OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / net / ipv4 / ip_output.c
blobff302bde8890fb748b026e07d55b3ace325335d7
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 EXPORT_SYMBOL(ip_send_check);
95 int __ip_local_out(struct sk_buff *skb)
97 struct iphdr *iph = ip_hdr(skb);
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
105 int ip_local_out(struct sk_buff *skb)
107 int err;
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
113 return err;
115 EXPORT_SYMBOL_GPL(ip_local_out);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 skb_dst_force(newskb);
126 netif_rx_ni(newskb);
127 return 0;
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 int ttl = inet->uc_ttl;
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
140 * Add an ip header to a skbuff and send it out.
143 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct iphdr *iph;
150 /* Build the IP header. */
151 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
152 skb_reset_network_header(skb);
153 iph = ip_hdr(skb);
154 iph->version = 4;
155 iph->ihl = 5;
156 iph->tos = inet->tos;
157 if (ip_dont_fragment(sk, &rt->dst))
158 iph->frag_off = htons(IP_DF);
159 else
160 iph->frag_off = 0;
161 iph->ttl = ip_select_ttl(inet, &rt->dst);
162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
163 iph->saddr = saddr;
164 iph->protocol = sk->sk_protocol;
165 ip_select_ident(iph, &rt->dst, sk);
167 if (opt && opt->opt.optlen) {
168 iph->ihl += opt->opt.optlen>>2;
169 ip_options_build(skb, &opt->opt, daddr, rt, 0);
172 skb->priority = sk->sk_priority;
173 skb->mark = sk->sk_mark;
175 /* Send it out. */
176 return ip_local_out(skb);
178 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
180 static inline int ip_finish_output2(struct sk_buff *skb)
182 struct dst_entry *dst = skb_dst(skb);
183 struct rtable *rt = (struct rtable *)dst;
184 struct net_device *dev = dst->dev;
185 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 struct neighbour *neigh;
188 if (rt->rt_type == RTN_MULTICAST) {
189 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
190 } else if (rt->rt_type == RTN_BROADCAST)
191 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
193 /* Be paranoid, rather than too clever. */
194 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
195 struct sk_buff *skb2;
197 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
198 if (skb2 == NULL) {
199 kfree_skb(skb);
200 return -ENOMEM;
202 if (skb->sk)
203 skb_set_owner_w(skb2, skb->sk);
204 kfree_skb(skb);
205 skb = skb2;
208 rcu_read_lock();
209 neigh = dst_get_neighbour_noref(dst);
210 if (neigh) {
211 int res = neigh_output(neigh, skb);
213 rcu_read_unlock();
214 return res;
216 rcu_read_unlock();
218 if (net_ratelimit())
219 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
220 kfree_skb(skb);
221 return -EINVAL;
224 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
226 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
228 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
229 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
232 static int ip_finish_output(struct sk_buff *skb)
234 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
235 /* Policy lookup after SNAT yielded a new policy */
236 if (skb_dst(skb)->xfrm != NULL) {
237 IPCB(skb)->flags |= IPSKB_REROUTED;
238 return dst_output(skb);
240 #endif
241 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
242 return ip_fragment(skb, ip_finish_output2);
243 else
244 return ip_finish_output2(skb);
247 int ip_mc_output(struct sk_buff *skb)
249 struct sock *sk = skb->sk;
250 struct rtable *rt = skb_rtable(skb);
251 struct net_device *dev = rt->dst.dev;
254 * If the indicated interface is up and running, send the packet.
256 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
258 skb->dev = dev;
259 skb->protocol = htons(ETH_P_IP);
262 * Multicasts are looped back for other local users
265 if (rt->rt_flags&RTCF_MULTICAST) {
266 if (sk_mc_loop(sk)
267 #ifdef CONFIG_IP_MROUTE
268 /* Small optimization: do not loopback not local frames,
269 which returned after forwarding; they will be dropped
270 by ip_mr_input in any case.
271 Note, that local frames are looped back to be delivered
272 to local recipients.
