowed(p, cpus_allowed);
4334 cpumask_and(new_mask, in_mask, cpus_allowed);
4335 again:
4336 retval = set_cpus_allowed_ptr(p, new_mask);
4338 if (!retval) {
4339 cpuset_cpus_allowed(p, cpus_allowed);
4340 if (!cpumask_subset(new_mask, cpus_allowed)) {
4342 * We must have raced with a concurrent cpuset
4343 * update. Just reset the cpus_allowed to the
4344 * cpuset's cpus_allowed
4346 cpumask_copy(new_mask, cpus_allowed);
4347 goto again;
4350 out_unlock:
4351 free_cpumask_var(new_mask);
4352 out_free_cpus_allowed:
4353 free_cpumask_var(cpus_allowed);
4354 out_put_task:
4355 put_task_struct(p);
4356 put_online_cpus();
4357 return retval;
4360 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4361 struct cpumask *new_mask)
4363 if (len < cpumask_size())
4364 cpumask_clear(new_mask);
4365 else if (len > cpumask_size())
4366 len = cpumask_size();
4368 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4372 * sys_sched_setaffinity - set the cpu affinity of a process
4373 * @pid: pid of the process
4374 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4375 * @user_mask_ptr: user-space pointer to the new cpu mask
4377 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4378 unsigned long __user *, user_mask_ptr)
4380 cpumask_var_t new_mask;
4381 int retval;
4383 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4384 return -ENOMEM;
4386 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4387 if (retval == 0)
4388 retval = sched_setaffinity(pid, new_mask);
4389 free_cpumask_var(new_mask);
4390 return retval;
4393 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4395 struct task_struct *p;
4396 unsigned long flags;
4397 int retval;
4399 get_online_cpus();
4400 rcu_read_lock();
4402 retval = -ESRCH;
4403 p = find_process_by_pid(pid);
4404 if (!p)
4405 goto out_unlock;
4407 retval = security_task_getscheduler(p);
4408 if (retval)
4409 goto out_unlock;
4411 raw_spin_lock_irqsave(&p->pi_lock, flags);
4412 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4413 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4415 out_unlock:
4416 rcu_read_unlock();
4417 put_online_cpus();
4419 return retval;
4423 * sys_sched_getaffinity - get the cpu affinity of a process
4424 * @pid: pid of the process
4425 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4426 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4428 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4429 unsigned long __user *, user_mask_ptr)
4431 int ret;
4432 cpumask_var_t mask;
4434 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4435 return -EINVAL;
4436 if (len & (sizeof(unsigned long)-1))
4437 return -EINVAL;
4439 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4440 return -ENOMEM;
4442 ret = sched_getaffinity(pid, mask);
4443 if (ret == 0) {
4444 size_t retlen = min_t(size_t, len, cpumask_size());
4446 if (copy_to_user(user_mask_ptr, mask, retlen))
4447 ret = -EFAULT;
4448 else
4449 ret = retlen;
4451 free_cpumask_var(mask);
4453 return ret;
4457 * sys_sched_yield - yield the current processor to other threads.
4459 * This function yields the current CPU to other tasks. If there are no
4460 * other threads running on this CPU then this function will return.
4462 SYSCALL_DEFINE0(sched_yield)
4464 struct rq *rq = this_rq_lock();
4466 schedstat_inc(rq, yld_count);
4467 current->sched_class->yield_task(rq);
4470 * Since we are going to call schedule() anyway, there's
4471 * no need to preempt or enable interrupts:
4473 __release(rq->lock);
4474 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4475 do_raw_spin_unlock(&rq->lock);
4476 preempt_enable_no_resched();
4478 schedule();
4480 return 0;
4483 static inline int should_resched(void)
4485 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4488 static void __cond_resched(void)
4490 add_preempt_count(PREEMPT_ACTIVE);
4491 __schedule();
4492 sub_preempt_count(PREEMPT_ACTIVE);
4495 int __sched _cond_resched(void)
4497 if (should_resched()) {
4498 __cond_resched();
4499 return 1;
4501 return 0;
4503 EXPORT_SYMBOL(_cond_resched);
4506 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4507 * call schedule, and on return reacquire the lock.
4509 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4510 * operations here to prevent schedule() from being called twice (once via
4511 * spin_unlock(), once by hand).
4513 int __cond_resched_lock(spinlock_t *lock)
4515 int resched = should_resched();
4516 int ret = 0;
4518 lockdep_assert_held(lock);
4520 if (spin_needbreak(lock) || resched) {
4521 spin_unlock(lock);
4522 if (resched)
4523 __cond_resched();
4524 else
4525 cpu_relax();
4526 ret = 1;
4527 spin_lock(lock);
4529 return ret;
4531 EXPORT_SYMBOL(__cond_resched_lock);
4533 int __sched __cond_resched_softirq(void)
4535 BUG_ON(!in_softirq());
4537 if (should_resched()) {
4538 local_bh_enable();
4539 __cond_resched();
4540 local_bh_disable();
4541 return 1;
4543 return 0;
4545 EXPORT_SYMBOL(__cond_resched_softirq);
4548 * yield - yield the current processor to other threads.
4550 * This is a shortcut for kernel-space yielding - it marks the
4551 * thread runnable and calls sys_sched_yield().
4553 void __sched yield(void)
4555 set_current_state(TASK_RUNNING);
4556 sys_sched_yield();
4558 EXPORT_SYMBOL(yield);
4561 * yield_to - yield the current processor to another thread in
4562 * your thread group, or accelerate that thread toward the
4563 * processor it's on.
4564 * @p: target task
4565 * @preempt: whether task preemption is allowed or not
4567 * It's the caller's job to ensure that the target task struct
4568 * can't go away on us before we can do any checks.
4570 * Returns true if we indeed boosted the target task.
4572 bool __sched yield_to(struct task_struct *p, bool preempt)
4574 struct task_struct *curr = current;
4575 struct rq *rq, *p_rq;
4576 unsigned long flags;
4577 bool yielded = 0;
4579 local_irq_save(flags);
4580 rq = this_rq();
4582 again:
4583 p_rq = task_rq(p);
4584 double_rq_lock(rq, p_rq);
4585 while (task_rq(p) != p_rq) {
4586 double_rq_unlock(rq, p_rq);
4587 goto again;
4590 if (!curr->sched_class->yield_to_task)
4591 goto out;
4593 if (curr->sched_class != p->sched_class)
4594 goto out;
4596 if (task_running(p_rq, p) || p->state)
4597 goto out;
4599 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4600 if (yielded) {
4601 schedstat_inc(rq, yld_count);
4603 * Make p's CPU reschedule; pick_next_entity takes care of
4604 * fairness.
4606 if (preempt && rq != p_rq)
4607 resched_task(p_rq->curr);
4608 } else {
4610 * We might have set it in task_yield_fair(), but are
4611 * not going to schedule(), so don't want to skip
4612 * the next update.
4614 rq->skip_clock_update = 0;
4617 out:
4618 double_rq_unlock(rq, p_rq);
4619 local_irq_restore(flags);
4621 if (yielded)
4622 schedule();
4624 return yielded;
4626 EXPORT_SYMBOL_GPL(yield_to);
4629 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4630 * that process accounting knows that this is a task in IO wait state.
4632 void __sched io_schedule(void)
4634 struct rq *rq = raw_rq();
4636 delayacct_blkio_start();
4637 atomic_inc(&rq->nr_iowait);
4638 blk_flush_plug(current);
4639 current->in_iowait = 1;
4640 schedule();
4641 current->in_iowait = 0;
4642 atomic_dec(&rq->nr_iowait);
4643 delayacct_blkio_end();
4645 EXPORT_SYMBOL(io_schedule);
4647 long __sched io_schedule_timeout(long timeout)
4649 struct rq *rq = raw_rq();
4650 long ret;
4652 delayacct_blkio_start();
4653 atomic_inc(&rq->nr_iowait);
4654 blk_flush_plug(current);
4655 current->in_iowait = 1;
4656 ret = schedule_timeout(timeout);
4657 current->in_iowait = 0;
4658 atomic_dec(&rq->nr_iowait);
4659 delayacct_blkio_end();
4660 return ret;
4664 * sys_sched_get_priority_max - return maximum RT priority.
4665 * @policy: scheduling class.
4667 * this syscall returns the maximum rt_priority that can be used
4668 * by a given scheduling class.
4670 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4672 int ret = -EINVAL;
4674 switch (policy) {
4675 case SCHED_FIFO:
4676 case SCHED_RR:
4677 ret = MAX_USER_RT_PRIO-1;
4678 break;
4679 case SCHED_NORMAL:
4680 case SCHED_BATCH:
4681 case SCHED_IDLE:
4682 ret = 0;
4683 break;
4685 return ret;
4689 * sys_sched_get_priority_min - return minimum RT priority.
4690 * @policy: scheduling class.
4692 * this syscall returns the minimum rt_priority that can be used
4693 * by a given scheduling class.
4695 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4697 int ret = -EINVAL;
4699 switch (policy) {
4700 case SCHED_FIFO:
4701 case SCHED_RR:
4702 ret = 1;
4703 break;
4704 case SCHED_NORMAL:
4705 case SCHED_BATCH:
4706 case SCHED_IDLE:
4707 ret = 0;
4709 return ret;
4713 * sys_sched_rr_get_interval - return the default timeslice of a process.
4714 * @pid: pid of the process.
4715 * @interval: userspace pointer to the timeslice value.
4717 * this syscall writes the default timeslice value of a given process
4718 * into the user-space timespec buffer. A value of '0' means infinity.
4720 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4721 struct timespec __user *, interval)
4723 struct task_struct *p;
4724 unsigned int time_slice;
4725 unsigned long flags;
4726 struct rq *rq;
4727 int retval;
4728 struct timespec t;
4730 if (pid < 0)
4731 return -EINVAL;
4733 retval = -ESRCH;
4734 rcu_read_lock();
4735 p = find_process_by_pid(pid);
4736 if (!p)
4737 goto out_unlock;
4739 retval = security_task_getscheduler(p);
4740 if (retval)
4741 goto out_unlock;
4743 rq = task_rq_lock(p, &flags);
4744 time_slice = p->sched_class->get_rr_interval(rq, p);
4745 task_rq_unlock(rq, p, &flags);
4747 rcu_read_unlock();
4748 jiffies_to_timespec(time_slice, &t);
4749 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4750 return retval;
4752 out_unlock:
4753 rcu_read_unlock();
4754 return retval;
4757 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4759 void sched_show_task(struct task_struct *p)
4761 unsigned long free = 0;
4762 unsigned state;
4764 state = p->state ? __ffs(p->state) + 1 : 0;
4765 printk(KERN_INFO "%-15.15s %c", p->comm,
4766 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4767 #if BITS_PER_LONG == 32
4768 if (state == TASK_RUNNING)
4769 printk(KERN_CONT " running ");
4770 else
4771 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4772 #else
4773 if (state == TASK_RUNNING)
4774 printk(KERN_CONT " running task ");
4775 else
4776 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4777 #endif
4778 #ifdef CONFIG_DEBUG_STACK_USAGE
4779 free = stack_not_used(p);
4780 #endif
4781 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4782 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4783 (unsigned long)task_thread_info(p)->flags);
4785 show_stack(p, NULL);
4788 void show_state_filter(unsigned long state_filter)
4790 struct task_struct *g, *p;
4792 #if BITS_PER_LONG == 32
4793 printk(KERN_INFO
4794 " task PC stack pid father\n");
4795 #else
4796 printk(KERN_INFO
4797 " task PC stack pid father\n");
4798 #endif
4799 rcu_read_lock();
4800 do_each_thread(g, p) {
4802 * reset the NMI-timeout, listing all files on a slow
4803 * console might take a lot of time:
4805 touch_nmi_watchdog();
4806 if (!state_filter || (p->state & state_filter))
4807 sched_show_task(p);
4808 } while_each_thread(g, p);
4810 touch_all_softlockup_watchdogs();
4812 #ifdef CONFIG_SCHED_DEBUG
4813 sysrq_sched_debug_show();
4814 #endif
4815 rcu_read_unlock();
4817 * Only show locks if all tasks are dumped:
4819 if (!state_filter)
4820 debug_show_all_locks();
4823 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4825 idle->sched_class = &idle_sched_class;
4829 * init_idle - set up an idle thread for a given CPU
4830 * @idle: task in question
4831 * @cpu: cpu the idle task belongs to
4833 * NOTE: this function does not set the idle thread's NEED_RESCHED
4834 * flag, to make booting more robust.
