4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
83 #include "../workqueue_sched.h"
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/sched.h>
88 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
91 ktime_t soft
, hard
, now
;
94 if (hrtimer_active(period_timer
))
97 now
= hrtimer_cb_get_time(period_timer
);
98 hrtimer_forward(period_timer
, now
, period
);
100 soft
= hrtimer_get_softexpires(period_timer
);
101 hard
= hrtimer_get_expires(period_timer
);
102 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
103 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
104 HRTIMER_MODE_ABS_PINNED
, 0);
108 DEFINE_MUTEX(sched_domains_mutex
);
109 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
111 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
113 void update_rq_clock(struct rq
*rq
)
117 if (rq
->skip_clock_update
> 0)
120 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
122 update_rq_clock_task(rq
, delta
);
126 * Debugging: various feature bits
129 #define SCHED_FEAT(name, enabled) \
130 (1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug
unsigned int sysctl_sched_features
=
133 #include "features.h"
138 #ifdef CONFIG_SCHED_DEBUG
139 #define SCHED_FEAT(name, enabled) \
142 static __read_mostly
char *sched_feat_names
[] = {
143 #include "features.h"
149 static int sched_feat_show(struct seq_file
*m
, void *v
)
153 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
154 if (!(sysctl_sched_features
& (1UL << i
)))
156 seq_printf(m
, "%s ", sched_feat_names
[i
]);
163 #ifdef HAVE_JUMP_LABEL
165 #define jump_label_key__true jump_label_key_enabled
166 #define jump_label_key__false jump_label_key_disabled
168 #define SCHED_FEAT(name, enabled) \
169 jump_label_key__##enabled ,
171 struct jump_label_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
172 #include "features.h"
177 static void sched_feat_disable(int i
)
179 if (jump_label_enabled(&sched_feat_keys
[i
]))
180 jump_label_dec(&sched_feat_keys
[i
]);
183 static void sched_feat_enable(int i
)
185 if (!jump_label_enabled(&sched_feat_keys
[i
]))
186 jump_label_inc(&sched_feat_keys
[i
]);
189 static void sched_feat_disable(int i
) { };
190 static void sched_feat_enable(int i
) { };
191 #endif /* HAVE_JUMP_LABEL */
194 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
195 size_t cnt
, loff_t
*ppos
)
205 if (copy_from_user(&buf
, ubuf
, cnt
))
211 if (strncmp(cmp
, "NO_", 3) == 0) {
216 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
217 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
219 sysctl_sched_features
&= ~(1UL << i
);
220 sched_feat_disable(i
);
222 sysctl_sched_features
|= (1UL << i
);
223 sched_feat_enable(i
);
229 if (i
== __SCHED_FEAT_NR
)
237 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
239 return single_open(filp
, sched_feat_show
, NULL
);
242 static const struct file_operations sched_feat_fops
= {
243 .open
= sched_feat_open
,
244 .write
= sched_feat_write
,
247 .release
= single_release
,
250 static __init
int sched_init_debug(void)
252 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
257 late_initcall(sched_init_debug
);
258 #endif /* CONFIG_SCHED_DEBUG */
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
264 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
267 * period over which we average the RT time consumption, measured
272 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
275 * period over which we measure -rt task cpu usage in us.
278 unsigned int sysctl_sched_rt_period
= 1000000;
280 __read_mostly
int scheduler_running
;
283 * part of the period that we allow rt tasks to run in us.
286 int sysctl_sched_rt_runtime
= 950000;
291 * __task_rq_lock - lock the rq @p resides on.
293 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
298 lockdep_assert_held(&p
->pi_lock
);
302 raw_spin_lock(&rq
->lock
);
303 if (likely(rq
== task_rq(p
)))
305 raw_spin_unlock(&rq
->lock
);
310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
312 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
313 __acquires(p
->pi_lock
)
319 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
321 raw_spin_lock(&rq
->lock
);
322 if (likely(rq
== task_rq(p
)))
324 raw_spin_unlock(&rq
->lock
);
325 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
329 static void __task_rq_unlock(struct rq
*rq
)
332 raw_spin_unlock(&rq
->lock
);
336 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
338 __releases(p
->pi_lock
)
340 raw_spin_unlock(&rq
->lock
);
341 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
345 * this_rq_lock - lock this runqueue and disable interrupts.
347 static struct rq
*this_rq_lock(void)
354 raw_spin_lock(&rq
->lock
);
359 #ifdef CONFIG_SCHED_HRTICK
361 * Use HR-timers to deliver accurate preemption points.
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
371 static void hrtick_clear(struct rq
*rq
)
373 if (hrtimer_active(&rq
->hrtick_timer
))
374 hrtimer_cancel(&rq
->hrtick_timer
);
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
381 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
383 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
385 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
387 raw_spin_lock(&rq
->lock
);
389 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
390 raw_spin_unlock(&rq
->lock
);
392 return HRTIMER_NORESTART
;
397 * called from hardirq (IPI) context
399 static void __hrtick_start(void *arg
)
403 raw_spin_lock(&rq
->lock
);
404 hrtimer_restart(&rq
->hrtick_timer
);
405 rq
->hrtick_csd_pending
= 0;
406 raw_spin_unlock(&rq
->lock
);
410 * Called to set the hrtick timer state.
412 * called with rq->lock held and irqs disabled
414 void hrtick_start(struct rq
*rq
, u64 delay
)
416 struct hrtimer
*timer
= &rq
->hrtick_timer
;
417 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
419 hrtimer_set_expires(timer
, time
);
421 if (rq
== this_rq()) {
422 hrtimer_restart(timer
);
423 } else if (!rq
->hrtick_csd_pending
) {
424 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
425 rq
->hrtick_csd_pending
= 1;
430 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
432 int cpu
= (int)(long)hcpu
;
435 case CPU_UP_CANCELED
:
436 case CPU_UP_CANCELED_FROZEN
:
437 case CPU_DOWN_PREPARE
:
438 case CPU_DOWN_PREPARE_FROZEN
:
440 case CPU_DEAD_FROZEN
:
441 hrtick_clear(cpu_rq(cpu
));
448 static __init
void init_hrtick(void)
450 hotcpu_notifier(hotplug_hrtick
, 0);
454 * Called to set the hrtick timer state.
456 * called with rq->lock held and irqs disabled
458 void hrtick_start(struct rq
*rq
, u64 delay
)
460 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
461 HRTIMER_MODE_REL_PINNED
, 0);
464 static inline void init_hrtick(void)
467 #endif /* CONFIG_SMP */
469 static void init_rq_hrtick(struct rq
*rq
)
472 rq
->hrtick_csd_pending
= 0;
474 rq
->hrtick_csd
.flags
= 0;
475 rq
->hrtick_csd
.func
= __hrtick_start
;
476 rq
->hrtick_csd
.info
= rq
;
479 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
480 rq
->hrtick_timer
.function
= hrtick
;
482 #else /* CONFIG_SCHED_HRTICK */
483 static inline void hrtick_clear(struct rq
*rq
)
487 static inline void init_rq_hrtick(struct rq
*rq
)
491 static inline void init_hrtick(void)
494 #endif /* CONFIG_SCHED_HRTICK */
497 * resched_task - mark a task 'to be rescheduled now'.
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
505 #ifndef tsk_is_polling
506 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 void resched_task(struct task_struct
*p
)
513 assert_raw_spin_locked(&task_rq(p
)->lock
);
515 if (test_tsk_need_resched(p
))
518 set_tsk_need_resched(p
);
521 if (cpu
== smp_processor_id())
524 /* NEED_RESCHED must be visible before we test polling */
526 if (!tsk_is_polling(p
))
527 smp_send_reschedule(cpu
);
530 void resched_cpu(int cpu
)
532 struct rq
*rq
= cpu_rq(cpu
);
535 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
537 resched_task(cpu_curr(cpu
));
538 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu. This is good for power-savings.
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
550 int get_nohz_timer_target(void)
552 int cpu
= smp_processor_id();
554 struct sched_domain
*sd
;
557 for_each_domain(cpu
, sd
) {
558 for_each_cpu(i
, sched_domain_span(sd
)) {
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
579 void wake_up_idle_cpu(int cpu
)
581 struct rq
*rq
= cpu_rq(cpu
);
583 if (cpu
== smp_processor_id())
587 * This is safe, as this function is called with the timer
588 * wheel base lock of (cpu) held. When the CPU is on the way
589 * to idle and has not yet set rq->curr to idle then it will
590 * be serialized on the timer wheel base lock and take the new
591 * timer into account automatically.
593 if (rq
->curr
!= rq
->idle
)
597 * We can set TIF_RESCHED on the idle task of the other CPU
598 * lockless. The worst case is that the other CPU runs the
599 * idle task through an additional NOOP schedule()
601 set_tsk_need_resched(rq
->idle
);
603 /* NEED_RESCHED must be visible before we test polling */
605 if (!tsk_is_polling(rq
->idle
))
606 smp_send_reschedule(cpu
);
609 static inline bool got_nohz_idle_kick(void)
611 int cpu
= smp_processor_id();
612 return idle_cpu(cpu
) && test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
615 #else /* CONFIG_NO_HZ */
617 static inline bool got_nohz_idle_kick(void)
622 #endif /* CONFIG_NO_HZ */
624 void sched_avg_update(struct rq
*rq
)
626 s64 period
= sched_avg_period();
628 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
630 * Inline assembly required to prevent the compiler
631 * optimising this loop into a divmod call.
632 * See __iter_div_u64_rem() for another example of this.
634 asm("" : "+rm" (rq
->age_stamp
));
635 rq
->age_stamp
+= period
;
640 #else /* !CONFIG_SMP */
641 void resched_task(struct task_struct
*p
)
643 assert_raw_spin_locked(&task_rq(p
)->lock
);
644 set_tsk_need_resched(p
);
646 #endif /* CONFIG_SMP */
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
654 * Caller must hold rcu_lock or sufficient equivalent.
656 int walk_tg_tree_from(struct task_group
*from
,
657 tg_visitor down
, tg_visitor up
, void *data
)
659 struct task_group
*parent
, *child
;
665 ret
= (*down
)(parent
, data
);
668 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
675 ret
= (*up
)(parent
, data
);
676 if (ret
|| parent
== from
)
680 parent
= parent
->parent
;
687 int tg_nop(struct task_group
*tg
, void *data
)
693 void update_cpu_load(struct rq
*this_rq
);
695 static void set_load_weight(struct task_struct
*p
)
697 int prio
= p
->static_prio
- MAX_RT_PRIO
;
698 struct load_weight
*load
= &p
->se
.load
;
701 * SCHED_IDLE tasks get minimal weight:
703 if (p
->policy
== SCHED_IDLE
) {
704 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
705 load
->inv_weight
= WMULT_IDLEPRIO
;
709 load
->weight
= scale_load(prio_to_weight
[prio
]);
710 load
->inv_weight
= prio_to_wmult
[prio
];
713 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
716 sched_info_queued(p
);
717 p
->sched_class
->enqueue_task(rq
, p
, flags
);
720 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
723 sched_info_dequeued(p
);
724 p
->sched_class
->dequeue_task(rq
, p
, flags
);
727 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
729 if (task_contributes_to_load(p
))
730 rq
->nr_uninterruptible
--;
732 enqueue_task(rq
, p
, flags
);
735 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
737 if (task_contributes_to_load(p
))
738 rq
->nr_uninterruptible
++;
740 dequeue_task(rq
, p
, flags
);
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
756 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
757 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
759 static DEFINE_PER_CPU(u64
, irq_start_time
);
760 static int sched_clock_irqtime
;
762 void enable_sched_clock_irqtime(void)
764 sched_clock_irqtime
= 1;
767 void disable_sched_clock_irqtime(void)
769 sched_clock_irqtime
= 0;
773 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
775 static inline void irq_time_write_begin(void)
777 __this_cpu_inc(irq_time_seq
.sequence
);
781 static inline void irq_time_write_end(void)
784 __this_cpu_inc(irq_time_seq
.sequence
);
787 static inline u64
irq_time_read(int cpu
)
793 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
794 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
795 per_cpu(cpu_hardirq_time
, cpu
);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
805 static inline void irq_time_write_end(void)
809 static inline u64
irq_time_read(int cpu
)
811 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
813 #endif /* CONFIG_64BIT */
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
819 void account_system_vtime(struct task_struct
*curr
)
825 if (!sched_clock_irqtime
)
828 local_irq_save(flags
);
830 cpu
= smp_processor_id();
831 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
832 __this_cpu_add(irq_start_time
, delta
);
834 irq_time_write_begin();
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
842 __this_cpu_add(cpu_hardirq_time
, delta
);
843 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time
, delta
);
846 irq_time_write_end();
847 local_irq_restore(flags
);
849 EXPORT_SYMBOL_GPL(account_system_vtime
);
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 #ifdef CONFIG_PARAVIRT
854 static inline u64
steal_ticks(u64 steal
)
856 if (unlikely(steal
> NSEC_PER_SEC
))
857 return div_u64(steal
, TICK_NSEC
);
859 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
863 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal
= 0, irq_delta
= 0;
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
890 if (irq_delta
> delta
)
893 rq
->prev_irq_time
+= irq_delta
;
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_branch((¶virt_steal_rq_enabled
))) {
900 steal
= paravirt_steal_clock(cpu_of(rq
));
901 steal
-= rq
->prev_steal_time_rq
;
903 if (unlikely(steal
> delta
))
906 st
= steal_ticks(steal
);
907 steal
= st
* TICK_NSEC
;
909 rq
->prev_steal_time_rq
+= steal
;
915 rq
->clock_task
+= delta
;
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
919 sched_rt_avg_update(rq
, irq_delta
+ steal
);
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
926 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
931 local_irq_save(flags
);
932 latest_ns
= this_cpu_read(cpu_hardirq_time
);
933 if (nsecs_to_cputime64(latest_ns
) > cpustat
[CPUTIME_IRQ
])
935 local_irq_restore(flags
);
939 static int irqtime_account_si_update(void)
941 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
946 local_irq_save(flags
);
947 latest_ns
= this_cpu_read(cpu_softirq_time
);
948 if (nsecs_to_cputime64(latest_ns
) > cpustat
[CPUTIME_SOFTIRQ
])
950 local_irq_restore(flags
);
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 #define sched_clock_irqtime (0)
960 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
962 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
963 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
974 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
976 stop
->sched_class
= &stop_sched_class
;
979 cpu_rq(cpu
)->stop
= stop
;
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
986 old_stop
->sched_class
= &rt_sched_class
;
991 * __normal_prio - return the priority that is based on the static prio
993 static inline int __normal_prio(struct task_struct
*p
)
995 return p
->static_prio
;
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1005 static inline int normal_prio(struct task_struct
*p
)
1009 if (task_has_rt_policy(p
))
1010 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1012 prio
= __normal_prio(p
);
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1023 static int effective_prio(struct task_struct
*p
)
1025 p
->normal_prio
= normal_prio(p
);
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1031 if (!rt_prio(p
->prio
))
1032 return p
->normal_prio
;
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1040 inline int task_curr(const struct task_struct
*p
)
1042 return cpu_curr(task_cpu(p
)) == p
;
1045 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1046 const struct sched_class
*prev_class
,
1049 if (prev_class
!= p
->sched_class
) {
1050 if (prev_class
->switched_from
)
1051 prev_class
->switched_from(rq
, p
);
1052 p
->sched_class
->switched_to(rq
, p
);
1053 } else if (oldprio
!= p
->prio
)
1054 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1057 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1059 const struct sched_class
*class;
1061 if (p
->sched_class
== rq
->curr
->sched_class
) {
1062 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1064 for_each_class(class) {
1065 if (class == rq
->curr
->sched_class
)
1067 if (class == p
->sched_class
) {
1068 resched_task(rq
->curr
);
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1078 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
1079 rq
->skip_clock_update
= 1;
1083 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1085 #ifdef CONFIG_SCHED_DEBUG
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1090 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1091 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
1093 #ifdef CONFIG_LOCKDEP
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1101 * Furthermore, all task_rq users should acquire both locks, see
1104 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1105 lockdep_is_held(&task_rq(p
)->lock
)));
1109 trace_sched_migrate_task(p
, new_cpu
);
1111 if (task_cpu(p
) != new_cpu
) {
1112 p
->se
.nr_migrations
++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
1116 __set_task_cpu(p
, new_cpu
);
1119 struct migration_arg
{
1120 struct task_struct
*task
;
1124 static int migration_cpu_stop(void *data
);
1127 * wait_task_inactive - wait for a thread to unschedule.
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1142 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1144 unsigned long flags
;
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1169 while (task_running(rq
, p
)) {
1170 if (match_state
&& unlikely(p
->state
!= match_state
))
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1180 rq
= task_rq_lock(p
, &flags
);
1181 trace_sched_wait_task(p
);
1182 running
= task_running(rq
, p
);
1185 if (!match_state
|| p
->state
== match_state
)
1186 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1187 task_rq_unlock(rq
, p
, &flags
);
1190 * If it changed from the expected state, bail out now.
1192 if (unlikely(!ncsw
))
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1199 * Oops. Go back and try again..
1201 if (unlikely(running
)) {
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1215 if (unlikely(on_rq
)) {
1216 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1218 set_current_state(TASK_UNINTERRUPTIBLE
);
1219 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1247 void kick_process(struct task_struct
*p
)
1253 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1254 smp_send_reschedule(cpu
);
1257 EXPORT_SYMBOL_GPL(kick_process
);
1258 #endif /* CONFIG_SMP */
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1267 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
1269 /* Look for allowed, online CPU in same node. */
1270 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
1271 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1274 /* Any allowed, online CPU? */
1275 dest_cpu
= cpumask_any_and(tsk_cpus_allowed(p
), cpu_active_mask
);
1276 if (dest_cpu
< nr_cpu_ids
)
1279 /* No more Mr. Nice Guy. */
1280 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
1282 * Don't tell them about moving exiting tasks or
1283 * kernel threads (both mm NULL), since they never
1286 if (p
->mm
&& printk_ratelimit()) {
1287 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
1288 task_pid_nr(p
), p
->comm
, cpu
);
1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1298 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
1300 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
1303 * In order not to call set_task_cpu() on a blocking task we need
1304 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1307 * Since this is common to all placement strategies, this lives here.
1309 * [ this allows ->select_task() to simply return task_cpu(p) and
1310 * not worry about this generic constraint ]
1312 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1314 cpu
= select_fallback_rq(task_cpu(p
), p
);
1319 static void update_avg(u64
*avg
, u64 sample
)
1321 s64 diff
= sample
- *avg
;
1327 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1329 #ifdef CONFIG_SCHEDSTATS
1330 struct rq
*rq
= this_rq();
1333 int this_cpu
= smp_processor_id();
1335 if (cpu
== this_cpu
) {
1336 schedstat_inc(rq
, ttwu_local
);
1337 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1339 struct sched_domain
*sd
;
1341 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1343 for_each_domain(this_cpu
, sd
) {
1344 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1345 schedstat_inc(sd
, ttwu_wake_remote
);
1352 if (wake_flags
& WF_MIGRATED
)
1353 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1355 #endif /* CONFIG_SMP */
1357 schedstat_inc(rq
, ttwu_count
);
1358 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1360 if (wake_flags
& WF_SYNC
)
1361 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1363 #endif /* CONFIG_SCHEDSTATS */
1366 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1368 activate_task(rq
, p
, en_flags
);
1371 /* if a worker is waking up, notify workqueue */
1372 if (p
->flags
& PF_WQ_WORKER
)
1373 wq_worker_waking_up(p
, cpu_of(rq
));
1377 * Mark the task runnable and perform wakeup-preemption.
