2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
30 #include <trace/events/sched.h>
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
46 unsigned int sysctl_sched_latency
= 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG
;
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 unsigned int sysctl_sched_min_granularity
= 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
71 static unsigned int sched_nr_latency
= 8;
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
77 unsigned int sysctl_sched_child_runs_first __read_mostly
;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
90 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
93 * The exponential sliding window over which load is averaged for shares
97 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * default: 5 msec, units: microseconds
110 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
120 * This idea comes from the SD scheduler of Con Kolivas:
122 static int get_update_sysctl_factor(void)
124 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
127 switch (sysctl_sched_tunable_scaling
) {
128 case SCHED_TUNABLESCALING_NONE
:
131 case SCHED_TUNABLESCALING_LINEAR
:
134 case SCHED_TUNABLESCALING_LOG
:
136 factor
= 1 + ilog2(cpus
);
143 static void update_sysctl(void)
145 unsigned int factor
= get_update_sysctl_factor();
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity
);
150 SET_SYSCTL(sched_latency
);
151 SET_SYSCTL(sched_wakeup_granularity
);
155 void sched_init_granularity(void)
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
163 # define WMULT_CONST (1UL << 32)
166 #define WMULT_SHIFT 32
169 * Shift right and round:
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
174 * delta *= weight / lw
177 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
178 struct load_weight
*lw
)
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
187 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
188 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
190 tmp
= (u64
)delta_exec
;
192 if (!lw
->inv_weight
) {
193 unsigned long w
= scale_load_down(lw
->weight
);
195 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
197 else if (unlikely(!w
))
198 lw
->inv_weight
= WMULT_CONST
;
200 lw
->inv_weight
= WMULT_CONST
/ w
;
204 * Check whether we'd overflow the 64-bit multiplication:
206 if (unlikely(tmp
> WMULT_CONST
))
207 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
210 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
212 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
216 const struct sched_class fair_sched_class
;
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
222 #ifdef CONFIG_FAIR_GROUP_SCHED
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
233 static inline struct task_struct
*task_of(struct sched_entity
*se
)
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se
));
238 return container_of(se
, struct task_struct
, se
);
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
245 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
264 if (!cfs_rq
->on_list
) {
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
271 if (cfs_rq
->tg
->parent
&&
272 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
273 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
274 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
276 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
277 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
286 if (cfs_rq
->on_list
) {
287 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
296 /* Do the two (enqueued) entities belong to the same group ? */
298 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
300 if (se
->cfs_rq
== pse
->cfs_rq
)
306 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity
*se
)
316 for_each_sched_entity(se
)
323 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
325 int se_depth
, pse_depth
;
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
334 /* First walk up until both entities are at same depth */
335 se_depth
= depth_se(*se
);
336 pse_depth
= depth_se(*pse
);
338 while (se_depth
> pse_depth
) {
340 *se
= parent_entity(*se
);
343 while (pse_depth
> se_depth
) {
345 *pse
= parent_entity(*pse
);
348 while (!is_same_group(*se
, *pse
)) {
349 *se
= parent_entity(*se
);
350 *pse
= parent_entity(*pse
);
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
356 static inline struct task_struct
*task_of(struct sched_entity
*se
)
358 return container_of(se
, struct task_struct
, se
);
361 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
363 return container_of(cfs_rq
, struct rq
, cfs
);
366 #define entity_is_task(se) 1
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
371 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
373 return &task_rq(p
)->cfs
;
376 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
378 struct task_struct
*p
= task_of(se
);
379 struct rq
*rq
= task_rq(p
);
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
402 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
407 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
413 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
419 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
420 unsigned long delta_exec
);
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
426 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
428 s64 delta
= (s64
)(vruntime
- min_vruntime
);
430 min_vruntime
= vruntime
;
435 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
437 s64 delta
= (s64
)(vruntime
- min_vruntime
);
439 min_vruntime
= vruntime
;
444 static inline int entity_before(struct sched_entity
*a
,
445 struct sched_entity
*b
)
447 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
450 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
452 u64 vruntime
= cfs_rq
->min_vruntime
;
455 vruntime
= cfs_rq
->curr
->vruntime
;
457 if (cfs_rq
->rb_leftmost
) {
458 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
463 vruntime
= se
->vruntime
;
465 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
468 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
471 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
476 * Enqueue an entity into the rb-tree:
478 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
480 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
481 struct rb_node
*parent
= NULL
;
482 struct sched_entity
*entry
;
486 * Find the right place in the rbtree:
490 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
495 if (entity_before(se
, entry
)) {
496 link
= &parent
->rb_left
;
498 link
= &parent
->rb_right
;
504 * Maintain a cache of leftmost tree entries (it is frequently
508 cfs_rq
->rb_leftmost
= &se
->run_node
;
510 rb_link_node(&se
->run_node
, parent
, link
);
511 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
514 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
516 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
517 struct rb_node
*next_node
;
519 next_node
= rb_next(&se
->run_node
);
520 cfs_rq
->rb_leftmost
= next_node
;
523 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
526 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
528 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
533 return rb_entry(left
, struct sched_entity
, run_node
);
536 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
538 struct rb_node
*next
= rb_next(&se
->run_node
);
543 return rb_entry(next
, struct sched_entity
, run_node
);
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
549 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
554 return rb_entry(last
, struct sched_entity
, run_node
);
557 /**************************************************************
558 * Scheduling class statistics methods:
561 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
562 void __user
*buffer
, size_t *lenp
,
565 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
566 int factor
= get_update_sysctl_factor();
571 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
572 sysctl_sched_min_granularity
);
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity
);
577 WRT_SYSCTL(sched_latency
);
578 WRT_SYSCTL(sched_wakeup_granularity
);
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
591 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
592 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
598 * The idea is to set a period in which each task runs once.
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
603 * p = (nr <= nl) ? l : l*nr/nl
605 static u64
__sched_period(unsigned long nr_running
)
607 u64 period
= sysctl_sched_latency
;
608 unsigned long nr_latency
= sched_nr_latency
;
610 if (unlikely(nr_running
> nr_latency
)) {
611 period
= sysctl_sched_min_granularity
;
612 period
*= nr_running
;
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
624 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
626 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
628 for_each_sched_entity(se
) {
629 struct load_weight
*load
;
630 struct load_weight lw
;
632 cfs_rq
= cfs_rq_of(se
);
633 load
= &cfs_rq
->load
;
635 if (unlikely(!se
->on_rq
)) {
638 update_load_add(&lw
, se
->load
.weight
);
641 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
647 * We calculate the vruntime slice of a to be inserted task
651 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
653 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
656 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
657 static void update_cfs_shares(struct cfs_rq
*cfs_rq
);
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
664 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
665 unsigned long delta_exec
)
667 unsigned long delta_exec_weighted
;
669 schedstat_set(curr
->statistics
.exec_max
,
670 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
672 curr
->sum_exec_runtime
+= delta_exec
;
673 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
674 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
676 curr
->vruntime
+= delta_exec_weighted
;
677 update_min_vruntime(cfs_rq
);
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
684 static void update_curr(struct cfs_rq
*cfs_rq
)
686 struct sched_entity
*curr
= cfs_rq
->curr
;
687 u64 now
= rq_of(cfs_rq
)->clock_task
;
688 unsigned long delta_exec
;
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
698 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
702 __update_curr(cfs_rq
, curr
, delta_exec
);
703 curr
->exec_start
= now
;
705 if (entity_is_task(curr
)) {
706 struct task_struct
*curtask
= task_of(curr
);
708 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
709 cpuacct_charge(curtask
, delta_exec
);
710 account_group_exec_runtime(curtask
, delta_exec
);
713 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
717 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
719 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
723 * Task is being enqueued - update stats:
725 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
731 if (se
!= cfs_rq
->curr
)
732 update_stats_wait_start(cfs_rq
, se
);
736 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
738 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
739 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
740 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
741 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
742 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se
)) {
745 trace_sched_stat_wait(task_of(se
),
746 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
749 schedstat_set(se
->statistics
.wait_start
, 0);
753 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
756 * Mark the end of the wait period if dequeueing a
759 if (se
!= cfs_rq
->curr
)
760 update_stats_wait_end(cfs_rq
, se
);
764 * We are picking a new current task - update its stats:
767 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
770 * We are starting a new run period:
772 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
775 /**************************************************
776 * Scheduling class queueing methods:
779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
781 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
783 cfs_rq
->task_weight
+= weight
;
787 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
793 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
795 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
796 if (!parent_entity(se
))
797 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
798 if (entity_is_task(se
)) {
799 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
800 list_add(&se
->group_node
, &cfs_rq
->tasks
);
802 cfs_rq
->nr_running
++;
806 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
808 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
809 if (!parent_entity(se
))
810 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
811 if (entity_is_task(se
)) {
812 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
813 list_del_init(&se
->group_node
);
815 cfs_rq
->nr_running
--;
818 #ifdef CONFIG_FAIR_GROUP_SCHED
819 /* we need this in update_cfs_load and load-balance functions below */
820 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
822 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
825 struct task_group
*tg
= cfs_rq
->tg
;
828 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
829 load_avg
-= cfs_rq
->load_contribution
;
831 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
832 atomic_add(load_avg
, &tg
->load_weight
);
833 cfs_rq
->load_contribution
+= load_avg
;
837 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
839 u64 period
= sysctl_sched_shares_window
;
841 unsigned long load
= cfs_rq
->load
.weight
;
843 if (cfs_rq
->tg
== &root_task_group
|| throttled_hierarchy(cfs_rq
))
846 now
= rq_of(cfs_rq
)->clock_task
;
847 delta
= now
- cfs_rq
->load_stamp
;
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
851 now
- cfs_rq
->load_last
> 4 * period
) {
852 cfs_rq
->load_period
= 0;
853 cfs_rq
->load_avg
= 0;
857 cfs_rq
->load_stamp
= now
;
858 cfs_rq
->load_unacc_exec_time
= 0;
859 cfs_rq
->load_period
+= delta
;
861 cfs_rq
->load_last
= now
;
862 cfs_rq
->load_avg
+= delta
* load
;
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update
|| cfs_rq
->load_period
> period
867 || !cfs_rq
->load_period
)
868 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
870 while (cfs_rq
->load_period
> period
) {
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
876 asm("" : "+rm" (cfs_rq
->load_period
));
877 cfs_rq
->load_period
/= 2;
878 cfs_rq
->load_avg
/= 2;
881 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
882 list_del_leaf_cfs_rq(cfs_rq
);
885 static inline long calc_tg_weight(struct task_group
*tg
, struct cfs_rq
*cfs_rq
)
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
894 tg_weight
= atomic_read(&tg
->load_weight
);
895 tg_weight
-= cfs_rq
->load_contribution
;
896 tg_weight
+= cfs_rq
->load
.weight
;
901 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
903 long tg_weight
, load
, shares
;
905 tg_weight
= calc_tg_weight(tg
, cfs_rq
);
906 load
= cfs_rq
->load
.weight
;
908 shares
= (tg
->shares
* load
);
912 if (shares
< MIN_SHARES
)
914 if (shares
> tg
->shares
)
920 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
922 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
923 update_cfs_load(cfs_rq
, 0);
924 update_cfs_shares(cfs_rq
);
927 # else /* CONFIG_SMP */
928 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
932 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
937 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
940 # endif /* CONFIG_SMP */
941 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
942 unsigned long weight
)
945 /* commit outstanding execution time */
946 if (cfs_rq
->curr
== se
)
948 account_entity_dequeue(cfs_rq
, se
);
951 update_load_set(&se
->load
, weight
);
954 account_entity_enqueue(cfs_rq
, se
);
957 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
959 struct task_group
*tg
;
960 struct sched_entity
*se
;
964 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
965 if (!se
|| throttled_hierarchy(cfs_rq
))
968 if (likely(se
->load
.weight
== tg
->shares
))
971 shares
= calc_cfs_shares(cfs_rq
, tg
);
973 reweight_entity(cfs_rq_of(se
), se
, shares
);
975 #else /* CONFIG_FAIR_GROUP_SCHED */
976 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
980 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
984 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
989 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
991 #ifdef CONFIG_SCHEDSTATS
992 struct task_struct
*tsk
= NULL
;
994 if (entity_is_task(se
))
997 if (se
->statistics
.sleep_start
) {
998 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
1003 if (unlikely(delta
> se
->statistics
.sleep_max
))
1004 se
->statistics
.sleep_max
= delta
;
1006 se
->statistics
.sleep_start
= 0;
1007 se
->statistics
.sum_sleep_runtime
+= delta
;
1010 account_scheduler_latency(tsk
, delta
>> 10, 1);
1011 trace_sched_stat_sleep(tsk
, delta
);
1014 if (se
->statistics
.block_start
) {
1015 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
1020 if (unlikely(delta
> se
->statistics
.block_max
))
1021 se
->statistics
.block_max
= delta
;
1023 se
->statistics
.block_start
= 0;
1024 se
->statistics
.sum_sleep_runtime
+= delta
;
1027 if (tsk
->in_iowait
) {
1028 se
->statistics
.iowait_sum
+= delta
;
1029 se
->statistics
.iowait_count
++;
1030 trace_sched_stat_iowait(tsk
, delta
);
1033 trace_sched_stat_blocked(tsk
, delta
);
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1040 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
1041 profile_hits(SLEEP_PROFILING
,
1042 (void *)get_wchan(tsk
),
1045 account_scheduler_latency(tsk
, delta
>> 10, 0);
1051 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1053 #ifdef CONFIG_SCHED_DEBUG
1054 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
1059 if (d
> 3*sysctl_sched_latency
)
1060 schedstat_inc(cfs_rq
, nr_spread_over
);
1065 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
1067 u64 vruntime
= cfs_rq
->min_vruntime
;
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1075 if (initial
&& sched_feat(START_DEBIT
))
1076 vruntime
+= sched_vslice(cfs_rq
, se
);
1078 /* sleeps up to a single latency don't count. */
1080 unsigned long thresh
= sysctl_sched_latency
;
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
1095 se
->vruntime
= vruntime
;
1098 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
1101 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1107 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
1108 se
->vruntime
+= cfs_rq
->min_vruntime
;
1111 * Update run-time statistics of the 'current'.