4836 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4838 struct rq *rq = cpu_rq(cpu);
4839 unsigned long flags;
4841 raw_spin_lock_irqsave(&rq->lock, flags);
4843 __sched_fork(idle);
4844 idle->state = TASK_RUNNING;
4845 idle->se.exec_start = sched_clock();
4847 do_set_cpus_allowed(idle, cpumask_of(cpu));
4849 * We're having a chicken and egg problem, even though we are
4850 * holding rq->lock, the cpu isn't yet set to this cpu so the
4851 * lockdep check in task_group() will fail.
4853 * Similar case to sched_fork(). / Alternatively we could
4854 * use task_rq_lock() here and obtain the other rq->lock.
4856 * Silence PROVE_RCU
4858 rcu_read_lock();
4859 __set_task_cpu(idle, cpu);
4860 rcu_read_unlock();
4862 rq->curr = rq->idle = idle;
4863 #if defined(CONFIG_SMP)
4864 idle->on_cpu = 1;
4865 #endif
4866 raw_spin_unlock_irqrestore(&rq->lock, flags);
4868 /* Set the preempt count _outside_ the spinlocks! */
4869 task_thread_info(idle)->preempt_count = 0;
4872 * The idle tasks have their own, simple scheduling class:
4874 idle->sched_class = &idle_sched_class;
4875 ftrace_graph_init_idle_task(idle, cpu);
4876 #if defined(CONFIG_SMP)
4877 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4878 #endif
4881 #ifdef CONFIG_SMP
4882 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4884 if (p->sched_class && p->sched_class->set_cpus_allowed)
4885 p->sched_class->set_cpus_allowed(p, new_mask);
4887 cpumask_copy(&p->cpus_allowed, new_mask);
4888 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4892 * This is how migration works:
4894 * 1) we invoke migration_cpu_stop() on the target CPU using
4895 * stop_one_cpu().
4896 * 2) stopper starts to run (implicitly forcing the migrated thread
4897 * off the CPU)
4898 * 3) it checks whether the migrated task is still in the wrong runqueue.
4899 * 4) if it's in the wrong runqueue then the migration thread removes
4900 * it and puts it into the right queue.
4901 * 5) stopper completes and stop_one_cpu() returns and the migration
4902 * is done.
4906 * Change a given task's CPU affinity. Migrate the thread to a
4907 * proper CPU and schedule it away if the CPU it's executing on
4908 * is removed from the allowed bitmask.
4910 * NOTE: the caller must have a valid reference to the task, the
4911 * task must not exit() & deallocate itself prematurely. The
4912 * call is not atomic; no spinlocks may be held.
4914 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4916 unsigned long flags;
4917 struct rq *rq;
4918 unsigned int dest_cpu;
4919 int ret = 0;
4921 rq = task_rq_lock(p, &flags);
4923 if (cpumask_equal(&p->cpus_allowed, new_mask))
4924 goto out;
4926 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4927 ret = -EINVAL;
4928 goto out;
4931 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4932 ret = -EINVAL;
4933 goto out;
4936 do_set_cpus_allowed(p, new_mask);
4938 /* Can the task run on the task's current CPU? If so, we're done */
4939 if (cpumask_test_cpu(task_cpu(p), new_mask))
4940 goto out;
4942 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4943 if (p->on_rq) {
4944 struct migration_arg arg = { p, dest_cpu };
4945 /* Need help from migration thread: drop lock and wait. */
4946 task_rq_unlock(rq, p, &flags);
4947 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4948 tlb_migrate_finish(p->mm);
4949 return 0;
4951 out:
4952 task_rq_unlock(rq, p, &flags);
4954 return ret;
4956 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4959 * Move (not current) task off this cpu, onto dest cpu. We're doing
4960 * this because either it can't run here any more (set_cpus_allowed()
4961 * away from this CPU, or CPU going down), or because we're
4962 * attempting to rebalance this task on exec (sched_exec).
4964 * So we race with normal scheduler movements, but that's OK, as long
4965 * as the task is no longer on this CPU.
4967 * Returns non-zero if task was successfully migrated.
4969 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4971 struct rq *rq_dest, *rq_src;
4972 int ret = 0;
4974 if (unlikely(!cpu_active(dest_cpu)))
4975 return ret;
4977 rq_src = cpu_rq(src_cpu);
4978 rq_dest = cpu_rq(dest_cpu);
4980 raw_spin_lock(&p->pi_lock);
4981 double_rq_lock(rq_src, rq_dest);
4982 /* Already moved. */
4983 if (task_cpu(p) != src_cpu)
4984 goto done;
4985 /* Affinity changed (again). */
4986 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4987 goto fail;
4990 * If we're not on a rq, the next wake-up will ensure we're
4991 * placed properly.
4993 if (p->on_rq) {
4994 dequeue_task(rq_src, p, 0);
4995 set_task_cpu(p, dest_cpu);
4996 enqueue_task(rq_dest, p, 0);
4997 check_preempt_curr(rq_dest, p, 0);
4999 done:
5000 ret = 1;
5001 fail:
5002 double_rq_unlock(rq_src, rq_dest);
5003 raw_spin_unlock(&p->pi_lock);
5004 return ret;
5008 * migration_cpu_stop - this will be executed by a highprio stopper thread
5009 * and performs thread migration by bumping thread off CPU then
5010 * 'pushing' onto another runqueue.
5012 static int migration_cpu_stop(void *data)
5014 struct migration_arg *arg = data;
5017 * The original target cpu might have gone down and we might
5018 * be on another cpu but it doesn't matter.
5020 local_irq_disable();
5021 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5022 local_irq_enable();
5023 return 0;
5026 #ifdef CONFIG_HOTPLUG_CPU
5029 * Ensures that the idle task is using init_mm right before its cpu goes
5030 * offline.
5032 void idle_task_exit(void)
5034 struct mm_struct *mm = current->active_mm;
5036 BUG_ON(cpu_online(smp_processor_id()));
5038 if (mm != &init_mm)
5039 switch_mm(mm, &init_mm, current);
5040 mmdrop(mm);
5044 * While a dead CPU has no uninterruptible tasks queued at this point,
5045 * it might still have a nonzero ->nr_uninterruptible counter, because
5046 * for performance reasons the counter is not stricly tracking tasks to
5047 * their home CPUs. So we just add the counter to another CPU's counter,
5048 * to keep the global sum constant after CPU-down:
5050 static void migrate_nr_uninterruptible(struct rq *rq_src)
5052 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5054 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5055 rq_src->nr_uninterruptible = 0;
5059 * remove the tasks which were accounted by rq from calc_load_tasks.
5061 static void calc_global_load_remove(struct rq *rq)
5063 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5064 rq->calc_load_active = 0;
5068 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5069 * try_to_wake_up()->select_task_rq().
5071 * Called with rq->lock held even though we'er in stop_machine() and
5072 * there's no concurrency possible, we hold the required locks anyway
5073 * because of lock validation efforts.
5075 static void migrate_tasks(unsigned int dead_cpu)
5077 struct rq *rq = cpu_rq(dead_cpu);
5078 struct task_struct *next, *stop = rq->stop;
5079 int dest_cpu;
5082 * Fudge the rq selection such that the below task selection loop
5083 * doesn't get stuck on the currently eligible stop task.
5085 * We're currently inside stop_machine() and the rq is either stuck
5086 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5087 * either way we should never end up calling schedule() until we're
5088 * done here.
5090 rq->stop = NULL;
5092 /* Ensure any throttled groups are reachable by pick_next_task */
5093 unthrottle_offline_cfs_rqs(rq);
5095 for ( ; ; ) {
5097 * There's this thread running, bail when that's the only
5098 * remaining thread.
5100 if (rq->nr_running == 1)
5101 break;
5103 next = pick_next_task(rq);
5104 BUG_ON(!next);
5105 next->sched_class->put_prev_task(rq, next);
5107 /* Find suitable destination for @next, with force if needed. */
5108 dest_cpu = select_fallback_rq(dead_cpu, next);
5109 raw_spin_unlock(&rq->lock);
5111 __migrate_task(next, dead_cpu, dest_cpu);
5113 raw_spin_lock(&rq->lock);
5116 rq->stop = stop;
5119 #endif /* CONFIG_HOTPLUG_CPU */
5121 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5123 static struct ctl_table sd_ctl_dir[] = {
5125 .procname = "sched_domain",
5126 .mode = 0555,
5131 static struct ctl_table sd_ctl_root[] = {
5133 .procname = "kernel",
5134 .mode = 0555,
5135 .child = sd_ctl_dir,
5140 static struct ctl_table *sd_alloc_ctl_entry(int n)
5142 struct ctl_table *entry =
5143 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5145 return entry;
5148 static void sd_free_ctl_entry(struct ctl_table **tablep)
5150 struct ctl_table *entry;
5153 * In the intermediate directories, both the child directory and
5154 * procname are dynamically allocated and could fail but the mode
5155 * will always be set. In the lowest directory the names are
5156 * static strings and all have proc handlers.
5158 for (entry = *tablep; entry->mode; entry++) {
5159 if (entry->child)
5160 sd_free_ctl_entry(&entry->child);
5161 if (entry->proc_handler == NULL)
5162 kfree(entry->procname);
5165 kfree(*tablep);
5166 *tablep = NULL;
5169 static void
5170 set_table_entry(struct ctl_table *entry,
5171 const char *procname, void *data, int maxlen,
5172 umode_t mode, proc_handler *proc_handler)
5174 entry->procname = procname;
5175 entry->data = data;
5176 entry->maxlen = maxlen;
5177 entry->mode = mode;
5178 entry->proc_handler = proc_handler;
5181 static struct ctl_table *
5182 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5184 struct ctl_table *table = sd_alloc_ctl_entry(13);
5186 if (table == NULL)
5187 return NULL;
5189 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5190 sizeof(long), 0644, proc_doulongvec_minmax);
5191 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5192 sizeof(long), 0644, proc_doulongvec_minmax);
5193 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5194 sizeof(int), 0644, proc_dointvec_minmax);
5195 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5196 sizeof(int), 0644, proc_dointvec_minmax);
5197 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5198 sizeof(int), 0644, proc_dointvec_minmax);
5199 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5200 sizeof(int), 0644, proc_dointvec_minmax);
5201 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5202 sizeof(int), 0644, proc_dointvec_minmax);
5203 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5204 sizeof(int), 0644, proc_dointvec_minmax);
5205 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5206 sizeof(int), 0644, proc_dointvec_minmax);
5207 set_table_entry(&table[9], "cache_nice_tries",
5208 &sd->cache_nice_tries,
5209 sizeof(int), 0644, proc_dointvec_minmax);
5210 set_table_entry(&table[10], "flags", &sd->flags,
5211 sizeof(int), 0644, proc_dointvec_minmax);
5212 set_table_entry(&table[11], "name", sd->name,
5213 CORENAME_MAX_SIZE, 0444, proc_dostring);
5214 /* &table[12] is terminator */
5216 return table;
5219 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5221 struct ctl_table *entry, *table;
5222 struct sched_domain *sd;
5223 int domain_num = 0, i;
5224 char buf[32];
5226 for_each_domain(cpu, sd)
5227 domain_num++;
5228 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5229 if (table == NULL)
5230 return NULL;
5232 i = 0;
5233 for_each_domain(cpu, sd) {
5234 snprintf(buf, 32, "domain%d", i);
5235 entry->procname = kstrdup(buf, GFP_KERNEL);
5236 entry->mode = 0555;
5237 entry->child = sd_alloc_ctl_domain_table(sd);
5238 entry++;
5239 i++;
5241 return table;
5244 static struct ctl_table_header *sd_sysctl_header;
5245 static void register_sched_domain_sysctl(void)
5247 int i, cpu_num = num_possible_cpus();
5248 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5249 char buf[32];
5251 WARN_ON(sd_ctl_dir[0].child);
5252 sd_ctl_dir[0].child = entry;
5254 if (entry == NULL)
5255 return;
5257 for_each_possible_cpu(i) {
5258 snprintf(buf, 32, "cpu%d", i);
5259 entry->procname = kstrdup(buf, GFP_KERNEL);
5260 entry->mode = 0555;
5261 entry->child = sd_alloc_ctl_cpu_table(i);
5262 entry++;
5265 WARN_ON(sd_sysctl_header);
5266 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5269 /* may be called multiple times per register */
5270 static void unregister_sched_domain_sysctl(void)
5272 if (sd_sysctl_header)
5273 unregister_sysctl_table(sd_sysctl_header);
5274 sd_sysctl_header = NULL;
5275 if (sd_ctl_dir[0].child)
5276 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5278 #else
5279 static void register_sched_domain_sysctl(void)
5282 static void unregister_sched_domain_sysctl(void)
5285 #endif
5287 static void set_rq_online(struct rq *rq)
5289 if (!rq->online) {
5290 const struct sched_class *class;
5292 cpumask_set_cpu(rq->cpu, rq->rd->online);
5293 rq->online = 1;
5295 for_each_class(class) {
5296 if (class->rq_online)
5297 class->rq_online(rq);
5302 static void set_rq_offline(struct rq *rq)
5304 if (rq->online) {
5305 const struct sched_class *class;
5307 for_each_class(class) {
5308 if (class->rq_offline)
5309 class->rq_offline(rq);
5312 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5313 rq->online = 0;
5318 * migration_call - callback that gets triggered when a CPU is added.