1380 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1382 trace_sched_wakeup(p
, true);
1383 check_preempt_curr(rq
, p
, wake_flags
);
1385 p
->state
= TASK_RUNNING
;
1387 if (p
->sched_class
->task_woken
)
1388 p
->sched_class
->task_woken(rq
, p
);
1390 if (rq
->idle_stamp
) {
1391 u64 delta
= rq
->clock
- rq
->idle_stamp
;
1392 u64 max
= 2*sysctl_sched_migration_cost
;
1397 update_avg(&rq
->avg_idle
, delta
);
1404 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1407 if (p
->sched_contributes_to_load
)
1408 rq
->nr_uninterruptible
--;
1411 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1412 ttwu_do_wakeup(rq
, p
, wake_flags
);
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1421 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1426 rq
= __task_rq_lock(p
);
1428 ttwu_do_wakeup(rq
, p
, wake_flags
);
1431 __task_rq_unlock(rq
);
1437 static void sched_ttwu_pending(void)
1439 struct rq
*rq
= this_rq();
1440 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1441 struct task_struct
*p
;
1443 raw_spin_lock(&rq
->lock
);
1446 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1447 llist
= llist_next(llist
);
1448 ttwu_do_activate(rq
, p
, 0);
1451 raw_spin_unlock(&rq
->lock
);
1454 void scheduler_ipi(void)
1456 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1460 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461 * traditionally all their work was done from the interrupt return
1462 * path. Now that we actually do some work, we need to make sure
1465 * Some archs already do call them, luckily irq_enter/exit nest
1468 * Arguably we should visit all archs and update all handlers,
1469 * however a fair share of IPIs are still resched only so this would
1470 * somewhat pessimize the simple resched case.
1473 sched_ttwu_pending();
1476 * Check if someone kicked us for doing the nohz idle load balance.
1478 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479 this_rq()->idle_balance
= 1;
1480 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1485 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1487 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
))
1488 smp_send_reschedule(cpu
);
1491 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
1497 rq
= __task_rq_lock(p
);
1499 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1500 ttwu_do_wakeup(rq
, p
, wake_flags
);
1503 __task_rq_unlock(rq
);
1508 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1510 static inline int ttwu_share_cache(int this_cpu
, int that_cpu
)
1512 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1514 #endif /* CONFIG_SMP */
1516 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1518 struct rq
*rq
= cpu_rq(cpu
);
1520 #if defined(CONFIG_SMP)
1521 if (sched_feat(TTWU_QUEUE
) && !ttwu_share_cache(smp_processor_id(), cpu
)) {
1522 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1523 ttwu_queue_remote(p
, cpu
);
1528 raw_spin_lock(&rq
->lock
);
1529 ttwu_do_activate(rq
, p
, 0);
1530 raw_spin_unlock(&rq
->lock
);
1534 * try_to_wake_up - wake up a thread
1535 * @p: the thread to be awakened
1536 * @state: the mask of task states that can be woken
1537 * @wake_flags: wake modifier flags (WF_*)
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1549 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1551 unsigned long flags
;
1552 int cpu
, success
= 0;
1555 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1556 if (!(p
->state
& state
))
1559 success
= 1; /* we're going to change ->state */
1562 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1567 * If the owning (remote) cpu is still in the middle of schedule() with
1568 * this task as prev, wait until its done referencing the task.
1571 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1573 * In case the architecture enables interrupts in
1574 * context_switch(), we cannot busy wait, since that
1575 * would lead to deadlocks when an interrupt hits and
1576 * tries to wake up @prev. So bail and do a complete
1579 if (ttwu_activate_remote(p
, wake_flags
))
1586 * Pairs with the smp_wmb() in finish_lock_switch().
1590 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1591 p
->state
= TASK_WAKING
;
1593 if (p
->sched_class
->task_waking
)
1594 p
->sched_class
->task_waking(p
);
1596 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
1597 if (task_cpu(p
) != cpu
) {
1598 wake_flags
|= WF_MIGRATED
;
1599 set_task_cpu(p
, cpu
);
1601 #endif /* CONFIG_SMP */
1605 ttwu_stat(p
, cpu
, wake_flags
);
1607 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1616 * Put @p on the run-queue if it's not already there. The caller must
1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1620 static void try_to_wake_up_local(struct task_struct
*p
)
1622 struct rq
*rq
= task_rq(p
);
1624 BUG_ON(rq
!= this_rq());
1625 BUG_ON(p
== current
);
1626 lockdep_assert_held(&rq
->lock
);
1628 if (!raw_spin_trylock(&p
->pi_lock
)) {
1629 raw_spin_unlock(&rq
->lock
);
1630 raw_spin_lock(&p
->pi_lock
);
1631 raw_spin_lock(&rq
->lock
);
1634 if (!(p
->state
& TASK_NORMAL
))
1638 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1640 ttwu_do_wakeup(rq
, p
, 0);
1641 ttwu_stat(p
, smp_processor_id(), 0);
1643 raw_spin_unlock(&p
->pi_lock
);
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes. Returns 1 if the process was woken up, 0 if it was already
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1657 int wake_up_process(struct task_struct
*p
)
1659 return try_to_wake_up(p
, TASK_ALL
, 0);
1661 EXPORT_SYMBOL(wake_up_process
);
1663 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1665 return try_to_wake_up(p
, state
, 0);
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
1672 * __sched_fork() is basic setup used by init_idle() too:
1674 static void __sched_fork(struct task_struct
*p
)
1679 p
->se
.exec_start
= 0;
1680 p
->se
.sum_exec_runtime
= 0;
1681 p
->se
.prev_sum_exec_runtime
= 0;
1682 p
->se
.nr_migrations
= 0;
1684 INIT_LIST_HEAD(&p
->se
.group_node
);
1686 #ifdef CONFIG_SCHEDSTATS
1687 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1690 INIT_LIST_HEAD(&p
->rt
.run_list
);
1692 #ifdef CONFIG_PREEMPT_NOTIFIERS
1693 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1698 * fork()/clone()-time setup:
1700 void sched_fork(struct task_struct
*p
)
1702 unsigned long flags
;
1703 int cpu
= get_cpu();
1707 * We mark the process as running here. This guarantees that
1708 * nobody will actually run it, and a signal or other external
1709 * event cannot wake it up and insert it on the runqueue either.
1711 p
->state
= TASK_RUNNING
;
1714 * Make sure we do not leak PI boosting priority to the child.
1716 p
->prio
= current
->normal_prio
;
1719 * Revert to default priority/policy on fork if requested.
1721 if (unlikely(p
->sched_reset_on_fork
)) {
1722 if (task_has_rt_policy(p
)) {
1723 p
->policy
= SCHED_NORMAL
;
1724 p
->static_prio
= NICE_TO_PRIO(0);
1726 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1727 p
->static_prio
= NICE_TO_PRIO(0);
1729 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1733 * We don't need the reset flag anymore after the fork. It has
1734 * fulfilled its duty:
1736 p
->sched_reset_on_fork
= 0;
1739 if (!rt_prio(p
->prio
))
1740 p
->sched_class
= &fair_sched_class
;
1742 if (p
->sched_class
->task_fork
)
1743 p
->sched_class
->task_fork(p
);
1746 * The child is not yet in the pid-hash so no cgroup attach races,
1747 * and the cgroup is pinned to this child due to cgroup_fork()
1748 * is ran before sched_fork().
1750 * Silence PROVE_RCU.
1752 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1753 set_task_cpu(p
, cpu
);
1754 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1756 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757 if (likely(sched_info_on()))
1758 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1760 #if defined(CONFIG_SMP)
1763 #ifdef CONFIG_PREEMPT_COUNT
1764 /* Want to start with kernel preemption disabled. */
1765 task_thread_info(p
)->preempt_count
= 1;
1768 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1775 * wake_up_new_task - wake up a newly created task for the first time.
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1781 void wake_up_new_task(struct task_struct
*p
)
1783 unsigned long flags
;
1786 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1789 * Fork balancing, do it here and not earlier because:
1790 * - cpus_allowed can change in the fork path
1791 * - any previously selected cpu might disappear through hotplug
1793 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
1796 rq
= __task_rq_lock(p
);
1797 activate_task(rq
, p
, 0);
1799 trace_sched_wakeup_new(p
, true);
1800 check_preempt_curr(rq
, p
, WF_FORK
);
1802 if (p
->sched_class
->task_woken
)
1803 p
->sched_class
->task_woken(rq
, p
);
1805 task_rq_unlock(rq
, p
, &flags
);
1808 #ifdef CONFIG_PREEMPT_NOTIFIERS
1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812 * @notifier: notifier struct to register
1814 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1816 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1818 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
1822 * @notifier: notifier struct to unregister
1824 * This is safe to call from within a preemption notifier.
1826 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1828 hlist_del(¬ifier
->link
);
1830 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1832 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1834 struct preempt_notifier
*notifier
;
1835 struct hlist_node
*node
;
1837 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1838 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1842 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1843 struct task_struct
*next
)
1845 struct preempt_notifier
*notifier
;
1846 struct hlist_node
*node
;
1848 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1849 notifier
->ops
->sched_out(notifier
, next
);
1852 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1854 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1859 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1860 struct task_struct
*next
)
1864 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
1869 * @prev: the current task that is being switched out
1870 * @next: the task we are going to switch to.
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1876 * prepare_task_switch sets up locking and calls architecture specific
1880 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1881 struct task_struct
*next
)
1883 sched_info_switch(prev
, next
);
1884 perf_event_task_sched_out(prev
, next
);
1885 fire_sched_out_preempt_notifiers(prev
, next
);
1886 prepare_lock_switch(rq
, next
);
1887 prepare_arch_switch(next
);
1888 trace_sched_switch(prev
, next
);
1892 * finish_task_switch - clean up after a task-switch
1893 * @rq: runqueue associated with task-switch
1894 * @prev: the thread we just switched away from.
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1901 * Note that we may have delayed dropping an mm in context_switch(). If
1902 * so, we finish that here outside of the runqueue lock. (Doing it
1903 * with the lock held can cause deadlocks; see schedule() for
1906 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1907 __releases(rq
->lock
)
1909 struct mm_struct
*mm
= rq
->prev_mm
;
1915 * A task struct has one reference for the use as "current".
1916 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917 * schedule one last time. The schedule call will never return, and
1918 * the scheduled task must drop that reference.
1919 * The test for TASK_DEAD must occur while the runqueue locks are
1920 * still held, otherwise prev could be scheduled on another cpu, die
1921 * there before we look at prev->state, and then the reference would
1923 * Manfred Spraul <manfred@colorfullife.com>
1925 prev_state
= prev
->state
;
1926 finish_arch_switch(prev
);
1927 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928 local_irq_disable();
1929 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930 perf_event_task_sched_in(prev
, current
);
1931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1933 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934 finish_lock_switch(rq
, prev
);
1936 fire_sched_in_preempt_notifiers(current
);
1939 if (unlikely(prev_state
== TASK_DEAD
)) {
1941 * Remove function-return probe instances associated with this
1942 * task and put them back on the free list.
1944 kprobe_flush_task(prev
);
1945 put_task_struct(prev
);
1951 /* assumes rq->lock is held */
1952 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
1954 if (prev
->sched_class
->pre_schedule
)
1955 prev
->sched_class
->pre_schedule(rq
, prev
);
1958 /* rq->lock is NOT held, but preemption is disabled */
1959 static inline void post_schedule(struct rq
*rq
)
1961 if (rq
->post_schedule
) {
1962 unsigned long flags
;
1964 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1965 if (rq
->curr
->sched_class
->post_schedule
)
1966 rq
->curr
->sched_class
->post_schedule(rq
);
1967 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1969 rq
->post_schedule
= 0;
1975 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
1979 static inline void post_schedule(struct rq
*rq
)
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1989 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1990 __releases(rq
->lock
)
1992 struct rq
*rq
= this_rq();
1994 finish_task_switch(rq
, prev
);
1997 * FIXME: do we need to worry about rq being invalidated by the
2002 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003 /* In this case, finish_task_switch does not reenable preemption */
2006 if (current
->set_child_tid
)
2007 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2015 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2016 struct task_struct
*next
)
2018 struct mm_struct
*mm
, *oldmm
;
2020 prepare_task_switch(rq
, prev
, next
);
2023 oldmm
= prev
->active_mm
;
2025 * For paravirt, this is coupled with an exit in switch_to to
2026 * combine the page table reload and the switch backend into
2029 arch_start_context_switch(prev
);
2032 next
->active_mm
= oldmm
;
2033 atomic_inc(&oldmm
->mm_count
);
2034 enter_lazy_tlb(oldmm
, next
);
2036 switch_mm(oldmm
, mm
, next
);
2039 prev
->active_mm
= NULL
;
2040 rq
->prev_mm
= oldmm
;
2043 * Since the runqueue lock will be released by the next
2044 * task (which is an invalid locking op but in the case
2045 * of the scheduler it's an obvious special-case), so we
2046 * do an early lockdep release here:
2048 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2052 /* Here we just switch the register state and the stack. */
2053 switch_to(prev
, next
, prev
);
2057 * this_rq must be evaluated again because prev may have moved
2058 * CPUs since it called schedule(), thus the 'rq' on its stack
2059 * frame will be invalid.
2061 finish_task_switch(this_rq(), prev
);
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2071 unsigned long nr_running(void)
2073 unsigned long i
, sum
= 0;
2075 for_each_online_cpu(i
)
2076 sum
+= cpu_rq(i
)->nr_running
;
2081 unsigned long nr_uninterruptible(void)
2083 unsigned long i
, sum
= 0;
2085 for_each_possible_cpu(i
)
2086 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2089 * Since we read the counters lockless, it might be slightly
2090 * inaccurate. Do not allow it to go below zero though:
2092 if (unlikely((long)sum
< 0))
2098 unsigned long long nr_context_switches(void)
2101 unsigned long long sum
= 0;
2103 for_each_possible_cpu(i
)
2104 sum
+= cpu_rq(i
)->nr_switches
;
2109 unsigned long nr_iowait(void)
2111 unsigned long i
, sum
= 0;
2113 for_each_possible_cpu(i
)
2114 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2119 unsigned long nr_iowait_cpu(int cpu
)
2121 struct rq
*this = cpu_rq(cpu
);
2122 return atomic_read(&this->nr_iowait
);
2125 unsigned long this_cpu_load(void)
2127 struct rq
*this = this_rq();
2128 return this->cpu_load
[0];
2132 /* Variables and functions for calc_load */
2133 static atomic_long_t calc_load_tasks
;
2134 static unsigned long calc_load_update
;
2135 unsigned long avenrun
[3];
2136 EXPORT_SYMBOL(avenrun
);
2138 static long calc_load_fold_active(struct rq
*this_rq
)
2140 long nr_active
, delta
= 0;
2142 nr_active
= this_rq
->nr_running
;
2143 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2145 if (nr_active
!= this_rq
->calc_load_active
) {
2146 delta
= nr_active
- this_rq
->calc_load_active
;
2147 this_rq
->calc_load_active
= nr_active
;
2153 static unsigned long
2154 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2157 load
+= active
* (FIXED_1
- exp
);
2158 load
+= 1UL << (FSHIFT
- 1);
2159 return load
>> FSHIFT
;
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2166 * When making the ILB scale, we should try to pull this in as well.
2168 static atomic_long_t calc_load_tasks_idle
;
2170 void calc_load_account_idle(struct rq
*this_rq
)
2174 delta
= calc_load_fold_active(this_rq
);
2176 atomic_long_add(delta
, &calc_load_tasks_idle
);
2179 static long calc_load_fold_idle(void)
2184 * Its got a race, we don't care...
2186 if (atomic_long_read(&calc_load_tasks_idle
))
2187 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
2193 * fixed_power_int - compute: x^n, in O(log n) time
2195 * @x: base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n: power to raise @x to.
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2207 static unsigned long
2208 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
2210 unsigned long result
= 1UL << frac_bits
;
2215 result
+= 1UL << (frac_bits
- 1);
2216 result
>>= frac_bits
;
2222 x
+= 1UL << (frac_bits
- 1);
2230 * a1 = a0 * e + a * (1 - e)
2232 * a2 = a1 * e + a * (1 - e)
2233 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 * = a0 * e^2 + a * (1 - e) * (1 + e)
2236 * a3 = a2 * e + a * (1 - e)
2237 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 * = a0 * e^n + a * (1 - e^n)
2246 * [1] application of the geometric series:
2249 * S_n := \Sum x^i = -------------
2252 static unsigned long
2253 calc_load_n(unsigned long load
, unsigned long exp
,
2254 unsigned long active
, unsigned int n
)
2257 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2269 static void calc_global_nohz(void)
2271 long delta
, active
, n
;
2274 * If we crossed a calc_load_update boundary, make sure to fold
2275 * any pending idle changes, the respective CPUs might have
2276 * missed the tick driven calc_load_account_active() update
2279 delta
= calc_load_fold_idle();
2281 atomic_long_add(delta
, &calc_load_tasks
);
2284 * It could be the one fold was all it took, we done!
2286 if (time_before(jiffies
, calc_load_update
+ 10))
2290 * Catch-up, fold however many we are behind still
2292 delta
= jiffies
- calc_load_update
- 10;
2293 n
= 1 + (delta
/ LOAD_FREQ
);
2295 active
= atomic_long_read(&calc_load_tasks
);
2296 active
= active
> 0 ? active
* FIXED_1
: 0;
2298 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
2299 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
2300 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
2302 calc_load_update
+= n
* LOAD_FREQ
;
2305 void calc_load_account_idle(struct rq
*this_rq
)
2309 static inline long calc_load_fold_idle(void)
2314 static void calc_global_nohz(void)
2320 * get_avenrun - get the load average array
2321 * @loads: pointer to dest load array
2322 * @offset: offset to add
2323 * @shift: shift count to shift the result left
2325 * These values are estimates at best, so no need for locking.
2327 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2329 loads
[0] = (avenrun
[0] + offset
) << shift
;
2330 loads
[1] = (avenrun
[1] + offset
) << shift
;
2331 loads
[2] = (avenrun
[2] + offset
) << shift
;
2335 * calc_load - update the avenrun load estimates 10 ticks after the
2336 * CPUs have updated calc_load_tasks.
2338 void calc_global_load(unsigned long ticks
)
2342 if (time_before(jiffies
, calc_load_update
+ 10))
2345 active
= atomic_long_read(&calc_load_tasks
);
2346 active
= active
> 0 ? active
* FIXED_1
: 0;
2348 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2349 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2350 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2352 calc_load_update
+= LOAD_FREQ
;
2355 * Account one period with whatever state we found before
2356 * folding in the nohz state and ageing the entire idle period.
2358 * This avoids loosing a sample when we go idle between
2359 * calc_load_account_active() (10 ticks ago) and now and thus
2366 * Called from update_cpu_load() to periodically update this CPU's
2369 static void calc_load_account_active(struct rq
*this_rq
)
2373 if (time_before(jiffies
, this_rq
->calc_load_update
))
2376 delta
= calc_load_fold_active(this_rq
);
2377 delta
+= calc_load_fold_idle();
2379 atomic_long_add(delta
, &calc_load_tasks
);
2381 this_rq
->calc_load_update
+= LOAD_FREQ
;
2385 * The exact cpuload at various idx values, calculated at every tick would be
2386 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2389 * on nth tick when cpu may be busy, then we have:
2390 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2391 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 * decay_load_missed() below does efficient calculation of
2394 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2395 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 * The calculation is approximated on a 128 point scale.
2398 * degrade_zero_ticks is the number of ticks after which load at any
2399 * particular idx is approximated to be zero.
2400 * degrade_factor is a precomputed table, a row for each load idx.
2401 * Each column corresponds to degradation factor for a power of two ticks,
2402 * based on 128 point scale.
2404 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2405 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 * With this power of 2 load factors, we can degrade the load n times
2408 * by looking at 1 bits in n and doing as many mult/shift instead of
2409 * n mult/shifts needed by the exact degradation.
2411 #define DEGRADE_SHIFT 7
2412 static const unsigned char
2413 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
2414 static const unsigned char
2415 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
2416 {0, 0, 0, 0, 0, 0, 0, 0},
2417 {64, 32, 8, 0, 0, 0, 0, 0},
2418 {96, 72, 40, 12, 1, 0, 0},
2419 {112, 98, 75, 43, 15, 1, 0},
2420 {120, 112, 98, 76, 45, 16, 2} };
2423 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2424 * would be when CPU is idle and so we just decay the old load without
2425 * adding any new load.