274 This check is duplicated in ip_mr_input at the moment.
277 ((rt->rt_flags & RTCF_LOCAL) ||
278 !(IPCB(skb)->flags & IPSKB_FORWARDED))
279 #endif
281 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
282 if (newskb)
283 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
284 newskb, NULL, newskb->dev,
285 ip_dev_loopback_xmit);
288 /* Multicasts with ttl 0 must not go beyond the host */
290 if (ip_hdr(skb)->ttl == 0) {
291 kfree_skb(skb);
292 return 0;
296 if (rt->rt_flags&RTCF_BROADCAST) {
297 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
298 if (newskb)
299 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
300 NULL, newskb->dev, ip_dev_loopback_xmit);
303 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
304 skb->dev, ip_finish_output,
305 !(IPCB(skb)->flags & IPSKB_REROUTED));
308 int ip_output(struct sk_buff *skb)
310 struct net_device *dev = skb_dst(skb)->dev;
312 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
314 skb->dev = dev;
315 skb->protocol = htons(ETH_P_IP);
317 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
318 ip_finish_output,
319 !(IPCB(skb)->flags & IPSKB_REROUTED));
323 * copy saddr and daddr, possibly using 64bit load/stores
324 * Equivalent to :
325 * iph->saddr = fl4->saddr;
326 * iph->daddr = fl4->daddr;
328 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
330 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
331 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
332 memcpy(&iph->saddr, &fl4->saddr,
333 sizeof(fl4->saddr) + sizeof(fl4->daddr));
336 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
338 struct sock *sk = skb->sk;
339 struct inet_sock *inet = inet_sk(sk);
340 struct ip_options_rcu *inet_opt;
341 struct flowi4 *fl4;
342 struct rtable *rt;
343 struct iphdr *iph;
344 int res;
346 /* Skip all of this if the packet is already routed,
347 * f.e. by something like SCTP.
349 rcu_read_lock();
350 inet_opt = rcu_dereference(inet->inet_opt);
351 fl4 = &fl->u.ip4;
352 rt = skb_rtable(skb);
353 if (rt != NULL)
354 goto packet_routed;
356 /* Make sure we can route this packet. */
357 rt = (struct rtable *)__sk_dst_check(sk, 0);
358 if (rt == NULL) {
359 __be32 daddr;
361 /* Use correct destination address if we have options. */
362 daddr = inet->inet_daddr;
363 if (inet_opt && inet_opt->opt.srr)
364 daddr = inet_opt->opt.faddr;
366 /* If this fails, retransmit mechanism of transport layer will
367 * keep trying until route appears or the connection times
368 * itself out.
370 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
371 daddr, inet->inet_saddr,
372 inet->inet_dport,
373 inet->inet_sport,
374 sk->sk_protocol,
375 RT_CONN_FLAGS(sk),
376 sk->sk_bound_dev_if);
377 if (IS_ERR(rt))
378 goto no_route;
379 sk_setup_caps(sk, &rt->dst);
381 skb_dst_set_noref(skb, &rt->dst);
383 packet_routed:
384 if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
385 goto no_route;
387 /* OK, we know where to send it, allocate and build IP header. */
388 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
389 skb_reset_network_header(skb);
390 iph = ip_hdr(skb);
391 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
392 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
393 iph->frag_off = htons(IP_DF);
394 else
395 iph->frag_off = 0;
396 iph->ttl = ip_select_ttl(inet, &rt->dst);
397 iph->protocol = sk->sk_protocol;
398 ip_copy_addrs(iph, fl4);
400 /* Transport layer set skb->h.foo itself. */
402 if (inet_opt && inet_opt->opt.optlen) {
403 iph->ihl += inet_opt->opt.optlen >> 2;
404 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
407 ip_select_ident_more(iph, &rt->dst, sk,
408 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
410 skb->priority = sk->sk_priority;
411 skb->mark = sk->sk_mark;
413 res = ip_local_out(skb);
414 rcu_read_unlock();
415 return res;
417 no_route:
418 rcu_read_unlock();
419 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
420 kfree_skb(skb);
421 return -EHOSTUNREACH;
423 EXPORT_SYMBOL(ip_queue_xmit);
426 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
428 to->pkt_type = from->pkt_type;
429 to->priority = from->priority;
430 to->protocol = from->protocol;
431 skb_dst_drop(to);
432 skb_dst_copy(to, from);
433 to->dev = from->dev;
434 to->mark = from->mark;
436 /* Copy the flags to each fragment. */
437 IPCB(to)->flags = IPCB(from)->flags;
439 #ifdef CONFIG_NET_SCHED
440 to->tc_index = from->tc_index;
441 #endif
442 nf_copy(to, from);
443 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
444 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
445 to->nf_trace = from->nf_trace;
446 #endif
447 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
448 to->ipvs_property = from->ipvs_property;
449 #endif
450 skb_copy_secmark(to, from);
454 * This IP datagram is too large to be sent in one piece. Break it up into
455 * smaller pieces (each of size equal to IP header plus
456 * a block of the data of the original IP data part) that will yet fit in a
457 * single device frame, and queue such a frame for sending.