5319 * Here we can start up the necessary migration thread for the new CPU.
5321 static int __cpuinit
5322 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5324 int cpu = (long)hcpu;
5325 unsigned long flags;
5326 struct rq *rq = cpu_rq(cpu);
5328 switch (action & ~CPU_TASKS_FROZEN) {
5330 case CPU_UP_PREPARE:
5331 rq->calc_load_update = calc_load_update;
5332 break;
5334 case CPU_ONLINE:
5335 /* Update our root-domain */
5336 raw_spin_lock_irqsave(&rq->lock, flags);
5337 if (rq->rd) {
5338 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5340 set_rq_online(rq);
5342 raw_spin_unlock_irqrestore(&rq->lock, flags);
5343 break;
5345 #ifdef CONFIG_HOTPLUG_CPU
5346 case CPU_DYING:
5347 sched_ttwu_pending();
5348 /* Update our root-domain */
5349 raw_spin_lock_irqsave(&rq->lock, flags);
5350 if (rq->rd) {
5351 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5352 set_rq_offline(rq);
5354 migrate_tasks(cpu);
5355 BUG_ON(rq->nr_running != 1); /* the migration thread */
5356 raw_spin_unlock_irqrestore(&rq->lock, flags);
5358 migrate_nr_uninterruptible(rq);
5359 calc_global_load_remove(rq);
5360 break;
5361 #endif
5364 update_max_interval();
5366 return NOTIFY_OK;
5370 * Register at high priority so that task migration (migrate_all_tasks)
5371 * happens before everything else. This has to be lower priority than
5372 * the notifier in the perf_event subsystem, though.
5374 static struct notifier_block __cpuinitdata migration_notifier = {
5375 .notifier_call = migration_call,
5376 .priority = CPU_PRI_MIGRATION,
5379 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5380 unsigned long action, void *hcpu)
5382 switch (action & ~CPU_TASKS_FROZEN) {
5383 case CPU_ONLINE:
5384 case CPU_DOWN_FAILED:
5385 set_cpu_active((long)hcpu, true);
5386 return NOTIFY_OK;
5387 default:
5388 return NOTIFY_DONE;
5392 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5393 unsigned long action, void *hcpu)
5395 switch (action & ~CPU_TASKS_FROZEN) {
5396 case CPU_DOWN_PREPARE:
5397 set_cpu_active((long)hcpu, false);
5398 return NOTIFY_OK;
5399 default:
5400 return NOTIFY_DONE;
5404 static int __init migration_init(void)
5406 void *cpu = (void *)(long)smp_processor_id();
5407 int err;
5409 /* Initialize migration for the boot CPU */
5410 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5411 BUG_ON(err == NOTIFY_BAD);
5412 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5413 register_cpu_notifier(&migration_notifier);
5415 /* Register cpu active notifiers */
5416 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5417 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5419 return 0;
5421 early_initcall(migration_init);
5422 #endif
5424 #ifdef CONFIG_SMP
5426 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5428 #ifdef CONFIG_SCHED_DEBUG
5430 static __read_mostly int sched_domain_debug_enabled;
5432 static int __init sched_domain_debug_setup(char *str)
5434 sched_domain_debug_enabled = 1;
5436 return 0;
5438 early_param("sched_debug", sched_domain_debug_setup);
5440 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5441 struct cpumask *groupmask)
5443 struct sched_group *group = sd->groups;
5444 char str[256];
5446 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5447 cpumask_clear(groupmask);
5449 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5451 if (!(sd->flags & SD_LOAD_BALANCE)) {
5452 printk("does not load-balance\n");
5453 if (sd->parent)
5454 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5455 " has parent");
5456 return -1;
5459 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5461 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5462 printk(KERN_ERR "ERROR: domain->span does not contain "
5463 "CPU%d\n", cpu);
5465 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5466 printk(KERN_ERR "ERROR: domain->groups does not contain"
5467 " CPU%d\n", cpu);
5470 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5471 do {
5472 if (!group) {
5473 printk("\n");
5474 printk(KERN_ERR "ERROR: group is NULL\n");
5475 break;
5478 if (!group->sgp->power) {
5479 printk(KERN_CONT "\n");
5480 printk(KERN_ERR "ERROR: domain->cpu_power not "
5481 "set\n");
5482 break;
5485 if (!cpumask_weight(sched_group_cpus(group))) {
5486 printk(KERN_CONT "\n");
5487 printk(KERN_ERR "ERROR: empty group\n");
5488 break;
5491 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5492 printk(KERN_CONT "\n");
5493 printk(KERN_ERR "ERROR: repeated CPUs\n");
5494 break;
5497 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5499 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5501 printk(KERN_CONT " %s", str);
5502 if (group->sgp->power != SCHED_POWER_SCALE) {
5503 printk(KERN_CONT " (cpu_power = %d)",
5504 group->sgp->power);
5507 group = group->next;
5508 } while (group != sd->groups);
5509 printk(KERN_CONT "\n");
5511 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5512 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5514 if (sd->parent &&
5515 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5516 printk(KERN_ERR "ERROR: parent span is not a superset "
5517 "of domain->span\n");
5518 return 0;
5521 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5523 int level = 0;
5525 if (!sched_domain_debug_enabled)
5526 return;
5528 if (!sd) {
5529 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5530 return;
5533 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5535 for (;;) {
5536 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5537 break;
5538 level++;
5539 sd = sd->parent;
5540 if (!sd)
5541 break;
5544 #else /* !CONFIG_SCHED_DEBUG */
5545 # define sched_domain_debug(sd, cpu) do { } while (0)
5546 #endif /* CONFIG_SCHED_DEBUG */
5548 static int sd_degenerate(struct sched_domain *sd)
5550 if (cpumask_weight(sched_domain_span(sd)) == 1)
5551 return 1;
5553 /* Following flags need at least 2 groups */
5554 if (sd->flags & (SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
5557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUPOWER |
5559 SD_SHARE_PKG_RESOURCES)) {
5560 if (sd->groups != sd->groups->next)
5561 return 0;
5564 /* Following flags don't use groups */
5565 if (sd->flags & (SD_WAKE_AFFINE))
5566 return 0;
5568 return 1;
5571 static int
5572 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5574 unsigned long cflags = sd->flags, pflags = parent->flags;
5576 if (sd_degenerate(parent))
5577 return 1;
5579 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5580 return 0;
5582 /* Flags needing groups don't count if only 1 group in parent */
5583 if (parent->groups == parent->groups->next) {
5584 pflags &= ~(SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5586 SD_BALANCE_FORK |
5587 SD_BALANCE_EXEC |
5588 SD_SHARE_CPUPOWER |
5589 SD_SHARE_PKG_RESOURCES);
5590 if (nr_node_ids == 1)
5591 pflags &= ~SD_SERIALIZE;
5593 if (~cflags & pflags)
5594 return 0;
5596 return 1;
5599 static void free_rootdomain(struct rcu_head *rcu)
5601 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5603 cpupri_cleanup(&rd->cpupri);
5604 free_cpumask_var(rd->rto_mask);
5605 free_cpumask_var(rd->online);
5606 free_cpumask_var(rd->span);
5607 kfree(rd);
5610 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5612 struct root_domain *old_rd = NULL;
5613 unsigned long flags;
5615 raw_spin_lock_irqsave(&rq->lock, flags);
5617 if (rq->rd) {
5618 old_rd = rq->rd;
5620 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5621 set_rq_offline(rq);
5623 cpumask_clear_cpu(rq->cpu, old_rd->span);
5626 * If we dont want to free the old_rt yet then
5627 * set old_rd to NULL to skip the freeing later
5628 * in this function:
5630 if (!atomic_dec_and_test(&old_rd->refcount))
5631 old_rd = NULL;
5634 atomic_inc(&rd->refcount);
5635 rq->rd = rd;
5637 cpumask_set_cpu(rq->cpu, rd->span);
5638 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5639 set_rq_online(rq);
5641 raw_spin_unlock_irqrestore(&rq->lock, flags);
5643 if (old_rd)
5644 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5647 static int init_rootdomain(struct root_domain *rd)
5649 memset(rd, 0, sizeof(*rd));
5651 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5652 goto out;
5653 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5654 goto free_span;
5655 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5656 goto free_online;
5658 if (cpupri_init(&rd->cpupri) != 0)
5659 goto free_rto_mask;
5660 return 0;
5662 free_rto_mask:
5663 free_cpumask_var(rd->rto_mask);
5664 free_online:
5665 free_cpumask_var(rd->online);
5666 free_span:
5667 free_cpumask_var(rd->span);
5668 out:
5669 return -ENOMEM;
5673 * By default the system creates a single root-domain with all cpus as
5674 * members (mimicking the global state we have today).
5676 struct root_domain def_root_domain;
5678 static void init_defrootdomain(void)
5680 init_rootdomain(&def_root_domain);
5682 atomic_set(&def_root_domain.refcount, 1);
5685 static struct root_domain *alloc_rootdomain(void)
5687 struct root_domain *rd;
5689 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5690 if (!rd)
5691 return NULL;
5693 if (init_rootdomain(rd) != 0) {
5694 kfree(rd);
5695 return NULL;
5698 return rd;
5701 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5703 struct sched_group *tmp, *first;
5705 if (!sg)
5706 return;
5708 first = sg;
5709 do {
5710 tmp = sg->next;
5712 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5713 kfree(sg->sgp);
5715 kfree(sg);
5716 sg = tmp;
5717 } while (sg != first);
5720 static void free_sched_domain(struct rcu_head *rcu)
5722 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5725 * If its an overlapping domain it has private groups, iterate and
5726 * nuke them all.
5728 if (sd->flags & SD_OVERLAP) {
5729 free_sched_groups(sd->groups, 1);
5730 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5731 kfree(sd->groups->sgp);
5732 kfree(sd->groups);
5734 kfree(sd);
5737 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5739 call_rcu(&sd->rcu, free_sched_domain);
5742 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5744 for (; sd; sd = sd->parent)
5745 destroy_sched_domain(sd, cpu);
5749 * Keep a special pointer to the highest sched_domain that has
5750 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5751 * allows us to avoid some pointer chasing select_idle_sibling().
5753 * Also keep a unique ID per domain (we use the first cpu number in
5754 * the cpumask of the domain), this allows us to quickly tell if
5755 * two cpus are in the same cache domain, see ttwu_share_cache().
5757 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5758 DEFINE_PER_CPU(int, sd_llc_id);
5760 static void update_top_cache_domain(int cpu)
5762 struct sched_domain *sd;
5763 int id = cpu;
5765 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5766 if (sd)
5767 id = cpumask_first(sched_domain_span(sd));
5769 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5770 per_cpu(sd_llc_id, cpu) = id;
5774 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5775 * hold the hotplug lock.