1113 update_curr(cfs_rq
);
1114 update_cfs_load(cfs_rq
, 0);
1115 account_entity_enqueue(cfs_rq
, se
);
1116 update_cfs_shares(cfs_rq
);
1118 if (flags
& ENQUEUE_WAKEUP
) {
1119 place_entity(cfs_rq
, se
, 0);
1120 enqueue_sleeper(cfs_rq
, se
);
1123 update_stats_enqueue(cfs_rq
, se
);
1124 check_spread(cfs_rq
, se
);
1125 if (se
!= cfs_rq
->curr
)
1126 __enqueue_entity(cfs_rq
, se
);
1129 if (cfs_rq
->nr_running
== 1) {
1130 list_add_leaf_cfs_rq(cfs_rq
);
1131 check_enqueue_throttle(cfs_rq
);
1135 static void __clear_buddies_last(struct sched_entity
*se
)
1137 for_each_sched_entity(se
) {
1138 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1139 if (cfs_rq
->last
== se
)
1140 cfs_rq
->last
= NULL
;
1146 static void __clear_buddies_next(struct sched_entity
*se
)
1148 for_each_sched_entity(se
) {
1149 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1150 if (cfs_rq
->next
== se
)
1151 cfs_rq
->next
= NULL
;
1157 static void __clear_buddies_skip(struct sched_entity
*se
)
1159 for_each_sched_entity(se
) {
1160 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1161 if (cfs_rq
->skip
== se
)
1162 cfs_rq
->skip
= NULL
;
1168 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1170 if (cfs_rq
->last
== se
)
1171 __clear_buddies_last(se
);
1173 if (cfs_rq
->next
== se
)
1174 __clear_buddies_next(se
);
1176 if (cfs_rq
->skip
== se
)
1177 __clear_buddies_skip(se
);
1180 static void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1183 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1186 * Update run-time statistics of the 'current'.
1188 update_curr(cfs_rq
);
1190 update_stats_dequeue(cfs_rq
, se
);
1191 if (flags
& DEQUEUE_SLEEP
) {
1192 #ifdef CONFIG_SCHEDSTATS
1193 if (entity_is_task(se
)) {
1194 struct task_struct
*tsk
= task_of(se
);
1196 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1197 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1198 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1199 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1204 clear_buddies(cfs_rq
, se
);
1206 if (se
!= cfs_rq
->curr
)
1207 __dequeue_entity(cfs_rq
, se
);
1209 update_cfs_load(cfs_rq
, 0);
1210 account_entity_dequeue(cfs_rq
, se
);
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1217 if (!(flags
& DEQUEUE_SLEEP
))
1218 se
->vruntime
-= cfs_rq
->min_vruntime
;
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq
);
1223 update_min_vruntime(cfs_rq
);
1224 update_cfs_shares(cfs_rq
);
1228 * Preempt the current task with a newly woken task if needed:
1231 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1233 unsigned long ideal_runtime
, delta_exec
;
1234 struct sched_entity
*se
;
1237 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1238 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1239 if (delta_exec
> ideal_runtime
) {
1240 resched_task(rq_of(cfs_rq
)->curr
);
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1245 clear_buddies(cfs_rq
, curr
);
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1254 if (delta_exec
< sysctl_sched_min_granularity
)
1257 se
= __pick_first_entity(cfs_rq
);
1258 delta
= curr
->vruntime
- se
->vruntime
;
1263 if (delta
> ideal_runtime
)
1264 resched_task(rq_of(cfs_rq
)->curr
);
1268 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1270 /* 'current' is not kept within the tree. */
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1277 update_stats_wait_end(cfs_rq
, se
);
1278 __dequeue_entity(cfs_rq
, se
);
1281 update_stats_curr_start(cfs_rq
, se
);
1283 #ifdef CONFIG_SCHEDSTATS
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1289 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1290 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1291 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1294 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1298 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1307 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1309 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1310 struct sched_entity
*left
= se
;
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1316 if (cfs_rq
->skip
== se
) {
1317 struct sched_entity
*second
= __pick_next_entity(se
);
1318 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1325 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1329 * Someone really wants this to run. If it's not unfair, run it.
1331 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1334 clear_buddies(cfs_rq
, se
);
1339 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
1341 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1348 update_curr(cfs_rq
);
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq
);
1353 check_spread(cfs_rq
, prev
);
1355 update_stats_wait_start(cfs_rq
, prev
);
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq
, prev
);
1359 cfs_rq
->curr
= NULL
;
1363 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1366 * Update run-time statistics of the 'current'.
1368 update_curr(cfs_rq
);
1371 * Update share accounting for long-running entities.
1373 update_entity_shares_tick(cfs_rq
);
1375 #ifdef CONFIG_SCHED_HRTICK
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1381 resched_task(rq_of(cfs_rq
)->curr
);
1385 * don't let the period tick interfere with the hrtick preemption
1387 if (!sched_feat(DOUBLE_TICK
) &&
1388 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1392 if (cfs_rq
->nr_running
> 1)
1393 check_preempt_tick(cfs_rq
, curr
);
1397 /**************************************************
1398 * CFS bandwidth control machinery
1401 #ifdef CONFIG_CFS_BANDWIDTH
1403 #ifdef HAVE_JUMP_LABEL
1404 static struct jump_label_key __cfs_bandwidth_used
;
1406 static inline bool cfs_bandwidth_used(void)
1408 return static_branch(&__cfs_bandwidth_used
);
1411 void account_cfs_bandwidth_used(int enabled
, int was_enabled
)
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled
&& !was_enabled
)
1415 jump_label_inc(&__cfs_bandwidth_used
);
1416 else if (!enabled
&& was_enabled
)
1417 jump_label_dec(&__cfs_bandwidth_used
);
1419 #else /* HAVE_JUMP_LABEL */
1420 static bool cfs_bandwidth_used(void)
1425 void account_cfs_bandwidth_used(int enabled
, int was_enabled
) {}
1426 #endif /* HAVE_JUMP_LABEL */
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1432 static inline u64
default_cfs_period(void)
1434 return 100000000ULL;
1437 static inline u64
sched_cfs_bandwidth_slice(void)
1439 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1447 * requires cfs_b->lock
1449 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
1453 if (cfs_b
->quota
== RUNTIME_INF
)
1456 now
= sched_clock_cpu(smp_processor_id());
1457 cfs_b
->runtime
= cfs_b
->quota
;
1458 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
1461 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
1463 return &tg
->cfs_bandwidth
;
1466 /* returns 0 on failure to allocate runtime */
1467 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1469 struct task_group
*tg
= cfs_rq
->tg
;
1470 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
1471 u64 amount
= 0, min_amount
, expires
;
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
1476 raw_spin_lock(&cfs_b
->lock
);
1477 if (cfs_b
->quota
== RUNTIME_INF
)
1478 amount
= min_amount
;
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1486 if (!cfs_b
->timer_active
) {
1487 __refill_cfs_bandwidth_runtime(cfs_b
);
1488 __start_cfs_bandwidth(cfs_b
);
1491 if (cfs_b
->runtime
> 0) {
1492 amount
= min(cfs_b
->runtime
, min_amount
);
1493 cfs_b
->runtime
-= amount
;
1497 expires
= cfs_b
->runtime_expires
;
1498 raw_spin_unlock(&cfs_b
->lock
);
1500 cfs_rq
->runtime_remaining
+= amount
;
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1506 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
1507 cfs_rq
->runtime_expires
= expires
;
1509 return cfs_rq
->runtime_remaining
> 0;
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1516 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1518 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1519 struct rq
*rq
= rq_of(cfs_rq
);
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64
)(rq
->clock
- cfs_rq
->runtime_expires
) < 0))
1525 if (cfs_rq
->runtime_remaining
< 0)
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1537 if ((s64
)(cfs_rq
->runtime_expires
- cfs_b
->runtime_expires
) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq
->runtime_expires
+= TICK_NSEC
;
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq
->runtime_remaining
= 0;
1546 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1547 unsigned long delta_exec
)
1549 /* dock delta_exec before expiring quota (as it could span periods) */
1550 cfs_rq
->runtime_remaining
-= delta_exec
;
1551 expire_cfs_rq_runtime(cfs_rq
);
1553 if (likely(cfs_rq
->runtime_remaining
> 0))
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1560 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
1561 resched_task(rq_of(cfs_rq
)->curr
);
1564 static __always_inline
void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
1565 unsigned long delta_exec
)
1567 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
1570 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
1573 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
1575 return cfs_bandwidth_used() && cfs_rq
->throttled
;
1578 /* check whether cfs_rq, or any parent, is throttled */
1579 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
1581 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1589 static inline int throttled_lb_pair(struct task_group
*tg
,
1590 int src_cpu
, int dest_cpu
)
1592 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
1594 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
1595 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
1597 return throttled_hierarchy(src_cfs_rq
) ||
1598 throttled_hierarchy(dest_cfs_rq
);
1601 /* updated child weight may affect parent so we have to do this bottom up */
1602 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
1604 struct rq
*rq
= data
;
1605 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
1607 cfs_rq
->throttle_count
--;
1609 if (!cfs_rq
->throttle_count
) {
1610 u64 delta
= rq
->clock_task
- cfs_rq
->load_stamp
;
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq
->load_stamp
+= delta
;
1614 cfs_rq
->load_last
+= delta
;
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq
);
1624 static int tg_throttle_down(struct task_group
*tg
, void *data
)
1626 struct rq
*rq
= data
;
1627 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq
->throttle_count
)
1631 update_cfs_load(cfs_rq
, 0);
1632 cfs_rq
->throttle_count
++;
1637 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
1639 struct rq
*rq
= rq_of(cfs_rq
);
1640 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1641 struct sched_entity
*se
;
1642 long task_delta
, dequeue
= 1;
1644 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
1646 /* account load preceding throttle */
1648 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
1651 task_delta
= cfs_rq
->h_nr_running
;
1652 for_each_sched_entity(se
) {
1653 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
1654 /* throttled entity or throttle-on-deactivate */
1659 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
1660 qcfs_rq
->h_nr_running
-= task_delta
;
1662 if (qcfs_rq
->load
.weight
)
1667 rq
->nr_running
-= task_delta
;
1669 cfs_rq
->throttled
= 1;
1670 cfs_rq
->throttled_timestamp
= rq
->clock
;
1671 raw_spin_lock(&cfs_b
->lock
);
1672 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
1673 raw_spin_unlock(&cfs_b
->lock
);
1676 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
1678 struct rq
*rq
= rq_of(cfs_rq
);
1679 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1680 struct sched_entity
*se
;
1684 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
1686 cfs_rq
->throttled
= 0;
1687 raw_spin_lock(&cfs_b
->lock
);
1688 cfs_b
->throttled_time
+= rq
->clock
- cfs_rq
->throttled_timestamp
;
1689 list_del_rcu(&cfs_rq
->throttled_list
);
1690 raw_spin_unlock(&cfs_b
->lock
);
1691 cfs_rq
->throttled_timestamp
= 0;
1693 update_rq_clock(rq
);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
1697 if (!cfs_rq
->load
.weight
)
1700 task_delta
= cfs_rq
->h_nr_running
;
1701 for_each_sched_entity(se
) {
1705 cfs_rq
= cfs_rq_of(se
);
1707 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
1708 cfs_rq
->h_nr_running
+= task_delta
;
1710 if (cfs_rq_throttled(cfs_rq
))
1715 rq
->nr_running
+= task_delta
;
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
1719 resched_task(rq
->curr
);
1722 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
1723 u64 remaining
, u64 expires
)
1725 struct cfs_rq
*cfs_rq
;
1726 u64 runtime
= remaining
;
1729 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
1731 struct rq
*rq
= rq_of(cfs_rq
);
1733 raw_spin_lock(&rq
->lock
);
1734 if (!cfs_rq_throttled(cfs_rq
))
1737 runtime
= -cfs_rq
->runtime_remaining
+ 1;
1738 if (runtime
> remaining
)
1739 runtime
= remaining
;
1740 remaining
-= runtime
;
1742 cfs_rq
->runtime_remaining
+= runtime
;
1743 cfs_rq
->runtime_expires
= expires
;
1745 /* we check whether we're throttled above */
1746 if (cfs_rq
->runtime_remaining
> 0)
1747 unthrottle_cfs_rq(cfs_rq
);
1750 raw_spin_unlock(&rq
->lock
);
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1766 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
1768 u64 runtime
, runtime_expires
;
1769 int idle
= 1, throttled
;
1771 raw_spin_lock(&cfs_b
->lock
);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b
->quota
== RUNTIME_INF
)
1776 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle
= cfs_b
->idle
&& !throttled
;
1779 cfs_b
->nr_periods
+= overrun
;
1781 /* if we're going inactive then everything else can be deferred */
1785 __refill_cfs_bandwidth_runtime(cfs_b
);
1788 /* mark as potentially idle for the upcoming period */
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b
->nr_throttled
+= overrun
;
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1802 runtime
= cfs_b
->runtime
;
1803 runtime_expires
= cfs_b
->runtime_expires
;
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1811 while (throttled
&& runtime
> 0) {
1812 raw_spin_unlock(&cfs_b
->lock
);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
1816 raw_spin_lock(&cfs_b
->lock
);
1818 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
1821 /* return (any) remaining runtime */
1822 cfs_b
->runtime
= runtime
;
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1832 cfs_b
->timer_active
= 0;
1833 raw_spin_unlock(&cfs_b
->lock
);
1838 /* a cfs_rq won't donate quota below this amount */
1839 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
1840 /* minimum remaining period time to redistribute slack quota */
1841 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
1842 /* how long we wait to gather additional slack before distributing */
1843 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
1845 /* are we near the end of the current quota period? */
1846 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
1848 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer
))