2427 static unsigned long
2428 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
2432 if (!missed_updates
)
2435 if (missed_updates
>= degrade_zero_ticks
[idx
])
2439 return load
>> missed_updates
;
2441 while (missed_updates
) {
2442 if (missed_updates
% 2)
2443 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
2445 missed_updates
>>= 1;
2452 * Update rq->cpu_load[] statistics. This function is usually called every
2453 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2454 * every tick. We fix it up based on jiffies.
2456 void update_cpu_load(struct rq
*this_rq
)
2458 unsigned long this_load
= this_rq
->load
.weight
;
2459 unsigned long curr_jiffies
= jiffies
;
2460 unsigned long pending_updates
;
2463 this_rq
->nr_load_updates
++;
2465 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2466 if (curr_jiffies
== this_rq
->last_load_update_tick
)
2469 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
2470 this_rq
->last_load_update_tick
= curr_jiffies
;
2472 /* Update our load: */
2473 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
2474 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2475 unsigned long old_load
, new_load
;
2477 /* scale is effectively 1 << i now, and >> i divides by scale */
2479 old_load
= this_rq
->cpu_load
[i
];
2480 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
2481 new_load
= this_load
;
2483 * Round up the averaging division if load is increasing. This
2484 * prevents us from getting stuck on 9 if the load is 10, for
2487 if (new_load
> old_load
)
2488 new_load
+= scale
- 1;
2490 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
2493 sched_avg_update(this_rq
);
2496 static void update_cpu_load_active(struct rq
*this_rq
)
2498 update_cpu_load(this_rq
);
2500 calc_load_account_active(this_rq
);
2506 * sched_exec - execve() is a valuable balancing opportunity, because at
2507 * this point the task has the smallest effective memory and cache footprint.
2509 void sched_exec(void)
2511 struct task_struct
*p
= current
;
2512 unsigned long flags
;
2515 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2516 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
2517 if (dest_cpu
== smp_processor_id())
2520 if (likely(cpu_active(dest_cpu
))) {
2521 struct migration_arg arg
= { p
, dest_cpu
};
2523 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2524 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2528 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2533 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2534 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2536 EXPORT_PER_CPU_SYMBOL(kstat
);
2537 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2540 * Return any ns on the sched_clock that have not yet been accounted in
2541 * @p in case that task is currently running.
2543 * Called with task_rq_lock() held on @rq.
2545 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
2549 if (task_current(rq
, p
)) {
2550 update_rq_clock(rq
);
2551 ns
= rq
->clock_task
- p
->se
.exec_start
;
2559 unsigned long long task_delta_exec(struct task_struct
*p
)
2561 unsigned long flags
;
2565 rq
= task_rq_lock(p
, &flags
);
2566 ns
= do_task_delta_exec(p
, rq
);
2567 task_rq_unlock(rq
, p
, &flags
);
2573 * Return accounted runtime for the task.
2574 * In case the task is currently running, return the runtime plus current's
2575 * pending runtime that have not been accounted yet.
2577 unsigned long long task_sched_runtime(struct task_struct
*p
)
2579 unsigned long flags
;
2583 rq
= task_rq_lock(p
, &flags
);
2584 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
2585 task_rq_unlock(rq
, p
, &flags
);
2590 #ifdef CONFIG_CGROUP_CPUACCT
2591 struct cgroup_subsys cpuacct_subsys
;
2592 struct cpuacct root_cpuacct
;
2595 static inline void task_group_account_field(struct task_struct
*p
, int index
,
2598 #ifdef CONFIG_CGROUP_CPUACCT
2599 struct kernel_cpustat
*kcpustat
;
2603 * Since all updates are sure to touch the root cgroup, we
2604 * get ourselves ahead and touch it first. If the root cgroup
2605 * is the only cgroup, then nothing else should be necessary.
2608 __get_cpu_var(kernel_cpustat
).cpustat
[index
] += tmp
;
2610 #ifdef CONFIG_CGROUP_CPUACCT
2611 if (unlikely(!cpuacct_subsys
.active
))
2616 while (ca
&& (ca
!= &root_cpuacct
)) {
2617 kcpustat
= this_cpu_ptr(ca
->cpustat
);
2618 kcpustat
->cpustat
[index
] += tmp
;
2627 * Account user cpu time to a process.
2628 * @p: the process that the cpu time gets accounted to
2629 * @cputime: the cpu time spent in user space since the last update
2630 * @cputime_scaled: cputime scaled by cpu frequency
2632 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
2633 cputime_t cputime_scaled
)
2637 /* Add user time to process. */
2638 p
->utime
+= cputime
;
2639 p
->utimescaled
+= cputime_scaled
;
2640 account_group_user_time(p
, cputime
);
2642 index
= (TASK_NICE(p
) > 0) ? CPUTIME_NICE
: CPUTIME_USER
;
2644 /* Add user time to cpustat. */
2645 task_group_account_field(p
, index
, (__force u64
) cputime
);
2647 /* Account for user time used */
2648 acct_update_integrals(p
);
2652 * Account guest cpu time to a process.
2653 * @p: the process that the cpu time gets accounted to
2654 * @cputime: the cpu time spent in virtual machine since the last update
2655 * @cputime_scaled: cputime scaled by cpu frequency
2657 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
2658 cputime_t cputime_scaled
)
2660 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2662 /* Add guest time to process. */
2663 p
->utime
+= cputime
;
2664 p
->utimescaled
+= cputime_scaled
;
2665 account_group_user_time(p
, cputime
);
2666 p
->gtime
+= cputime
;
2668 /* Add guest time to cpustat. */
2669 if (TASK_NICE(p
) > 0) {
2670 cpustat
[CPUTIME_NICE
] += (__force u64
) cputime
;
2671 cpustat
[CPUTIME_GUEST_NICE
] += (__force u64
) cputime
;
2673 cpustat
[CPUTIME_USER
] += (__force u64
) cputime
;
2674 cpustat
[CPUTIME_GUEST
] += (__force u64
) cputime
;
2679 * Account system cpu time to a process and desired cpustat field
2680 * @p: the process that the cpu time gets accounted to
2681 * @cputime: the cpu time spent in kernel space since the last update
2682 * @cputime_scaled: cputime scaled by cpu frequency
2683 * @target_cputime64: pointer to cpustat field that has to be updated
2686 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
2687 cputime_t cputime_scaled
, int index
)
2689 /* Add system time to process. */
2690 p
->stime
+= cputime
;
2691 p
->stimescaled
+= cputime_scaled
;
2692 account_group_system_time(p
, cputime
);
2694 /* Add system time to cpustat. */
2695 task_group_account_field(p
, index
, (__force u64
) cputime
);
2697 /* Account for system time used */
2698 acct_update_integrals(p
);
2702 * Account system cpu time to a process.
2703 * @p: the process that the cpu time gets accounted to
2704 * @hardirq_offset: the offset to subtract from hardirq_count()
2705 * @cputime: the cpu time spent in kernel space since the last update
2706 * @cputime_scaled: cputime scaled by cpu frequency
2708 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2709 cputime_t cputime
, cputime_t cputime_scaled
)
2713 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
2714 account_guest_time(p
, cputime
, cputime_scaled
);
2718 if (hardirq_count() - hardirq_offset
)
2719 index
= CPUTIME_IRQ
;
2720 else if (in_serving_softirq())
2721 index
= CPUTIME_SOFTIRQ
;
2723 index
= CPUTIME_SYSTEM
;
2725 __account_system_time(p
, cputime
, cputime_scaled
, index
);
2729 * Account for involuntary wait time.
2730 * @cputime: the cpu time spent in involuntary wait
2732 void account_steal_time(cputime_t cputime
)
2734 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2736 cpustat
[CPUTIME_STEAL
] += (__force u64
) cputime
;
2740 * Account for idle time.
2741 * @cputime: the cpu time spent in idle wait
2743 void account_idle_time(cputime_t cputime
)
2745 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2746 struct rq
*rq
= this_rq();
2748 if (atomic_read(&rq
->nr_iowait
) > 0)
2749 cpustat
[CPUTIME_IOWAIT
] += (__force u64
) cputime
;
2751 cpustat
[CPUTIME_IDLE
] += (__force u64
) cputime
;
2754 static __always_inline
bool steal_account_process_tick(void)
2756 #ifdef CONFIG_PARAVIRT
2757 if (static_branch(¶virt_steal_enabled
)) {
2760 steal
= paravirt_steal_clock(smp_processor_id());
2761 steal
-= this_rq()->prev_steal_time
;
2763 st
= steal_ticks(steal
);
2764 this_rq()->prev_steal_time
+= st
* TICK_NSEC
;
2766 account_steal_time(st
);
2773 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777 * Account a tick to a process and cpustat
2778 * @p: the process that the cpu time gets accounted to
2779 * @user_tick: is the tick from userspace
2780 * @rq: the pointer to rq
2782 * Tick demultiplexing follows the order
2783 * - pending hardirq update
2784 * - pending softirq update
2788 * - check for guest_time
2789 * - else account as system_time
2791 * Check for hardirq is done both for system and user time as there is
2792 * no timer going off while we are on hardirq and hence we may never get an
2793 * opportunity to update it solely in system time.
2794 * p->stime and friends are only updated on system time and not on irq
2795 * softirq as those do not count in task exec_runtime any more.
2797 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
2800 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
2801 u64
*cpustat
= kcpustat_this_cpu
->cpustat
;
2803 if (steal_account_process_tick())
2806 if (irqtime_account_hi_update()) {
2807 cpustat
[CPUTIME_IRQ
] += (__force u64
) cputime_one_jiffy
;
2808 } else if (irqtime_account_si_update()) {
2809 cpustat
[CPUTIME_SOFTIRQ
] += (__force u64
) cputime_one_jiffy
;
2810 } else if (this_cpu_ksoftirqd() == p
) {
2812 * ksoftirqd time do not get accounted in cpu_softirq_time.
2813 * So, we have to handle it separately here.
2814 * Also, p->stime needs to be updated for ksoftirqd.
2816 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
2818 } else if (user_tick
) {
2819 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
2820 } else if (p
== rq
->idle
) {
2821 account_idle_time(cputime_one_jiffy
);
2822 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
2823 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
2825 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
2830 static void irqtime_account_idle_ticks(int ticks
)
2833 struct rq
*rq
= this_rq();
2835 for (i
= 0; i
< ticks
; i
++)
2836 irqtime_account_process_tick(current
, 0, rq
);
2838 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2839 static void irqtime_account_idle_ticks(int ticks
) {}
2840 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
2842 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2845 * Account a single tick of cpu time.
2846 * @p: the process that the cpu time gets accounted to
2847 * @user_tick: indicates if the tick is a user or a system tick
2849 void account_process_tick(struct task_struct
*p
, int user_tick
)
2851 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
2852 struct rq
*rq
= this_rq();
2854 if (sched_clock_irqtime
) {
2855 irqtime_account_process_tick(p
, user_tick
, rq
);
2859 if (steal_account_process_tick())
2863 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
2864 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
2865 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
2868 account_idle_time(cputime_one_jiffy
);
2872 * Account multiple ticks of steal time.
2873 * @p: the process from which the cpu time has been stolen
2874 * @ticks: number of stolen ticks
2876 void account_steal_ticks(unsigned long ticks
)
2878 account_steal_time(jiffies_to_cputime(ticks
));
2882 * Account multiple ticks of idle time.
2883 * @ticks: number of stolen ticks
2885 void account_idle_ticks(unsigned long ticks
)
2888 if (sched_clock_irqtime
) {
2889 irqtime_account_idle_ticks(ticks
);
2893 account_idle_time(jiffies_to_cputime(ticks
));
2899 * Use precise platform statistics if available:
2901 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2902 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
2908 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
2910 struct task_cputime cputime
;
2912 thread_group_cputime(p
, &cputime
);
2914 *ut
= cputime
.utime
;
2915 *st
= cputime
.stime
;
2919 #ifndef nsecs_to_cputime
2920 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2923 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
2925 cputime_t rtime
, utime
= p
->utime
, total
= utime
+ p
->stime
;
2928 * Use CFS's precise accounting:
2930 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
2933 u64 temp
= (__force u64
) rtime
;
2935 temp
*= (__force u64
) utime
;
2936 do_div(temp
, (__force u32
) total
);
2937 utime
= (__force cputime_t
) temp
;
2942 * Compare with previous values, to keep monotonicity:
2944 p
->prev_utime
= max(p
->prev_utime
, utime
);
2945 p
->prev_stime
= max(p
->prev_stime
, rtime
- p
->prev_utime
);
2947 *ut
= p
->prev_utime
;
2948 *st
= p
->prev_stime
;
2952 * Must be called with siglock held.
2954 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
2956 struct signal_struct
*sig
= p
->signal
;
2957 struct task_cputime cputime
;
2958 cputime_t rtime
, utime
, total
;
2960 thread_group_cputime(p
, &cputime
);
2962 total
= cputime
.utime
+ cputime
.stime
;
2963 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
2966 u64 temp
= (__force u64
) rtime
;
2968 temp
*= (__force u64
) cputime
.utime
;
2969 do_div(temp
, (__force u32
) total
);
2970 utime
= (__force cputime_t
) temp
;
2974 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
2975 sig
->prev_stime
= max(sig
->prev_stime
, rtime
- sig
->prev_utime
);
2977 *ut
= sig
->prev_utime
;
2978 *st
= sig
->prev_stime
;
2983 * This function gets called by the timer code, with HZ frequency.
2984 * We call it with interrupts disabled.
2986 void scheduler_tick(void)
2988 int cpu
= smp_processor_id();
2989 struct rq
*rq
= cpu_rq(cpu
);
2990 struct task_struct
*curr
= rq
->curr
;
2994 raw_spin_lock(&rq
->lock
);
2995 update_rq_clock(rq
);
2996 update_cpu_load_active(rq
);
2997 curr
->sched_class
->task_tick(rq
, curr
, 0);
2998 raw_spin_unlock(&rq
->lock
);
3000 perf_event_task_tick();
3003 rq
->idle_balance
= idle_cpu(cpu
);
3004 trigger_load_balance(rq
, cpu
);
3008 notrace
unsigned long get_parent_ip(unsigned long addr
)
3010 if (in_lock_functions(addr
)) {
3011 addr
= CALLER_ADDR2
;
3012 if (in_lock_functions(addr
))
3013 addr
= CALLER_ADDR3
;
3018 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3019 defined(CONFIG_PREEMPT_TRACER))
3021 void __kprobes
add_preempt_count(int val
)
3023 #ifdef CONFIG_DEBUG_PREEMPT
3027 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3030 preempt_count() += val
;
3031 #ifdef CONFIG_DEBUG_PREEMPT
3033 * Spinlock count overflowing soon?
3035 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3038 if (preempt_count() == val
)
3039 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3041 EXPORT_SYMBOL(add_preempt_count
);
3043 void __kprobes
sub_preempt_count(int val
)
3045 #ifdef CONFIG_DEBUG_PREEMPT
3049 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3052 * Is the spinlock portion underflowing?
3054 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3055 !(preempt_count() & PREEMPT_MASK
)))
3059 if (preempt_count() == val
)
3060 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3061 preempt_count() -= val
;
3063 EXPORT_SYMBOL(sub_preempt_count
);
3068 * Print scheduling while atomic bug:
3070 static noinline
void __schedule_bug(struct task_struct
*prev
)
3072 struct pt_regs
*regs
= get_irq_regs();
3074 if (oops_in_progress
)
3077 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3078 prev
->comm
, prev
->pid
, preempt_count());
3080 debug_show_held_locks(prev
);
3082 if (irqs_disabled())
3083 print_irqtrace_events(prev
);
3092 * Various schedule()-time debugging checks and statistics:
3094 static inline void schedule_debug(struct task_struct
*prev
)
3097 * Test if we are atomic. Since do_exit() needs to call into
3098 * schedule() atomically, we ignore that path for now.
3099 * Otherwise, whine if we are scheduling when we should not be.
3101 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3102 __schedule_bug(prev
);
3105 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3107 schedstat_inc(this_rq(), sched_count
);
3110 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3112 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
3113 update_rq_clock(rq
);
3114 prev
->sched_class
->put_prev_task(rq
, prev
);
3118 * Pick up the highest-prio task:
3120 static inline struct task_struct
*
3121 pick_next_task(struct rq
*rq
)
3123 const struct sched_class
*class;
3124 struct task_struct
*p
;
3127 * Optimization: we know that if all tasks are in
3128 * the fair class we can call that function directly:
3130 if (likely(rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3131 p
= fair_sched_class
.pick_next_task(rq
);
3136 for_each_class(class) {
3137 p
= class->pick_next_task(rq
);
3142 BUG(); /* the idle class will always have a runnable task */
3146 * __schedule() is the main scheduler function.
3148 static void __sched
__schedule(void)
3150 struct task_struct
*prev
, *next
;
3151 unsigned long *switch_count
;
3157 cpu
= smp_processor_id();
3159 rcu_note_context_switch(cpu
);
3162 schedule_debug(prev
);
3164 if (sched_feat(HRTICK
))
3167 raw_spin_lock_irq(&rq
->lock
);
3169 switch_count
= &prev
->nivcsw
;
3170 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3171 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3172 prev
->state
= TASK_RUNNING
;
3174 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3178 * If a worker went to sleep, notify and ask workqueue
3179 * whether it wants to wake up a task to maintain
3182 if (prev
->flags
& PF_WQ_WORKER
) {
3183 struct task_struct
*to_wakeup
;
3185 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3187 try_to_wake_up_local(to_wakeup
);
3190 switch_count
= &prev
->nvcsw
;
3193 pre_schedule(rq
, prev
);
3195 if (unlikely(!rq
->nr_running
))
3196 idle_balance(cpu
, rq
);
3198 put_prev_task(rq
, prev
);
3199 next
= pick_next_task(rq
);
3200 clear_tsk_need_resched(prev
);
3201 rq
->skip_clock_update
= 0;
3203 if (likely(prev
!= next
)) {
3208 context_switch(rq
, prev
, next
); /* unlocks the rq */
3210 * The context switch have flipped the stack from under us
3211 * and restored the local variables which were saved when
3212 * this task called schedule() in the past. prev == current
3213 * is still correct, but it can be moved to another cpu/rq.
3215 cpu
= smp_processor_id();
3218 raw_spin_unlock_irq(&rq
->lock
);
3222 preempt_enable_no_resched();
3227 static inline void sched_submit_work(struct task_struct
*tsk
)
3232 * If we are going to sleep and we have plugged IO queued,
3233 * make sure to submit it to avoid deadlocks.
3235 if (blk_needs_flush_plug(tsk
))
3236 blk_schedule_flush_plug(tsk
);
3239 asmlinkage
void __sched
schedule(void)
3241 struct task_struct
*tsk
= current
;
3243 sched_submit_work(tsk
);
3246 EXPORT_SYMBOL(schedule
);
3248 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3250 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
3252 if (lock
->owner
!= owner
)
3256 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3257 * lock->owner still matches owner, if that fails, owner might
3258 * point to free()d memory, if it still matches, the rcu_read_lock()
3259 * ensures the memory stays valid.
3263 return owner
->on_cpu
;
3267 * Look out! "owner" is an entirely speculative pointer
3268 * access and not reliable.
3270 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
3272 if (!sched_feat(OWNER_SPIN
))
3276 while (owner_running(lock
, owner
)) {
3280 arch_mutex_cpu_relax();
3285 * We break out the loop above on need_resched() and when the
3286 * owner changed, which is a sign for heavy contention. Return
3287 * success only when lock->owner is NULL.
3289 return lock
->owner
== NULL
;
3293 #ifdef CONFIG_PREEMPT
3295 * this is the entry point to schedule() from in-kernel preemption
3296 * off of preempt_enable. Kernel preemptions off return from interrupt
3297 * occur there and call schedule directly.