5777 static void
5778 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5780 struct rq *rq = cpu_rq(cpu);
5781 struct sched_domain *tmp;
5783 /* Remove the sched domains which do not contribute to scheduling. */
5784 for (tmp = sd; tmp; ) {
5785 struct sched_domain *parent = tmp->parent;
5786 if (!parent)
5787 break;
5789 if (sd_parent_degenerate(tmp, parent)) {
5790 tmp->parent = parent->parent;
5791 if (parent->parent)
5792 parent->parent->child = tmp;
5793 destroy_sched_domain(parent, cpu);
5794 } else
5795 tmp = tmp->parent;
5798 if (sd && sd_degenerate(sd)) {
5799 tmp = sd;
5800 sd = sd->parent;
5801 destroy_sched_domain(tmp, cpu);
5802 if (sd)
5803 sd->child = NULL;
5806 sched_domain_debug(sd, cpu);
5808 rq_attach_root(rq, rd);
5809 tmp = rq->sd;
5810 rcu_assign_pointer(rq->sd, sd);
5811 destroy_sched_domains(tmp, cpu);
5813 update_top_cache_domain(cpu);
5816 /* cpus with isolated domains */
5817 static cpumask_var_t cpu_isolated_map;
5819 /* Setup the mask of cpus configured for isolated domains */
5820 static int __init isolated_cpu_setup(char *str)
5822 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5823 cpulist_parse(str, cpu_isolated_map);
5824 return 1;
5827 __setup("isolcpus=", isolated_cpu_setup);
5829 #ifdef CONFIG_NUMA
5832 * find_next_best_node - find the next node to include in a sched_domain
5833 * @node: node whose sched_domain we're building
5834 * @used_nodes: nodes already in the sched_domain
5836 * Find the next node to include in a given scheduling domain. Simply
5837 * finds the closest node not already in the @used_nodes map.
5839 * Should use nodemask_t.
5841 static int find_next_best_node(int node, nodemask_t *used_nodes)
5843 int i, n, val, min_val, best_node = -1;
5845 min_val = INT_MAX;
5847 for (i = 0; i < nr_node_ids; i++) {
5848 /* Start at @node */
5849 n = (node + i) % nr_node_ids;
5851 if (!nr_cpus_node(n))
5852 continue;
5854 /* Skip already used nodes */
5855 if (node_isset(n, *used_nodes))
5856 continue;
5858 /* Simple min distance search */
5859 val = node_distance(node, n);
5861 if (val < min_val) {
5862 min_val = val;
5863 best_node = n;
5867 if (best_node != -1)
5868 node_set(best_node, *used_nodes);
5869 return best_node;
5873 * sched_domain_node_span - get a cpumask for a node's sched_domain
5874 * @node: node whose cpumask we're constructing
5875 * @span: resulting cpumask
5877 * Given a node, construct a good cpumask for its sched_domain to span. It
5878 * should be one that prevents unnecessary balancing, but also spreads tasks
5879 * out optimally.
5881 static void sched_domain_node_span(int node, struct cpumask *span)
5883 nodemask_t used_nodes;
5884 int i;
5886 cpumask_clear(span);
5887 nodes_clear(used_nodes);
5889 cpumask_or(span, span, cpumask_of_node(node));
5890 node_set(node, used_nodes);
5892 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5893 int next_node = find_next_best_node(node, &used_nodes);
5894 if (next_node < 0)
5895 break;
5896 cpumask_or(span, span, cpumask_of_node(next_node));
5900 static const struct cpumask *cpu_node_mask(int cpu)
5902 lockdep_assert_held(&sched_domains_mutex);
5904 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5906 return sched_domains_tmpmask;
5909 static const struct cpumask *cpu_allnodes_mask(int cpu)
5911 return cpu_possible_mask;
5913 #endif /* CONFIG_NUMA */
5915 static const struct cpumask *cpu_cpu_mask(int cpu)
5917 return cpumask_of_node(cpu_to_node(cpu));
5920 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5922 struct sd_data {
5923 struct sched_domain **__percpu sd;
5924 struct sched_group **__percpu sg;
5925 struct sched_group_power **__percpu sgp;
5928 struct s_data {
5929 struct sched_domain ** __percpu sd;
5930 struct root_domain *rd;
5933 enum s_alloc {
5934 sa_rootdomain,
5935 sa_sd,
5936 sa_sd_storage,
5937 sa_none,
5940 struct sched_domain_topology_level;
5942 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5943 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5945 #define SDTL_OVERLAP 0x01
5947 struct sched_domain_topology_level {
5948 sched_domain_init_f init;
5949 sched_domain_mask_f mask;
5950 int flags;
5951 struct sd_data data;
5954 static int
5955 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5957 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5958 const struct cpumask *span = sched_domain_span(sd);
5959 struct cpumask *covered = sched_domains_tmpmask;
5960 struct sd_data *sdd = sd->private;
5961 struct sched_domain *child;
5962 int i;
5964 cpumask_clear(covered);
5966 for_each_cpu(i, span) {
5967 struct cpumask *sg_span;
5969 if (cpumask_test_cpu(i, covered))
5970 continue;
5972 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5973 GFP_KERNEL, cpu_to_node(cpu));
5975 if (!sg)
5976 goto fail;
5978 sg_span = sched_group_cpus(sg);
5980 child = *per_cpu_ptr(sdd->sd, i);
5981 if (child->child) {
5982 child = child->child;
5983 cpumask_copy(sg_span, sched_domain_span(child));
5984 } else
5985 cpumask_set_cpu(i, sg_span);
5987 cpumask_or(covered, covered, sg_span);
5989 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5990 atomic_inc(&sg->sgp->ref);
5992 if (cpumask_test_cpu(cpu, sg_span))
5993 groups = sg;
5995 if (!first)
5996 first = sg;
5997 if (last)
5998 last->next = sg;
5999 last = sg;
6000 last->next = first;
6002 sd->groups = groups;
6004 return 0;
6006 fail:
6007 free_sched_groups(first, 0);
6009 return -ENOMEM;
6012 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6014 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6015 struct sched_domain *child = sd->child;
6017 if (child)
6018 cpu = cpumask_first(sched_domain_span(child));
6020 if (sg) {
6021 *sg = *per_cpu_ptr(sdd->sg, cpu);
6022 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6023 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6026 return cpu;
6030 * build_sched_groups will build a circular linked list of the groups
6031 * covered by the given span, and will set each group's ->cpumask correctly,
6032 * and ->cpu_power to 0.
6034 * Assumes the sched_domain tree is fully constructed
6036 static int
6037 build_sched_groups(struct sched_domain *sd, int cpu)
6039 struct sched_group *first = NULL, *last = NULL;
6040 struct sd_data *sdd = sd->private;
6041 const struct cpumask *span = sched_domain_span(sd);
6042 struct cpumask *covered;
6043 int i;
6045 get_group(cpu, sdd, &sd->groups);
6046 atomic_inc(&sd->groups->ref);
6048 if (cpu != cpumask_first(sched_domain_span(sd)))
6049 return 0;
6051 lockdep_assert_held(&sched_domains_mutex);
6052 covered = sched_domains_tmpmask;
6054 cpumask_clear(covered);
6056 for_each_cpu(i, span) {
6057 struct sched_group *sg;
6058 int group = get_group(i, sdd, &sg);
6059 int j;
6061 if (cpumask_test_cpu(i, covered))
6062 continue;
6064 cpumask_clear(sched_group_cpus(sg));
6065 sg->sgp->power = 0;
6067 for_each_cpu(j, span) {
6068 if (get_group(j, sdd, NULL) != group)
6069 continue;
6071 cpumask_set_cpu(j, covered);
6072 cpumask_set_cpu(j, sched_group_cpus(sg));
6075 if (!first)
6076 first = sg;
6077 if (last)
6078 last->next = sg;
6079 last = sg;
6081 last->next = first;
6083 return 0;
6087 * Initialize sched groups cpu_power.
6089 * cpu_power indicates the capacity of sched group, which is used while
6090 * distributing the load between different sched groups in a sched domain.
6091 * Typically cpu_power for all the groups in a sched domain will be same unless
6092 * there are asymmetries in the topology. If there are asymmetries, group
6093 * having more cpu_power will pickup more load compared to the group having
6094 * less cpu_power.
6096 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6098 struct sched_group *sg = sd->groups;
6100 WARN_ON(!sd || !sg);
6102 do {
6103 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6104 sg = sg->next;
6105 } while (sg != sd->groups);
6107 if (cpu != group_first_cpu(sg))
6108 return;
6110 update_group_power(sd, cpu);
6111 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6114 int __weak arch_sd_sibling_asym_packing(void)
6116 return 0*SD_ASYM_PACKING;
6120 * Initializers for schedule domains
6121 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6124 #ifdef CONFIG_SCHED_DEBUG
6125 # define SD_INIT_NAME(sd, type) sd->name = #type
6126 #else
6127 # define SD_INIT_NAME(sd, type) do { } while (0)
6128 #endif
6130 #define SD_INIT_FUNC(type) \
6131 static noinline struct sched_domain * \
6132 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6134 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6135 *sd = SD_##type##_INIT; \
6136 SD_INIT_NAME(sd, type); \
6137 sd->private = &tl->data; \
6138 return sd; \
6141 SD_INIT_FUNC(CPU)
6142 #ifdef CONFIG_NUMA
6143 SD_INIT_FUNC(ALLNODES)
6144 SD_INIT_FUNC(NODE)
6145 #endif
6146 #ifdef CONFIG_SCHED_SMT
6147 SD_INIT_FUNC(SIBLING)
6148 #endif
6149 #ifdef CONFIG_SCHED_MC
6150 SD_INIT_FUNC(MC)
6151 #endif
6152 #ifdef CONFIG_SCHED_BOOK
6153 SD_INIT_FUNC(BOOK)
6154 #endif
6156 static int default_relax_domain_level = -1;
6157 int sched_domain_level_max;
6159 static int __init setup_relax_domain_level(char *str)
6161 unsigned long val;
6163 val = simple_strtoul(str, NULL, 0);
6164 if (val < sched_domain_level_max)
6165 default_relax_domain_level = val;
6167 return 1;
6169 __setup("relax_domain_level=", setup_relax_domain_level);
6171 static void set_domain_attribute(struct sched_domain *sd,
6172 struct sched_domain_attr *attr)
6174 int request;
6176 if (!attr || attr->relax_domain_level < 0) {
6177 if (default_relax_domain_level < 0)
6178 return;
6179 else
6180 request = default_relax_domain_level;
6181 } else
6182 request = attr->relax_domain_level;
6183 if (request < sd->level) {
6184 /* turn off idle balance on this domain */
6185 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6186 } else {
6187 /* turn on idle balance on this domain */
6188 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6192 static void __sdt_free(const struct cpumask *cpu_map);
6193 static int __sdt_alloc(const struct cpumask *cpu_map);
6195 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6196 const struct cpumask *cpu_map)
6198 switch (what) {
6199 case sa_rootdomain:
6200 if (!atomic_read(&d->rd->refcount))
6201 free_rootdomain(&d->rd->rcu); /* fall through */
6202 case sa_sd:
6203 free_percpu(d->sd); /* fall through */
6204 case sa_sd_storage:
6205 __sdt_free(cpu_map); /* fall through */
6206 case sa_none:
6207 break;
6211 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6212 const struct cpumask *cpu_map)
6214 memset(d, 0, sizeof(*d));
6216 if (__sdt_alloc(cpu_map))
6217 return sa_sd_storage;
6218 d->sd = alloc_percpu(struct sched_domain *);
6219 if (!d->sd)
6220 return sa_sd_storage;
6221 d->rd = alloc_rootdomain();
6222 if (!d->rd)
6223 return sa_sd;
6224 return sa_rootdomain;
6228 * NULL the sd_data elements we've used to build the sched_domain and
6229 * sched_group structure so that the subsequent __free_domain_allocs()
6230 * will not free the data we're using.
6232 static void claim_allocations(int cpu, struct sched_domain *sd)
6234 struct sd_data *sdd = sd->private;
6236 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6237 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6239 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6240 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6242 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6243 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6246 #ifdef CONFIG_SCHED_SMT
6247 static const struct cpumask *cpu_smt_mask(int cpu)
6249 return topology_thread_cpumask(cpu);
6251 #endif
6254 * Topology list, bottom-up.