1855 /* is a quota refresh about to occur? */
1856 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
1857 if (remaining
< min_expire
)
1863 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
1865 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b
, min_left
))
1871 start_bandwidth_timer(&cfs_b
->slack_timer
,
1872 ns_to_ktime(cfs_bandwidth_slack_period
));
1875 /* we know any runtime found here is valid as update_curr() precedes return */
1876 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1878 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
1879 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
1881 if (slack_runtime
<= 0)
1884 raw_spin_lock(&cfs_b
->lock
);
1885 if (cfs_b
->quota
!= RUNTIME_INF
&&
1886 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
1887 cfs_b
->runtime
+= slack_runtime
;
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b
->throttled_cfs_rq
))
1892 start_cfs_slack_bandwidth(cfs_b
);
1894 raw_spin_unlock(&cfs_b
->lock
);
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq
->runtime_remaining
-= slack_runtime
;
1900 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1902 if (!cfs_bandwidth_used())
1905 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
1908 __return_cfs_rq_runtime(cfs_rq
);
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1915 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
1917 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
))
1924 raw_spin_lock(&cfs_b
->lock
);
1925 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
) {
1926 runtime
= cfs_b
->runtime
;
1929 expires
= cfs_b
->runtime_expires
;
1930 raw_spin_unlock(&cfs_b
->lock
);
1935 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
1937 raw_spin_lock(&cfs_b
->lock
);
1938 if (expires
== cfs_b
->runtime_expires
)
1939 cfs_b
->runtime
= runtime
;
1940 raw_spin_unlock(&cfs_b
->lock
);
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1948 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
1950 if (!cfs_bandwidth_used())
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq
))
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq
, 0);
1963 if (cfs_rq
->runtime_remaining
<= 0)
1964 throttle_cfs_rq(cfs_rq
);
1967 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1968 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
1970 if (!cfs_bandwidth_used())
1973 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1980 if (cfs_rq_throttled(cfs_rq
))
1983 throttle_cfs_rq(cfs_rq
);
1986 static inline u64
default_cfs_period(void);
1987 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
);
1988 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
);
1990 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
1992 struct cfs_bandwidth
*cfs_b
=
1993 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
1994 do_sched_cfs_slack_timer(cfs_b
);
1996 return HRTIMER_NORESTART
;
1999 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
2001 struct cfs_bandwidth
*cfs_b
=
2002 container_of(timer
, struct cfs_bandwidth
, period_timer
);
2008 now
= hrtimer_cb_get_time(timer
);
2009 overrun
= hrtimer_forward(timer
, now
, cfs_b
->period
);
2014 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
2017 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
2020 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
2022 raw_spin_lock_init(&cfs_b
->lock
);
2024 cfs_b
->quota
= RUNTIME_INF
;
2025 cfs_b
->period
= ns_to_ktime(default_cfs_period());
2027 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
2028 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2029 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
2030 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2031 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
2034 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
2036 cfs_rq
->runtime_enabled
= 0;
2037 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
2040 /* requires cfs_b->lock, may release to reprogram timer */
2041 void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2049 while (unlikely(hrtimer_active(&cfs_b
->period_timer
))) {
2050 raw_spin_unlock(&cfs_b
->lock
);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b
->period_timer
);
2054 raw_spin_lock(&cfs_b
->lock
);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b
->timer_active
)
2060 cfs_b
->timer_active
= 1;
2061 start_bandwidth_timer(&cfs_b
->period_timer
, cfs_b
->period
);
2064 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
2066 hrtimer_cancel(&cfs_b
->period_timer
);
2067 hrtimer_cancel(&cfs_b
->slack_timer
);
2070 void unthrottle_offline_cfs_rqs(struct rq
*rq
)
2072 struct cfs_rq
*cfs_rq
;
2074 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
2075 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
2077 if (!cfs_rq
->runtime_enabled
)
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2084 cfs_rq
->runtime_remaining
= cfs_b
->quota
;
2085 if (cfs_rq_throttled(cfs_rq
))
2086 unthrottle_cfs_rq(cfs_rq
);
2090 #else /* CONFIG_CFS_BANDWIDTH */
2091 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
,
2092 unsigned long delta_exec
) {}
2093 static void check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
2094 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
2095 static void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
2097 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
2102 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
2107 static inline int throttled_lb_pair(struct task_group
*tg
,
2108 int src_cpu
, int dest_cpu
)
2113 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
2115 #ifdef CONFIG_FAIR_GROUP_SCHED
2116 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
2119 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
2123 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
2124 void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
2126 #endif /* CONFIG_CFS_BANDWIDTH */
2128 /**************************************************
2129 * CFS operations on tasks:
2132 #ifdef CONFIG_SCHED_HRTICK
2133 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
2135 struct sched_entity
*se
= &p
->se
;
2136 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2138 WARN_ON(task_rq(p
) != rq
);
2140 if (cfs_rq
->nr_running
> 1) {
2141 u64 slice
= sched_slice(cfs_rq
, se
);
2142 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
2143 s64 delta
= slice
- ran
;
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2156 delta
= max_t(s64
, 10000LL, delta
);
2158 hrtick_start(rq
, delta
);
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2167 static void hrtick_update(struct rq
*rq
)
2169 struct task_struct
*curr
= rq
->curr
;
2171 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
2174 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
2175 hrtick_start_fair(rq
, curr
);
2177 #else /* !CONFIG_SCHED_HRTICK */
2179 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
2183 static inline void hrtick_update(struct rq
*rq
)
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2194 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
2196 struct cfs_rq
*cfs_rq
;
2197 struct sched_entity
*se
= &p
->se
;
2199 for_each_sched_entity(se
) {
2202 cfs_rq
= cfs_rq_of(se
);
2203 enqueue_entity(cfs_rq
, se
, flags
);
2206 * end evaluation on encountering a throttled cfs_rq
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2211 if (cfs_rq_throttled(cfs_rq
))
2213 cfs_rq
->h_nr_running
++;
2215 flags
= ENQUEUE_WAKEUP
;
2218 for_each_sched_entity(se
) {
2219 cfs_rq
= cfs_rq_of(se
);
2220 cfs_rq
->h_nr_running
++;
2222 if (cfs_rq_throttled(cfs_rq
))
2225 update_cfs_load(cfs_rq
, 0);
2226 update_cfs_shares(cfs_rq
);
2234 static void set_next_buddy(struct sched_entity
*se
);
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2241 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
2243 struct cfs_rq
*cfs_rq
;
2244 struct sched_entity
*se
= &p
->se
;
2245 int task_sleep
= flags
& DEQUEUE_SLEEP
;
2247 for_each_sched_entity(se
) {
2248 cfs_rq
= cfs_rq_of(se
);
2249 dequeue_entity(cfs_rq
, se
, flags
);
2252 * end evaluation on encountering a throttled cfs_rq
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2257 if (cfs_rq_throttled(cfs_rq
))
2259 cfs_rq
->h_nr_running
--;
2261 /* Don't dequeue parent if it has other entities besides us */
2262 if (cfs_rq
->load
.weight
) {
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2267 if (task_sleep
&& parent_entity(se
))
2268 set_next_buddy(parent_entity(se
));
2270 /* avoid re-evaluating load for this entity */
2271 se
= parent_entity(se
);
2274 flags
|= DEQUEUE_SLEEP
;
2277 for_each_sched_entity(se
) {
2278 cfs_rq
= cfs_rq_of(se
);
2279 cfs_rq
->h_nr_running
--;
2281 if (cfs_rq_throttled(cfs_rq
))
2284 update_cfs_load(cfs_rq
, 0);
2285 update_cfs_shares(cfs_rq
);
2294 /* Used instead of source_load when we know the type == 0 */
2295 static unsigned long weighted_cpuload(const int cpu
)
2297 return cpu_rq(cpu
)->load
.weight
;
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2307 static unsigned long source_load(int cpu
, int type
)
2309 struct rq
*rq
= cpu_rq(cpu
);
2310 unsigned long total
= weighted_cpuload(cpu
);
2312 if (type
== 0 || !sched_feat(LB_BIAS
))
2315 return min(rq
->cpu_load
[type
-1], total
);
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2322 static unsigned long target_load(int cpu
, int type
)
2324 struct rq
*rq
= cpu_rq(cpu
);
2325 unsigned long total
= weighted_cpuload(cpu
);
2327 if (type
== 0 || !sched_feat(LB_BIAS
))
2330 return max(rq
->cpu_load
[type
-1], total
);
2333 static unsigned long power_of(int cpu
)
2335 return cpu_rq(cpu
)->cpu_power
;
2338 static unsigned long cpu_avg_load_per_task(int cpu
)
2340 struct rq
*rq
= cpu_rq(cpu
);
2341 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
2344 return rq
->load
.weight
/ nr_running
;
2350 static void task_waking_fair(struct task_struct
*p
)
2352 struct sched_entity
*se
= &p
->se
;
2353 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2356 #ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy
;
2360 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
2362 min_vruntime
= cfs_rq
->min_vruntime
;
2363 } while (min_vruntime
!= min_vruntime_copy
);
2365 min_vruntime
= cfs_rq
->min_vruntime
;
2368 se
->vruntime
-= min_vruntime
;
2371 #ifdef CONFIG_FAIR_GROUP_SCHED
2373 * effective_load() calculates the load change as seen from the root_task_group
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2386 * s_i = rw_i / \Sum rw_j (1)
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2412 * We can then compute the difference in effective weight by using:
2414 * dw_i = S * (s'_i - s_i) (3)
2416 * Where 'S' is the group weight as seen by its parent.
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
2422 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
2424 struct sched_entity
*se
= tg
->se
[cpu
];
2426 if (!tg
->parent
) /* the trivial, non-cgroup case */
2429 for_each_sched_entity(se
) {
2435 * W = @wg + \Sum rw_j
2437 W
= wg
+ calc_tg_weight(tg
, se
->my_q
);
2442 w
= se
->my_q
->load
.weight
+ wl
;
2445 * wl = S * s'_i; see (2)
2448 wl
= (w
* tg
->shares
) / W
;
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2457 if (wl
< MIN_SHARES
)
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2463 wl
-= se
->load
.weight
;
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2479 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
2480 unsigned long wl
, unsigned long wg
)
2487 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
2489 s64 this_load
, load
;
2490 int idx
, this_cpu
, prev_cpu
;
2491 unsigned long tl_per_task
;
2492 struct task_group
*tg
;
2493 unsigned long weight
;
2497 this_cpu
= smp_processor_id();
2498 prev_cpu
= task_cpu(p
);
2499 load
= source_load(prev_cpu
, idx
);
2500 this_load
= target_load(this_cpu
, idx
);
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2508 tg
= task_group(current
);
2509 weight
= current
->se
.load
.weight
;
2511 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
2512 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
2516 weight
= p
->se
.load
.weight
;
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2527 if (this_load
> 0) {
2528 s64 this_eff_load
, prev_eff_load
;
2530 this_eff_load
= 100;
2531 this_eff_load
*= power_of(prev_cpu
);
2532 this_eff_load
*= this_load
+
2533 effective_load(tg
, this_cpu
, weight
, weight
);
2535 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
2536 prev_eff_load
*= power_of(this_cpu
);
2537 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
2539 balanced
= this_eff_load
<= prev_eff_load
;
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2548 if (sync
&& balanced
)
2551 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
2552 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
2555 (this_load
<= load
&&
2556 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2562 schedstat_inc(sd
, ttwu_move_affine
);
2563 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
2571 * find_idlest_group finds and returns the least busy CPU group within the
2574 static struct sched_group
*
2575 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
2576 int this_cpu
, int load_idx
)
2578 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
2579 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2580 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2583 unsigned long load
, avg_load
;
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group
),
2589 tsk_cpus_allowed(p
)))
2592 local_group
= cpumask_test_cpu(this_cpu
,
2593 sched_group_cpus(group
));
2595 /* Tally up the load of all CPUs in the group */
2598 for_each_cpu(i
, sched_group_cpus(group
)) {
2599 /* Bias balancing toward cpus of our domain */
2601 load
= source_load(i
, load_idx
);
2603 load
= target_load(i
, load_idx
);
2608 /* Adjust by relative CPU power of the group */
2609 avg_load
= (avg_load
* SCHED_POWER_SCALE
) / group
->sgp
->power
;
2612 this_load
= avg_load
;
2613 } else if (avg_load
< min_load
) {
2614 min_load
= avg_load
;
2617 } while (group
= group
->next
, group
!= sd
->groups
);
2619 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2628 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2630 unsigned long load
, min_load
= ULONG_MAX
;
2634 /* Traverse only the allowed CPUs */
2635 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
2636 load
= weighted_cpuload(i
);
2638 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2648 * Try and locate an idle CPU in the sched_domain.
2650 static int select_idle_sibling(struct task_struct
*p
, int target
)
2652 int cpu
= smp_processor_id();
2653 int prev_cpu
= task_cpu(p
);
2654 struct sched_domain
*sd
;
2655 struct sched_group
*sg
;
2659 * If the task is going to be woken-up on this cpu and if it is
2660 * already idle, then it is the right target.
2662 if (target
== cpu
&& idle_cpu(cpu
))
2666 * If the task is going to be woken-up on the cpu where it previously
2667 * ran and if it is currently idle, then it the right target.
2669 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
2673 * Otherwise, iterate the domains and find an elegible idle cpu.