3299 asmlinkage
void __sched notrace
preempt_schedule(void)
3301 struct thread_info
*ti
= current_thread_info();
3304 * If there is a non-zero preempt_count or interrupts are disabled,
3305 * we do not want to preempt the current task. Just return..
3307 if (likely(ti
->preempt_count
|| irqs_disabled()))
3311 add_preempt_count_notrace(PREEMPT_ACTIVE
);
3313 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
3316 * Check again in case we missed a preemption opportunity
3317 * between schedule and now.
3320 } while (need_resched());
3322 EXPORT_SYMBOL(preempt_schedule
);
3325 * this is the entry point to schedule() from kernel preemption
3326 * off of irq context.
3327 * Note, that this is called and return with irqs disabled. This will
3328 * protect us against recursive calling from irq.
3330 asmlinkage
void __sched
preempt_schedule_irq(void)
3332 struct thread_info
*ti
= current_thread_info();
3334 /* Catch callers which need to be fixed */
3335 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3338 add_preempt_count(PREEMPT_ACTIVE
);
3341 local_irq_disable();
3342 sub_preempt_count(PREEMPT_ACTIVE
);
3345 * Check again in case we missed a preemption opportunity
3346 * between schedule and now.
3349 } while (need_resched());
3352 #endif /* CONFIG_PREEMPT */
3354 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3357 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3359 EXPORT_SYMBOL(default_wake_function
);
3362 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3363 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3364 * number) then we wake all the non-exclusive tasks and one exclusive task.
3366 * There are circumstances in which we can try to wake a task which has already
3367 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3368 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3370 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3371 int nr_exclusive
, int wake_flags
, void *key
)
3373 wait_queue_t
*curr
, *next
;
3375 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3376 unsigned flags
= curr
->flags
;
3378 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3379 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3385 * __wake_up - wake up threads blocked on a waitqueue.
3387 * @mode: which threads
3388 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3389 * @key: is directly passed to the wakeup function
3391 * It may be assumed that this function implies a write memory barrier before
3392 * changing the task state if and only if any tasks are woken up.
3394 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3395 int nr_exclusive
, void *key
)
3397 unsigned long flags
;
3399 spin_lock_irqsave(&q
->lock
, flags
);
3400 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3401 spin_unlock_irqrestore(&q
->lock
, flags
);
3403 EXPORT_SYMBOL(__wake_up
);
3406 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3408 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3410 __wake_up_common(q
, mode
, 1, 0, NULL
);
3412 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3414 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3416 __wake_up_common(q
, mode
, 1, 0, key
);
3418 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
3421 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3423 * @mode: which threads
3424 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3425 * @key: opaque value to be passed to wakeup targets
3427 * The sync wakeup differs that the waker knows that it will schedule
3428 * away soon, so while the target thread will be woken up, it will not
3429 * be migrated to another CPU - ie. the two threads are 'synchronized'
3430 * with each other. This can prevent needless bouncing between CPUs.
3432 * On UP it can prevent extra preemption.
3434 * It may be assumed that this function implies a write memory barrier before
3435 * changing the task state if and only if any tasks are woken up.
3437 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3438 int nr_exclusive
, void *key
)
3440 unsigned long flags
;
3441 int wake_flags
= WF_SYNC
;
3446 if (unlikely(!nr_exclusive
))
3449 spin_lock_irqsave(&q
->lock
, flags
);
3450 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3451 spin_unlock_irqrestore(&q
->lock
, flags
);
3453 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3456 * __wake_up_sync - see __wake_up_sync_key()
3458 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3460 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3462 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3465 * complete: - signals a single thread waiting on this completion
3466 * @x: holds the state of this particular completion
3468 * This will wake up a single thread waiting on this completion. Threads will be
3469 * awakened in the same order in which they were queued.
3471 * See also complete_all(), wait_for_completion() and related routines.
3473 * It may be assumed that this function implies a write memory barrier before
3474 * changing the task state if and only if any tasks are woken up.
3476 void complete(struct completion
*x
)
3478 unsigned long flags
;
3480 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3482 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3483 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3485 EXPORT_SYMBOL(complete
);
3488 * complete_all: - signals all threads waiting on this completion
3489 * @x: holds the state of this particular completion
3491 * This will wake up all threads waiting on this particular completion event.
3493 * It may be assumed that this function implies a write memory barrier before
3494 * changing the task state if and only if any tasks are woken up.
3496 void complete_all(struct completion
*x
)
3498 unsigned long flags
;
3500 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3501 x
->done
+= UINT_MAX
/2;
3502 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3503 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3505 EXPORT_SYMBOL(complete_all
);
3507 static inline long __sched
3508 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3511 DECLARE_WAITQUEUE(wait
, current
);
3513 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
3515 if (signal_pending_state(state
, current
)) {
3516 timeout
= -ERESTARTSYS
;
3519 __set_current_state(state
);
3520 spin_unlock_irq(&x
->wait
.lock
);
3521 timeout
= schedule_timeout(timeout
);
3522 spin_lock_irq(&x
->wait
.lock
);
3523 } while (!x
->done
&& timeout
);
3524 __remove_wait_queue(&x
->wait
, &wait
);
3529 return timeout
?: 1;
3533 wait_for_common(struct completion
*x
, long timeout
, int state
)
3537 spin_lock_irq(&x
->wait
.lock
);
3538 timeout
= do_wait_for_common(x
, timeout
, state
);
3539 spin_unlock_irq(&x
->wait
.lock
);
3544 * wait_for_completion: - waits for completion of a task
3545 * @x: holds the state of this particular completion
3547 * This waits to be signaled for completion of a specific task. It is NOT
3548 * interruptible and there is no timeout.
3550 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3551 * and interrupt capability. Also see complete().
3553 void __sched
wait_for_completion(struct completion
*x
)
3555 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3557 EXPORT_SYMBOL(wait_for_completion
);
3560 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3561 * @x: holds the state of this particular completion
3562 * @timeout: timeout value in jiffies
3564 * This waits for either a completion of a specific task to be signaled or for a
3565 * specified timeout to expire. The timeout is in jiffies. It is not
3568 * The return value is 0 if timed out, and positive (at least 1, or number of
3569 * jiffies left till timeout) if completed.
3571 unsigned long __sched
3572 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3574 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3576 EXPORT_SYMBOL(wait_for_completion_timeout
);
3579 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3580 * @x: holds the state of this particular completion
3582 * This waits for completion of a specific task to be signaled. It is
3585 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3587 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3589 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3590 if (t
== -ERESTARTSYS
)
3594 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3597 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3598 * @x: holds the state of this particular completion
3599 * @timeout: timeout value in jiffies
3601 * This waits for either a completion of a specific task to be signaled or for a
3602 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3604 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3605 * positive (at least 1, or number of jiffies left till timeout) if completed.
3608 wait_for_completion_interruptible_timeout(struct completion
*x
,
3609 unsigned long timeout
)
3611 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3613 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3616 * wait_for_completion_killable: - waits for completion of a task (killable)
3617 * @x: holds the state of this particular completion
3619 * This waits to be signaled for completion of a specific task. It can be
3620 * interrupted by a kill signal.
3622 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3624 int __sched
wait_for_completion_killable(struct completion
*x
)
3626 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
3627 if (t
== -ERESTARTSYS
)
3631 EXPORT_SYMBOL(wait_for_completion_killable
);
3634 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3635 * @x: holds the state of this particular completion
3636 * @timeout: timeout value in jiffies
3638 * This waits for either a completion of a specific task to be
3639 * signaled or for a specified timeout to expire. It can be
3640 * interrupted by a kill signal. The timeout is in jiffies.
3642 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3643 * positive (at least 1, or number of jiffies left till timeout) if completed.
3646 wait_for_completion_killable_timeout(struct completion
*x
,
3647 unsigned long timeout
)
3649 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
3651 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
3654 * try_wait_for_completion - try to decrement a completion without blocking
3655 * @x: completion structure
3657 * Returns: 0 if a decrement cannot be done without blocking
3658 * 1 if a decrement succeeded.
3660 * If a completion is being used as a counting completion,
3661 * attempt to decrement the counter without blocking. This
3662 * enables us to avoid waiting if the resource the completion
3663 * is protecting is not available.
3665 bool try_wait_for_completion(struct completion
*x
)
3667 unsigned long flags
;
3670 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3675 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3678 EXPORT_SYMBOL(try_wait_for_completion
);
3681 * completion_done - Test to see if a completion has any waiters
3682 * @x: completion structure
3684 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3685 * 1 if there are no waiters.
3688 bool completion_done(struct completion
*x
)
3690 unsigned long flags
;
3693 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3696 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3699 EXPORT_SYMBOL(completion_done
);
3702 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3704 unsigned long flags
;
3707 init_waitqueue_entry(&wait
, current
);
3709 __set_current_state(state
);
3711 spin_lock_irqsave(&q
->lock
, flags
);
3712 __add_wait_queue(q
, &wait
);
3713 spin_unlock(&q
->lock
);
3714 timeout
= schedule_timeout(timeout
);
3715 spin_lock_irq(&q
->lock
);
3716 __remove_wait_queue(q
, &wait
);
3717 spin_unlock_irqrestore(&q
->lock
, flags
);
3722 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3724 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3726 EXPORT_SYMBOL(interruptible_sleep_on
);
3729 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3731 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3733 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3735 void __sched
sleep_on(wait_queue_head_t
*q
)
3737 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3739 EXPORT_SYMBOL(sleep_on
);
3741 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3743 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3745 EXPORT_SYMBOL(sleep_on_timeout
);
3747 #ifdef CONFIG_RT_MUTEXES
3750 * rt_mutex_setprio - set the current priority of a task
3752 * @prio: prio value (kernel-internal form)
3754 * This function changes the 'effective' priority of a task. It does
3755 * not touch ->normal_prio like __setscheduler().
3757 * Used by the rt_mutex code to implement priority inheritance logic.
3759 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3761 int oldprio
, on_rq
, running
;
3763 const struct sched_class
*prev_class
;
3765 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3767 rq
= __task_rq_lock(p
);
3769 trace_sched_pi_setprio(p
, prio
);
3771 prev_class
= p
->sched_class
;
3773 running
= task_current(rq
, p
);
3775 dequeue_task(rq
, p
, 0);
3777 p
->sched_class
->put_prev_task(rq
, p
);
3780 p
->sched_class
= &rt_sched_class
;
3782 p
->sched_class
= &fair_sched_class
;
3787 p
->sched_class
->set_curr_task(rq
);
3789 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
3791 check_class_changed(rq
, p
, prev_class
, oldprio
);
3792 __task_rq_unlock(rq
);
3797 void set_user_nice(struct task_struct
*p
, long nice
)
3799 int old_prio
, delta
, on_rq
;
3800 unsigned long flags
;
3803 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3806 * We have to be careful, if called from sys_setpriority(),
3807 * the task might be in the middle of scheduling on another CPU.
3809 rq
= task_rq_lock(p
, &flags
);
3811 * The RT priorities are set via sched_setscheduler(), but we still
3812 * allow the 'normal' nice value to be set - but as expected
3813 * it wont have any effect on scheduling until the task is
3814 * SCHED_FIFO/SCHED_RR:
3816 if (task_has_rt_policy(p
)) {
3817 p
->static_prio
= NICE_TO_PRIO(nice
);
3822 dequeue_task(rq
, p
, 0);
3824 p
->static_prio
= NICE_TO_PRIO(nice
);
3827 p
->prio
= effective_prio(p
);
3828 delta
= p
->prio
- old_prio
;
3831 enqueue_task(rq
, p
, 0);
3833 * If the task increased its priority or is running and
3834 * lowered its priority, then reschedule its CPU:
3836 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3837 resched_task(rq
->curr
);
3840 task_rq_unlock(rq
, p
, &flags
);
3842 EXPORT_SYMBOL(set_user_nice
);
3845 * can_nice - check if a task can reduce its nice value
3849 int can_nice(const struct task_struct
*p
, const int nice
)
3851 /* convert nice value [19,-20] to rlimit style value [1,40] */
3852 int nice_rlim
= 20 - nice
;
3854 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3855 capable(CAP_SYS_NICE
));
3858 #ifdef __ARCH_WANT_SYS_NICE
3861 * sys_nice - change the priority of the current process.
3862 * @increment: priority increment
3864 * sys_setpriority is a more generic, but much slower function that
3865 * does similar things.
3867 SYSCALL_DEFINE1(nice
, int, increment
)
3872 * Setpriority might change our priority at the same moment.
3873 * We don't have to worry. Conceptually one call occurs first
3874 * and we have a single winner.
3876 if (increment
< -40)
3881 nice
= TASK_NICE(current
) + increment
;
3887 if (increment
< 0 && !can_nice(current
, nice
))
3890 retval
= security_task_setnice(current
, nice
);
3894 set_user_nice(current
, nice
);
3901 * task_prio - return the priority value of a given task.
3902 * @p: the task in question.
3904 * This is the priority value as seen by users in /proc.
3905 * RT tasks are offset by -200. Normal tasks are centered
3906 * around 0, value goes from -16 to +15.
3908 int task_prio(const struct task_struct
*p
)
3910 return p
->prio
- MAX_RT_PRIO
;
3914 * task_nice - return the nice value of a given task.
3915 * @p: the task in question.
3917 int task_nice(const struct task_struct
*p
)
3919 return TASK_NICE(p
);
3921 EXPORT_SYMBOL(task_nice
);
3924 * idle_cpu - is a given cpu idle currently?
3925 * @cpu: the processor in question.
3927 int idle_cpu(int cpu
)
3929 struct rq
*rq
= cpu_rq(cpu
);
3931 if (rq
->curr
!= rq
->idle
)
3938 if (!llist_empty(&rq
->wake_list
))
3946 * idle_task - return the idle task for a given cpu.
3947 * @cpu: the processor in question.
3949 struct task_struct
*idle_task(int cpu
)
3951 return cpu_rq(cpu
)->idle
;
3955 * find_process_by_pid - find a process with a matching PID value.
3956 * @pid: the pid in question.
3958 static struct task_struct
*find_process_by_pid(pid_t pid
)
3960 return pid
? find_task_by_vpid(pid
) : current
;
3963 /* Actually do priority change: must hold rq lock. */
3965 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
3968 p
->rt_priority
= prio
;
3969 p
->normal_prio
= normal_prio(p
);
3970 /* we are holding p->pi_lock already */
3971 p
->prio
= rt_mutex_getprio(p
);
3972 if (rt_prio(p
->prio
))
3973 p
->sched_class
= &rt_sched_class
;
3975 p
->sched_class
= &fair_sched_class
;
3980 * check the target process has a UID that matches the current process's
3982 static bool check_same_owner(struct task_struct
*p
)
3984 const struct cred
*cred
= current_cred(), *pcred
;
3988 pcred
= __task_cred(p
);
3989 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
3990 match
= (cred
->euid
== pcred
->euid
||
3991 cred
->euid
== pcred
->uid
);
3998 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
3999 const struct sched_param
*param
, bool user
)
4001 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4002 unsigned long flags
;
4003 const struct sched_class
*prev_class
;
4007 /* may grab non-irq protected spin_locks */
4008 BUG_ON(in_interrupt());
4010 /* double check policy once rq lock held */
4012 reset_on_fork
= p
->sched_reset_on_fork
;
4013 policy
= oldpolicy
= p
->policy
;
4015 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4016 policy
&= ~SCHED_RESET_ON_FORK
;
4018 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4019 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4020 policy
!= SCHED_IDLE
)
4025 * Valid priorities for SCHED_FIFO and SCHED_RR are
4026 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4027 * SCHED_BATCH and SCHED_IDLE is 0.
4029 if (param
->sched_priority
< 0 ||
4030 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4031 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4033 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4037 * Allow unprivileged RT tasks to decrease priority:
4039 if (user
&& !capable(CAP_SYS_NICE
)) {
4040 if (rt_policy(policy
)) {
4041 unsigned long rlim_rtprio
=
4042 task_rlimit(p
, RLIMIT_RTPRIO
);
4044 /* can't set/change the rt policy */
4045 if (policy
!= p
->policy
&& !rlim_rtprio
)
4048 /* can't increase priority */
4049 if (param
->sched_priority
> p
->rt_priority
&&
4050 param
->sched_priority
> rlim_rtprio
)
4055 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4056 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4058 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
4059 if (!can_nice(p
, TASK_NICE(p
)))
4063 /* can't change other user's priorities */
4064 if (!check_same_owner(p
))
4067 /* Normal users shall not reset the sched_reset_on_fork flag */
4068 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4073 retval
= security_task_setscheduler(p
);
4079 * make sure no PI-waiters arrive (or leave) while we are
4080 * changing the priority of the task:
4082 * To be able to change p->policy safely, the appropriate
4083 * runqueue lock must be held.
4085 rq
= task_rq_lock(p
, &flags
);
4088 * Changing the policy of the stop threads its a very bad idea
4090 if (p
== rq
->stop
) {
4091 task_rq_unlock(rq
, p
, &flags
);
4096 * If not changing anything there's no need to proceed further:
4098 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
4099 param
->sched_priority
== p
->rt_priority
))) {
4101 __task_rq_unlock(rq
);
4102 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4106 #ifdef CONFIG_RT_GROUP_SCHED
4109 * Do not allow realtime tasks into groups that have no runtime
4112 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4113 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4114 !task_group_is_autogroup(task_group(p
))) {
4115 task_rq_unlock(rq
, p
, &flags
);
4121 /* recheck policy now with rq lock held */
4122 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4123 policy
= oldpolicy
= -1;
4124 task_rq_unlock(rq
, p
, &flags
);
4128 running
= task_current(rq
, p
);
4130 dequeue_task(rq
, p
, 0);
4132 p
->sched_class
->put_prev_task(rq
, p
);
4134 p
->sched_reset_on_fork
= reset_on_fork
;
4137 prev_class
= p
->sched_class
;
4138 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4141 p
->sched_class
->set_curr_task(rq
);
4143 enqueue_task(rq
, p
, 0);
4145 check_class_changed(rq
, p
, prev_class
, oldprio
);
4146 task_rq_unlock(rq
, p
, &flags
);
4148 rt_mutex_adjust_pi(p
);
4154 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4155 * @p: the task in question.
4156 * @policy: new policy.
4157 * @param: structure containing the new RT priority.
4159 * NOTE that the task may be already dead.
4161 int sched_setscheduler(struct task_struct
*p
, int policy
,
4162 const struct sched_param
*param
)
4164 return __sched_setscheduler(p
, policy
, param
, true);
4166 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4169 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4170 * @p: the task in question.
4171 * @policy: new policy.
4172 * @param: structure containing the new RT priority.
4174 * Just like sched_setscheduler, only don't bother checking if the
4175 * current context has permission. For example, this is needed in
4176 * stop_machine(): we create temporary high priority worker threads,
4177 * but our caller might not have that capability.
4179 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4180 const struct sched_param
*param
)
4182 return __sched_setscheduler(p
, policy
, param
, false);
4186 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4188 struct sched_param lparam
;
4189 struct task_struct
*p
;
4192 if (!param
|| pid
< 0)
4194 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4199 p
= find_process_by_pid(pid
);
4201 retval
= sched_setscheduler(p
, policy
, &lparam
);
4208 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4209 * @pid: the pid in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4213 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4214 struct sched_param __user
*, param
)
4216 /* negative values for policy are not valid */
4220 return do_sched_setscheduler(pid
, policy
, param
);
4224 * sys_sched_setparam - set/change the RT priority of a thread
4225 * @pid: the pid in question.
4226 * @param: structure containing the new RT priority.
4228 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4230 return do_sched_setscheduler(pid
, -1, param
);
4234 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4235 * @pid: the pid in question.
4237 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4239 struct task_struct
*p
;
4247 p
= find_process_by_pid(pid
);
4249 retval
= security_task_getscheduler(p
);
4252 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4259 * sys_sched_getparam - get the RT priority of a thread
4260 * @pid: the pid in question.
4261 * @param: structure containing the RT priority.