6256 static struct sched_domain_topology_level default_topology[] = {
6257 #ifdef CONFIG_SCHED_SMT
6258 { sd_init_SIBLING, cpu_smt_mask, },
6259 #endif
6260 #ifdef CONFIG_SCHED_MC
6261 { sd_init_MC, cpu_coregroup_mask, },
6262 #endif
6263 #ifdef CONFIG_SCHED_BOOK
6264 { sd_init_BOOK, cpu_book_mask, },
6265 #endif
6266 { sd_init_CPU, cpu_cpu_mask, },
6267 #ifdef CONFIG_NUMA
6268 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6269 { sd_init_ALLNODES, cpu_allnodes_mask, },
6270 #endif
6271 { NULL, },
6274 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6276 static int __sdt_alloc(const struct cpumask *cpu_map)
6278 struct sched_domain_topology_level *tl;
6279 int j;
6281 for (tl = sched_domain_topology; tl->init; tl++) {
6282 struct sd_data *sdd = &tl->data;
6284 sdd->sd = alloc_percpu(struct sched_domain *);
6285 if (!sdd->sd)
6286 return -ENOMEM;
6288 sdd->sg = alloc_percpu(struct sched_group *);
6289 if (!sdd->sg)
6290 return -ENOMEM;
6292 sdd->sgp = alloc_percpu(struct sched_group_power *);
6293 if (!sdd->sgp)
6294 return -ENOMEM;
6296 for_each_cpu(j, cpu_map) {
6297 struct sched_domain *sd;
6298 struct sched_group *sg;
6299 struct sched_group_power *sgp;
6301 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6302 GFP_KERNEL, cpu_to_node(j));
6303 if (!sd)
6304 return -ENOMEM;
6306 *per_cpu_ptr(sdd->sd, j) = sd;
6308 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6309 GFP_KERNEL, cpu_to_node(j));
6310 if (!sg)
6311 return -ENOMEM;
6313 *per_cpu_ptr(sdd->sg, j) = sg;
6315 sgp = kzalloc_node(sizeof(struct sched_group_power),
6316 GFP_KERNEL, cpu_to_node(j));
6317 if (!sgp)
6318 return -ENOMEM;
6320 *per_cpu_ptr(sdd->sgp, j) = sgp;
6324 return 0;
6327 static void __sdt_free(const struct cpumask *cpu_map)
6329 struct sched_domain_topology_level *tl;
6330 int j;
6332 for (tl = sched_domain_topology; tl->init; tl++) {
6333 struct sd_data *sdd = &tl->data;
6335 for_each_cpu(j, cpu_map) {
6336 struct sched_domain *sd;
6338 if (sdd->sd) {
6339 sd = *per_cpu_ptr(sdd->sd, j);
6340 if (sd && (sd->flags & SD_OVERLAP))
6341 free_sched_groups(sd->groups, 0);
6342 kfree(*per_cpu_ptr(sdd->sd, j));
6345 if (sdd->sg)
6346 kfree(*per_cpu_ptr(sdd->sg, j));
6347 if (sdd->sgp)
6348 kfree(*per_cpu_ptr(sdd->sgp, j));
6350 free_percpu(sdd->sd);
6351 sdd->sd = NULL;
6352 free_percpu(sdd->sg);
6353 sdd->sg = NULL;
6354 free_percpu(sdd->sgp);
6355 sdd->sgp = NULL;
6359 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6360 struct s_data *d, const struct cpumask *cpu_map,
6361 struct sched_domain_attr *attr, struct sched_domain *child,
6362 int cpu)
6364 struct sched_domain *sd = tl->init(tl, cpu);
6365 if (!sd)
6366 return child;
6368 set_domain_attribute(sd, attr);
6369 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6370 if (child) {
6371 sd->level = child->level + 1;
6372 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6373 child->parent = sd;
6375 sd->child = child;
6377 return sd;
6381 * Build sched domains for a given set of cpus and attach the sched domains
6382 * to the individual cpus
6384 static int build_sched_domains(const struct cpumask *cpu_map,
6385 struct sched_domain_attr *attr)
6387 enum s_alloc alloc_state = sa_none;
6388 struct sched_domain *sd;
6389 struct s_data d;
6390 int i, ret = -ENOMEM;
6392 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6393 if (alloc_state != sa_rootdomain)
6394 goto error;
6396 /* Set up domains for cpus specified by the cpu_map. */
6397 for_each_cpu(i, cpu_map) {
6398 struct sched_domain_topology_level *tl;
6400 sd = NULL;
6401 for (tl = sched_domain_topology; tl->init; tl++) {
6402 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6403 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6404 sd->flags |= SD_OVERLAP;
6405 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6406 break;
6409 while (sd->child)
6410 sd = sd->child;
6412 *per_cpu_ptr(d.sd, i) = sd;
6415 /* Build the groups for the domains */
6416 for_each_cpu(i, cpu_map) {
6417 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6418 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6419 if (sd->flags & SD_OVERLAP) {
6420 if (build_overlap_sched_groups(sd, i))
6421 goto error;
6422 } else {
6423 if (build_sched_groups(sd, i))
6424 goto error;
6429 /* Calculate CPU power for physical packages and nodes */
6430 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6431 if (!cpumask_test_cpu(i, cpu_map))
6432 continue;
6434 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6435 claim_allocations(i, sd);
6436 init_sched_groups_power(i, sd);
6440 /* Attach the domains */
6441 rcu_read_lock();
6442 for_each_cpu(i, cpu_map) {
6443 sd = *per_cpu_ptr(d.sd, i);
6444 cpu_attach_domain(sd, d.rd, i);
6446 rcu_read_unlock();
6448 ret = 0;
6449 error:
6450 __free_domain_allocs(&d, alloc_state, cpu_map);
6451 return ret;
6454 static cpumask_var_t *doms_cur; /* current sched domains */
6455 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6456 static struct sched_domain_attr *dattr_cur;
6457 /* attribues of custom domains in 'doms_cur' */
6460 * Special case: If a kmalloc of a doms_cur partition (array of
6461 * cpumask) fails, then fallback to a single sched domain,
6462 * as determined by the single cpumask fallback_doms.
6464 static cpumask_var_t fallback_doms;
6467 * arch_update_cpu_topology lets virtualized architectures update the
6468 * cpu core maps. It is supposed to return 1 if the topology changed
6469 * or 0 if it stayed the same.
6471 int __attribute__((weak)) arch_update_cpu_topology(void)
6473 return 0;
6476 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6478 int i;
6479 cpumask_var_t *doms;
6481 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6482 if (!doms)
6483 return NULL;
6484 for (i = 0; i < ndoms; i++) {
6485 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6486 free_sched_domains(doms, i);
6487 return NULL;
6490 return doms;
6493 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6495 unsigned int i;
6496 for (i = 0; i < ndoms; i++)
6497 free_cpumask_var(doms[i]);
6498 kfree(doms);
6502 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6503 * For now this just excludes isolated cpus, but could be used to
6504 * exclude other special cases in the future.
6506 static int init_sched_domains(const struct cpumask *cpu_map)
6508 int err;
6510 arch_update_cpu_topology();
6511 ndoms_cur = 1;
6512 doms_cur = alloc_sched_domains(ndoms_cur);
6513 if (!doms_cur)
6514 doms_cur = &fallback_doms;
6515 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6516 dattr_cur = NULL;
6517 err = build_sched_domains(doms_cur[0], NULL);
6518 register_sched_domain_sysctl();
6520 return err;
6524 * Detach sched domains from a group of cpus specified in cpu_map
6525 * These cpus will now be attached to the NULL domain
6527 static void detach_destroy_domains(const struct cpumask *cpu_map)
6529 int i;
6531 rcu_read_lock();
6532 for_each_cpu(i, cpu_map)
6533 cpu_attach_domain(NULL, &def_root_domain, i);
6534 rcu_read_unlock();
6537 /* handle null as "default" */
6538 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6539 struct sched_domain_attr *new, int idx_new)
6541 struct sched_domain_attr tmp;
6543 /* fast path */
6544 if (!new && !cur)
6545 return 1;
6547 tmp = SD_ATTR_INIT;
6548 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6549 new ? (new + idx_new) : &tmp,
6550 sizeof(struct sched_domain_attr));
6554 * Partition sched domains as specified by the 'ndoms_new'
6555 * cpumasks in the array doms_new[] of cpumasks. This compares
6556 * doms_new[] to the current sched domain partitioning, doms_cur[].
6557 * It destroys each deleted domain and builds each new domain.
6559 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6560 * The masks don't intersect (don't overlap.) We should setup one
6561 * sched domain for each mask. CPUs not in any of the cpumasks will
6562 * not be load balanced. If the same cpumask appears both in the
6563 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6564 * it as it is.
6566 * The passed in 'doms_new' should be allocated using
6567 * alloc_sched_domains. This routine takes ownership of it and will
6568 * free_sched_domains it when done with it. If the caller failed the
6569 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6570 * and partition_sched_domains() will fallback to the single partition
6571 * 'fallback_doms', it also forces the domains to be rebuilt.
6573 * If doms_new == NULL it will be replaced with cpu_online_mask.
6574 * ndoms_new == 0 is a special case for destroying existing domains,
6575 * and it will not create the default domain.
6577 * Call with hotplug lock held
6579 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6580 struct sched_domain_attr *dattr_new)
6582 int i, j, n;
6583 int new_topology;
6585 mutex_lock(&sched_domains_mutex);
6587 /* always unregister in case we don't destroy any domains */
6588 unregister_sched_domain_sysctl();
6590 /* Let architecture update cpu core mappings. */
6591 new_topology = arch_update_cpu_topology();
6593 n = doms_new ? ndoms_new : 0;
6595 /* Destroy deleted domains */
6596 for (i = 0; i < ndoms_cur; i++) {
6597 for (j = 0; j < n && !new_topology; j++) {
6598 if (cpumask_equal(doms_cur[i], doms_new[j])
6599 && dattrs_equal(dattr_cur, i, dattr_new, j))
6600 goto match1;
6602 /* no match - a current sched domain not in new doms_new[] */
6603 detach_destroy_domains(doms_cur[i]);
6604 match1:
6608 if (doms_new == NULL) {
6609 ndoms_cur = 0;
6610 doms_new = &fallback_doms;
6611 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6612 WARN_ON_ONCE(dattr_new);
6615 /* Build new domains */
6616 for (i = 0; i < ndoms_new; i++) {
6617 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6618 if (cpumask_equal(doms_new[i], doms_cur[j])
6619 && dattrs_equal(dattr_new, i, dattr_cur, j))
6620 goto match2;
6622 /* no match - add a new doms_new */
6623 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6624 match2:
6628 /* Remember the new sched domains */
6629 if (doms_cur != &fallback_doms)
6630 free_sched_domains(doms_cur, ndoms_cur);
6631 kfree(dattr_cur); /* kfree(NULL) is safe */
6632 doms_cur = doms_new;
6633 dattr_cur = dattr_new;
6634 ndoms_cur = ndoms_new;
6636 register_sched_domain_sysctl();
6638 mutex_unlock(&sched_domains_mutex);
6641 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6642 static void reinit_sched_domains(void)
6644 get_online_cpus();
6646 /* Destroy domains first to force the rebuild */
6647 partition_sched_domains(0, NULL, NULL);
6649 rebuild_sched_domains();
6650 put_online_cpus();
6653 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6655 unsigned int level = 0;
6657 if (sscanf(buf, "%u", &level) != 1)
6658 return -EINVAL;
6661 * level is always be positive so don't check for
6662 * level < POWERSAVINGS_BALANCE_NONE which is 0
6663 * What happens on 0 or 1 byte write,
6664 * need to check for count as well?