2677 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
2678 for_each_lower_domain(sd
) {
2681 if (!cpumask_intersects(sched_group_cpus(sg
),
2682 tsk_cpus_allowed(p
)))
2685 for_each_cpu(i
, sched_group_cpus(sg
)) {
2690 target
= cpumask_first_and(sched_group_cpus(sg
),
2691 tsk_cpus_allowed(p
));
2695 } while (sg
!= sd
->groups
);
2704 * sched_balance_self: balance the current task (running on cpu) in domains
2705 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2708 * Balance, ie. select the least loaded group.
2710 * Returns the target CPU number, or the same CPU if no balancing is needed.
2712 * preempt must be disabled.
2715 select_task_rq_fair(struct task_struct
*p
, int sd_flag
, int wake_flags
)
2717 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
2718 int cpu
= smp_processor_id();
2719 int prev_cpu
= task_cpu(p
);
2721 int want_affine
= 0;
2723 int sync
= wake_flags
& WF_SYNC
;
2725 if (p
->rt
.nr_cpus_allowed
== 1)
2728 if (sd_flag
& SD_BALANCE_WAKE
) {
2729 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
2735 for_each_domain(cpu
, tmp
) {
2736 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
2740 * If power savings logic is enabled for a domain, see if we
2741 * are not overloaded, if so, don't balance wider.
2743 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
2744 unsigned long power
= 0;
2745 unsigned long nr_running
= 0;
2746 unsigned long capacity
;
2749 for_each_cpu(i
, sched_domain_span(tmp
)) {
2750 power
+= power_of(i
);
2751 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
2754 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_POWER_SCALE
);
2756 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2759 if (nr_running
< capacity
)
2764 * If both cpu and prev_cpu are part of this domain,
2765 * cpu is a valid SD_WAKE_AFFINE target.
2767 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
2768 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
2773 if (!want_sd
&& !want_affine
)
2776 if (!(tmp
->flags
& sd_flag
))
2784 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
2787 new_cpu
= select_idle_sibling(p
, prev_cpu
);
2792 int load_idx
= sd
->forkexec_idx
;
2793 struct sched_group
*group
;
2796 if (!(sd
->flags
& sd_flag
)) {
2801 if (sd_flag
& SD_BALANCE_WAKE
)
2802 load_idx
= sd
->wake_idx
;
2804 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
2810 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
2811 if (new_cpu
== -1 || new_cpu
== cpu
) {
2812 /* Now try balancing at a lower domain level of cpu */
2817 /* Now try balancing at a lower domain level of new_cpu */
2819 weight
= sd
->span_weight
;
2821 for_each_domain(cpu
, tmp
) {
2822 if (weight
<= tmp
->span_weight
)
2824 if (tmp
->flags
& sd_flag
)
2827 /* while loop will break here if sd == NULL */
2834 #endif /* CONFIG_SMP */
2836 static unsigned long
2837 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
2839 unsigned long gran
= sysctl_sched_wakeup_granularity
;
2842 * Since its curr running now, convert the gran from real-time
2843 * to virtual-time in his units.
2845 * By using 'se' instead of 'curr' we penalize light tasks, so
2846 * they get preempted easier. That is, if 'se' < 'curr' then
2847 * the resulting gran will be larger, therefore penalizing the
2848 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2849 * be smaller, again penalizing the lighter task.
2851 * This is especially important for buddies when the leftmost
2852 * task is higher priority than the buddy.
2854 return calc_delta_fair(gran
, se
);
2858 * Should 'se' preempt 'curr'.
2872 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
2874 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
2879 gran
= wakeup_gran(curr
, se
);
2886 static void set_last_buddy(struct sched_entity
*se
)
2888 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
2891 for_each_sched_entity(se
)
2892 cfs_rq_of(se
)->last
= se
;
2895 static void set_next_buddy(struct sched_entity
*se
)
2897 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
2900 for_each_sched_entity(se
)
2901 cfs_rq_of(se
)->next
= se
;
2904 static void set_skip_buddy(struct sched_entity
*se
)
2906 for_each_sched_entity(se
)
2907 cfs_rq_of(se
)->skip
= se
;
2911 * Preempt the current task with a newly woken task if needed:
2913 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2915 struct task_struct
*curr
= rq
->curr
;
2916 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
2917 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
2918 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
2919 int next_buddy_marked
= 0;
2921 if (unlikely(se
== pse
))
2925 * This is possible from callers such as pull_task(), in which we
2926 * unconditionally check_prempt_curr() after an enqueue (which may have
2927 * lead to a throttle). This both saves work and prevents false
2928 * next-buddy nomination below.
2930 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
2933 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
2934 set_next_buddy(pse
);
2935 next_buddy_marked
= 1;
2939 * We can come here with TIF_NEED_RESCHED already set from new task
2942 * Note: this also catches the edge-case of curr being in a throttled
2943 * group (e.g. via set_curr_task), since update_curr() (in the
2944 * enqueue of curr) will have resulted in resched being set. This
2945 * prevents us from potentially nominating it as a false LAST_BUDDY
2948 if (test_tsk_need_resched(curr
))
2951 /* Idle tasks are by definition preempted by non-idle tasks. */
2952 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
2953 likely(p
->policy
!= SCHED_IDLE
))
2957 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2958 * is driven by the tick):
2960 if (unlikely(p
->policy
!= SCHED_NORMAL
))
2963 find_matching_se(&se
, &pse
);
2964 update_curr(cfs_rq_of(se
));
2966 if (wakeup_preempt_entity(se
, pse
) == 1) {
2968 * Bias pick_next to pick the sched entity that is
2969 * triggering this preemption.
2971 if (!next_buddy_marked
)
2972 set_next_buddy(pse
);
2981 * Only set the backward buddy when the current task is still
2982 * on the rq. This can happen when a wakeup gets interleaved
2983 * with schedule on the ->pre_schedule() or idle_balance()
2984 * point, either of which can * drop the rq lock.
2986 * Also, during early boot the idle thread is in the fair class,
2987 * for obvious reasons its a bad idea to schedule back to it.
2989 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
2992 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
2996 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
2998 struct task_struct
*p
;
2999 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
3000 struct sched_entity
*se
;
3002 if (!cfs_rq
->nr_running
)
3006 se
= pick_next_entity(cfs_rq
);
3007 set_next_entity(cfs_rq
, se
);
3008 cfs_rq
= group_cfs_rq(se
);
3012 if (hrtick_enabled(rq
))
3013 hrtick_start_fair(rq
, p
);
3019 * Account for a descheduled task:
3021 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
3023 struct sched_entity
*se
= &prev
->se
;
3024 struct cfs_rq
*cfs_rq
;
3026 for_each_sched_entity(se
) {
3027 cfs_rq
= cfs_rq_of(se
);
3028 put_prev_entity(cfs_rq
, se
);
3033 * sched_yield() is very simple
3035 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3037 static void yield_task_fair(struct rq
*rq
)
3039 struct task_struct
*curr
= rq
->curr
;
3040 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
3041 struct sched_entity
*se
= &curr
->se
;
3044 * Are we the only task in the tree?
3046 if (unlikely(rq
->nr_running
== 1))
3049 clear_buddies(cfs_rq
, se
);
3051 if (curr
->policy
!= SCHED_BATCH
) {
3052 update_rq_clock(rq
);
3054 * Update run-time statistics of the 'current'.
3056 update_curr(cfs_rq
);
3058 * Tell update_rq_clock() that we've just updated,
3059 * so we don't do microscopic update in schedule()
3060 * and double the fastpath cost.
3062 rq
->skip_clock_update
= 1;
3068 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
3070 struct sched_entity
*se
= &p
->se
;
3072 /* throttled hierarchies are not runnable */
3073 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
3076 /* Tell the scheduler that we'd really like pse to run next. */
3079 yield_task_fair(rq
);
3085 /**************************************************
3086 * Fair scheduling class load-balancing methods:
3090 * pull_task - move a task from a remote runqueue to the local runqueue.
3091 * Both runqueues must be locked.
3093 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3094 struct rq
*this_rq
, int this_cpu
)
3096 deactivate_task(src_rq
, p
, 0);
3097 set_task_cpu(p
, this_cpu
);
3098 activate_task(this_rq
, p
, 0);
3099 check_preempt_curr(this_rq
, p
, 0);
3103 * Is this task likely cache-hot:
3106 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
3110 if (p
->sched_class
!= &fair_sched_class
)
3113 if (unlikely(p
->policy
== SCHED_IDLE
))
3117 * Buddy candidates are cache hot:
3119 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
3120 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
3121 &p
->se
== cfs_rq_of(&p
->se
)->last
))
3124 if (sysctl_sched_migration_cost
== -1)
3126 if (sysctl_sched_migration_cost
== 0)
3129 delta
= now
- p
->se
.exec_start
;
3131 return delta
< (s64
)sysctl_sched_migration_cost
;
3134 #define LBF_ALL_PINNED 0x01
3135 #define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */
3136 #define LBF_HAD_BREAK 0x04
3137 #define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */
3138 #define LBF_ABORT 0x10
3141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3144 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3145 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3148 int tsk_cache_hot
= 0;
3150 * We do not migrate tasks that are:
3151 * 1) running (obviously), or
3152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3153 * 3) are cache-hot on their current CPU.
3155 if (!cpumask_test_cpu(this_cpu
, tsk_cpus_allowed(p
))) {
3156 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
3159 *lb_flags
&= ~LBF_ALL_PINNED
;
3161 if (task_running(rq
, p
)) {
3162 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
3167 * Aggressive migration if:
3168 * 1) task is cache cold, or
3169 * 2) too many balance attempts have failed.
3172 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
3173 if (!tsk_cache_hot
||
3174 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3175 #ifdef CONFIG_SCHEDSTATS
3176 if (tsk_cache_hot
) {
3177 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3178 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
3184 if (tsk_cache_hot
) {
3185 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
3192 * move_one_task tries to move exactly one task from busiest to this_rq, as
3193 * part of active balancing operations within "domain".
3194 * Returns 1 if successful and 0 otherwise.
3196 * Called with both runqueues locked.
3199 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3200 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3202 struct task_struct
*p
, *n
;
3203 struct cfs_rq
*cfs_rq
;
3206 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
3207 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
3208 if (throttled_lb_pair(task_group(p
),
3209 busiest
->cpu
, this_cpu
))
3212 if (!can_migrate_task(p
, busiest
, this_cpu
,
3216 pull_task(busiest
, p
, this_rq
, this_cpu
);
3218 * Right now, this is only the second place pull_task()
3219 * is called, so we can safely collect pull_task()
3220 * stats here rather than inside pull_task().
3222 schedstat_inc(sd
, lb_gained
[idle
]);
3230 static unsigned long
3231 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3232 unsigned long max_load_move
, struct sched_domain
*sd
,
3233 enum cpu_idle_type idle
, int *lb_flags
,
3234 struct cfs_rq
*busiest_cfs_rq
)
3236 int loops
= 0, pulled
= 0;
3237 long rem_load_move
= max_load_move
;
3238 struct task_struct
*p
, *n
;
3240 if (max_load_move
== 0)
3243 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
3244 if (loops
++ > sysctl_sched_nr_migrate
) {
3245 *lb_flags
|= LBF_NEED_BREAK
;
3249 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3250 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
,
3254 pull_task(busiest
, p
, this_rq
, this_cpu
);
3256 rem_load_move
-= p
->se
.load
.weight
;
3258 #ifdef CONFIG_PREEMPT
3260 * NEWIDLE balancing is a source of latency, so preemptible
3261 * kernels will stop after the first task is pulled to minimize
3262 * the critical section.
3264 if (idle
== CPU_NEWLY_IDLE
) {
3265 *lb_flags
|= LBF_ABORT
;
3271 * We only want to steal up to the prescribed amount of
3274 if (rem_load_move
<= 0)
3279 * Right now, this is one of only two places pull_task() is called,
3280 * so we can safely collect pull_task() stats here rather than
3281 * inside pull_task().
3283 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3285 return max_load_move
- rem_load_move
;
3288 #ifdef CONFIG_FAIR_GROUP_SCHED
3290 * update tg->load_weight by folding this cpu's load_avg
3292 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
3294 struct cfs_rq
*cfs_rq
;
3295 unsigned long flags
;
3302 cfs_rq
= tg
->cfs_rq
[cpu
];
3304 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3306 update_rq_clock(rq
);
3307 update_cfs_load(cfs_rq
, 1);
3310 * We need to update shares after updating tg->load_weight in
3311 * order to adjust the weight of groups with long running tasks.
3313 update_cfs_shares(cfs_rq
);
3315 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3320 static void update_shares(int cpu
)
3322 struct cfs_rq
*cfs_rq
;
3323 struct rq
*rq
= cpu_rq(cpu
);
3327 * Iterates the task_group tree in a bottom up fashion, see
3328 * list_add_leaf_cfs_rq() for details.
3330 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
3331 /* throttled entities do not contribute to load */
3332 if (throttled_hierarchy(cfs_rq
))
3335 update_shares_cpu(cfs_rq
->tg
, cpu
);
3341 * Compute the cpu's hierarchical load factor for each task group.
3342 * This needs to be done in a top-down fashion because the load of a child
3343 * group is a fraction of its parents load.