4263 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4265 struct sched_param lp
;
4266 struct task_struct
*p
;
4269 if (!param
|| pid
< 0)
4273 p
= find_process_by_pid(pid
);
4278 retval
= security_task_getscheduler(p
);
4282 lp
.sched_priority
= p
->rt_priority
;
4286 * This one might sleep, we cannot do it with a spinlock held ...
4288 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4297 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4299 cpumask_var_t cpus_allowed
, new_mask
;
4300 struct task_struct
*p
;
4306 p
= find_process_by_pid(pid
);
4313 /* Prevent p going away */
4317 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4321 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4323 goto out_free_cpus_allowed
;
4326 if (!check_same_owner(p
) && !ns_capable(task_user_ns(p
), CAP_SYS_NICE
))
4329 retval
= security_task_setscheduler(p
);
4333 cpuset_cpus_allowed(p
, cpus_allowed
);
4334 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4336 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4339 cpuset_cpus_allowed(p
, cpus_allowed
);
4340 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4342 * We must have raced with a concurrent cpuset
4343 * update. Just reset the cpus_allowed to the
4344 * cpuset's cpus_allowed
4346 cpumask_copy(new_mask
, cpus_allowed
);
4351 free_cpumask_var(new_mask
);
4352 out_free_cpus_allowed
:
4353 free_cpumask_var(cpus_allowed
);
4360 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4361 struct cpumask
*new_mask
)
4363 if (len
< cpumask_size())
4364 cpumask_clear(new_mask
);
4365 else if (len
> cpumask_size())
4366 len
= cpumask_size();
4368 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4372 * sys_sched_setaffinity - set the cpu affinity of a process
4373 * @pid: pid of the process
4374 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4375 * @user_mask_ptr: user-space pointer to the new cpu mask
4377 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4378 unsigned long __user
*, user_mask_ptr
)
4380 cpumask_var_t new_mask
;
4383 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4386 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4388 retval
= sched_setaffinity(pid
, new_mask
);
4389 free_cpumask_var(new_mask
);
4393 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4395 struct task_struct
*p
;
4396 unsigned long flags
;
4403 p
= find_process_by_pid(pid
);
4407 retval
= security_task_getscheduler(p
);
4411 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4412 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4413 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4423 * sys_sched_getaffinity - get the cpu affinity of a process
4424 * @pid: pid of the process
4425 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4426 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4428 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4429 unsigned long __user
*, user_mask_ptr
)
4434 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4436 if (len
& (sizeof(unsigned long)-1))
4439 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4442 ret
= sched_getaffinity(pid
, mask
);
4444 size_t retlen
= min_t(size_t, len
, cpumask_size());
4446 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4451 free_cpumask_var(mask
);
4457 * sys_sched_yield - yield the current processor to other threads.
4459 * This function yields the current CPU to other tasks. If there are no
4460 * other threads running on this CPU then this function will return.
4462 SYSCALL_DEFINE0(sched_yield
)
4464 struct rq
*rq
= this_rq_lock();
4466 schedstat_inc(rq
, yld_count
);
4467 current
->sched_class
->yield_task(rq
);
4470 * Since we are going to call schedule() anyway, there's
4471 * no need to preempt or enable interrupts:
4473 __release(rq
->lock
);
4474 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4475 do_raw_spin_unlock(&rq
->lock
);
4476 preempt_enable_no_resched();
4483 static inline int should_resched(void)
4485 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4488 static void __cond_resched(void)
4490 add_preempt_count(PREEMPT_ACTIVE
);
4492 sub_preempt_count(PREEMPT_ACTIVE
);
4495 int __sched
_cond_resched(void)
4497 if (should_resched()) {
4503 EXPORT_SYMBOL(_cond_resched
);
4506 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4507 * call schedule, and on return reacquire the lock.
4509 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4510 * operations here to prevent schedule() from being called twice (once via
4511 * spin_unlock(), once by hand).
4513 int __cond_resched_lock(spinlock_t
*lock
)
4515 int resched
= should_resched();
4518 lockdep_assert_held(lock
);
4520 if (spin_needbreak(lock
) || resched
) {
4531 EXPORT_SYMBOL(__cond_resched_lock
);
4533 int __sched
__cond_resched_softirq(void)
4535 BUG_ON(!in_softirq());
4537 if (should_resched()) {
4545 EXPORT_SYMBOL(__cond_resched_softirq
);
4548 * yield - yield the current processor to other threads.
4550 * This is a shortcut for kernel-space yielding - it marks the
4551 * thread runnable and calls sys_sched_yield().
4553 void __sched
yield(void)
4555 set_current_state(TASK_RUNNING
);
4558 EXPORT_SYMBOL(yield
);
4561 * yield_to - yield the current processor to another thread in
4562 * your thread group, or accelerate that thread toward the
4563 * processor it's on.
4565 * @preempt: whether task preemption is allowed or not
4567 * It's the caller's job to ensure that the target task struct
4568 * can't go away on us before we can do any checks.
4570 * Returns true if we indeed boosted the target task.
4572 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
4574 struct task_struct
*curr
= current
;
4575 struct rq
*rq
, *p_rq
;
4576 unsigned long flags
;
4579 local_irq_save(flags
);
4584 double_rq_lock(rq
, p_rq
);
4585 while (task_rq(p
) != p_rq
) {
4586 double_rq_unlock(rq
, p_rq
);
4590 if (!curr
->sched_class
->yield_to_task
)
4593 if (curr
->sched_class
!= p
->sched_class
)
4596 if (task_running(p_rq
, p
) || p
->state
)
4599 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4601 schedstat_inc(rq
, yld_count
);
4603 * Make p's CPU reschedule; pick_next_entity takes care of
4606 if (preempt
&& rq
!= p_rq
)
4607 resched_task(p_rq
->curr
);
4610 * We might have set it in task_yield_fair(), but are
4611 * not going to schedule(), so don't want to skip
4614 rq
->skip_clock_update
= 0;
4618 double_rq_unlock(rq
, p_rq
);
4619 local_irq_restore(flags
);
4626 EXPORT_SYMBOL_GPL(yield_to
);
4629 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4630 * that process accounting knows that this is a task in IO wait state.
4632 void __sched
io_schedule(void)
4634 struct rq
*rq
= raw_rq();
4636 delayacct_blkio_start();
4637 atomic_inc(&rq
->nr_iowait
);
4638 blk_flush_plug(current
);
4639 current
->in_iowait
= 1;
4641 current
->in_iowait
= 0;
4642 atomic_dec(&rq
->nr_iowait
);
4643 delayacct_blkio_end();
4645 EXPORT_SYMBOL(io_schedule
);
4647 long __sched
io_schedule_timeout(long timeout
)
4649 struct rq
*rq
= raw_rq();
4652 delayacct_blkio_start();
4653 atomic_inc(&rq
->nr_iowait
);
4654 blk_flush_plug(current
);
4655 current
->in_iowait
= 1;
4656 ret
= schedule_timeout(timeout
);
4657 current
->in_iowait
= 0;
4658 atomic_dec(&rq
->nr_iowait
);
4659 delayacct_blkio_end();
4664 * sys_sched_get_priority_max - return maximum RT priority.
4665 * @policy: scheduling class.
4667 * this syscall returns the maximum rt_priority that can be used
4668 * by a given scheduling class.
4670 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4677 ret
= MAX_USER_RT_PRIO
-1;
4689 * sys_sched_get_priority_min - return minimum RT priority.
4690 * @policy: scheduling class.
4692 * this syscall returns the minimum rt_priority that can be used
4693 * by a given scheduling class.
4695 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4713 * sys_sched_rr_get_interval - return the default timeslice of a process.
4714 * @pid: pid of the process.
4715 * @interval: userspace pointer to the timeslice value.
4717 * this syscall writes the default timeslice value of a given process
4718 * into the user-space timespec buffer. A value of '0' means infinity.
4720 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4721 struct timespec __user
*, interval
)
4723 struct task_struct
*p
;
4724 unsigned int time_slice
;
4725 unsigned long flags
;
4735 p
= find_process_by_pid(pid
);
4739 retval
= security_task_getscheduler(p
);
4743 rq
= task_rq_lock(p
, &flags
);
4744 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4745 task_rq_unlock(rq
, p
, &flags
);
4748 jiffies_to_timespec(time_slice
, &t
);
4749 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4757 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4759 void sched_show_task(struct task_struct
*p
)
4761 unsigned long free
= 0;
4764 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4765 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4766 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4767 #if BITS_PER_LONG == 32
4768 if (state
== TASK_RUNNING
)
4769 printk(KERN_CONT
" running ");
4771 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4773 if (state
== TASK_RUNNING
)
4774 printk(KERN_CONT
" running task ");
4776 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4778 #ifdef CONFIG_DEBUG_STACK_USAGE
4779 free
= stack_not_used(p
);
4781 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4782 task_pid_nr(p
), task_pid_nr(rcu_dereference(p
->real_parent
)),
4783 (unsigned long)task_thread_info(p
)->flags
);
4785 show_stack(p
, NULL
);
4788 void show_state_filter(unsigned long state_filter
)
4790 struct task_struct
*g
, *p
;
4792 #if BITS_PER_LONG == 32
4794 " task PC stack pid father\n");
4797 " task PC stack pid father\n");
4800 do_each_thread(g
, p
) {
4802 * reset the NMI-timeout, listing all files on a slow
4803 * console might take a lot of time:
4805 touch_nmi_watchdog();
4806 if (!state_filter
|| (p
->state
& state_filter
))
4808 } while_each_thread(g
, p
);
4810 touch_all_softlockup_watchdogs();
4812 #ifdef CONFIG_SCHED_DEBUG
4813 sysrq_sched_debug_show();
4817 * Only show locks if all tasks are dumped:
4820 debug_show_all_locks();
4823 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4825 idle
->sched_class
= &idle_sched_class
;
4829 * init_idle - set up an idle thread for a given CPU
4830 * @idle: task in question
4831 * @cpu: cpu the idle task belongs to
4833 * NOTE: this function does not set the idle thread's NEED_RESCHED
4834 * flag, to make booting more robust.
4836 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4838 struct rq
*rq
= cpu_rq(cpu
);
4839 unsigned long flags
;
4841 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4844 idle
->state
= TASK_RUNNING
;
4845 idle
->se
.exec_start
= sched_clock();
4847 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4849 * We're having a chicken and egg problem, even though we are
4850 * holding rq->lock, the cpu isn't yet set to this cpu so the
4851 * lockdep check in task_group() will fail.
4853 * Similar case to sched_fork(). / Alternatively we could
4854 * use task_rq_lock() here and obtain the other rq->lock.
4859 __set_task_cpu(idle
, cpu
);
4862 rq
->curr
= rq
->idle
= idle
;
4863 #if defined(CONFIG_SMP)
4866 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4868 /* Set the preempt count _outside_ the spinlocks! */
4869 task_thread_info(idle
)->preempt_count
= 0;
4872 * The idle tasks have their own, simple scheduling class:
4874 idle
->sched_class
= &idle_sched_class
;
4875 ftrace_graph_init_idle_task(idle
, cpu
);
4876 #if defined(CONFIG_SMP)
4877 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4882 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
4884 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
4885 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
4887 cpumask_copy(&p
->cpus_allowed
, new_mask
);
4888 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
4892 * This is how migration works:
4894 * 1) we invoke migration_cpu_stop() on the target CPU using
4896 * 2) stopper starts to run (implicitly forcing the migrated thread
4898 * 3) it checks whether the migrated task is still in the wrong runqueue.
4899 * 4) if it's in the wrong runqueue then the migration thread removes
4900 * it and puts it into the right queue.
4901 * 5) stopper completes and stop_one_cpu() returns and the migration
4906 * Change a given task's CPU affinity. Migrate the thread to a
4907 * proper CPU and schedule it away if the CPU it's executing on
4908 * is removed from the allowed bitmask.
4910 * NOTE: the caller must have a valid reference to the task, the
4911 * task must not exit() & deallocate itself prematurely. The
4912 * call is not atomic; no spinlocks may be held.
4914 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
4916 unsigned long flags
;
4918 unsigned int dest_cpu
;
4921 rq
= task_rq_lock(p
, &flags
);
4923 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
4926 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
4931 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
4936 do_set_cpus_allowed(p
, new_mask
);
4938 /* Can the task run on the task's current CPU? If so, we're done */
4939 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
4942 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
4944 struct migration_arg arg
= { p
, dest_cpu
};
4945 /* Need help from migration thread: drop lock and wait. */
4946 task_rq_unlock(rq
, p
, &flags
);
4947 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
4948 tlb_migrate_finish(p
->mm
);
4952 task_rq_unlock(rq
, p
, &flags
);
4956 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
4959 * Move (not current) task off this cpu, onto dest cpu. We're doing
4960 * this because either it can't run here any more (set_cpus_allowed()
4961 * away from this CPU, or CPU going down), or because we're
4962 * attempting to rebalance this task on exec (sched_exec).
4964 * So we race with normal scheduler movements, but that's OK, as long
4965 * as the task is no longer on this CPU.
4967 * Returns non-zero if task was successfully migrated.
4969 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4971 struct rq
*rq_dest
, *rq_src
;
4974 if (unlikely(!cpu_active(dest_cpu
)))
4977 rq_src
= cpu_rq(src_cpu
);
4978 rq_dest
= cpu_rq(dest_cpu
);
4980 raw_spin_lock(&p
->pi_lock
);
4981 double_rq_lock(rq_src
, rq_dest
);
4982 /* Already moved. */
4983 if (task_cpu(p
) != src_cpu
)
4985 /* Affinity changed (again). */
4986 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
4990 * If we're not on a rq, the next wake-up will ensure we're
4994 dequeue_task(rq_src
, p
, 0);
4995 set_task_cpu(p
, dest_cpu
);
4996 enqueue_task(rq_dest
, p
, 0);
4997 check_preempt_curr(rq_dest
, p
, 0);
5002 double_rq_unlock(rq_src
, rq_dest
);
5003 raw_spin_unlock(&p
->pi_lock
);
5008 * migration_cpu_stop - this will be executed by a highprio stopper thread
5009 * and performs thread migration by bumping thread off CPU then
5010 * 'pushing' onto another runqueue.
5012 static int migration_cpu_stop(void *data
)
5014 struct migration_arg
*arg
= data
;
5017 * The original target cpu might have gone down and we might
5018 * be on another cpu but it doesn't matter.
5020 local_irq_disable();
5021 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5026 #ifdef CONFIG_HOTPLUG_CPU
5029 * Ensures that the idle task is using init_mm right before its cpu goes
5032 void idle_task_exit(void)
5034 struct mm_struct
*mm
= current
->active_mm
;
5036 BUG_ON(cpu_online(smp_processor_id()));
5039 switch_mm(mm
, &init_mm
, current
);
5044 * While a dead CPU has no uninterruptible tasks queued at this point,
5045 * it might still have a nonzero ->nr_uninterruptible counter, because
5046 * for performance reasons the counter is not stricly tracking tasks to
5047 * their home CPUs. So we just add the counter to another CPU's counter,
5048 * to keep the global sum constant after CPU-down:
5050 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5052 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5054 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5055 rq_src
->nr_uninterruptible
= 0;
5059 * remove the tasks which were accounted by rq from calc_load_tasks.
5061 static void calc_global_load_remove(struct rq
*rq
)
5063 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5064 rq
->calc_load_active
= 0;
5068 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5069 * try_to_wake_up()->select_task_rq().
5071 * Called with rq->lock held even though we'er in stop_machine() and
5072 * there's no concurrency possible, we hold the required locks anyway
5073 * because of lock validation efforts.
5075 static void migrate_tasks(unsigned int dead_cpu
)
5077 struct rq
*rq
= cpu_rq(dead_cpu
);
5078 struct task_struct
*next
, *stop
= rq
->stop
;
5082 * Fudge the rq selection such that the below task selection loop
5083 * doesn't get stuck on the currently eligible stop task.
5085 * We're currently inside stop_machine() and the rq is either stuck
5086 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5087 * either way we should never end up calling schedule() until we're
5092 /* Ensure any throttled groups are reachable by pick_next_task */
5093 unthrottle_offline_cfs_rqs(rq
);
5097 * There's this thread running, bail when that's the only
5100 if (rq
->nr_running
== 1)
5103 next
= pick_next_task(rq
);
5105 next
->sched_class
->put_prev_task(rq
, next
);
5107 /* Find suitable destination for @next, with force if needed. */
5108 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
5109 raw_spin_unlock(&rq
->lock
);
5111 __migrate_task(next
, dead_cpu
, dest_cpu
);
5113 raw_spin_lock(&rq
->lock
);
5119 #endif /* CONFIG_HOTPLUG_CPU */
5121 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5123 static struct ctl_table sd_ctl_dir
[] = {
5125 .procname
= "sched_domain",
5131 static struct ctl_table sd_ctl_root
[] = {
5133 .procname
= "kernel",
5135 .child
= sd_ctl_dir
,
5140 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5142 struct ctl_table
*entry
=
5143 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5148 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5150 struct ctl_table
*entry
;
5153 * In the intermediate directories, both the child directory and
5154 * procname are dynamically allocated and could fail but the mode
5155 * will always be set. In the lowest directory the names are
5156 * static strings and all have proc handlers.
5158 for (entry
= *tablep
; entry
->mode
; entry
++) {
5160 sd_free_ctl_entry(&entry
->child
);
5161 if (entry
->proc_handler
== NULL
)
5162 kfree(entry
->procname
);
5170 set_table_entry(struct ctl_table
*entry
,
5171 const char *procname
, void *data
, int maxlen
,
5172 umode_t mode
, proc_handler
*proc_handler
)
5174 entry
->procname
= procname
;
5176 entry
->maxlen
= maxlen
;
5178 entry
->proc_handler
= proc_handler
;
5181 static struct ctl_table
*
5182 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5184 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5189 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5190 sizeof(long), 0644, proc_doulongvec_minmax
);
5191 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5192 sizeof(long), 0644, proc_doulongvec_minmax
);
5193 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5194 sizeof(int), 0644, proc_dointvec_minmax
);
5195 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5196 sizeof(int), 0644, proc_dointvec_minmax
);
5197 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5198 sizeof(int), 0644, proc_dointvec_minmax
);
5199 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5200 sizeof(int), 0644, proc_dointvec_minmax
);
5201 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5202 sizeof(int), 0644, proc_dointvec_minmax
);
5203 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5204 sizeof(int), 0644, proc_dointvec_minmax
);
5205 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5206 sizeof(int), 0644, proc_dointvec_minmax
);
5207 set_table_entry(&table
[9], "cache_nice_tries",
5208 &sd
->cache_nice_tries
,
5209 sizeof(int), 0644, proc_dointvec_minmax
);
5210 set_table_entry(&table
[10], "flags", &sd
->flags
,
5211 sizeof(int), 0644, proc_dointvec_minmax
);
5212 set_table_entry(&table
[11], "name", sd
->name
,
5213 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5214 /* &table[12] is terminator */
5219 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5221 struct ctl_table
*entry
, *table
;
5222 struct sched_domain
*sd
;
5223 int domain_num
= 0, i
;
5226 for_each_domain(cpu
, sd
)
5228 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5233 for_each_domain(cpu
, sd
) {
5234 snprintf(buf
, 32, "domain%d", i
);
5235 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5237 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5244 static struct ctl_table_header
*sd_sysctl_header
;
5245 static void register_sched_domain_sysctl(void)
5247 int i
, cpu_num
= num_possible_cpus();
5248 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5251 WARN_ON(sd_ctl_dir
[0].child
);
5252 sd_ctl_dir
[0].child
= entry
;
5257 for_each_possible_cpu(i
) {
5258 snprintf(buf
, 32, "cpu%d", i
);
5259 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5261 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5265 WARN_ON(sd_sysctl_header
);
5266 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5269 /* may be called multiple times per register */
5270 static void unregister_sched_domain_sysctl(void)
5272 if (sd_sysctl_header
)
5273 unregister_sysctl_table(sd_sysctl_header
);
5274 sd_sysctl_header
= NULL
;
5275 if (sd_ctl_dir
[0].child
)
5276 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5279 static void register_sched_domain_sysctl(void)
5282 static void unregister_sched_domain_sysctl(void)
5287 static void set_rq_online(struct rq
*rq
)
5290 const struct sched_class
*class;
5292 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5295 for_each_class(class) {
5296 if (class->rq_online
)
5297 class->rq_online(rq
);
5302 static void set_rq_offline(struct rq
*rq
)
5305 const struct sched_class
*class;
5307 for_each_class(class) {
5308 if (class->rq_offline
)
5309 class->rq_offline(rq
);
5312 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5318 * migration_call - callback that gets triggered when a CPU is added.