6667 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6668 return -EINVAL;
6670 if (smt)
6671 sched_smt_power_savings = level;
6672 else
6673 sched_mc_power_savings = level;
6675 reinit_sched_domains();
6677 return count;
6680 #ifdef CONFIG_SCHED_MC
6681 static ssize_t sched_mc_power_savings_show(struct device *dev,
6682 struct device_attribute *attr,
6683 char *buf)
6685 return sprintf(buf, "%u\n", sched_mc_power_savings);
6687 static ssize_t sched_mc_power_savings_store(struct device *dev,
6688 struct device_attribute *attr,
6689 const char *buf, size_t count)
6691 return sched_power_savings_store(buf, count, 0);
6693 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6694 sched_mc_power_savings_show,
6695 sched_mc_power_savings_store);
6696 #endif
6698 #ifdef CONFIG_SCHED_SMT
6699 static ssize_t sched_smt_power_savings_show(struct device *dev,
6700 struct device_attribute *attr,
6701 char *buf)
6703 return sprintf(buf, "%u\n", sched_smt_power_savings);
6705 static ssize_t sched_smt_power_savings_store(struct device *dev,
6706 struct device_attribute *attr,
6707 const char *buf, size_t count)
6709 return sched_power_savings_store(buf, count, 1);
6711 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6712 sched_smt_power_savings_show,
6713 sched_smt_power_savings_store);
6714 #endif
6716 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6718 int err = 0;
6720 #ifdef CONFIG_SCHED_SMT
6721 if (smt_capable())
6722 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6723 #endif
6724 #ifdef CONFIG_SCHED_MC
6725 if (!err && mc_capable())
6726 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6727 #endif
6728 return err;
6730 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6733 * Update cpusets according to cpu_active mask. If cpusets are
6734 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6735 * around partition_sched_domains().
6737 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6738 void *hcpu)
6740 switch (action & ~CPU_TASKS_FROZEN) {
6741 case CPU_ONLINE:
6742 case CPU_DOWN_FAILED:
6743 cpuset_update_active_cpus();
6744 return NOTIFY_OK;
6745 default:
6746 return NOTIFY_DONE;
6750 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6751 void *hcpu)
6753 switch (action & ~CPU_TASKS_FROZEN) {
6754 case CPU_DOWN_PREPARE:
6755 cpuset_update_active_cpus();
6756 return NOTIFY_OK;
6757 default:
6758 return NOTIFY_DONE;
6762 void __init sched_init_smp(void)
6764 cpumask_var_t non_isolated_cpus;
6766 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6767 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6769 get_online_cpus();
6770 mutex_lock(&sched_domains_mutex);
6771 init_sched_domains(cpu_active_mask);
6772 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6773 if (cpumask_empty(non_isolated_cpus))
6774 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6775 mutex_unlock(&sched_domains_mutex);
6776 put_online_cpus();
6778 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6779 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6781 /* RT runtime code needs to handle some hotplug events */
6782 hotcpu_notifier(update_runtime, 0);
6784 init_hrtick();
6786 /* Move init over to a non-isolated CPU */
6787 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6788 BUG();
6789 sched_init_granularity();
6790 free_cpumask_var(non_isolated_cpus);
6792 init_sched_rt_class();
6794 #else
6795 void __init sched_init_smp(void)
6797 sched_init_granularity();
6799 #endif /* CONFIG_SMP */
6801 const_debug unsigned int sysctl_timer_migration = 1;
6803 int in_sched_functions(unsigned long addr)
6805 return in_lock_functions(addr) ||
6806 (addr >= (unsigned long)__sched_text_start
6807 && addr < (unsigned long)__sched_text_end);
6810 #ifdef CONFIG_CGROUP_SCHED
6811 struct task_group root_task_group;
6812 #endif
6814 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6816 void __init sched_init(void)
6818 int i, j;
6819 unsigned long alloc_size = 0, ptr;
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6823 #endif
6824 #ifdef CONFIG_RT_GROUP_SCHED
6825 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6826 #endif
6827 #ifdef CONFIG_CPUMASK_OFFSTACK
6828 alloc_size += num_possible_cpus() * cpumask_size();
6829 #endif
6830 if (alloc_size) {
6831 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6833 #ifdef CONFIG_FAIR_GROUP_SCHED
6834 root_task_group.se = (struct sched_entity **)ptr;
6835 ptr += nr_cpu_ids * sizeof(void **);
6837 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6838 ptr += nr_cpu_ids * sizeof(void **);
6840 #endif /* CONFIG_FAIR_GROUP_SCHED */
6841 #ifdef CONFIG_RT_GROUP_SCHED
6842 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6843 ptr += nr_cpu_ids * sizeof(void **);
6845 root_task_group.rt_rq = (struct rt_rq **)ptr;
6846 ptr += nr_cpu_ids * sizeof(void **);
6848 #endif /* CONFIG_RT_GROUP_SCHED */
6849 #ifdef CONFIG_CPUMASK_OFFSTACK
6850 for_each_possible_cpu(i) {
6851 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6852 ptr += cpumask_size();
6854 #endif /* CONFIG_CPUMASK_OFFSTACK */
6857 #ifdef CONFIG_SMP
6858 init_defrootdomain();
6859 #endif
6861 init_rt_bandwidth(&def_rt_bandwidth,
6862 global_rt_period(), global_rt_runtime());
6864 #ifdef CONFIG_RT_GROUP_SCHED
6865 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6866 global_rt_period(), global_rt_runtime());
6867 #endif /* CONFIG_RT_GROUP_SCHED */
6869 #ifdef CONFIG_CGROUP_SCHED
6870 list_add(&root_task_group.list, &task_groups);
6871 INIT_LIST_HEAD(&root_task_group.children);
6872 INIT_LIST_HEAD(&root_task_group.siblings);
6873 autogroup_init(&init_task);
6875 #endif /* CONFIG_CGROUP_SCHED */
6877 #ifdef CONFIG_CGROUP_CPUACCT
6878 root_cpuacct.cpustat = &kernel_cpustat;
6879 root_cpuacct.cpuusage = alloc_percpu(u64);
6880 /* Too early, not expected to fail */
6881 BUG_ON(!root_cpuacct.cpuusage);
6882 #endif
6883 for_each_possible_cpu(i) {
6884 struct rq *rq;
6886 rq = cpu_rq(i);
6887 raw_spin_lock_init(&rq->lock);
6888 rq->nr_running = 0;
6889 rq->calc_load_active = 0;
6890 rq->calc_load_update = jiffies + LOAD_FREQ;
6891 init_cfs_rq(&rq->cfs);
6892 init_rt_rq(&rq->rt, rq);
6893 #ifdef CONFIG_FAIR_GROUP_SCHED
6894 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6895 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6897 * How much cpu bandwidth does root_task_group get?
6899 * In case of task-groups formed thr' the cgroup filesystem, it
6900 * gets 100% of the cpu resources in the system. This overall
6901 * system cpu resource is divided among the tasks of
6902 * root_task_group and its child task-groups in a fair manner,
6903 * based on each entity's (task or task-group's) weight
6904 * (se->load.weight).
6906 * In other words, if root_task_group has 10 tasks of weight
6907 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6908 * then A0's share of the cpu resource is:
6910 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6912 * We achieve this by letting root_task_group's tasks sit
6913 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6915 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6916 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6917 #endif /* CONFIG_FAIR_GROUP_SCHED */
6919 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6920 #ifdef CONFIG_RT_GROUP_SCHED
6921 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6922 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6923 #endif
6925 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6926 rq->cpu_load[j] = 0;
6928 rq->last_load_update_tick = jiffies;
6930 #ifdef CONFIG_SMP
6931 rq->sd = NULL;
6932 rq->rd = NULL;
6933 rq->cpu_power = SCHED_POWER_SCALE;
6934 rq->post_schedule = 0;
6935 rq->active_balance = 0;
6936 rq->next_balance = jiffies;
6937 rq->push_cpu = 0;
6938 rq->cpu = i;
6939 rq->online = 0;
6940 rq->idle_stamp = 0;
6941 rq->avg_idle = 2*sysctl_sched_migration_cost;
6942 rq_attach_root(rq, &def_root_domain);
6943 #ifdef CONFIG_NO_HZ
6944 rq->nohz_flags = 0;
6945 #endif
6946 #endif
6947 init_rq_hrtick(rq);
6948 atomic_set(&rq->nr_iowait, 0);
6951 set_load_weight(&init_task);
6953 #ifdef CONFIG_PREEMPT_NOTIFIERS
6954 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6955 #endif
6957 #ifdef CONFIG_RT_MUTEXES
6958 plist_head_init(&init_task.pi_waiters);
6959 #endif
6962 * The boot idle thread does lazy MMU switching as well:
6964 atomic_inc(&init_mm.mm_count);
6965 enter_lazy_tlb(&init_mm, current);
6968 * Make us the idle thread. Technically, schedule() should not be
6969 * called from this thread, however somewhere below it might be,
6970 * but because we are the idle thread, we just pick up running again
6971 * when this runqueue becomes "idle".
6973 init_idle(current, smp_processor_id());
6975 calc_load_update = jiffies + LOAD_FREQ;
6978 * During early bootup we pretend to be a normal task:
6980 current->sched_class = &fair_sched_class;
6982 #ifdef CONFIG_SMP
6983 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6984 /* May be allocated at isolcpus cmdline parse time */
6985 if (cpu_isolated_map == NULL)
6986 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6987 #endif
6988 init_sched_fair_class();
6990 scheduler_running = 1;
6993 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6994 static inline int preempt_count_equals(int preempt_offset)
6996 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6998 return (nested == preempt_offset);
7001 void __might_sleep(const char *file, int line, int preempt_offset)
7003 static unsigned long prev_jiffy; /* ratelimiting */
7005 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7006 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7007 system_state != SYSTEM_RUNNING || oops_in_progress)
7008 return;
7009 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7010 return;
7011 prev_jiffy = jiffies;
7013 printk(KERN_ERR
7014 "BUG: sleeping function called from invalid context at %s:%d\n",
7015 file, line);
7016 printk(KERN_ERR
7017 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7018 in_atomic(), irqs_disabled(),
7019 current->pid, current->comm);
7021 debug_show_held_locks(current);
7022 if (irqs_disabled())
7023 print_irqtrace_events(current);
7024 dump_stack();
7026 EXPORT_SYMBOL(__might_sleep);
7027 #endif
7029 #ifdef CONFIG_MAGIC_SYSRQ
7030 static void normalize_task(struct rq *rq, struct task_struct *p)
7032 const struct sched_class *prev_class = p->sched_class;
7033 int old_prio = p->prio;
7034 int on_rq;
7036 on_rq = p->on_rq;
7037 if (on_rq)
7038 dequeue_task(rq, p, 0);
7039 __setscheduler(rq, p, SCHED_NORMAL, 0);
7040 if (on_rq) {
7041 enqueue_task(rq, p, 0);
7042 resched_task(rq->curr);
7045 check_class_changed(rq, p, prev_class, old_prio);
7048 void normalize_rt_tasks(void)
7050 struct task_struct *g, *p;
7051 unsigned long flags;
7052 struct rq *rq;
7054 read_lock_irqsave(&tasklist_lock, flags);
7055 do_each_thread(g, p) {
7057 * Only normalize user tasks:
7059 if (!p->mm)
7060 continue;
7062 p->se.exec_start = 0;
7063 #ifdef CONFIG_SCHEDSTATS
7064 p->se.statistics.wait_start = 0;
7065 p->se.statistics.sleep_start = 0;
7066 p->se.statistics.block_start = 0;
7067 #endif
7069 if (!rt_task(p)) {
7071 * Renice negative nice level userspace
7072 * tasks back to 0:
7074 if (TASK_NICE(p) < 0 && p->mm)
7075 set_user_nice(p, 0);
7076 continue;
7079 raw_spin_lock(&p->pi_lock);
7080 rq = __task_rq_lock(p);
7082 normalize_task(rq, p);
7084 __task_rq_unlock(rq);
7085 raw_spin_unlock(&p->pi_lock);
7086 } while_each_thread(g, p);
7088 read_unlock_irqrestore(&tasklist_lock, flags);
7091 #endif /* CONFIG_MAGIC_SYSRQ */
7093 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7095 * These functions are only useful for the IA64 MCA handling, or kdb.
7097 * They can only be called when the whole system has been
7098 * stopped - every CPU needs to be quiescent, and no scheduling
7099 * activity can take place. Using them for anything else would
7100 * be a serious bug, and as a result, they aren't even visible
7101 * under any other configuration.
7105 * curr_task - return the current task for a given cpu.
7106 * @cpu: the processor in question.
7108 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7110 struct task_struct *curr_task(int cpu)
7112 return cpu_curr(cpu);
7115 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7117 #ifdef CONFIG_IA64
7119 * set_curr_task - set the current task for a given cpu.
7120 * @cpu: the processor in question.
7121 * @p: the task pointer to set.