3345 static int tg_load_down(struct task_group
*tg
, void *data
)
3348 long cpu
= (long)data
;
3351 load
= cpu_rq(cpu
)->load
.weight
;
3353 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
3354 load
*= tg
->se
[cpu
]->load
.weight
;
3355 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
3358 tg
->cfs_rq
[cpu
]->h_load
= load
;
3363 static void update_h_load(long cpu
)
3365 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
3368 static unsigned long
3369 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3370 unsigned long max_load_move
,
3371 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3374 long rem_load_move
= max_load_move
;
3375 struct cfs_rq
*busiest_cfs_rq
;
3378 update_h_load(cpu_of(busiest
));
3380 for_each_leaf_cfs_rq(busiest
, busiest_cfs_rq
) {
3381 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
3382 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
3383 u64 rem_load
, moved_load
;
3385 if (*lb_flags
& (LBF_NEED_BREAK
|LBF_ABORT
))
3389 * empty group or part of a throttled hierarchy
3391 if (!busiest_cfs_rq
->task_weight
||
3392 throttled_lb_pair(busiest_cfs_rq
->tg
, cpu_of(busiest
), this_cpu
))
3395 rem_load
= (u64
)rem_load_move
* busiest_weight
;
3396 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
3398 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
3399 rem_load
, sd
, idle
, lb_flags
,
3405 moved_load
*= busiest_h_load
;
3406 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
3408 rem_load_move
-= moved_load
;
3409 if (rem_load_move
< 0)
3414 return max_load_move
- rem_load_move
;
3417 static inline void update_shares(int cpu
)
3421 static unsigned long
3422 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3423 unsigned long max_load_move
,
3424 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3427 return balance_tasks(this_rq
, this_cpu
, busiest
,
3428 max_load_move
, sd
, idle
, lb_flags
,
3434 * move_tasks tries to move up to max_load_move weighted load from busiest to
3435 * this_rq, as part of a balancing operation within domain "sd".
3436 * Returns 1 if successful and 0 otherwise.
3438 * Called with both runqueues locked.
3440 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3441 unsigned long max_load_move
,
3442 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3445 unsigned long total_load_moved
= 0, load_moved
;
3448 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
3449 max_load_move
- total_load_moved
,
3450 sd
, idle
, lb_flags
);
3452 total_load_moved
+= load_moved
;
3454 if (*lb_flags
& (LBF_NEED_BREAK
|LBF_ABORT
))
3457 #ifdef CONFIG_PREEMPT
3459 * NEWIDLE balancing is a source of latency, so preemptible
3460 * kernels will stop after the first task is pulled to minimize
3461 * the critical section.
3463 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
) {
3464 *lb_flags
|= LBF_ABORT
;
3468 } while (load_moved
&& max_load_move
> total_load_moved
);
3470 return total_load_moved
> 0;
3473 /********** Helpers for find_busiest_group ************************/
3475 * sd_lb_stats - Structure to store the statistics of a sched_domain
3476 * during load balancing.
3478 struct sd_lb_stats
{
3479 struct sched_group
*busiest
; /* Busiest group in this sd */
3480 struct sched_group
*this; /* Local group in this sd */
3481 unsigned long total_load
; /* Total load of all groups in sd */
3482 unsigned long total_pwr
; /* Total power of all groups in sd */
3483 unsigned long avg_load
; /* Average load across all groups in sd */
3485 /** Statistics of this group */
3486 unsigned long this_load
;
3487 unsigned long this_load_per_task
;
3488 unsigned long this_nr_running
;
3489 unsigned long this_has_capacity
;
3490 unsigned int this_idle_cpus
;
3492 /* Statistics of the busiest group */
3493 unsigned int busiest_idle_cpus
;
3494 unsigned long max_load
;
3495 unsigned long busiest_load_per_task
;
3496 unsigned long busiest_nr_running
;
3497 unsigned long busiest_group_capacity
;
3498 unsigned long busiest_has_capacity
;
3499 unsigned int busiest_group_weight
;
3501 int group_imb
; /* Is there imbalance in this sd */
3502 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3503 int power_savings_balance
; /* Is powersave balance needed for this sd */
3504 struct sched_group
*group_min
; /* Least loaded group in sd */
3505 struct sched_group
*group_leader
; /* Group which relieves group_min */
3506 unsigned long min_load_per_task
; /* load_per_task in group_min */
3507 unsigned long leader_nr_running
; /* Nr running of group_leader */
3508 unsigned long min_nr_running
; /* Nr running of group_min */
3513 * sg_lb_stats - stats of a sched_group required for load_balancing
3515 struct sg_lb_stats
{
3516 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3517 unsigned long group_load
; /* Total load over the CPUs of the group */
3518 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3519 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3520 unsigned long group_capacity
;
3521 unsigned long idle_cpus
;
3522 unsigned long group_weight
;
3523 int group_imb
; /* Is there an imbalance in the group ? */
3524 int group_has_capacity
; /* Is there extra capacity in the group? */
3528 * get_sd_load_idx - Obtain the load index for a given sched domain.
3529 * @sd: The sched_domain whose load_idx is to be obtained.
3530 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3532 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3533 enum cpu_idle_type idle
)
3539 load_idx
= sd
->busy_idx
;
3542 case CPU_NEWLY_IDLE
:
3543 load_idx
= sd
->newidle_idx
;
3546 load_idx
= sd
->idle_idx
;
3554 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3556 * init_sd_power_savings_stats - Initialize power savings statistics for
3557 * the given sched_domain, during load balancing.
3559 * @sd: Sched domain whose power-savings statistics are to be initialized.
3560 * @sds: Variable containing the statistics for sd.
3561 * @idle: Idle status of the CPU at which we're performing load-balancing.
3563 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3564 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3567 * Busy processors will not participate in power savings
3570 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3571 sds
->power_savings_balance
= 0;
3573 sds
->power_savings_balance
= 1;
3574 sds
->min_nr_running
= ULONG_MAX
;
3575 sds
->leader_nr_running
= 0;
3580 * update_sd_power_savings_stats - Update the power saving stats for a
3581 * sched_domain while performing load balancing.
3583 * @group: sched_group belonging to the sched_domain under consideration.
3584 * @sds: Variable containing the statistics of the sched_domain
3585 * @local_group: Does group contain the CPU for which we're performing
3587 * @sgs: Variable containing the statistics of the group.
3589 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3590 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3593 if (!sds
->power_savings_balance
)
3597 * If the local group is idle or completely loaded
3598 * no need to do power savings balance at this domain
3600 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3601 !sds
->this_nr_running
))
3602 sds
->power_savings_balance
= 0;
3605 * If a group is already running at full capacity or idle,
3606 * don't include that group in power savings calculations
3608 if (!sds
->power_savings_balance
||
3609 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3610 !sgs
->sum_nr_running
)
3614 * Calculate the group which has the least non-idle load.
3615 * This is the group from where we need to pick up the load
3618 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3619 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3620 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3621 sds
->group_min
= group
;
3622 sds
->min_nr_running
= sgs
->sum_nr_running
;
3623 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3624 sgs
->sum_nr_running
;
3628 * Calculate the group which is almost near its
3629 * capacity but still has some space to pick up some load
3630 * from other group and save more power
3632 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3635 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3636 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3637 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3638 sds
->group_leader
= group
;
3639 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3644 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3645 * @sds: Variable containing the statistics of the sched_domain
3646 * under consideration.
3647 * @this_cpu: Cpu at which we're currently performing load-balancing.
3648 * @imbalance: Variable to store the imbalance.
3651 * Check if we have potential to perform some power-savings balance.
3652 * If yes, set the busiest group to be the least loaded group in the
3653 * sched_domain, so that it's CPUs can be put to idle.
3655 * Returns 1 if there is potential to perform power-savings balance.
3658 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3659 int this_cpu
, unsigned long *imbalance
)
3661 if (!sds
->power_savings_balance
)
3664 if (sds
->this != sds
->group_leader
||
3665 sds
->group_leader
== sds
->group_min
)
3668 *imbalance
= sds
->min_load_per_task
;
3669 sds
->busiest
= sds
->group_min
;
3674 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3675 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3676 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3681 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3682 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3687 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3688 int this_cpu
, unsigned long *imbalance
)
3692 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3695 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3697 return SCHED_POWER_SCALE
;
3700 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3702 return default_scale_freq_power(sd
, cpu
);
3705 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3707 unsigned long weight
= sd
->span_weight
;
3708 unsigned long smt_gain
= sd
->smt_gain
;
3715 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3717 return default_scale_smt_power(sd
, cpu
);
3720 unsigned long scale_rt_power(int cpu
)
3722 struct rq
*rq
= cpu_rq(cpu
);
3723 u64 total
, available
;
3725 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3727 if (unlikely(total
< rq
->rt_avg
)) {
3728 /* Ensures that power won't end up being negative */
3731 available
= total
- rq
->rt_avg
;
3734 if (unlikely((s64
)total
< SCHED_POWER_SCALE
))
3735 total
= SCHED_POWER_SCALE
;
3737 total
>>= SCHED_POWER_SHIFT
;
3739 return div_u64(available
, total
);
3742 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3744 unsigned long weight
= sd
->span_weight
;
3745 unsigned long power
= SCHED_POWER_SCALE
;
3746 struct sched_group
*sdg
= sd
->groups
;
3748 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3749 if (sched_feat(ARCH_POWER
))
3750 power
*= arch_scale_smt_power(sd
, cpu
);
3752 power
*= default_scale_smt_power(sd
, cpu
);
3754 power
>>= SCHED_POWER_SHIFT
;
3757 sdg
->sgp
->power_orig
= power
;
3759 if (sched_feat(ARCH_POWER
))
3760 power
*= arch_scale_freq_power(sd
, cpu
);
3762 power
*= default_scale_freq_power(sd
, cpu
);
3764 power
>>= SCHED_POWER_SHIFT
;
3766 power
*= scale_rt_power(cpu
);
3767 power
>>= SCHED_POWER_SHIFT
;
3772 cpu_rq(cpu
)->cpu_power
= power
;
3773 sdg
->sgp
->power
= power
;
3776 void update_group_power(struct sched_domain
*sd
, int cpu
)
3778 struct sched_domain
*child
= sd
->child
;
3779 struct sched_group
*group
, *sdg
= sd
->groups
;
3780 unsigned long power
;
3783 update_cpu_power(sd
, cpu
);
3789 group
= child
->groups
;
3791 power
+= group
->sgp
->power
;
3792 group
= group
->next
;
3793 } while (group
!= child
->groups
);
3795 sdg
->sgp
->power
= power
;
3799 * Try and fix up capacity for tiny siblings, this is needed when
3800 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3801 * which on its own isn't powerful enough.
3803 * See update_sd_pick_busiest() and check_asym_packing().
3806 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
3809 * Only siblings can have significantly less than SCHED_POWER_SCALE
3811 if (!(sd
->flags
& SD_SHARE_CPUPOWER
))
3815 * If ~90% of the cpu_power is still there, we're good.
3817 if (group
->sgp
->power
* 32 > group
->sgp
->power_orig
* 29)
3824 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3825 * @sd: The sched_domain whose statistics are to be updated.
3826 * @group: sched_group whose statistics are to be updated.
3827 * @this_cpu: Cpu for which load balance is currently performed.
3828 * @idle: Idle status of this_cpu
3829 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3830 * @local_group: Does group contain this_cpu.
3831 * @cpus: Set of cpus considered for load balancing.
3832 * @balance: Should we balance.
3833 * @sgs: variable to hold the statistics for this group.
3835 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3836 struct sched_group
*group
, int this_cpu
,
3837 enum cpu_idle_type idle
, int load_idx
,
3838 int local_group
, const struct cpumask
*cpus
,
3839 int *balance
, struct sg_lb_stats
*sgs
)
3841 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
3843 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3844 unsigned long avg_load_per_task
= 0;
3847 balance_cpu
= group_first_cpu(group
);
3849 /* Tally up the load of all CPUs in the group */
3851 min_cpu_load
= ~0UL;
3854 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3855 struct rq
*rq
= cpu_rq(i
);
3857 /* Bias balancing toward cpus of our domain */
3859 if (idle_cpu(i
) && !first_idle_cpu
) {
3864 load
= target_load(i
, load_idx
);
3866 load
= source_load(i
, load_idx
);
3867 if (load
> max_cpu_load
) {
3868 max_cpu_load
= load
;
3869 max_nr_running
= rq
->nr_running
;
3871 if (min_cpu_load
> load
)
3872 min_cpu_load
= load
;
3875 sgs
->group_load
+= load
;
3876 sgs
->sum_nr_running
+= rq
->nr_running
;
3877 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3883 * First idle cpu or the first cpu(busiest) in this sched group
3884 * is eligible for doing load balancing at this and above
3885 * domains. In the newly idle case, we will allow all the cpu's
3886 * to do the newly idle load balance.
3888 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
3889 if (balance_cpu
!= this_cpu
) {
3893 update_group_power(sd
, this_cpu
);
3896 /* Adjust by relative CPU power of the group */
3897 sgs
->avg_load
= (sgs
->group_load
*SCHED_POWER_SCALE
) / group
->sgp
->power
;
3900 * Consider the group unbalanced when the imbalance is larger
3901 * than the average weight of a task.
3903 * APZ: with cgroup the avg task weight can vary wildly and
3904 * might not be a suitable number - should we keep a
3905 * normalized nr_running number somewhere that negates
3908 if (sgs
->sum_nr_running
)
3909 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
3911 if ((max_cpu_load
- min_cpu_load
) >= avg_load_per_task
&& max_nr_running
> 1)
3914 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->sgp
->power
,
3916 if (!sgs
->group_capacity
)
3917 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
3918 sgs
->group_weight
= group
->group_weight
;
3920 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
3921 sgs
->group_has_capacity
= 1;
3925 * update_sd_pick_busiest - return 1 on busiest group
3926 * @sd: sched_domain whose statistics are to be checked
3927 * @sds: sched_domain statistics
3928 * @sg: sched_group candidate to be checked for being the busiest
3929 * @sgs: sched_group statistics
3930 * @this_cpu: the current cpu
3932 * Determine if @sg is a busier group than the previously selected
3935 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
3936 struct sd_lb_stats
*sds
,
3937 struct sched_group
*sg
,
3938 struct sg_lb_stats
*sgs
,
3941 if (sgs
->avg_load
<= sds
->max_load
)
3944 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
3951 * ASYM_PACKING needs to move all the work to the lowest
3952 * numbered CPUs in the group, therefore mark all groups
3953 * higher than ourself as busy.