5319 * Here we can start up the necessary migration thread for the new CPU.
5321 static int __cpuinit
5322 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5324 int cpu
= (long)hcpu
;
5325 unsigned long flags
;
5326 struct rq
*rq
= cpu_rq(cpu
);
5328 switch (action
& ~CPU_TASKS_FROZEN
) {
5330 case CPU_UP_PREPARE
:
5331 rq
->calc_load_update
= calc_load_update
;
5335 /* Update our root-domain */
5336 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5338 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5342 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5345 #ifdef CONFIG_HOTPLUG_CPU
5347 sched_ttwu_pending();
5348 /* Update our root-domain */
5349 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5351 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5355 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5356 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5358 migrate_nr_uninterruptible(rq
);
5359 calc_global_load_remove(rq
);
5364 update_max_interval();
5370 * Register at high priority so that task migration (migrate_all_tasks)
5371 * happens before everything else. This has to be lower priority than
5372 * the notifier in the perf_event subsystem, though.
5374 static struct notifier_block __cpuinitdata migration_notifier
= {
5375 .notifier_call
= migration_call
,
5376 .priority
= CPU_PRI_MIGRATION
,
5379 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
5380 unsigned long action
, void *hcpu
)
5382 switch (action
& ~CPU_TASKS_FROZEN
) {
5384 case CPU_DOWN_FAILED
:
5385 set_cpu_active((long)hcpu
, true);
5392 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
5393 unsigned long action
, void *hcpu
)
5395 switch (action
& ~CPU_TASKS_FROZEN
) {
5396 case CPU_DOWN_PREPARE
:
5397 set_cpu_active((long)hcpu
, false);
5404 static int __init
migration_init(void)
5406 void *cpu
= (void *)(long)smp_processor_id();
5409 /* Initialize migration for the boot CPU */
5410 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5411 BUG_ON(err
== NOTIFY_BAD
);
5412 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5413 register_cpu_notifier(&migration_notifier
);
5415 /* Register cpu active notifiers */
5416 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5417 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5421 early_initcall(migration_init
);
5426 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5428 #ifdef CONFIG_SCHED_DEBUG
5430 static __read_mostly
int sched_domain_debug_enabled
;
5432 static int __init
sched_domain_debug_setup(char *str
)
5434 sched_domain_debug_enabled
= 1;
5438 early_param("sched_debug", sched_domain_debug_setup
);
5440 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5441 struct cpumask
*groupmask
)
5443 struct sched_group
*group
= sd
->groups
;
5446 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5447 cpumask_clear(groupmask
);
5449 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5451 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5452 printk("does not load-balance\n");
5454 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5459 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5461 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5462 printk(KERN_ERR
"ERROR: domain->span does not contain "
5465 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5466 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5470 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5474 printk(KERN_ERR
"ERROR: group is NULL\n");
5478 if (!group
->sgp
->power
) {
5479 printk(KERN_CONT
"\n");
5480 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5485 if (!cpumask_weight(sched_group_cpus(group
))) {
5486 printk(KERN_CONT
"\n");
5487 printk(KERN_ERR
"ERROR: empty group\n");
5491 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5492 printk(KERN_CONT
"\n");
5493 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5497 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5499 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5501 printk(KERN_CONT
" %s", str
);
5502 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
5503 printk(KERN_CONT
" (cpu_power = %d)",
5507 group
= group
->next
;
5508 } while (group
!= sd
->groups
);
5509 printk(KERN_CONT
"\n");
5511 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5512 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5515 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5516 printk(KERN_ERR
"ERROR: parent span is not a superset "
5517 "of domain->span\n");
5521 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5525 if (!sched_domain_debug_enabled
)
5529 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5533 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5536 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5544 #else /* !CONFIG_SCHED_DEBUG */
5545 # define sched_domain_debug(sd, cpu) do { } while (0)
5546 #endif /* CONFIG_SCHED_DEBUG */
5548 static int sd_degenerate(struct sched_domain
*sd
)
5550 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5553 /* Following flags need at least 2 groups */
5554 if (sd
->flags
& (SD_LOAD_BALANCE
|
5555 SD_BALANCE_NEWIDLE
|
5559 SD_SHARE_PKG_RESOURCES
)) {
5560 if (sd
->groups
!= sd
->groups
->next
)
5564 /* Following flags don't use groups */
5565 if (sd
->flags
& (SD_WAKE_AFFINE
))
5572 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5574 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5576 if (sd_degenerate(parent
))
5579 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5582 /* Flags needing groups don't count if only 1 group in parent */
5583 if (parent
->groups
== parent
->groups
->next
) {
5584 pflags
&= ~(SD_LOAD_BALANCE
|
5585 SD_BALANCE_NEWIDLE
|
5589 SD_SHARE_PKG_RESOURCES
);
5590 if (nr_node_ids
== 1)
5591 pflags
&= ~SD_SERIALIZE
;
5593 if (~cflags
& pflags
)
5599 static void free_rootdomain(struct rcu_head
*rcu
)
5601 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5603 cpupri_cleanup(&rd
->cpupri
);
5604 free_cpumask_var(rd
->rto_mask
);
5605 free_cpumask_var(rd
->online
);
5606 free_cpumask_var(rd
->span
);
5610 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5612 struct root_domain
*old_rd
= NULL
;
5613 unsigned long flags
;
5615 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5620 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5623 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5626 * If we dont want to free the old_rt yet then
5627 * set old_rd to NULL to skip the freeing later
5630 if (!atomic_dec_and_test(&old_rd
->refcount
))
5634 atomic_inc(&rd
->refcount
);
5637 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5638 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5641 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5644 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5647 static int init_rootdomain(struct root_domain
*rd
)
5649 memset(rd
, 0, sizeof(*rd
));
5651 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5653 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5655 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5658 if (cpupri_init(&rd
->cpupri
) != 0)
5663 free_cpumask_var(rd
->rto_mask
);
5665 free_cpumask_var(rd
->online
);
5667 free_cpumask_var(rd
->span
);
5673 * By default the system creates a single root-domain with all cpus as
5674 * members (mimicking the global state we have today).
5676 struct root_domain def_root_domain
;
5678 static void init_defrootdomain(void)
5680 init_rootdomain(&def_root_domain
);
5682 atomic_set(&def_root_domain
.refcount
, 1);
5685 static struct root_domain
*alloc_rootdomain(void)
5687 struct root_domain
*rd
;
5689 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5693 if (init_rootdomain(rd
) != 0) {
5701 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
5703 struct sched_group
*tmp
, *first
;
5712 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
5717 } while (sg
!= first
);
5720 static void free_sched_domain(struct rcu_head
*rcu
)
5722 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5725 * If its an overlapping domain it has private groups, iterate and
5728 if (sd
->flags
& SD_OVERLAP
) {
5729 free_sched_groups(sd
->groups
, 1);
5730 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5731 kfree(sd
->groups
->sgp
);
5737 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5739 call_rcu(&sd
->rcu
, free_sched_domain
);
5742 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5744 for (; sd
; sd
= sd
->parent
)
5745 destroy_sched_domain(sd
, cpu
);
5749 * Keep a special pointer to the highest sched_domain that has
5750 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5751 * allows us to avoid some pointer chasing select_idle_sibling().
5753 * Also keep a unique ID per domain (we use the first cpu number in
5754 * the cpumask of the domain), this allows us to quickly tell if
5755 * two cpus are in the same cache domain, see ttwu_share_cache().
5757 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5758 DEFINE_PER_CPU(int, sd_llc_id
);
5760 static void update_top_cache_domain(int cpu
)
5762 struct sched_domain
*sd
;
5765 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5767 id
= cpumask_first(sched_domain_span(sd
));
5769 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5770 per_cpu(sd_llc_id
, cpu
) = id
;
5774 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5775 * hold the hotplug lock.
5778 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5780 struct rq
*rq
= cpu_rq(cpu
);
5781 struct sched_domain
*tmp
;
5783 /* Remove the sched domains which do not contribute to scheduling. */
5784 for (tmp
= sd
; tmp
; ) {
5785 struct sched_domain
*parent
= tmp
->parent
;
5789 if (sd_parent_degenerate(tmp
, parent
)) {
5790 tmp
->parent
= parent
->parent
;
5792 parent
->parent
->child
= tmp
;
5793 destroy_sched_domain(parent
, cpu
);
5798 if (sd
&& sd_degenerate(sd
)) {
5801 destroy_sched_domain(tmp
, cpu
);
5806 sched_domain_debug(sd
, cpu
);
5808 rq_attach_root(rq
, rd
);
5810 rcu_assign_pointer(rq
->sd
, sd
);
5811 destroy_sched_domains(tmp
, cpu
);
5813 update_top_cache_domain(cpu
);
5816 /* cpus with isolated domains */
5817 static cpumask_var_t cpu_isolated_map
;
5819 /* Setup the mask of cpus configured for isolated domains */
5820 static int __init
isolated_cpu_setup(char *str
)
5822 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5823 cpulist_parse(str
, cpu_isolated_map
);
5827 __setup("isolcpus=", isolated_cpu_setup
);
5832 * find_next_best_node - find the next node to include in a sched_domain
5833 * @node: node whose sched_domain we're building
5834 * @used_nodes: nodes already in the sched_domain
5836 * Find the next node to include in a given scheduling domain. Simply
5837 * finds the closest node not already in the @used_nodes map.
5839 * Should use nodemask_t.
5841 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
5843 int i
, n
, val
, min_val
, best_node
= -1;
5847 for (i
= 0; i
< nr_node_ids
; i
++) {
5848 /* Start at @node */
5849 n
= (node
+ i
) % nr_node_ids
;
5851 if (!nr_cpus_node(n
))
5854 /* Skip already used nodes */
5855 if (node_isset(n
, *used_nodes
))
5858 /* Simple min distance search */
5859 val
= node_distance(node
, n
);
5861 if (val
< min_val
) {
5867 if (best_node
!= -1)
5868 node_set(best_node
, *used_nodes
);
5873 * sched_domain_node_span - get a cpumask for a node's sched_domain
5874 * @node: node whose cpumask we're constructing
5875 * @span: resulting cpumask
5877 * Given a node, construct a good cpumask for its sched_domain to span. It
5878 * should be one that prevents unnecessary balancing, but also spreads tasks
5881 static void sched_domain_node_span(int node
, struct cpumask
*span
)
5883 nodemask_t used_nodes
;
5886 cpumask_clear(span
);
5887 nodes_clear(used_nodes
);
5889 cpumask_or(span
, span
, cpumask_of_node(node
));
5890 node_set(node
, used_nodes
);
5892 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5893 int next_node
= find_next_best_node(node
, &used_nodes
);
5896 cpumask_or(span
, span
, cpumask_of_node(next_node
));
5900 static const struct cpumask
*cpu_node_mask(int cpu
)
5902 lockdep_assert_held(&sched_domains_mutex
);
5904 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
5906 return sched_domains_tmpmask
;
5909 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
5911 return cpu_possible_mask
;
5913 #endif /* CONFIG_NUMA */
5915 static const struct cpumask
*cpu_cpu_mask(int cpu
)
5917 return cpumask_of_node(cpu_to_node(cpu
));
5920 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5923 struct sched_domain
**__percpu sd
;
5924 struct sched_group
**__percpu sg
;
5925 struct sched_group_power
**__percpu sgp
;
5929 struct sched_domain
** __percpu sd
;
5930 struct root_domain
*rd
;
5940 struct sched_domain_topology_level
;
5942 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
5943 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
5945 #define SDTL_OVERLAP 0x01
5947 struct sched_domain_topology_level
{
5948 sched_domain_init_f init
;
5949 sched_domain_mask_f mask
;
5951 struct sd_data data
;
5955 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
5957 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
5958 const struct cpumask
*span
= sched_domain_span(sd
);
5959 struct cpumask
*covered
= sched_domains_tmpmask
;
5960 struct sd_data
*sdd
= sd
->private;
5961 struct sched_domain
*child
;
5964 cpumask_clear(covered
);
5966 for_each_cpu(i
, span
) {
5967 struct cpumask
*sg_span
;
5969 if (cpumask_test_cpu(i
, covered
))
5972 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
5973 GFP_KERNEL
, cpu_to_node(cpu
));
5978 sg_span
= sched_group_cpus(sg
);
5980 child
= *per_cpu_ptr(sdd
->sd
, i
);
5982 child
= child
->child
;
5983 cpumask_copy(sg_span
, sched_domain_span(child
));
5985 cpumask_set_cpu(i
, sg_span
);
5987 cpumask_or(covered
, covered
, sg_span
);
5989 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, cpumask_first(sg_span
));
5990 atomic_inc(&sg
->sgp
->ref
);
5992 if (cpumask_test_cpu(cpu
, sg_span
))
6002 sd
->groups
= groups
;
6007 free_sched_groups(first
, 0);
6012 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6014 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6015 struct sched_domain
*child
= sd
->child
;
6018 cpu
= cpumask_first(sched_domain_span(child
));
6021 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6022 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
6023 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
6030 * build_sched_groups will build a circular linked list of the groups
6031 * covered by the given span, and will set each group's ->cpumask correctly,
6032 * and ->cpu_power to 0.
6034 * Assumes the sched_domain tree is fully constructed
6037 build_sched_groups(struct sched_domain
*sd
, int cpu
)
6039 struct sched_group
*first
= NULL
, *last
= NULL
;
6040 struct sd_data
*sdd
= sd
->private;
6041 const struct cpumask
*span
= sched_domain_span(sd
);
6042 struct cpumask
*covered
;
6045 get_group(cpu
, sdd
, &sd
->groups
);
6046 atomic_inc(&sd
->groups
->ref
);
6048 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
6051 lockdep_assert_held(&sched_domains_mutex
);
6052 covered
= sched_domains_tmpmask
;
6054 cpumask_clear(covered
);
6056 for_each_cpu(i
, span
) {
6057 struct sched_group
*sg
;
6058 int group
= get_group(i
, sdd
, &sg
);
6061 if (cpumask_test_cpu(i
, covered
))
6064 cpumask_clear(sched_group_cpus(sg
));
6067 for_each_cpu(j
, span
) {
6068 if (get_group(j
, sdd
, NULL
) != group
)
6071 cpumask_set_cpu(j
, covered
);
6072 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6087 * Initialize sched groups cpu_power.
6089 * cpu_power indicates the capacity of sched group, which is used while
6090 * distributing the load between different sched groups in a sched domain.
6091 * Typically cpu_power for all the groups in a sched domain will be same unless
6092 * there are asymmetries in the topology. If there are asymmetries, group
6093 * having more cpu_power will pickup more load compared to the group having
6096 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6098 struct sched_group
*sg
= sd
->groups
;
6100 WARN_ON(!sd
|| !sg
);
6103 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
6105 } while (sg
!= sd
->groups
);
6107 if (cpu
!= group_first_cpu(sg
))
6110 update_group_power(sd
, cpu
);
6111 atomic_set(&sg
->sgp
->nr_busy_cpus
, sg
->group_weight
);
6114 int __weak
arch_sd_sibling_asym_packing(void)
6116 return 0*SD_ASYM_PACKING
;
6120 * Initializers for schedule domains
6121 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6124 #ifdef CONFIG_SCHED_DEBUG
6125 # define SD_INIT_NAME(sd, type) sd->name = #type
6127 # define SD_INIT_NAME(sd, type) do { } while (0)
6130 #define SD_INIT_FUNC(type) \
6131 static noinline struct sched_domain * \
6132 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6134 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6135 *sd = SD_##type##_INIT; \
6136 SD_INIT_NAME(sd, type); \
6137 sd->private = &tl->data; \
6143 SD_INIT_FUNC(ALLNODES
)
6146 #ifdef CONFIG_SCHED_SMT
6147 SD_INIT_FUNC(SIBLING
)
6149 #ifdef CONFIG_SCHED_MC
6152 #ifdef CONFIG_SCHED_BOOK
6156 static int default_relax_domain_level
= -1;
6157 int sched_domain_level_max
;
6159 static int __init
setup_relax_domain_level(char *str
)
6163 val
= simple_strtoul(str
, NULL
, 0);
6164 if (val
< sched_domain_level_max
)
6165 default_relax_domain_level
= val
;
6169 __setup("relax_domain_level=", setup_relax_domain_level
);
6171 static void set_domain_attribute(struct sched_domain
*sd
,
6172 struct sched_domain_attr
*attr
)
6176 if (!attr
|| attr
->relax_domain_level
< 0) {
6177 if (default_relax_domain_level
< 0)
6180 request
= default_relax_domain_level
;
6182 request
= attr
->relax_domain_level
;
6183 if (request
< sd
->level
) {
6184 /* turn off idle balance on this domain */
6185 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6187 /* turn on idle balance on this domain */
6188 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6192 static void __sdt_free(const struct cpumask
*cpu_map
);
6193 static int __sdt_alloc(const struct cpumask
*cpu_map
);
6195 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6196 const struct cpumask
*cpu_map
)
6200 if (!atomic_read(&d
->rd
->refcount
))
6201 free_rootdomain(&d
->rd
->rcu
); /* fall through */
6203 free_percpu(d
->sd
); /* fall through */
6205 __sdt_free(cpu_map
); /* fall through */
6211 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6212 const struct cpumask
*cpu_map
)
6214 memset(d
, 0, sizeof(*d
));
6216 if (__sdt_alloc(cpu_map
))
6217 return sa_sd_storage
;
6218 d
->sd
= alloc_percpu(struct sched_domain
*);
6220 return sa_sd_storage
;
6221 d
->rd
= alloc_rootdomain();
6224 return sa_rootdomain
;
6228 * NULL the sd_data elements we've used to build the sched_domain and
6229 * sched_group structure so that the subsequent __free_domain_allocs()
6230 * will not free the data we're using.
6232 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6234 struct sd_data
*sdd
= sd
->private;
6236 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6237 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6239 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6240 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6242 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
6243 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
6246 #ifdef CONFIG_SCHED_SMT
6247 static const struct cpumask
*cpu_smt_mask(int cpu
)
6249 return topology_thread_cpumask(cpu
);
6254 * Topology list, bottom-up.