7123 * Description: This function must only be used when non-maskable interrupts
7124 * are serviced on a separate stack. It allows the architecture to switch the
7125 * notion of the current task on a cpu in a non-blocking manner. This function
7126 * must be called with all CPU's synchronized, and interrupts disabled, the
7127 * and caller must save the original value of the current task (see
7128 * curr_task() above) and restore that value before reenabling interrupts and
7129 * re-starting the system.
7131 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7133 void set_curr_task(int cpu, struct task_struct *p)
7135 cpu_curr(cpu) = p;
7138 #endif
7140 #ifdef CONFIG_CGROUP_SCHED
7141 /* task_group_lock serializes the addition/removal of task groups */
7142 static DEFINE_SPINLOCK(task_group_lock);
7144 static void free_sched_group(struct task_group *tg)
7146 free_fair_sched_group(tg);
7147 free_rt_sched_group(tg);
7148 autogroup_free(tg);
7149 kfree(tg);
7152 /* allocate runqueue etc for a new task group */
7153 struct task_group *sched_create_group(struct task_group *parent)
7155 struct task_group *tg;
7156 unsigned long flags;
7158 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7159 if (!tg)
7160 return ERR_PTR(-ENOMEM);
7162 if (!alloc_fair_sched_group(tg, parent))
7163 goto err;
7165 if (!alloc_rt_sched_group(tg, parent))
7166 goto err;
7168 spin_lock_irqsave(&task_group_lock, flags);
7169 list_add_rcu(&tg->list, &task_groups);
7171 WARN_ON(!parent); /* root should already exist */
7173 tg->parent = parent;
7174 INIT_LIST_HEAD(&tg->children);
7175 list_add_rcu(&tg->siblings, &parent->children);
7176 spin_unlock_irqrestore(&task_group_lock, flags);
7178 return tg;
7180 err:
7181 free_sched_group(tg);
7182 return ERR_PTR(-ENOMEM);
7185 /* rcu callback to free various structures associated with a task group */
7186 static void free_sched_group_rcu(struct rcu_head *rhp)
7188 /* now it should be safe to free those cfs_rqs */
7189 free_sched_group(container_of(rhp, struct task_group, rcu));
7192 /* Destroy runqueue etc associated with a task group */
7193 void sched_destroy_group(struct task_group *tg)
7195 unsigned long flags;
7196 int i;
7198 /* end participation in shares distribution */
7199 for_each_possible_cpu(i)
7200 unregister_fair_sched_group(tg, i);
7202 spin_lock_irqsave(&task_group_lock, flags);
7203 list_del_rcu(&tg->list);
7204 list_del_rcu(&tg->siblings);
7205 spin_unlock_irqrestore(&task_group_lock, flags);
7207 /* wait for possible concurrent references to cfs_rqs complete */
7208 call_rcu(&tg->rcu, free_sched_group_rcu);
7211 /* change task's runqueue when it moves between groups.
7212 * The caller of this function should have put the task in its new group
7213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7214 * reflect its new group.
7216 void sched_move_task(struct task_struct *tsk)
7218 int on_rq, running;
7219 unsigned long flags;
7220 struct rq *rq;
7222 rq = task_rq_lock(tsk, &flags);
7224 running = task_current(rq, tsk);
7225 on_rq = tsk->on_rq;
7227 if (on_rq)
7228 dequeue_task(rq, tsk, 0);
7229 if (unlikely(running))
7230 tsk->sched_class->put_prev_task(rq, tsk);
7232 #ifdef CONFIG_FAIR_GROUP_SCHED
7233 if (tsk->sched_class->task_move_group)
7234 tsk->sched_class->task_move_group(tsk, on_rq);
7235 else
7236 #endif
7237 set_task_rq(tsk, task_cpu(tsk));
7239 if (unlikely(running))
7240 tsk->sched_class->set_curr_task(rq);
7241 if (on_rq)
7242 enqueue_task(rq, tsk, 0);
7244 task_rq_unlock(rq, tsk, &flags);
7246 #endif /* CONFIG_CGROUP_SCHED */
7248 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7249 static unsigned long to_ratio(u64 period, u64 runtime)
7251 if (runtime == RUNTIME_INF)
7252 return 1ULL << 20;
7254 return div64_u64(runtime << 20, period);
7256 #endif
7258 #ifdef CONFIG_RT_GROUP_SCHED
7260 * Ensure that the real time constraints are schedulable.
7262 static DEFINE_MUTEX(rt_constraints_mutex);
7264 /* Must be called with tasklist_lock held */
7265 static inline int tg_has_rt_tasks(struct task_group *tg)
7267 struct task_struct *g, *p;
7269 do_each_thread(g, p) {
7270 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7271 return 1;
7272 } while_each_thread(g, p);
7274 return 0;
7277 struct rt_schedulable_data {
7278 struct task_group *tg;
7279 u64 rt_period;
7280 u64 rt_runtime;
7283 static int tg_rt_schedulable(struct task_group *tg, void *data)
7285 struct rt_schedulable_data *d = data;
7286 struct task_group *child;
7287 unsigned long total, sum = 0;
7288 u64 period, runtime;
7290 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7291 runtime = tg->rt_bandwidth.rt_runtime;
7293 if (tg == d->tg) {
7294 period = d->rt_period;
7295 runtime = d->rt_runtime;
7299 * Cannot have more runtime than the period.
7301 if (runtime > period && runtime != RUNTIME_INF)
7302 return -EINVAL;
7305 * Ensure we don't starve existing RT tasks.
7307 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7308 return -EBUSY;
7310 total = to_ratio(period, runtime);
7313 * Nobody can have more than the global setting allows.
7315 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7316 return -EINVAL;
7319 * The sum of our children's runtime should not exceed our own.
7321 list_for_each_entry_rcu(child, &tg->children, siblings) {
7322 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7323 runtime = child->rt_bandwidth.rt_runtime;
7325 if (child == d->tg) {
7326 period = d->rt_period;
7327 runtime = d->rt_runtime;
7330 sum += to_ratio(period, runtime);
7333 if (sum > total)
7334 return -EINVAL;
7336 return 0;
7339 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7341 int ret;
7343 struct rt_schedulable_data data = {
7344 .tg = tg,
7345 .rt_period = period,
7346 .rt_runtime = runtime,
7349 rcu_read_lock();
7350 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7351 rcu_read_unlock();
7353 return ret;
7356 static int tg_set_rt_bandwidth(struct task_group *tg,
7357 u64 rt_period, u64 rt_runtime)
7359 int i, err = 0;
7361 mutex_lock(&rt_constraints_mutex);
7362 read_lock(&tasklist_lock);
7363 err = __rt_schedulable(tg, rt_period, rt_runtime);
7364 if (err)
7365 goto unlock;
7367 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7368 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7369 tg->rt_bandwidth.rt_runtime = rt_runtime;
7371 for_each_possible_cpu(i) {
7372 struct rt_rq *rt_rq = tg->rt_rq[i];
7374 raw_spin_lock(&rt_rq->rt_runtime_lock);
7375 rt_rq->rt_runtime = rt_runtime;
7376 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7378 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7379 unlock:
7380 read_unlock(&tasklist_lock);
7381 mutex_unlock(&rt_constraints_mutex);
7383 return err;
7386 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7388 u64 rt_runtime, rt_period;
7390 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7391 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7392 if (rt_runtime_us < 0)
7393 rt_runtime = RUNTIME_INF;
7395 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7398 long sched_group_rt_runtime(struct task_group *tg)
7400 u64 rt_runtime_us;
7402 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7403 return -1;
7405 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7406 do_div(rt_runtime_us, NSEC_PER_USEC);
7407 return rt_runtime_us;
7410 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7412 u64 rt_runtime, rt_period;
7414 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7415 rt_runtime = tg->rt_bandwidth.rt_runtime;
7417 if (rt_period == 0)
7418 return -EINVAL;
7420 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7423 long sched_group_rt_period(struct task_group *tg)
7425 u64 rt_period_us;
7427 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7428 do_div(rt_period_us, NSEC_PER_USEC);
7429 return rt_period_us;
7432 static int sched_rt_global_constraints(void)
7434 u64 runtime, period;
7435 int ret = 0;
7437 if (sysctl_sched_rt_period <= 0)
7438 return -EINVAL;
7440 runtime = global_rt_runtime();
7441 period = global_rt_period();
7444 * Sanity check on the sysctl variables.
7446 if (runtime > period && runtime != RUNTIME_INF)
7447 return -EINVAL;
7449 mutex_lock(&rt_constraints_mutex);
7450 read_lock(&tasklist_lock);
7451 ret = __rt_schedulable(NULL, 0, 0);
7452 read_unlock(&tasklist_lock);
7453 mutex_unlock(&rt_constraints_mutex);
7455 return ret;
7458 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7460 /* Don't accept realtime tasks when there is no way for them to run */
7461 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7462 return 0;
7464 return 1;
7467 #else /* !CONFIG_RT_GROUP_SCHED */
7468 static int sched_rt_global_constraints(void)
7470 unsigned long flags;
7471 int i;
7473 if (sysctl_sched_rt_period <= 0)
7474 return -EINVAL;
7477 * There's always some RT tasks in the root group
7478 * -- migration, kstopmachine etc..
7480 if (sysctl_sched_rt_runtime == 0)
7481 return -EBUSY;
7483 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7484 for_each_possible_cpu(i) {
7485 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7487 raw_spin_lock(&rt_rq->rt_runtime_lock);
7488 rt_rq->rt_runtime = global_rt_runtime();
7489 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7491 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7493 return 0;
7495 #endif /* CONFIG_RT_GROUP_SCHED */
7497 int sched_rt_handler(struct ctl_table *table, int write,
7498 void __user *buffer, size_t *lenp,
7499 loff_t *ppos)
7501 int ret;
7502 int old_period, old_runtime;
7503 static DEFINE_MUTEX(mutex);
7505 mutex_lock(&mutex);
7506 old_period = sysctl_sched_rt_period;
7507 old_runtime = sysctl_sched_rt_runtime;
7509 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7511 if (!ret && write) {
7512 ret = sched_rt_global_constraints();
7513 if (ret) {
7514 sysctl_sched_rt_period = old_period;
7515 sysctl_sched_rt_runtime = old_runtime;
7516 } else {
7517 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7518 def_rt_bandwidth.rt_period =
7519 ns_to_ktime(global_rt_period());
7522 mutex_unlock(&mutex);
7524 return ret;
7527 #ifdef CONFIG_CGROUP_SCHED
7529 /* return corresponding task_group object of a cgroup */
7530 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7532 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7533 struct task_group, css);
7536 static struct cgroup_subsys_state *
7537 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7539 struct task_group *tg, *parent;
7541 if (!cgrp->parent) {
7542 /* This is early initialization for the top cgroup */
7543 return &root_task_group.css;
7546 parent = cgroup_tg(cgrp->parent);
7547 tg = sched_create_group(parent);
7548 if (IS_ERR(tg))
7549 return ERR_PTR(-ENOMEM);
7551 return &tg->css;
7554 static void
7555 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7557 struct task_group *tg = cgroup_tg(cgrp);
7559 sched_destroy_group(tg);
7562 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7563 struct cgroup_taskset *tset)
7565 struct task_struct *task;
7567 cgroup_taskset_for_each(task, cgrp, tset) {
7568 #ifdef CONFIG_RT_GROUP_SCHED
7569 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7570 return -EINVAL;
7571 #else
7572 /* We don't support RT-tasks being in separate groups */
7573 if (task->sched_class != &fair_sched_class)
7574 return -EINVAL;
7575 #endif
7577 return 0;
7580 static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7581 struct cgroup_taskset *tset)
7583 struct task_struct *task;
7585 cgroup_taskset_for_each(task, cgrp, tset)
7586 sched_move_task(task);
7589 static void
7590 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7591 struct cgroup *old_cgrp, struct task_struct *task)
7594 * cgroup_exit() is called in the copy_process() failure path.
7595 * Ignore this case since the task hasn't ran yet, this avoids
7596 * trying to poke a half freed task state from generic code.