3955 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
3956 this_cpu
< group_first_cpu(sg
)) {
3960 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
3968 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3969 * @sd: sched_domain whose statistics are to be updated.
3970 * @this_cpu: Cpu for which load balance is currently performed.
3971 * @idle: Idle status of this_cpu
3972 * @cpus: Set of cpus considered for load balancing.
3973 * @balance: Should we balance.
3974 * @sds: variable to hold the statistics for this sched_domain.
3976 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3977 enum cpu_idle_type idle
, const struct cpumask
*cpus
,
3978 int *balance
, struct sd_lb_stats
*sds
)
3980 struct sched_domain
*child
= sd
->child
;
3981 struct sched_group
*sg
= sd
->groups
;
3982 struct sg_lb_stats sgs
;
3983 int load_idx
, prefer_sibling
= 0;
3985 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3988 init_sd_power_savings_stats(sd
, sds
, idle
);
3989 load_idx
= get_sd_load_idx(sd
, idle
);
3994 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
3995 memset(&sgs
, 0, sizeof(sgs
));
3996 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
,
3997 local_group
, cpus
, balance
, &sgs
);
3999 if (local_group
&& !(*balance
))
4002 sds
->total_load
+= sgs
.group_load
;
4003 sds
->total_pwr
+= sg
->sgp
->power
;
4006 * In case the child domain prefers tasks go to siblings
4007 * first, lower the sg capacity to one so that we'll try
4008 * and move all the excess tasks away. We lower the capacity
4009 * of a group only if the local group has the capacity to fit
4010 * these excess tasks, i.e. nr_running < group_capacity. The
4011 * extra check prevents the case where you always pull from the
4012 * heaviest group when it is already under-utilized (possible
4013 * with a large weight task outweighs the tasks on the system).
4015 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
4016 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
4019 sds
->this_load
= sgs
.avg_load
;
4021 sds
->this_nr_running
= sgs
.sum_nr_running
;
4022 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
4023 sds
->this_has_capacity
= sgs
.group_has_capacity
;
4024 sds
->this_idle_cpus
= sgs
.idle_cpus
;
4025 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
4026 sds
->max_load
= sgs
.avg_load
;
4028 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
4029 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
4030 sds
->busiest_group_capacity
= sgs
.group_capacity
;
4031 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
4032 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
4033 sds
->busiest_group_weight
= sgs
.group_weight
;
4034 sds
->group_imb
= sgs
.group_imb
;
4037 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
4039 } while (sg
!= sd
->groups
);
4043 * check_asym_packing - Check to see if the group is packed into the
4046 * This is primarily intended to used at the sibling level. Some
4047 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4048 * case of POWER7, it can move to lower SMT modes only when higher
4049 * threads are idle. When in lower SMT modes, the threads will
4050 * perform better since they share less core resources. Hence when we
4051 * have idle threads, we want them to be the higher ones.
4053 * This packing function is run on idle threads. It checks to see if
4054 * the busiest CPU in this domain (core in the P7 case) has a higher
4055 * CPU number than the packing function is being run on. Here we are
4056 * assuming lower CPU number will be equivalent to lower a SMT thread
4059 * Returns 1 when packing is required and a task should be moved to
4060 * this CPU. The amount of the imbalance is returned in *imbalance.
4062 * @sd: The sched_domain whose packing is to be checked.
4063 * @sds: Statistics of the sched_domain which is to be packed
4064 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4065 * @imbalance: returns amount of imbalanced due to packing.
4067 static int check_asym_packing(struct sched_domain
*sd
,
4068 struct sd_lb_stats
*sds
,
4069 int this_cpu
, unsigned long *imbalance
)
4073 if (!(sd
->flags
& SD_ASYM_PACKING
))
4079 busiest_cpu
= group_first_cpu(sds
->busiest
);
4080 if (this_cpu
> busiest_cpu
)
4083 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->sgp
->power
,
4089 * fix_small_imbalance - Calculate the minor imbalance that exists
4090 * amongst the groups of a sched_domain, during
4092 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4093 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4094 * @imbalance: Variable to store the imbalance.
4096 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
4097 int this_cpu
, unsigned long *imbalance
)
4099 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
4100 unsigned int imbn
= 2;
4101 unsigned long scaled_busy_load_per_task
;
4103 if (sds
->this_nr_running
) {
4104 sds
->this_load_per_task
/= sds
->this_nr_running
;
4105 if (sds
->busiest_load_per_task
>
4106 sds
->this_load_per_task
)
4109 sds
->this_load_per_task
=
4110 cpu_avg_load_per_task(this_cpu
);
4112 scaled_busy_load_per_task
= sds
->busiest_load_per_task
4113 * SCHED_POWER_SCALE
;
4114 scaled_busy_load_per_task
/= sds
->busiest
->sgp
->power
;
4116 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
4117 (scaled_busy_load_per_task
* imbn
)) {
4118 *imbalance
= sds
->busiest_load_per_task
;
4123 * OK, we don't have enough imbalance to justify moving tasks,
4124 * however we may be able to increase total CPU power used by
4128 pwr_now
+= sds
->busiest
->sgp
->power
*
4129 min(sds
->busiest_load_per_task
, sds
->max_load
);
4130 pwr_now
+= sds
->this->sgp
->power
*
4131 min(sds
->this_load_per_task
, sds
->this_load
);
4132 pwr_now
/= SCHED_POWER_SCALE
;
4134 /* Amount of load we'd subtract */
4135 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
4136 sds
->busiest
->sgp
->power
;
4137 if (sds
->max_load
> tmp
)
4138 pwr_move
+= sds
->busiest
->sgp
->power
*
4139 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
4141 /* Amount of load we'd add */
4142 if (sds
->max_load
* sds
->busiest
->sgp
->power
<
4143 sds
->busiest_load_per_task
* SCHED_POWER_SCALE
)
4144 tmp
= (sds
->max_load
* sds
->busiest
->sgp
->power
) /
4145 sds
->this->sgp
->power
;
4147 tmp
= (sds
->busiest_load_per_task
* SCHED_POWER_SCALE
) /
4148 sds
->this->sgp
->power
;
4149 pwr_move
+= sds
->this->sgp
->power
*
4150 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
4151 pwr_move
/= SCHED_POWER_SCALE
;
4153 /* Move if we gain throughput */
4154 if (pwr_move
> pwr_now
)
4155 *imbalance
= sds
->busiest_load_per_task
;
4159 * calculate_imbalance - Calculate the amount of imbalance present within the
4160 * groups of a given sched_domain during load balance.
4161 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4162 * @this_cpu: Cpu for which currently load balance is being performed.
4163 * @imbalance: The variable to store the imbalance.
4165 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
4166 unsigned long *imbalance
)
4168 unsigned long max_pull
, load_above_capacity
= ~0UL;
4170 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
4171 if (sds
->group_imb
) {
4172 sds
->busiest_load_per_task
=
4173 min(sds
->busiest_load_per_task
, sds
->avg_load
);
4177 * In the presence of smp nice balancing, certain scenarios can have
4178 * max load less than avg load(as we skip the groups at or below
4179 * its cpu_power, while calculating max_load..)
4181 if (sds
->max_load
< sds
->avg_load
) {
4183 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
4186 if (!sds
->group_imb
) {
4188 * Don't want to pull so many tasks that a group would go idle.
4190 load_above_capacity
= (sds
->busiest_nr_running
-
4191 sds
->busiest_group_capacity
);
4193 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_POWER_SCALE
);
4195 load_above_capacity
/= sds
->busiest
->sgp
->power
;
4199 * We're trying to get all the cpus to the average_load, so we don't
4200 * want to push ourselves above the average load, nor do we wish to
4201 * reduce the max loaded cpu below the average load. At the same time,
4202 * we also don't want to reduce the group load below the group capacity
4203 * (so that we can implement power-savings policies etc). Thus we look
4204 * for the minimum possible imbalance.
4205 * Be careful of negative numbers as they'll appear as very large values
4206 * with unsigned longs.
4208 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
4210 /* How much load to actually move to equalise the imbalance */
4211 *imbalance
= min(max_pull
* sds
->busiest
->sgp
->power
,
4212 (sds
->avg_load
- sds
->this_load
) * sds
->this->sgp
->power
)
4213 / SCHED_POWER_SCALE
;
4216 * if *imbalance is less than the average load per runnable task
4217 * there is no guarantee that any tasks will be moved so we'll have
4218 * a think about bumping its value to force at least one task to be
4221 if (*imbalance
< sds
->busiest_load_per_task
)
4222 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
4226 /******* find_busiest_group() helpers end here *********************/
4229 * find_busiest_group - Returns the busiest group within the sched_domain
4230 * if there is an imbalance. If there isn't an imbalance, and
4231 * the user has opted for power-savings, it returns a group whose
4232 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4233 * such a group exists.
4235 * Also calculates the amount of weighted load which should be moved
4236 * to restore balance.
4238 * @sd: The sched_domain whose busiest group is to be returned.
4239 * @this_cpu: The cpu for which load balancing is currently being performed.
4240 * @imbalance: Variable which stores amount of weighted load which should
4241 * be moved to restore balance/put a group to idle.
4242 * @idle: The idle status of this_cpu.
4243 * @cpus: The set of CPUs under consideration for load-balancing.
4244 * @balance: Pointer to a variable indicating if this_cpu
4245 * is the appropriate cpu to perform load balancing at this_level.
4247 * Returns: - the busiest group if imbalance exists.
4248 * - If no imbalance and user has opted for power-savings balance,
4249 * return the least loaded group whose CPUs can be
4250 * put to idle by rebalancing its tasks onto our group.
4252 static struct sched_group
*
4253 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
4254 unsigned long *imbalance
, enum cpu_idle_type idle
,
4255 const struct cpumask
*cpus
, int *balance
)
4257 struct sd_lb_stats sds
;
4259 memset(&sds
, 0, sizeof(sds
));
4262 * Compute the various statistics relavent for load balancing at
4265 update_sd_lb_stats(sd
, this_cpu
, idle
, cpus
, balance
, &sds
);
4268 * this_cpu is not the appropriate cpu to perform load balancing at
4274 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
4275 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
4278 /* There is no busy sibling group to pull tasks from */
4279 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4282 sds
.avg_load
= (SCHED_POWER_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4285 * If the busiest group is imbalanced the below checks don't
4286 * work because they assumes all things are equal, which typically
4287 * isn't true due to cpus_allowed constraints and the like.
4292 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4293 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
4294 !sds
.busiest_has_capacity
)
4298 * If the local group is more busy than the selected busiest group
4299 * don't try and pull any tasks.
4301 if (sds
.this_load
>= sds
.max_load
)
4305 * Don't pull any tasks if this group is already above the domain
4308 if (sds
.this_load
>= sds
.avg_load
)
4311 if (idle
== CPU_IDLE
) {
4313 * This cpu is idle. If the busiest group load doesn't
4314 * have more tasks than the number of available cpu's and
4315 * there is no imbalance between this and busiest group
4316 * wrt to idle cpu's, it is balanced.
4318 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
4319 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
4323 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4324 * imbalance_pct to be conservative.
4326 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4331 /* Looks like there is an imbalance. Compute it */
4332 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4337 * There is no obvious imbalance. But check if we can do some balancing
4340 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4348 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4351 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
4352 enum cpu_idle_type idle
, unsigned long imbalance
,
4353 const struct cpumask
*cpus
)
4355 struct rq
*busiest
= NULL
, *rq
;
4356 unsigned long max_load
= 0;
4359 for_each_cpu(i
, sched_group_cpus(group
)) {
4360 unsigned long power
= power_of(i
);
4361 unsigned long capacity
= DIV_ROUND_CLOSEST(power
,
4366 capacity
= fix_small_capacity(sd
, group
);
4368 if (!cpumask_test_cpu(i
, cpus
))
4372 wl
= weighted_cpuload(i
);
4375 * When comparing with imbalance, use weighted_cpuload()
4376 * which is not scaled with the cpu power.
4378 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4382 * For the load comparisons with the other cpu's, consider
4383 * the weighted_cpuload() scaled with the cpu power, so that
4384 * the load can be moved away from the cpu that is potentially
4385 * running at a lower capacity.
4387 wl
= (wl
* SCHED_POWER_SCALE
) / power
;
4389 if (wl
> max_load
) {
4399 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4400 * so long as it is large enough.
4402 #define MAX_PINNED_INTERVAL 512
4404 /* Working cpumask for load_balance and load_balance_newidle. */
4405 DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4407 static int need_active_balance(struct sched_domain
*sd
, int idle
,
4408 int busiest_cpu
, int this_cpu
)
4410 if (idle
== CPU_NEWLY_IDLE
) {
4413 * ASYM_PACKING needs to force migrate tasks from busy but
4414 * higher numbered CPUs in order to pack all tasks in the
4415 * lowest numbered CPUs.
4417 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
4421 * The only task running in a non-idle cpu can be moved to this
4422 * cpu in an attempt to completely freeup the other CPU
4425 * The package power saving logic comes from
4426 * find_busiest_group(). If there are no imbalance, then
4427 * f_b_g() will return NULL. However when sched_mc={1,2} then
4428 * f_b_g() will select a group from which a running task may be
4429 * pulled to this cpu in order to make the other package idle.
4430 * If there is no opportunity to make a package idle and if
4431 * there are no imbalance, then f_b_g() will return NULL and no
4432 * action will be taken in load_balance_newidle().