6256 static struct sched_domain_topology_level default_topology
[] = {
6257 #ifdef CONFIG_SCHED_SMT
6258 { sd_init_SIBLING
, cpu_smt_mask
, },
6260 #ifdef CONFIG_SCHED_MC
6261 { sd_init_MC
, cpu_coregroup_mask
, },
6263 #ifdef CONFIG_SCHED_BOOK
6264 { sd_init_BOOK
, cpu_book_mask
, },
6266 { sd_init_CPU
, cpu_cpu_mask
, },
6268 { sd_init_NODE
, cpu_node_mask
, SDTL_OVERLAP
, },
6269 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
6274 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6276 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6278 struct sched_domain_topology_level
*tl
;
6281 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
6282 struct sd_data
*sdd
= &tl
->data
;
6284 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6288 sdd
->sg
= alloc_percpu(struct sched_group
*);
6292 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
6296 for_each_cpu(j
, cpu_map
) {
6297 struct sched_domain
*sd
;
6298 struct sched_group
*sg
;
6299 struct sched_group_power
*sgp
;
6301 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6302 GFP_KERNEL
, cpu_to_node(j
));
6306 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6308 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6309 GFP_KERNEL
, cpu_to_node(j
));
6313 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6315 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
6316 GFP_KERNEL
, cpu_to_node(j
));
6320 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
6327 static void __sdt_free(const struct cpumask
*cpu_map
)
6329 struct sched_domain_topology_level
*tl
;
6332 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
6333 struct sd_data
*sdd
= &tl
->data
;
6335 for_each_cpu(j
, cpu_map
) {
6336 struct sched_domain
*sd
;
6339 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6340 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6341 free_sched_groups(sd
->groups
, 0);
6342 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6346 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6348 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
6350 free_percpu(sdd
->sd
);
6352 free_percpu(sdd
->sg
);
6354 free_percpu(sdd
->sgp
);
6359 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6360 struct s_data
*d
, const struct cpumask
*cpu_map
,
6361 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
6364 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
6368 set_domain_attribute(sd
, attr
);
6369 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6371 sd
->level
= child
->level
+ 1;
6372 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6381 * Build sched domains for a given set of cpus and attach the sched domains
6382 * to the individual cpus
6384 static int build_sched_domains(const struct cpumask
*cpu_map
,
6385 struct sched_domain_attr
*attr
)
6387 enum s_alloc alloc_state
= sa_none
;
6388 struct sched_domain
*sd
;
6390 int i
, ret
= -ENOMEM
;
6392 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6393 if (alloc_state
!= sa_rootdomain
)
6396 /* Set up domains for cpus specified by the cpu_map. */
6397 for_each_cpu(i
, cpu_map
) {
6398 struct sched_domain_topology_level
*tl
;
6401 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
6402 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
6403 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6404 sd
->flags
|= SD_OVERLAP
;
6405 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6412 *per_cpu_ptr(d
.sd
, i
) = sd
;
6415 /* Build the groups for the domains */
6416 for_each_cpu(i
, cpu_map
) {
6417 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6418 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6419 if (sd
->flags
& SD_OVERLAP
) {
6420 if (build_overlap_sched_groups(sd
, i
))
6423 if (build_sched_groups(sd
, i
))
6429 /* Calculate CPU power for physical packages and nodes */
6430 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6431 if (!cpumask_test_cpu(i
, cpu_map
))
6434 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6435 claim_allocations(i
, sd
);
6436 init_sched_groups_power(i
, sd
);
6440 /* Attach the domains */
6442 for_each_cpu(i
, cpu_map
) {
6443 sd
= *per_cpu_ptr(d
.sd
, i
);
6444 cpu_attach_domain(sd
, d
.rd
, i
);
6450 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6454 static cpumask_var_t
*doms_cur
; /* current sched domains */
6455 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6456 static struct sched_domain_attr
*dattr_cur
;
6457 /* attribues of custom domains in 'doms_cur' */
6460 * Special case: If a kmalloc of a doms_cur partition (array of
6461 * cpumask) fails, then fallback to a single sched domain,
6462 * as determined by the single cpumask fallback_doms.
6464 static cpumask_var_t fallback_doms
;
6467 * arch_update_cpu_topology lets virtualized architectures update the
6468 * cpu core maps. It is supposed to return 1 if the topology changed
6469 * or 0 if it stayed the same.
6471 int __attribute__((weak
)) arch_update_cpu_topology(void)
6476 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6479 cpumask_var_t
*doms
;
6481 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6484 for (i
= 0; i
< ndoms
; i
++) {
6485 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6486 free_sched_domains(doms
, i
);
6493 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6496 for (i
= 0; i
< ndoms
; i
++)
6497 free_cpumask_var(doms
[i
]);
6502 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6503 * For now this just excludes isolated cpus, but could be used to
6504 * exclude other special cases in the future.
6506 static int init_sched_domains(const struct cpumask
*cpu_map
)
6510 arch_update_cpu_topology();
6512 doms_cur
= alloc_sched_domains(ndoms_cur
);
6514 doms_cur
= &fallback_doms
;
6515 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6517 err
= build_sched_domains(doms_cur
[0], NULL
);
6518 register_sched_domain_sysctl();
6524 * Detach sched domains from a group of cpus specified in cpu_map
6525 * These cpus will now be attached to the NULL domain
6527 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6532 for_each_cpu(i
, cpu_map
)
6533 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6537 /* handle null as "default" */
6538 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6539 struct sched_domain_attr
*new, int idx_new
)
6541 struct sched_domain_attr tmp
;
6548 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6549 new ? (new + idx_new
) : &tmp
,
6550 sizeof(struct sched_domain_attr
));
6554 * Partition sched domains as specified by the 'ndoms_new'
6555 * cpumasks in the array doms_new[] of cpumasks. This compares
6556 * doms_new[] to the current sched domain partitioning, doms_cur[].
6557 * It destroys each deleted domain and builds each new domain.
6559 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6560 * The masks don't intersect (don't overlap.) We should setup one
6561 * sched domain for each mask. CPUs not in any of the cpumasks will
6562 * not be load balanced. If the same cpumask appears both in the
6563 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6566 * The passed in 'doms_new' should be allocated using
6567 * alloc_sched_domains. This routine takes ownership of it and will
6568 * free_sched_domains it when done with it. If the caller failed the
6569 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6570 * and partition_sched_domains() will fallback to the single partition
6571 * 'fallback_doms', it also forces the domains to be rebuilt.
6573 * If doms_new == NULL it will be replaced with cpu_online_mask.
6574 * ndoms_new == 0 is a special case for destroying existing domains,
6575 * and it will not create the default domain.
6577 * Call with hotplug lock held
6579 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6580 struct sched_domain_attr
*dattr_new
)
6585 mutex_lock(&sched_domains_mutex
);
6587 /* always unregister in case we don't destroy any domains */
6588 unregister_sched_domain_sysctl();
6590 /* Let architecture update cpu core mappings. */
6591 new_topology
= arch_update_cpu_topology();
6593 n
= doms_new
? ndoms_new
: 0;
6595 /* Destroy deleted domains */
6596 for (i
= 0; i
< ndoms_cur
; i
++) {
6597 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6598 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6599 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6602 /* no match - a current sched domain not in new doms_new[] */
6603 detach_destroy_domains(doms_cur
[i
]);
6608 if (doms_new
== NULL
) {
6610 doms_new
= &fallback_doms
;
6611 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6612 WARN_ON_ONCE(dattr_new
);
6615 /* Build new domains */
6616 for (i
= 0; i
< ndoms_new
; i
++) {
6617 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
6618 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6619 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6622 /* no match - add a new doms_new */
6623 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6628 /* Remember the new sched domains */
6629 if (doms_cur
!= &fallback_doms
)
6630 free_sched_domains(doms_cur
, ndoms_cur
);
6631 kfree(dattr_cur
); /* kfree(NULL) is safe */
6632 doms_cur
= doms_new
;
6633 dattr_cur
= dattr_new
;
6634 ndoms_cur
= ndoms_new
;
6636 register_sched_domain_sysctl();
6638 mutex_unlock(&sched_domains_mutex
);
6641 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6642 static void reinit_sched_domains(void)
6646 /* Destroy domains first to force the rebuild */
6647 partition_sched_domains(0, NULL
, NULL
);
6649 rebuild_sched_domains();
6653 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6655 unsigned int level
= 0;
6657 if (sscanf(buf
, "%u", &level
) != 1)
6661 * level is always be positive so don't check for
6662 * level < POWERSAVINGS_BALANCE_NONE which is 0
6663 * What happens on 0 or 1 byte write,
6664 * need to check for count as well?
6667 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
6671 sched_smt_power_savings
= level
;
6673 sched_mc_power_savings
= level
;
6675 reinit_sched_domains();
6680 #ifdef CONFIG_SCHED_MC
6681 static ssize_t
sched_mc_power_savings_show(struct device
*dev
,
6682 struct device_attribute
*attr
,
6685 return sprintf(buf
, "%u\n", sched_mc_power_savings
);
6687 static ssize_t
sched_mc_power_savings_store(struct device
*dev
,
6688 struct device_attribute
*attr
,
6689 const char *buf
, size_t count
)
6691 return sched_power_savings_store(buf
, count
, 0);
6693 static DEVICE_ATTR(sched_mc_power_savings
, 0644,
6694 sched_mc_power_savings_show
,
6695 sched_mc_power_savings_store
);
6698 #ifdef CONFIG_SCHED_SMT
6699 static ssize_t
sched_smt_power_savings_show(struct device
*dev
,
6700 struct device_attribute
*attr
,
6703 return sprintf(buf
, "%u\n", sched_smt_power_savings
);
6705 static ssize_t
sched_smt_power_savings_store(struct device
*dev
,
6706 struct device_attribute
*attr
,
6707 const char *buf
, size_t count
)
6709 return sched_power_savings_store(buf
, count
, 1);
6711 static DEVICE_ATTR(sched_smt_power_savings
, 0644,
6712 sched_smt_power_savings_show
,
6713 sched_smt_power_savings_store
);
6716 int __init
sched_create_sysfs_power_savings_entries(struct device
*dev
)
6720 #ifdef CONFIG_SCHED_SMT
6722 err
= device_create_file(dev
, &dev_attr_sched_smt_power_savings
);
6724 #ifdef CONFIG_SCHED_MC
6725 if (!err
&& mc_capable())
6726 err
= device_create_file(dev
, &dev_attr_sched_mc_power_savings
);
6730 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6733 * Update cpusets according to cpu_active mask. If cpusets are
6734 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6735 * around partition_sched_domains().
6737 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6740 switch (action
& ~CPU_TASKS_FROZEN
) {
6742 case CPU_DOWN_FAILED
:
6743 cpuset_update_active_cpus();
6750 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
6753 switch (action
& ~CPU_TASKS_FROZEN
) {
6754 case CPU_DOWN_PREPARE
:
6755 cpuset_update_active_cpus();
6762 void __init
sched_init_smp(void)
6764 cpumask_var_t non_isolated_cpus
;
6766 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
6767 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
6770 mutex_lock(&sched_domains_mutex
);
6771 init_sched_domains(cpu_active_mask
);
6772 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
6773 if (cpumask_empty(non_isolated_cpus
))
6774 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
6775 mutex_unlock(&sched_domains_mutex
);
6778 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
6779 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
6781 /* RT runtime code needs to handle some hotplug events */
6782 hotcpu_notifier(update_runtime
, 0);
6786 /* Move init over to a non-isolated CPU */
6787 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
6789 sched_init_granularity();
6790 free_cpumask_var(non_isolated_cpus
);
6792 init_sched_rt_class();
6795 void __init
sched_init_smp(void)
6797 sched_init_granularity();
6799 #endif /* CONFIG_SMP */
6801 const_debug
unsigned int sysctl_timer_migration
= 1;
6803 int in_sched_functions(unsigned long addr
)
6805 return in_lock_functions(addr
) ||
6806 (addr
>= (unsigned long)__sched_text_start
6807 && addr
< (unsigned long)__sched_text_end
);
6810 #ifdef CONFIG_CGROUP_SCHED
6811 struct task_group root_task_group
;
6814 DECLARE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
6816 void __init
sched_init(void)
6819 unsigned long alloc_size
= 0, ptr
;
6821 #ifdef CONFIG_FAIR_GROUP_SCHED
6822 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6824 #ifdef CONFIG_RT_GROUP_SCHED
6825 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6827 #ifdef CONFIG_CPUMASK_OFFSTACK
6828 alloc_size
+= num_possible_cpus() * cpumask_size();
6831 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
6833 #ifdef CONFIG_FAIR_GROUP_SCHED
6834 root_task_group
.se
= (struct sched_entity
**)ptr
;
6835 ptr
+= nr_cpu_ids
* sizeof(void **);
6837 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
6838 ptr
+= nr_cpu_ids
* sizeof(void **);
6840 #endif /* CONFIG_FAIR_GROUP_SCHED */
6841 #ifdef CONFIG_RT_GROUP_SCHED
6842 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
6843 ptr
+= nr_cpu_ids
* sizeof(void **);
6845 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
6846 ptr
+= nr_cpu_ids
* sizeof(void **);
6848 #endif /* CONFIG_RT_GROUP_SCHED */
6849 #ifdef CONFIG_CPUMASK_OFFSTACK
6850 for_each_possible_cpu(i
) {
6851 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
6852 ptr
+= cpumask_size();
6854 #endif /* CONFIG_CPUMASK_OFFSTACK */
6858 init_defrootdomain();
6861 init_rt_bandwidth(&def_rt_bandwidth
,
6862 global_rt_period(), global_rt_runtime());
6864 #ifdef CONFIG_RT_GROUP_SCHED
6865 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
6866 global_rt_period(), global_rt_runtime());
6867 #endif /* CONFIG_RT_GROUP_SCHED */
6869 #ifdef CONFIG_CGROUP_SCHED
6870 list_add(&root_task_group
.list
, &task_groups
);
6871 INIT_LIST_HEAD(&root_task_group
.children
);
6872 INIT_LIST_HEAD(&root_task_group
.siblings
);
6873 autogroup_init(&init_task
);
6875 #endif /* CONFIG_CGROUP_SCHED */
6877 #ifdef CONFIG_CGROUP_CPUACCT
6878 root_cpuacct
.cpustat
= &kernel_cpustat
;
6879 root_cpuacct
.cpuusage
= alloc_percpu(u64
);
6880 /* Too early, not expected to fail */
6881 BUG_ON(!root_cpuacct
.cpuusage
);
6883 for_each_possible_cpu(i
) {
6887 raw_spin_lock_init(&rq
->lock
);
6889 rq
->calc_load_active
= 0;
6890 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
6891 init_cfs_rq(&rq
->cfs
);
6892 init_rt_rq(&rq
->rt
, rq
);
6893 #ifdef CONFIG_FAIR_GROUP_SCHED
6894 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
6895 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6897 * How much cpu bandwidth does root_task_group get?
6899 * In case of task-groups formed thr' the cgroup filesystem, it
6900 * gets 100% of the cpu resources in the system. This overall
6901 * system cpu resource is divided among the tasks of
6902 * root_task_group and its child task-groups in a fair manner,
6903 * based on each entity's (task or task-group's) weight
6904 * (se->load.weight).
6906 * In other words, if root_task_group has 10 tasks of weight
6907 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6908 * then A0's share of the cpu resource is:
6910 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6912 * We achieve this by letting root_task_group's tasks sit
6913 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6915 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
6916 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
6917 #endif /* CONFIG_FAIR_GROUP_SCHED */
6919 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
6920 #ifdef CONFIG_RT_GROUP_SCHED
6921 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
6922 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
6925 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6926 rq
->cpu_load
[j
] = 0;
6928 rq
->last_load_update_tick
= jiffies
;
6933 rq
->cpu_power
= SCHED_POWER_SCALE
;
6934 rq
->post_schedule
= 0;
6935 rq
->active_balance
= 0;
6936 rq
->next_balance
= jiffies
;
6941 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6942 rq_attach_root(rq
, &def_root_domain
);
6948 atomic_set(&rq
->nr_iowait
, 0);
6951 set_load_weight(&init_task
);
6953 #ifdef CONFIG_PREEMPT_NOTIFIERS
6954 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6957 #ifdef CONFIG_RT_MUTEXES
6958 plist_head_init(&init_task
.pi_waiters
);
6962 * The boot idle thread does lazy MMU switching as well:
6964 atomic_inc(&init_mm
.mm_count
);
6965 enter_lazy_tlb(&init_mm
, current
);
6968 * Make us the idle thread. Technically, schedule() should not be
6969 * called from this thread, however somewhere below it might be,
6970 * but because we are the idle thread, we just pick up running again
6971 * when this runqueue becomes "idle".
6973 init_idle(current
, smp_processor_id());
6975 calc_load_update
= jiffies
+ LOAD_FREQ
;
6978 * During early bootup we pretend to be a normal task:
6980 current
->sched_class
= &fair_sched_class
;
6983 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
6984 /* May be allocated at isolcpus cmdline parse time */
6985 if (cpu_isolated_map
== NULL
)
6986 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
6988 init_sched_fair_class();
6990 scheduler_running
= 1;
6993 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6994 static inline int preempt_count_equals(int preempt_offset
)
6996 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
6998 return (nested
== preempt_offset
);
7001 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7003 static unsigned long prev_jiffy
; /* ratelimiting */
7005 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7006 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7007 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7009 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7011 prev_jiffy
= jiffies
;
7014 "BUG: sleeping function called from invalid context at %s:%d\n",
7017 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7018 in_atomic(), irqs_disabled(),
7019 current
->pid
, current
->comm
);
7021 debug_show_held_locks(current
);
7022 if (irqs_disabled())
7023 print_irqtrace_events(current
);
7026 EXPORT_SYMBOL(__might_sleep
);
7029 #ifdef CONFIG_MAGIC_SYSRQ
7030 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7032 const struct sched_class
*prev_class
= p
->sched_class
;
7033 int old_prio
= p
->prio
;
7038 dequeue_task(rq
, p
, 0);
7039 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7041 enqueue_task(rq
, p
, 0);
7042 resched_task(rq
->curr
);
7045 check_class_changed(rq
, p
, prev_class
, old_prio
);
7048 void normalize_rt_tasks(void)
7050 struct task_struct
*g
, *p
;
7051 unsigned long flags
;
7054 read_lock_irqsave(&tasklist_lock
, flags
);
7055 do_each_thread(g
, p
) {
7057 * Only normalize user tasks:
7062 p
->se
.exec_start
= 0;
7063 #ifdef CONFIG_SCHEDSTATS
7064 p
->se
.statistics
.wait_start
= 0;
7065 p
->se
.statistics
.sleep_start
= 0;
7066 p
->se
.statistics
.block_start
= 0;
7071 * Renice negative nice level userspace
7074 if (TASK_NICE(p
) < 0 && p
->mm
)
7075 set_user_nice(p
, 0);
7079 raw_spin_lock(&p
->pi_lock
);
7080 rq
= __task_rq_lock(p
);
7082 normalize_task(rq
, p
);
7084 __task_rq_unlock(rq
);
7085 raw_spin_unlock(&p
->pi_lock
);
7086 } while_each_thread(g
, p
);
7088 read_unlock_irqrestore(&tasklist_lock
, flags
);
7091 #endif /* CONFIG_MAGIC_SYSRQ */
7093 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7095 * These functions are only useful for the IA64 MCA handling, or kdb.
7097 * They can only be called when the whole system has been
7098 * stopped - every CPU needs to be quiescent, and no scheduling
7099 * activity can take place. Using them for anything else would
7100 * be a serious bug, and as a result, they aren't even visible
7101 * under any other configuration.
7105 * curr_task - return the current task for a given cpu.
7106 * @cpu: the processor in question.
7108 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7110 struct task_struct
*curr_task(int cpu
)
7112 return cpu_curr(cpu
);
7115 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7119 * set_curr_task - set the current task for a given cpu.
7120 * @cpu: the processor in question.
7121 * @p: the task pointer to set.
7123 * Description: This function must only be used when non-maskable interrupts
7124 * are serviced on a separate stack. It allows the architecture to switch the
7125 * notion of the current task on a cpu in a non-blocking manner. This function
7126 * must be called with all CPU's synchronized, and interrupts disabled, the
7127 * and caller must save the original value of the current task (see
7128 * curr_task() above) and restore that value before reenabling interrupts and
7129 * re-starting the system.