7598 if (!(task->flags & PF_EXITING))
7599 return;
7601 sched_move_task(task);
7604 #ifdef CONFIG_FAIR_GROUP_SCHED
7605 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7606 u64 shareval)
7608 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7611 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7613 struct task_group *tg = cgroup_tg(cgrp);
7615 return (u64) scale_load_down(tg->shares);
7618 #ifdef CONFIG_CFS_BANDWIDTH
7619 static DEFINE_MUTEX(cfs_constraints_mutex);
7621 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7622 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7624 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7626 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7628 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7629 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7631 if (tg == &root_task_group)
7632 return -EINVAL;
7635 * Ensure we have at some amount of bandwidth every period. This is
7636 * to prevent reaching a state of large arrears when throttled via
7637 * entity_tick() resulting in prolonged exit starvation.
7639 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7640 return -EINVAL;
7643 * Likewise, bound things on the otherside by preventing insane quota
7644 * periods. This also allows us to normalize in computing quota
7645 * feasibility.
7647 if (period > max_cfs_quota_period)
7648 return -EINVAL;
7650 mutex_lock(&cfs_constraints_mutex);
7651 ret = __cfs_schedulable(tg, period, quota);
7652 if (ret)
7653 goto out_unlock;
7655 runtime_enabled = quota != RUNTIME_INF;
7656 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7657 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7658 raw_spin_lock_irq(&cfs_b->lock);
7659 cfs_b->period = ns_to_ktime(period);
7660 cfs_b->quota = quota;
7662 __refill_cfs_bandwidth_runtime(cfs_b);
7663 /* restart the period timer (if active) to handle new period expiry */
7664 if (runtime_enabled && cfs_b->timer_active) {
7665 /* force a reprogram */
7666 cfs_b->timer_active = 0;
7667 __start_cfs_bandwidth(cfs_b);
7669 raw_spin_unlock_irq(&cfs_b->lock);
7671 for_each_possible_cpu(i) {
7672 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7673 struct rq *rq = cfs_rq->rq;
7675 raw_spin_lock_irq(&rq->lock);
7676 cfs_rq->runtime_enabled = runtime_enabled;
7677 cfs_rq->runtime_remaining = 0;
7679 if (cfs_rq->throttled)
7680 unthrottle_cfs_rq(cfs_rq);
7681 raw_spin_unlock_irq(&rq->lock);
7683 out_unlock:
7684 mutex_unlock(&cfs_constraints_mutex);
7686 return ret;
7689 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7691 u64 quota, period;
7693 period = ktime_to_ns(tg->cfs_bandwidth.period);
7694 if (cfs_quota_us < 0)
7695 quota = RUNTIME_INF;
7696 else
7697 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7699 return tg_set_cfs_bandwidth(tg, period, quota);
7702 long tg_get_cfs_quota(struct task_group *tg)
7704 u64 quota_us;
7706 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7707 return -1;
7709 quota_us = tg->cfs_bandwidth.quota;
7710 do_div(quota_us, NSEC_PER_USEC);
7712 return quota_us;
7715 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7717 u64 quota, period;
7719 period = (u64)cfs_period_us * NSEC_PER_USEC;
7720 quota = tg->cfs_bandwidth.quota;
7722 return tg_set_cfs_bandwidth(tg, period, quota);
7725 long tg_get_cfs_period(struct task_group *tg)
7727 u64 cfs_period_us;
7729 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7730 do_div(cfs_period_us, NSEC_PER_USEC);
7732 return cfs_period_us;
7735 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7737 return tg_get_cfs_quota(cgroup_tg(cgrp));
7740 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7741 s64 cfs_quota_us)
7743 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7746 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7748 return tg_get_cfs_period(cgroup_tg(cgrp));
7751 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7752 u64 cfs_period_us)
7754 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7757 struct cfs_schedulable_data {
7758 struct task_group *tg;
7759 u64 period, quota;
7763 * normalize group quota/period to be quota/max_period
7764 * note: units are usecs
7766 static u64 normalize_cfs_quota(struct task_group *tg,
7767 struct cfs_schedulable_data *d)
7769 u64 quota, period;
7771 if (tg == d->tg) {
7772 period = d->period;
7773 quota = d->quota;
7774 } else {
7775 period = tg_get_cfs_period(tg);
7776 quota = tg_get_cfs_quota(tg);
7779 /* note: these should typically be equivalent */
7780 if (quota == RUNTIME_INF || quota == -1)
7781 return RUNTIME_INF;
7783 return to_ratio(period, quota);
7786 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7788 struct cfs_schedulable_data *d = data;
7789 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7790 s64 quota = 0, parent_quota = -1;
7792 if (!tg->parent) {
7793 quota = RUNTIME_INF;
7794 } else {
7795 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7797 quota = normalize_cfs_quota(tg, d);
7798 parent_quota = parent_b->hierarchal_quota;
7801 * ensure max(child_quota) <= parent_quota, inherit when no
7802 * limit is set
7804 if (quota == RUNTIME_INF)
7805 quota = parent_quota;
7806 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7807 return -EINVAL;
7809 cfs_b->hierarchal_quota = quota;
7811 return 0;
7814 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7816 int ret;
7817 struct cfs_schedulable_data data = {
7818 .tg = tg,
7819 .period = period,
7820 .quota = quota,
7823 if (quota != RUNTIME_INF) {
7824 do_div(data.period, NSEC_PER_USEC);
7825 do_div(data.quota, NSEC_PER_USEC);
7828 rcu_read_lock();
7829 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7830 rcu_read_unlock();
7832 return ret;
7835 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7836 struct cgroup_map_cb *cb)
7838 struct task_group *tg = cgroup_tg(cgrp);
7839 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7841 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7842 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7843 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7845 return 0;
7847 #endif /* CONFIG_CFS_BANDWIDTH */
7848 #endif /* CONFIG_FAIR_GROUP_SCHED */
7850 #ifdef CONFIG_RT_GROUP_SCHED
7851 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7852 s64 val)
7854 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7857 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7859 return sched_group_rt_runtime(cgroup_tg(cgrp));
7862 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7863 u64 rt_period_us)
7865 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7868 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7870 return sched_group_rt_period(cgroup_tg(cgrp));
7872 #endif /* CONFIG_RT_GROUP_SCHED */
7874 static struct cftype cpu_files[] = {
7875 #ifdef CONFIG_FAIR_GROUP_SCHED
7877 .name = "shares",
7878 .read_u64 = cpu_shares_read_u64,
7879 .write_u64 = cpu_shares_write_u64,
7881 #endif
7882 #ifdef CONFIG_CFS_BANDWIDTH
7884 .name = "cfs_quota_us",
7885 .read_s64 = cpu_cfs_quota_read_s64,
7886 .write_s64 = cpu_cfs_quota_write_s64,
7889 .name = "cfs_period_us",
7890 .read_u64 = cpu_cfs_period_read_u64,
7891 .write_u64 = cpu_cfs_period_write_u64,
7894 .name = "stat",
7895 .read_map = cpu_stats_show,
7897 #endif
7898 #ifdef CONFIG_RT_GROUP_SCHED
7900 .name = "rt_runtime_us",
7901 .read_s64 = cpu_rt_runtime_read,
7902 .write_s64 = cpu_rt_runtime_write,
7905 .name = "rt_period_us",
7906 .read_u64 = cpu_rt_period_read_uint,
7907 .write_u64 = cpu_rt_period_write_uint,
7909 #endif
7912 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7914 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7917 struct cgroup_subsys cpu_cgroup_subsys = {
7918 .name = "cpu",
7919 .create = cpu_cgroup_create,
7920 .destroy = cpu_cgroup_destroy,
7921 .can_attach = cpu_cgroup_can_attach,
7922 .attach = cpu_cgroup_attach,
7923 .exit = cpu_cgroup_exit,
7924 .populate = cpu_cgroup_populate,
7925 .subsys_id = cpu_cgroup_subsys_id,
7926 .early_init = 1,
7929 #endif /* CONFIG_CGROUP_SCHED */
7931 #ifdef CONFIG_CGROUP_CPUACCT
7934 * CPU accounting code for task groups.
7936 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7937 * (balbir@in.ibm.com).
7940 /* create a new cpu accounting group */
7941 static struct cgroup_subsys_state *cpuacct_create(
7942 struct cgroup_subsys *ss, struct cgroup *cgrp)
7944 struct cpuacct *ca;
7946 if (!cgrp->parent)
7947 return &root_cpuacct.css;
7949 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7950 if (!ca)
7951 goto out;
7953 ca->cpuusage = alloc_percpu(u64);
7954 if (!ca->cpuusage)
7955 goto out_free_ca;
7957 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7958 if (!ca->cpustat)
7959 goto out_free_cpuusage;
7961 return &ca->css;
7963 out_free_cpuusage:
7964 free_percpu(ca->cpuusage);
7965 out_free_ca:
7966 kfree(ca);
7967 out:
7968 return ERR_PTR(-ENOMEM);
7971 /* destroy an existing cpu accounting group */
7972 static void
7973 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7975 struct cpuacct *ca = cgroup_ca(cgrp);
7977 free_percpu(ca->cpustat);
7978 free_percpu(ca->cpuusage);
7979 kfree(ca);
7982 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7984 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7985 u64 data;
7987 #ifndef CONFIG_64BIT
7989 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7991 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7992 data = *cpuusage;
7993 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7994 #else
7995 data = *cpuusage;
7996 #endif
7998 return data;
8001 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8003 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8005 #ifndef CONFIG_64BIT
8007 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8009 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8010 *cpuusage = val;
8011 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8012 #else
8013 *cpuusage = val;
8014 #endif
8017 /* return total cpu usage (in nanoseconds) of a group */
8018 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8020 struct cpuacct *ca = cgroup_ca(cgrp);
8021 u64 totalcpuusage = 0;
8022 int i;
8024 for_each_present_cpu(i)
8025 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8027 return totalcpuusage;
8030 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8031 u64 reset)
8033 struct cpuacct *ca = cgroup_ca(cgrp);
8034 int err = 0;
8035 int i;
8037 if (reset) {
8038 err = -EINVAL;
8039 goto out;
8042 for_each_present_cpu(i)
8043 cpuacct_cpuusage_write(ca, i, 0);
8045 out:
8046 return err;
8049 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8050 struct seq_file *m)
8052 struct cpuacct *ca = cgroup_ca(cgroup);
8053 u64 percpu;
8054 int i;
8056 for_each_present_cpu(i) {
8057 percpu = cpuacct_cpuusage_read(ca, i);
8058 seq_printf(m, "%llu ", (unsigned long long) percpu);
8060 seq_printf(m, "\n");
8061 return 0;
8064 static const char *cpuacct_stat_desc[] = {
8065 [CPUACCT_STAT_USER] = "user",
8066 [CPUACCT_STAT_SYSTEM] = "system",
8069 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8070 struct cgroup_map_cb *cb)
8072 struct cpuacct *ca = cgroup_ca(cgrp);
8073 int cpu;
8074 s64 val = 0;
8076 for_each_online_cpu(cpu) {
8077 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8078 val += kcpustat->cpustat[CPUTIME_USER];
8079 val += kcpustat->cpustat[CPUTIME_NICE];
8081 val = cputime64_to_clock_t(val);
8082 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8084 val = 0;
8085 for_each_online_cpu(cpu) {
8086 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8087 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8088 val += kcpustat->cpustat[CPUTIME_IRQ];
8089 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8092 val = cputime64_to_clock_t(val);
8093 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8095 return 0;
8098 static struct cftype files[] = {
8100 .name = "usage",
8101 .read_u64 = cpuusage_read,
8102 .write_u64 = cpuusage_write,
8105 .name = "usage_percpu",
8106 .read_seq_string = cpuacct_percpu_seq_read,
8109 .name = "stat",
8110 .read_map = cpuacct_stats_show,
8114 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8116 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8120 * charge this task's execution time to its accounting group.
8122 * called with rq->lock held.
8124 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8126 struct cpuacct *ca;
8127 int cpu;
8129 if (unlikely(!cpuacct_subsys.active))
8130 return;
8132 cpu = task_cpu(tsk);
8134 rcu_read_lock();
8136 ca = task_ca(tsk);
8138 for (; ca; ca = parent_ca(ca)) {
8139 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8140 *cpuusage += cputime;
8143 rcu_read_unlock();
8146 struct cgroup_subsys cpuacct_subsys = {
8147 .name = "cpuacct",
8148 .create = cpuacct_create,
8149 .destroy = cpuacct_destroy,
8150 .populate = cpuacct_populate,
8151 .subsys_id = cpuacct_subsys_id,
8153 #endif /* CONFIG_CGROUP_CPUACCT */