4434 * Under normal task pull operation due to imbalance, there
4435 * will be more than one task in the source run queue and
4436 * move_tasks() will succeed. ld_moved will be true and this
4437 * active balance code will not be triggered.
4439 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4443 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
4446 static int active_load_balance_cpu_stop(void *data
);
4449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4450 * tasks if there is an imbalance.
4452 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4453 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4456 int ld_moved
, lb_flags
= 0, active_balance
= 0;
4457 struct sched_group
*group
;
4458 unsigned long imbalance
;
4460 unsigned long flags
;
4461 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4463 cpumask_copy(cpus
, cpu_active_mask
);
4465 schedstat_inc(sd
, lb_count
[idle
]);
4468 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
4475 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4479 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
4481 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4485 BUG_ON(busiest
== this_rq
);
4487 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4490 if (busiest
->nr_running
> 1) {
4492 * Attempt to move tasks. If find_busiest_group has found
4493 * an imbalance but busiest->nr_running <= 1, the group is
4494 * still unbalanced. ld_moved simply stays zero, so it is
4495 * correctly treated as an imbalance.
4497 lb_flags
|= LBF_ALL_PINNED
;
4498 local_irq_save(flags
);
4499 double_rq_lock(this_rq
, busiest
);
4500 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4501 imbalance
, sd
, idle
, &lb_flags
);
4502 double_rq_unlock(this_rq
, busiest
);
4503 local_irq_restore(flags
);
4506 * some other cpu did the load balance for us.
4508 if (ld_moved
&& this_cpu
!= smp_processor_id())
4509 resched_cpu(this_cpu
);
4511 if (lb_flags
& LBF_ABORT
)
4514 if (lb_flags
& LBF_NEED_BREAK
) {
4515 lb_flags
+= LBF_HAD_BREAK
- LBF_NEED_BREAK
;
4516 if (lb_flags
& LBF_ABORT
)
4521 /* All tasks on this runqueue were pinned by CPU affinity */
4522 if (unlikely(lb_flags
& LBF_ALL_PINNED
)) {
4523 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4524 if (!cpumask_empty(cpus
))
4531 schedstat_inc(sd
, lb_failed
[idle
]);
4533 * Increment the failure counter only on periodic balance.
4534 * We do not want newidle balance, which can be very
4535 * frequent, pollute the failure counter causing
4536 * excessive cache_hot migrations and active balances.
4538 if (idle
!= CPU_NEWLY_IDLE
)
4539 sd
->nr_balance_failed
++;
4541 if (need_active_balance(sd
, idle
, cpu_of(busiest
), this_cpu
)) {
4542 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
4544 /* don't kick the active_load_balance_cpu_stop,
4545 * if the curr task on busiest cpu can't be
4548 if (!cpumask_test_cpu(this_cpu
,
4549 tsk_cpus_allowed(busiest
->curr
))) {
4550 raw_spin_unlock_irqrestore(&busiest
->lock
,
4552 lb_flags
|= LBF_ALL_PINNED
;
4553 goto out_one_pinned
;
4557 * ->active_balance synchronizes accesses to
4558 * ->active_balance_work. Once set, it's cleared
4559 * only after active load balance is finished.
4561 if (!busiest
->active_balance
) {
4562 busiest
->active_balance
= 1;
4563 busiest
->push_cpu
= this_cpu
;
4566 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
4569 stop_one_cpu_nowait(cpu_of(busiest
),
4570 active_load_balance_cpu_stop
, busiest
,
4571 &busiest
->active_balance_work
);
4574 * We've kicked active balancing, reset the failure
4577 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4580 sd
->nr_balance_failed
= 0;
4582 if (likely(!active_balance
)) {
4583 /* We were unbalanced, so reset the balancing interval */
4584 sd
->balance_interval
= sd
->min_interval
;
4587 * If we've begun active balancing, start to back off. This
4588 * case may not be covered by the all_pinned logic if there
4589 * is only 1 task on the busy runqueue (because we don't call
4592 if (sd
->balance_interval
< sd
->max_interval
)
4593 sd
->balance_interval
*= 2;
4599 schedstat_inc(sd
, lb_balanced
[idle
]);
4601 sd
->nr_balance_failed
= 0;
4604 /* tune up the balancing interval */
4605 if (((lb_flags
& LBF_ALL_PINNED
) &&
4606 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4607 (sd
->balance_interval
< sd
->max_interval
))
4608 sd
->balance_interval
*= 2;
4616 * idle_balance is called by schedule() if this_cpu is about to become
4617 * idle. Attempts to pull tasks from other CPUs.
4619 void idle_balance(int this_cpu
, struct rq
*this_rq
)
4621 struct sched_domain
*sd
;
4622 int pulled_task
= 0;
4623 unsigned long next_balance
= jiffies
+ HZ
;
4625 this_rq
->idle_stamp
= this_rq
->clock
;
4627 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4631 * Drop the rq->lock, but keep IRQ/preempt disabled.
4633 raw_spin_unlock(&this_rq
->lock
);
4635 update_shares(this_cpu
);
4637 for_each_domain(this_cpu
, sd
) {
4638 unsigned long interval
;
4641 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4644 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
4645 /* If we've pulled tasks over stop searching: */
4646 pulled_task
= load_balance(this_cpu
, this_rq
,
4647 sd
, CPU_NEWLY_IDLE
, &balance
);
4650 interval
= msecs_to_jiffies(sd
->balance_interval
);
4651 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4652 next_balance
= sd
->last_balance
+ interval
;
4654 this_rq
->idle_stamp
= 0;
4660 raw_spin_lock(&this_rq
->lock
);
4662 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4664 * We are going idle. next_balance may be set based on
4665 * a busy processor. So reset next_balance.
4667 this_rq
->next_balance
= next_balance
;
4672 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4673 * running tasks off the busiest CPU onto idle CPUs. It requires at
4674 * least 1 task to be running on each physical CPU where possible, and
4675 * avoids physical / logical imbalances.
4677 static int active_load_balance_cpu_stop(void *data
)
4679 struct rq
*busiest_rq
= data
;
4680 int busiest_cpu
= cpu_of(busiest_rq
);
4681 int target_cpu
= busiest_rq
->push_cpu
;
4682 struct rq
*target_rq
= cpu_rq(target_cpu
);
4683 struct sched_domain
*sd
;
4685 raw_spin_lock_irq(&busiest_rq
->lock
);
4687 /* make sure the requested cpu hasn't gone down in the meantime */
4688 if (unlikely(busiest_cpu
!= smp_processor_id() ||
4689 !busiest_rq
->active_balance
))
4692 /* Is there any task to move? */
4693 if (busiest_rq
->nr_running
<= 1)
4697 * This condition is "impossible", if it occurs
4698 * we need to fix it. Originally reported by
4699 * Bjorn Helgaas on a 128-cpu setup.
4701 BUG_ON(busiest_rq
== target_rq
);
4703 /* move a task from busiest_rq to target_rq */
4704 double_lock_balance(busiest_rq
, target_rq
);
4706 /* Search for an sd spanning us and the target CPU. */
4708 for_each_domain(target_cpu
, sd
) {
4709 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4710 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4715 schedstat_inc(sd
, alb_count
);
4717 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4719 schedstat_inc(sd
, alb_pushed
);
4721 schedstat_inc(sd
, alb_failed
);
4724 double_unlock_balance(busiest_rq
, target_rq
);
4726 busiest_rq
->active_balance
= 0;
4727 raw_spin_unlock_irq(&busiest_rq
->lock
);
4733 * idle load balancing details
4734 * - When one of the busy CPUs notice that there may be an idle rebalancing
4735 * needed, they will kick the idle load balancer, which then does idle
4736 * load balancing for all the idle CPUs.
4739 cpumask_var_t idle_cpus_mask
;
4741 unsigned long next_balance
; /* in jiffy units */
4742 } nohz ____cacheline_aligned
;
4744 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4746 * lowest_flag_domain - Return lowest sched_domain containing flag.
4747 * @cpu: The cpu whose lowest level of sched domain is to
4749 * @flag: The flag to check for the lowest sched_domain
4750 * for the given cpu.
4752 * Returns the lowest sched_domain of a cpu which contains the given flag.
4754 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4756 struct sched_domain
*sd
;
4758 for_each_domain(cpu
, sd
)
4759 if (sd
->flags
& flag
)
4766 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4767 * @cpu: The cpu whose domains we're iterating over.
4768 * @sd: variable holding the value of the power_savings_sd
4770 * @flag: The flag to filter the sched_domains to be iterated.
4772 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4773 * set, starting from the lowest sched_domain to the highest.
4775 #define for_each_flag_domain(cpu, sd, flag) \
4776 for (sd = lowest_flag_domain(cpu, flag); \
4777 (sd && (sd->flags & flag)); sd = sd->parent)
4780 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4781 * @cpu: The cpu which is nominating a new idle_load_balancer.
4783 * Returns: Returns the id of the idle load balancer if it exists,
4784 * Else, returns >= nr_cpu_ids.
4786 * This algorithm picks the idle load balancer such that it belongs to a
4787 * semi-idle powersavings sched_domain. The idea is to try and avoid
4788 * completely idle packages/cores just for the purpose of idle load balancing
4789 * when there are other idle cpu's which are better suited for that job.
4791 static int find_new_ilb(int cpu
)
4793 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
4794 struct sched_group
*ilbg
;
4795 struct sched_domain
*sd
;
4798 * Have idle load balancer selection from semi-idle packages only
4799 * when power-aware load balancing is enabled
4801 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4805 * Optimize for the case when we have no idle CPUs or only one
4806 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4808 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
4812 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4816 if (ilbg
->group_weight
!=
4817 atomic_read(&ilbg
->sgp
->nr_busy_cpus
)) {
4818 ilb
= cpumask_first_and(nohz
.idle_cpus_mask
,
4819 sched_group_cpus(ilbg
));
4825 } while (ilbg
!= sd
->groups
);
4831 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
4836 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4837 static inline int find_new_ilb(int call_cpu
)
4844 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4845 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4846 * CPU (if there is one).
4848 static void nohz_balancer_kick(int cpu
)
4852 nohz
.next_balance
++;
4854 ilb_cpu
= find_new_ilb(cpu
);
4856 if (ilb_cpu
>= nr_cpu_ids
)
4859 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
4862 * Use smp_send_reschedule() instead of resched_cpu().
4863 * This way we generate a sched IPI on the target cpu which
4864 * is idle. And the softirq performing nohz idle load balance
4865 * will be run before returning from the IPI.
4867 smp_send_reschedule(ilb_cpu
);
4871 static inline void clear_nohz_tick_stopped(int cpu
)
4873 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
4874 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
4875 atomic_dec(&nohz
.nr_cpus
);
4876 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
4880 static inline void set_cpu_sd_state_busy(void)
4882 struct sched_domain
*sd
;
4883 int cpu
= smp_processor_id();
4885 if (!test_bit(NOHZ_IDLE
, nohz_flags(cpu
)))
4887 clear_bit(NOHZ_IDLE
, nohz_flags(cpu
));
4890 for_each_domain(cpu
, sd
)
4891 atomic_inc(&sd
->groups
->sgp
->nr_busy_cpus
);
4895 void set_cpu_sd_state_idle(void)
4897 struct sched_domain
*sd
;
4898 int cpu
= smp_processor_id();
4900 if (test_bit(NOHZ_IDLE
, nohz_flags(cpu
)))
4902 set_bit(NOHZ_IDLE
, nohz_flags(cpu
));
4905 for_each_domain(cpu
, sd
)
4906 atomic_dec(&sd
->groups
->sgp
->nr_busy_cpus
);
4911 * This routine will record that this cpu is going idle with tick stopped.
4912 * This info will be used in performing idle load balancing in the future.
4914 void select_nohz_load_balancer(int stop_tick
)
4916 int cpu
= smp_processor_id();
4919 * If this cpu is going down, then nothing needs to be done.
4921 if (!cpu_active(cpu
))
4925 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
4928 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
4929 atomic_inc(&nohz
.nr_cpus
);
4930 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
4935 static int __cpuinit
sched_ilb_notifier(struct notifier_block
*nfb
,
4936 unsigned long action
, void *hcpu
)
4938 switch (action
& ~CPU_TASKS_FROZEN
) {
4940 clear_nohz_tick_stopped(smp_processor_id());
4948 static DEFINE_SPINLOCK(balancing
);
4950 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
4953 * Scale the max load_balance interval with the number of CPUs in the system.
4954 * This trades load-balance latency on larger machines for less cross talk.
4956 void update_max_interval(void)
4958 max_load_balance_interval
= HZ
*num_online_cpus()/10;
4962 * It checks each scheduling domain to see if it is due to be balanced,
4963 * and initiates a balancing operation if so.
4965 * Balancing parameters are set up in arch_init_sched_domains.
4967 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4970 struct rq
*rq
= cpu_rq(cpu
);
4971 unsigned long interval
;
4972 struct sched_domain
*sd
;
4973 /* Earliest time when we have to do rebalance again */
4974 unsigned long next_balance
= jiffies
+ 60*HZ
;
4975 int update_next_balance
= 0;
4981 for_each_domain(cpu
, sd
) {
4982 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4985 interval
= sd
->balance_interval
;
4986 if (idle
!= CPU_IDLE
)
4987 interval
*= sd
->busy_factor
;
4989 /* scale ms to jiffies */
4990 interval
= msecs_to_jiffies(interval
);
4991 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
4993 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4995 if (need_serialize
) {
4996 if (!spin_trylock(&balancing
))
5000 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
5001 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
5003 * We've pulled tasks over so either we're no
5006 idle
= CPU_NOT_IDLE
;
5008 sd
->last_balance
= jiffies
;
5011 spin_unlock(&balancing
);
5013 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
5014 next_balance
= sd
->last_balance
+ interval
;
5015 update_next_balance
= 1;
5019 * Stop the load balance at this level. There is another
5020 * CPU in our sched group which is doing load balancing more
5029 * next_balance will be updated only when there is a need.