7131 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7133 void set_curr_task(int cpu
, struct task_struct
*p
)
7140 #ifdef CONFIG_CGROUP_SCHED
7141 /* task_group_lock serializes the addition/removal of task groups */
7142 static DEFINE_SPINLOCK(task_group_lock
);
7144 static void free_sched_group(struct task_group
*tg
)
7146 free_fair_sched_group(tg
);
7147 free_rt_sched_group(tg
);
7152 /* allocate runqueue etc for a new task group */
7153 struct task_group
*sched_create_group(struct task_group
*parent
)
7155 struct task_group
*tg
;
7156 unsigned long flags
;
7158 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7160 return ERR_PTR(-ENOMEM
);
7162 if (!alloc_fair_sched_group(tg
, parent
))
7165 if (!alloc_rt_sched_group(tg
, parent
))
7168 spin_lock_irqsave(&task_group_lock
, flags
);
7169 list_add_rcu(&tg
->list
, &task_groups
);
7171 WARN_ON(!parent
); /* root should already exist */
7173 tg
->parent
= parent
;
7174 INIT_LIST_HEAD(&tg
->children
);
7175 list_add_rcu(&tg
->siblings
, &parent
->children
);
7176 spin_unlock_irqrestore(&task_group_lock
, flags
);
7181 free_sched_group(tg
);
7182 return ERR_PTR(-ENOMEM
);
7185 /* rcu callback to free various structures associated with a task group */
7186 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7188 /* now it should be safe to free those cfs_rqs */
7189 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7192 /* Destroy runqueue etc associated with a task group */
7193 void sched_destroy_group(struct task_group
*tg
)
7195 unsigned long flags
;
7198 /* end participation in shares distribution */
7199 for_each_possible_cpu(i
)
7200 unregister_fair_sched_group(tg
, i
);
7202 spin_lock_irqsave(&task_group_lock
, flags
);
7203 list_del_rcu(&tg
->list
);
7204 list_del_rcu(&tg
->siblings
);
7205 spin_unlock_irqrestore(&task_group_lock
, flags
);
7207 /* wait for possible concurrent references to cfs_rqs complete */
7208 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7211 /* change task's runqueue when it moves between groups.
7212 * The caller of this function should have put the task in its new group
7213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7214 * reflect its new group.
7216 void sched_move_task(struct task_struct
*tsk
)
7219 unsigned long flags
;
7222 rq
= task_rq_lock(tsk
, &flags
);
7224 running
= task_current(rq
, tsk
);
7228 dequeue_task(rq
, tsk
, 0);
7229 if (unlikely(running
))
7230 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7232 #ifdef CONFIG_FAIR_GROUP_SCHED
7233 if (tsk
->sched_class
->task_move_group
)
7234 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
7237 set_task_rq(tsk
, task_cpu(tsk
));
7239 if (unlikely(running
))
7240 tsk
->sched_class
->set_curr_task(rq
);
7242 enqueue_task(rq
, tsk
, 0);
7244 task_rq_unlock(rq
, tsk
, &flags
);
7246 #endif /* CONFIG_CGROUP_SCHED */
7248 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7249 static unsigned long to_ratio(u64 period
, u64 runtime
)
7251 if (runtime
== RUNTIME_INF
)
7254 return div64_u64(runtime
<< 20, period
);
7258 #ifdef CONFIG_RT_GROUP_SCHED
7260 * Ensure that the real time constraints are schedulable.
7262 static DEFINE_MUTEX(rt_constraints_mutex
);
7264 /* Must be called with tasklist_lock held */
7265 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7267 struct task_struct
*g
, *p
;
7269 do_each_thread(g
, p
) {
7270 if (rt_task(p
) && task_rq(p
)->rt
.tg
== tg
)
7272 } while_each_thread(g
, p
);
7277 struct rt_schedulable_data
{
7278 struct task_group
*tg
;
7283 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7285 struct rt_schedulable_data
*d
= data
;
7286 struct task_group
*child
;
7287 unsigned long total
, sum
= 0;
7288 u64 period
, runtime
;
7290 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7291 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7294 period
= d
->rt_period
;
7295 runtime
= d
->rt_runtime
;
7299 * Cannot have more runtime than the period.
7301 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7305 * Ensure we don't starve existing RT tasks.
7307 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7310 total
= to_ratio(period
, runtime
);
7313 * Nobody can have more than the global setting allows.
7315 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7319 * The sum of our children's runtime should not exceed our own.
7321 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7322 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7323 runtime
= child
->rt_bandwidth
.rt_runtime
;
7325 if (child
== d
->tg
) {
7326 period
= d
->rt_period
;
7327 runtime
= d
->rt_runtime
;
7330 sum
+= to_ratio(period
, runtime
);
7339 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7343 struct rt_schedulable_data data
= {
7345 .rt_period
= period
,
7346 .rt_runtime
= runtime
,
7350 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7356 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7357 u64 rt_period
, u64 rt_runtime
)
7361 mutex_lock(&rt_constraints_mutex
);
7362 read_lock(&tasklist_lock
);
7363 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7367 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7368 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7369 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7371 for_each_possible_cpu(i
) {
7372 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7374 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7375 rt_rq
->rt_runtime
= rt_runtime
;
7376 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7378 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7380 read_unlock(&tasklist_lock
);
7381 mutex_unlock(&rt_constraints_mutex
);
7386 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7388 u64 rt_runtime
, rt_period
;
7390 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7391 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7392 if (rt_runtime_us
< 0)
7393 rt_runtime
= RUNTIME_INF
;
7395 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7398 long sched_group_rt_runtime(struct task_group
*tg
)
7402 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7405 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7406 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7407 return rt_runtime_us
;
7410 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7412 u64 rt_runtime
, rt_period
;
7414 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7415 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7420 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7423 long sched_group_rt_period(struct task_group
*tg
)
7427 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7428 do_div(rt_period_us
, NSEC_PER_USEC
);
7429 return rt_period_us
;
7432 static int sched_rt_global_constraints(void)
7434 u64 runtime
, period
;
7437 if (sysctl_sched_rt_period
<= 0)
7440 runtime
= global_rt_runtime();
7441 period
= global_rt_period();
7444 * Sanity check on the sysctl variables.
7446 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7449 mutex_lock(&rt_constraints_mutex
);
7450 read_lock(&tasklist_lock
);
7451 ret
= __rt_schedulable(NULL
, 0, 0);
7452 read_unlock(&tasklist_lock
);
7453 mutex_unlock(&rt_constraints_mutex
);
7458 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7460 /* Don't accept realtime tasks when there is no way for them to run */
7461 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7467 #else /* !CONFIG_RT_GROUP_SCHED */
7468 static int sched_rt_global_constraints(void)
7470 unsigned long flags
;
7473 if (sysctl_sched_rt_period
<= 0)
7477 * There's always some RT tasks in the root group
7478 * -- migration, kstopmachine etc..
7480 if (sysctl_sched_rt_runtime
== 0)
7483 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7484 for_each_possible_cpu(i
) {
7485 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7487 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7488 rt_rq
->rt_runtime
= global_rt_runtime();
7489 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7491 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7495 #endif /* CONFIG_RT_GROUP_SCHED */
7497 int sched_rt_handler(struct ctl_table
*table
, int write
,
7498 void __user
*buffer
, size_t *lenp
,
7502 int old_period
, old_runtime
;
7503 static DEFINE_MUTEX(mutex
);
7506 old_period
= sysctl_sched_rt_period
;
7507 old_runtime
= sysctl_sched_rt_runtime
;
7509 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7511 if (!ret
&& write
) {
7512 ret
= sched_rt_global_constraints();
7514 sysctl_sched_rt_period
= old_period
;
7515 sysctl_sched_rt_runtime
= old_runtime
;
7517 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7518 def_rt_bandwidth
.rt_period
=
7519 ns_to_ktime(global_rt_period());
7522 mutex_unlock(&mutex
);
7527 #ifdef CONFIG_CGROUP_SCHED
7529 /* return corresponding task_group object of a cgroup */
7530 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7532 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7533 struct task_group
, css
);
7536 static struct cgroup_subsys_state
*
7537 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7539 struct task_group
*tg
, *parent
;
7541 if (!cgrp
->parent
) {
7542 /* This is early initialization for the top cgroup */
7543 return &root_task_group
.css
;
7546 parent
= cgroup_tg(cgrp
->parent
);
7547 tg
= sched_create_group(parent
);
7549 return ERR_PTR(-ENOMEM
);
7555 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7557 struct task_group
*tg
= cgroup_tg(cgrp
);
7559 sched_destroy_group(tg
);
7562 static int cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7563 struct cgroup_taskset
*tset
)
7565 struct task_struct
*task
;
7567 cgroup_taskset_for_each(task
, cgrp
, tset
) {
7568 #ifdef CONFIG_RT_GROUP_SCHED
7569 if (!sched_rt_can_attach(cgroup_tg(cgrp
), task
))
7572 /* We don't support RT-tasks being in separate groups */
7573 if (task
->sched_class
!= &fair_sched_class
)
7580 static void cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7581 struct cgroup_taskset
*tset
)
7583 struct task_struct
*task
;
7585 cgroup_taskset_for_each(task
, cgrp
, tset
)
7586 sched_move_task(task
);
7590 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7591 struct cgroup
*old_cgrp
, struct task_struct
*task
)
7594 * cgroup_exit() is called in the copy_process() failure path.
7595 * Ignore this case since the task hasn't ran yet, this avoids
7596 * trying to poke a half freed task state from generic code.
7598 if (!(task
->flags
& PF_EXITING
))
7601 sched_move_task(task
);
7604 #ifdef CONFIG_FAIR_GROUP_SCHED
7605 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
7608 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
7611 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
7613 struct task_group
*tg
= cgroup_tg(cgrp
);
7615 return (u64
) scale_load_down(tg
->shares
);
7618 #ifdef CONFIG_CFS_BANDWIDTH
7619 static DEFINE_MUTEX(cfs_constraints_mutex
);
7621 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7622 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7624 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7626 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7628 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7629 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7631 if (tg
== &root_task_group
)
7635 * Ensure we have at some amount of bandwidth every period. This is
7636 * to prevent reaching a state of large arrears when throttled via
7637 * entity_tick() resulting in prolonged exit starvation.
7639 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7643 * Likewise, bound things on the otherside by preventing insane quota
7644 * periods. This also allows us to normalize in computing quota
7647 if (period
> max_cfs_quota_period
)
7650 mutex_lock(&cfs_constraints_mutex
);
7651 ret
= __cfs_schedulable(tg
, period
, quota
);
7655 runtime_enabled
= quota
!= RUNTIME_INF
;
7656 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7657 account_cfs_bandwidth_used(runtime_enabled
, runtime_was_enabled
);
7658 raw_spin_lock_irq(&cfs_b
->lock
);
7659 cfs_b
->period
= ns_to_ktime(period
);
7660 cfs_b
->quota
= quota
;
7662 __refill_cfs_bandwidth_runtime(cfs_b
);
7663 /* restart the period timer (if active) to handle new period expiry */
7664 if (runtime_enabled
&& cfs_b
->timer_active
) {
7665 /* force a reprogram */
7666 cfs_b
->timer_active
= 0;
7667 __start_cfs_bandwidth(cfs_b
);
7669 raw_spin_unlock_irq(&cfs_b
->lock
);
7671 for_each_possible_cpu(i
) {
7672 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
7673 struct rq
*rq
= cfs_rq
->rq
;
7675 raw_spin_lock_irq(&rq
->lock
);
7676 cfs_rq
->runtime_enabled
= runtime_enabled
;
7677 cfs_rq
->runtime_remaining
= 0;
7679 if (cfs_rq
->throttled
)
7680 unthrottle_cfs_rq(cfs_rq
);
7681 raw_spin_unlock_irq(&rq
->lock
);
7684 mutex_unlock(&cfs_constraints_mutex
);
7689 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
7693 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7694 if (cfs_quota_us
< 0)
7695 quota
= RUNTIME_INF
;
7697 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
7699 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7702 long tg_get_cfs_quota(struct task_group
*tg
)
7706 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
7709 quota_us
= tg
->cfs_bandwidth
.quota
;
7710 do_div(quota_us
, NSEC_PER_USEC
);
7715 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
7719 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
7720 quota
= tg
->cfs_bandwidth
.quota
;
7722 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7725 long tg_get_cfs_period(struct task_group
*tg
)
7729 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7730 do_div(cfs_period_us
, NSEC_PER_USEC
);
7732 return cfs_period_us
;
7735 static s64
cpu_cfs_quota_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
)
7737 return tg_get_cfs_quota(cgroup_tg(cgrp
));
7740 static int cpu_cfs_quota_write_s64(struct cgroup
*cgrp
, struct cftype
*cftype
,
7743 return tg_set_cfs_quota(cgroup_tg(cgrp
), cfs_quota_us
);
7746 static u64
cpu_cfs_period_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
7748 return tg_get_cfs_period(cgroup_tg(cgrp
));
7751 static int cpu_cfs_period_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
7754 return tg_set_cfs_period(cgroup_tg(cgrp
), cfs_period_us
);
7757 struct cfs_schedulable_data
{
7758 struct task_group
*tg
;
7763 * normalize group quota/period to be quota/max_period
7764 * note: units are usecs
7766 static u64
normalize_cfs_quota(struct task_group
*tg
,
7767 struct cfs_schedulable_data
*d
)
7775 period
= tg_get_cfs_period(tg
);
7776 quota
= tg_get_cfs_quota(tg
);
7779 /* note: these should typically be equivalent */
7780 if (quota
== RUNTIME_INF
|| quota
== -1)
7783 return to_ratio(period
, quota
);
7786 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
7788 struct cfs_schedulable_data
*d
= data
;
7789 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7790 s64 quota
= 0, parent_quota
= -1;
7793 quota
= RUNTIME_INF
;
7795 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
7797 quota
= normalize_cfs_quota(tg
, d
);
7798 parent_quota
= parent_b
->hierarchal_quota
;
7801 * ensure max(child_quota) <= parent_quota, inherit when no
7804 if (quota
== RUNTIME_INF
)
7805 quota
= parent_quota
;
7806 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
7809 cfs_b
->hierarchal_quota
= quota
;
7814 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
7817 struct cfs_schedulable_data data
= {
7823 if (quota
!= RUNTIME_INF
) {
7824 do_div(data
.period
, NSEC_PER_USEC
);
7825 do_div(data
.quota
, NSEC_PER_USEC
);
7829 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
7835 static int cpu_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
7836 struct cgroup_map_cb
*cb
)
7838 struct task_group
*tg
= cgroup_tg(cgrp
);
7839 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7841 cb
->fill(cb
, "nr_periods", cfs_b
->nr_periods
);
7842 cb
->fill(cb
, "nr_throttled", cfs_b
->nr_throttled
);
7843 cb
->fill(cb
, "throttled_time", cfs_b
->throttled_time
);
7847 #endif /* CONFIG_CFS_BANDWIDTH */
7848 #endif /* CONFIG_FAIR_GROUP_SCHED */
7850 #ifdef CONFIG_RT_GROUP_SCHED
7851 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
7854 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
7857 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
7859 return sched_group_rt_runtime(cgroup_tg(cgrp
));
7862 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7865 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
7868 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7870 return sched_group_rt_period(cgroup_tg(cgrp
));
7872 #endif /* CONFIG_RT_GROUP_SCHED */
7874 static struct cftype cpu_files
[] = {
7875 #ifdef CONFIG_FAIR_GROUP_SCHED
7878 .read_u64
= cpu_shares_read_u64
,
7879 .write_u64
= cpu_shares_write_u64
,
7882 #ifdef CONFIG_CFS_BANDWIDTH
7884 .name
= "cfs_quota_us",
7885 .read_s64
= cpu_cfs_quota_read_s64
,
7886 .write_s64
= cpu_cfs_quota_write_s64
,
7889 .name
= "cfs_period_us",
7890 .read_u64
= cpu_cfs_period_read_u64
,
7891 .write_u64
= cpu_cfs_period_write_u64
,
7895 .read_map
= cpu_stats_show
,
7898 #ifdef CONFIG_RT_GROUP_SCHED
7900 .name
= "rt_runtime_us",
7901 .read_s64
= cpu_rt_runtime_read
,
7902 .write_s64
= cpu_rt_runtime_write
,
7905 .name
= "rt_period_us",
7906 .read_u64
= cpu_rt_period_read_uint
,
7907 .write_u64
= cpu_rt_period_write_uint
,
7912 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7914 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7917 struct cgroup_subsys cpu_cgroup_subsys
= {
7919 .create
= cpu_cgroup_create
,
7920 .destroy
= cpu_cgroup_destroy
,
7921 .can_attach
= cpu_cgroup_can_attach
,
7922 .attach
= cpu_cgroup_attach
,
7923 .exit
= cpu_cgroup_exit
,
7924 .populate
= cpu_cgroup_populate
,
7925 .subsys_id
= cpu_cgroup_subsys_id
,
7929 #endif /* CONFIG_CGROUP_SCHED */
7931 #ifdef CONFIG_CGROUP_CPUACCT
7934 * CPU accounting code for task groups.
7936 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7937 * (balbir@in.ibm.com).
7940 /* create a new cpu accounting group */
7941 static struct cgroup_subsys_state
*cpuacct_create(
7942 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7947 return &root_cpuacct
.css
;
7949 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
7953 ca
->cpuusage
= alloc_percpu(u64
);
7957 ca
->cpustat
= alloc_percpu(struct kernel_cpustat
);
7959 goto out_free_cpuusage
;
7964 free_percpu(ca
->cpuusage
);
7968 return ERR_PTR(-ENOMEM
);
7971 /* destroy an existing cpu accounting group */
7973 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7975 struct cpuacct
*ca
= cgroup_ca(cgrp
);
7977 free_percpu(ca
->cpustat
);
7978 free_percpu(ca
->cpuusage
);
7982 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
7984 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
7987 #ifndef CONFIG_64BIT
7989 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7991 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
7993 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8001 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8003 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8005 #ifndef CONFIG_64BIT
8007 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8009 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8011 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8017 /* return total cpu usage (in nanoseconds) of a group */
8018 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8020 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8021 u64 totalcpuusage
= 0;
8024 for_each_present_cpu(i
)
8025 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8027 return totalcpuusage
;
8030 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8033 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8042 for_each_present_cpu(i
)
8043 cpuacct_cpuusage_write(ca
, i
, 0);
8049 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8052 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8056 for_each_present_cpu(i
) {
8057 percpu
= cpuacct_cpuusage_read(ca
, i
);
8058 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8060 seq_printf(m
, "\n");
8064 static const char *cpuacct_stat_desc
[] = {
8065 [CPUACCT_STAT_USER
] = "user",
8066 [CPUACCT_STAT_SYSTEM
] = "system",
8069 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8070 struct cgroup_map_cb
*cb
)
8072 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8076 for_each_online_cpu(cpu
) {
8077 struct kernel_cpustat
*kcpustat
= per_cpu_ptr(ca
->cpustat
, cpu
);
8078 val
+= kcpustat
->cpustat
[CPUTIME_USER
];
8079 val
+= kcpustat
->cpustat
[CPUTIME_NICE
];
8081 val
= cputime64_to_clock_t(val
);
8082 cb
->fill(cb
, cpuacct_stat_desc
[CPUACCT_STAT_USER
], val
);
8085 for_each_online_cpu(cpu
) {
8086 struct kernel_cpustat
*kcpustat
= per_cpu_ptr(ca
->cpustat
, cpu
);
8087 val
+= kcpustat
->cpustat
[CPUTIME_SYSTEM
];
8088 val
+= kcpustat
->cpustat
[CPUTIME_IRQ
];
8089 val
+= kcpustat
->cpustat
[CPUTIME_SOFTIRQ
];
8092 val
= cputime64_to_clock_t(val
);
8093 cb
->fill(cb
, cpuacct_stat_desc
[CPUACCT_STAT_SYSTEM
], val
);
8098 static struct cftype files
[] = {
8101 .read_u64
= cpuusage_read
,
8102 .write_u64
= cpuusage_write
,
8105 .name
= "usage_percpu",
8106 .read_seq_string
= cpuacct_percpu_seq_read
,
8110 .read_map
= cpuacct_stats_show
,
8114 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8116 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8120 * charge this task's execution time to its accounting group.
8122 * called with rq->lock held.
8124 void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8129 if (unlikely(!cpuacct_subsys
.active
))
8132 cpu
= task_cpu(tsk
);
8138 for (; ca
; ca
= parent_ca(ca
)) {
8139 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8140 *cpuusage
+= cputime
;
8146 struct cgroup_subsys cpuacct_subsys
= {
8148 .create
= cpuacct_create
,
8149 .destroy
= cpuacct_destroy
,
8150 .populate
= cpuacct_populate
,
8151 .subsys_id
= cpuacct_subsys_id
,
8153 #endif /* CONFIG_CGROUP_CPUACCT */