5030 * When the cpu is attached to null domain for ex, it will not be
5033 if (likely(update_next_balance
))
5034 rq
->next_balance
= next_balance
;
5039 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5040 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5042 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
5044 struct rq
*this_rq
= cpu_rq(this_cpu
);
5048 if (idle
!= CPU_IDLE
||
5049 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
5052 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
5053 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
5057 * If this cpu gets work to do, stop the load balancing
5058 * work being done for other cpus. Next load
5059 * balancing owner will pick it up.
5064 raw_spin_lock_irq(&this_rq
->lock
);
5065 update_rq_clock(this_rq
);
5066 update_cpu_load(this_rq
);
5067 raw_spin_unlock_irq(&this_rq
->lock
);
5069 rebalance_domains(balance_cpu
, CPU_IDLE
);
5071 rq
= cpu_rq(balance_cpu
);
5072 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
5073 this_rq
->next_balance
= rq
->next_balance
;
5075 nohz
.next_balance
= this_rq
->next_balance
;
5077 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
5081 * Current heuristic for kicking the idle load balancer in the presence
5082 * of an idle cpu is the system.
5083 * - This rq has more than one task.
5084 * - At any scheduler domain level, this cpu's scheduler group has multiple
5085 * busy cpu's exceeding the group's power.
5086 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5087 * domain span are idle.
5089 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
5091 unsigned long now
= jiffies
;
5092 struct sched_domain
*sd
;
5094 if (unlikely(idle_cpu(cpu
)))
5098 * We may be recently in ticked or tickless idle mode. At the first
5099 * busy tick after returning from idle, we will update the busy stats.
5101 set_cpu_sd_state_busy();
5102 clear_nohz_tick_stopped(cpu
);
5105 * None are in tickless mode and hence no need for NOHZ idle load
5108 if (likely(!atomic_read(&nohz
.nr_cpus
)))
5111 if (time_before(now
, nohz
.next_balance
))
5114 if (rq
->nr_running
>= 2)
5118 for_each_domain(cpu
, sd
) {
5119 struct sched_group
*sg
= sd
->groups
;
5120 struct sched_group_power
*sgp
= sg
->sgp
;
5121 int nr_busy
= atomic_read(&sgp
->nr_busy_cpus
);
5123 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
&& nr_busy
> 1)
5124 goto need_kick_unlock
;
5126 if (sd
->flags
& SD_ASYM_PACKING
&& nr_busy
!= sg
->group_weight
5127 && (cpumask_first_and(nohz
.idle_cpus_mask
,
5128 sched_domain_span(sd
)) < cpu
))
5129 goto need_kick_unlock
;
5131 if (!(sd
->flags
& (SD_SHARE_PKG_RESOURCES
| SD_ASYM_PACKING
)))
5143 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
5147 * run_rebalance_domains is triggered when needed from the scheduler tick.
5148 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5150 static void run_rebalance_domains(struct softirq_action
*h
)
5152 int this_cpu
= smp_processor_id();
5153 struct rq
*this_rq
= cpu_rq(this_cpu
);
5154 enum cpu_idle_type idle
= this_rq
->idle_balance
?
5155 CPU_IDLE
: CPU_NOT_IDLE
;
5157 rebalance_domains(this_cpu
, idle
);
5160 * If this cpu has a pending nohz_balance_kick, then do the
5161 * balancing on behalf of the other idle cpus whose ticks are
5164 nohz_idle_balance(this_cpu
, idle
);
5167 static inline int on_null_domain(int cpu
)
5169 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
5173 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5175 void trigger_load_balance(struct rq
*rq
, int cpu
)
5177 /* Don't need to rebalance while attached to NULL domain */
5178 if (time_after_eq(jiffies
, rq
->next_balance
) &&
5179 likely(!on_null_domain(cpu
)))
5180 raise_softirq(SCHED_SOFTIRQ
);
5182 if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
5183 nohz_balancer_kick(cpu
);
5187 static void rq_online_fair(struct rq
*rq
)
5192 static void rq_offline_fair(struct rq
*rq
)
5197 #endif /* CONFIG_SMP */
5200 * scheduler tick hitting a task of our scheduling class:
5202 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
5204 struct cfs_rq
*cfs_rq
;
5205 struct sched_entity
*se
= &curr
->se
;
5207 for_each_sched_entity(se
) {
5208 cfs_rq
= cfs_rq_of(se
);
5209 entity_tick(cfs_rq
, se
, queued
);
5214 * called on fork with the child task as argument from the parent's context
5215 * - child not yet on the tasklist
5216 * - preemption disabled
5218 static void task_fork_fair(struct task_struct
*p
)
5220 struct cfs_rq
*cfs_rq
;
5221 struct sched_entity
*se
= &p
->se
, *curr
;
5222 int this_cpu
= smp_processor_id();
5223 struct rq
*rq
= this_rq();
5224 unsigned long flags
;
5226 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5228 update_rq_clock(rq
);
5230 cfs_rq
= task_cfs_rq(current
);
5231 curr
= cfs_rq
->curr
;
5233 if (unlikely(task_cpu(p
) != this_cpu
)) {
5235 __set_task_cpu(p
, this_cpu
);
5239 update_curr(cfs_rq
);
5242 se
->vruntime
= curr
->vruntime
;
5243 place_entity(cfs_rq
, se
, 1);
5245 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
5247 * Upon rescheduling, sched_class::put_prev_task() will place
5248 * 'current' within the tree based on its new key value.
5250 swap(curr
->vruntime
, se
->vruntime
);
5251 resched_task(rq
->curr
);
5254 se
->vruntime
-= cfs_rq
->min_vruntime
;
5256 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5260 * Priority of the task has changed. Check to see if we preempt
5264 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
5270 * Reschedule if we are currently running on this runqueue and
5271 * our priority decreased, or if we are not currently running on
5272 * this runqueue and our priority is higher than the current's
5274 if (rq
->curr
== p
) {
5275 if (p
->prio
> oldprio
)
5276 resched_task(rq
->curr
);
5278 check_preempt_curr(rq
, p
, 0);
5281 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
5283 struct sched_entity
*se
= &p
->se
;
5284 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5287 * Ensure the task's vruntime is normalized, so that when its
5288 * switched back to the fair class the enqueue_entity(.flags=0) will
5289 * do the right thing.
5291 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5292 * have normalized the vruntime, if it was !on_rq, then only when
5293 * the task is sleeping will it still have non-normalized vruntime.
5295 if (!se
->on_rq
&& p
->state
!= TASK_RUNNING
) {
5297 * Fix up our vruntime so that the current sleep doesn't
5298 * cause 'unlimited' sleep bonus.
5300 place_entity(cfs_rq
, se
, 0);
5301 se
->vruntime
-= cfs_rq
->min_vruntime
;
5306 * We switched to the sched_fair class.
5308 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
5314 * We were most likely switched from sched_rt, so
5315 * kick off the schedule if running, otherwise just see
5316 * if we can still preempt the current task.
5319 resched_task(rq
->curr
);
5321 check_preempt_curr(rq
, p
, 0);
5324 /* Account for a task changing its policy or group.
5326 * This routine is mostly called to set cfs_rq->curr field when a task
5327 * migrates between groups/classes.
5329 static void set_curr_task_fair(struct rq
*rq
)
5331 struct sched_entity
*se
= &rq
->curr
->se
;
5333 for_each_sched_entity(se
) {
5334 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5336 set_next_entity(cfs_rq
, se
);
5337 /* ensure bandwidth has been allocated on our new cfs_rq */
5338 account_cfs_rq_runtime(cfs_rq
, 0);
5342 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
5344 cfs_rq
->tasks_timeline
= RB_ROOT
;
5345 INIT_LIST_HEAD(&cfs_rq
->tasks
);
5346 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
5347 #ifndef CONFIG_64BIT
5348 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
5352 #ifdef CONFIG_FAIR_GROUP_SCHED
5353 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
5356 * If the task was not on the rq at the time of this cgroup movement
5357 * it must have been asleep, sleeping tasks keep their ->vruntime
5358 * absolute on their old rq until wakeup (needed for the fair sleeper
5359 * bonus in place_entity()).
5361 * If it was on the rq, we've just 'preempted' it, which does convert
5362 * ->vruntime to a relative base.
5364 * Make sure both cases convert their relative position when migrating
5365 * to another cgroup's rq. This does somewhat interfere with the
5366 * fair sleeper stuff for the first placement, but who cares.
5369 * When !on_rq, vruntime of the task has usually NOT been normalized.
5370 * But there are some cases where it has already been normalized:
5372 * - Moving a forked child which is waiting for being woken up by
5373 * wake_up_new_task().
5374 * - Moving a task which has been woken up by try_to_wake_up() and
5375 * waiting for actually being woken up by sched_ttwu_pending().
5377 * To prevent boost or penalty in the new cfs_rq caused by delta
5378 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5380 if (!on_rq
&& (!p
->se
.sum_exec_runtime
|| p
->state
== TASK_WAKING
))
5384 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
5385 set_task_rq(p
, task_cpu(p
));
5387 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
5390 void free_fair_sched_group(struct task_group
*tg
)
5394 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
5396 for_each_possible_cpu(i
) {
5398 kfree(tg
->cfs_rq
[i
]);
5407 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
5409 struct cfs_rq
*cfs_rq
;
5410 struct sched_entity
*se
;
5413 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
5416 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
5420 tg
->shares
= NICE_0_LOAD
;
5422 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
5424 for_each_possible_cpu(i
) {
5425 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
5426 GFP_KERNEL
, cpu_to_node(i
));
5430 se
= kzalloc_node(sizeof(struct sched_entity
),
5431 GFP_KERNEL
, cpu_to_node(i
));
5435 init_cfs_rq(cfs_rq
);
5436 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
5447 void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
5449 struct rq
*rq
= cpu_rq(cpu
);
5450 unsigned long flags
;
5453 * Only empty task groups can be destroyed; so we can speculatively
5454 * check on_list without danger of it being re-added.
5456 if (!tg
->cfs_rq
[cpu
]->on_list
)
5459 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5460 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
5461 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5464 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
5465 struct sched_entity
*se
, int cpu
,
5466 struct sched_entity
*parent
)
5468 struct rq
*rq
= cpu_rq(cpu
);
5473 /* allow initial update_cfs_load() to truncate */
5474 cfs_rq
->load_stamp
= 1;
5476 init_cfs_rq_runtime(cfs_rq
);
5478 tg
->cfs_rq
[cpu
] = cfs_rq
;
5481 /* se could be NULL for root_task_group */
5486 se
->cfs_rq
= &rq
->cfs
;
5488 se
->cfs_rq
= parent
->my_q
;
5491 update_load_set(&se
->load
, 0);
5492 se
->parent
= parent
;
5495 static DEFINE_MUTEX(shares_mutex
);
5497 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
5500 unsigned long flags
;
5503 * We can't change the weight of the root cgroup.
5508 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
5510 mutex_lock(&shares_mutex
);
5511 if (tg
->shares
== shares
)
5514 tg
->shares
= shares
;
5515 for_each_possible_cpu(i
) {
5516 struct rq
*rq
= cpu_rq(i
);
5517 struct sched_entity
*se
;
5520 /* Propagate contribution to hierarchy */
5521 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5522 for_each_sched_entity(se
)
5523 update_cfs_shares(group_cfs_rq(se
));
5524 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5528 mutex_unlock(&shares_mutex
);
5531 #else /* CONFIG_FAIR_GROUP_SCHED */
5533 void free_fair_sched_group(struct task_group
*tg
) { }
5535 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
5540 void unregister_fair_sched_group(struct task_group
*tg
, int cpu
) { }
5542 #endif /* CONFIG_FAIR_GROUP_SCHED */
5545 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
5547 struct sched_entity
*se
= &task
->se
;
5548 unsigned int rr_interval
= 0;
5551 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5554 if (rq
->cfs
.load
.weight
)
5555 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5561 * All the scheduling class methods:
5563 const struct sched_class fair_sched_class
= {
5564 .next
= &idle_sched_class
,
5565 .enqueue_task
= enqueue_task_fair
,
5566 .dequeue_task
= dequeue_task_fair
,
5567 .yield_task
= yield_task_fair
,
5568 .yield_to_task
= yield_to_task_fair
,
5570 .check_preempt_curr
= check_preempt_wakeup
,
5572 .pick_next_task
= pick_next_task_fair
,
5573 .put_prev_task
= put_prev_task_fair
,
5576 .select_task_rq
= select_task_rq_fair
,
5578 .rq_online
= rq_online_fair
,
5579 .rq_offline
= rq_offline_fair
,
5581 .task_waking
= task_waking_fair
,
5584 .set_curr_task
= set_curr_task_fair
,
5585 .task_tick
= task_tick_fair
,
5586 .task_fork
= task_fork_fair
,
5588 .prio_changed
= prio_changed_fair
,
5589 .switched_from
= switched_from_fair
,
5590 .switched_to
= switched_to_fair
,
5592 .get_rr_interval
= get_rr_interval_fair
,
5594 #ifdef CONFIG_FAIR_GROUP_SCHED
5595 .task_move_group
= task_move_group_fair
,
5599 #ifdef CONFIG_SCHED_DEBUG
5600 void print_cfs_stats(struct seq_file
*m
, int cpu
)
5602 struct cfs_rq
*cfs_rq
;
5605 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
5606 print_cfs_rq(m
, cpu
, cfs_rq
);
5611 __init
void init_sched_fair_class(void)
5614 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
5617 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
5618 cpu_notifier(sched_ilb_notifier
, 0);