460 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
462 struct iphdr *iph;
463 int ptr;
464 struct net_device *dev;
465 struct sk_buff *skb2;
466 unsigned int mtu, hlen, left, len, ll_rs;
467 int offset;
468 __be16 not_last_frag;
469 struct rtable *rt = skb_rtable(skb);
470 int err = 0;
472 dev = rt->dst.dev;
475 * Point into the IP datagram header.
478 iph = ip_hdr(skb);
480 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
481 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
482 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
483 htonl(ip_skb_dst_mtu(skb)));
484 kfree_skb(skb);
485 return -EMSGSIZE;
489 * Setup starting values.
492 hlen = iph->ihl * 4;
493 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
494 #ifdef CONFIG_BRIDGE_NETFILTER
495 if (skb->nf_bridge)
496 mtu -= nf_bridge_mtu_reduction(skb);
497 #endif
498 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
500 /* When frag_list is given, use it. First, check its validity:
501 * some transformers could create wrong frag_list or break existing
502 * one, it is not prohibited. In this case fall back to copying.
504 * LATER: this step can be merged to real generation of fragments,
505 * we can switch to copy when see the first bad fragment.
507 if (skb_has_frag_list(skb)) {
508 struct sk_buff *frag, *frag2;
509 int first_len = skb_pagelen(skb);
511 if (first_len - hlen > mtu ||
512 ((first_len - hlen) & 7) ||
513 ip_is_fragment(iph) ||
514 skb_cloned(skb))
515 goto slow_path;
517 skb_walk_frags(skb, frag) {
518 /* Correct geometry. */
519 if (frag->len > mtu ||
520 ((frag->len & 7) && frag->next) ||
521 skb_headroom(frag) < hlen)
522 goto slow_path_clean;
524 /* Partially cloned skb? */
525 if (skb_shared(frag))
526 goto slow_path_clean;
528 BUG_ON(frag->sk);
529 if (skb->sk) {
530 frag->sk = skb->sk;
531 frag->destructor = sock_wfree;
533 skb->truesize -= frag->truesize;
536 /* Everything is OK. Generate! */
538 err = 0;
539 offset = 0;
540 frag = skb_shinfo(skb)->frag_list;
541 skb_frag_list_init(skb);
542 skb->data_len = first_len - skb_headlen(skb);
543 skb->len = first_len;
544 iph->tot_len = htons(first_len);
545 iph->frag_off = htons(IP_MF);
546 ip_send_check(iph);
548 for (;;) {
549 /* Prepare header of the next frame,
550 * before previous one went down. */
551 if (frag) {
552 frag->ip_summed = CHECKSUM_NONE;
553 skb_reset_transport_header(frag);
554 __skb_push(frag, hlen);
555 skb_reset_network_header(frag);
556 memcpy(skb_network_header(frag), iph, hlen);
557 iph = ip_hdr(frag);
558 iph->tot_len = htons(frag->len);
559 ip_copy_metadata(frag, skb);
560 if (offset == 0)
561 ip_options_fragment(frag);
562 offset += skb->len - hlen;
563 iph->frag_off = htons(offset>>3);
564 if (frag->next != NULL)
565 iph->frag_off |= htons(IP_MF);
566 /* Ready, complete checksum */
567 ip_send_check(iph);
570 err = output(skb);
572 if (!err)
573 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
574 if (err || !frag)
575 break;
577 skb = frag;
578 frag = skb->next;
579 skb->next = NULL;
582 if (err == 0) {
583 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
584 return 0;
587 while (frag) {
588 skb = frag->next;
589 kfree_skb(frag);
590 frag = skb;
592 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
593 return err;
595 slow_path_clean:
596 skb_walk_frags(skb, frag2) {
597 if (frag2 == frag)
598 break;
599 frag2->sk = NULL;
600 frag2->destructor = NULL;
601 skb->truesize += frag2->truesize;
605 slow_path:
606 left = skb->len - hlen; /* Space per frame */
607 ptr = hlen; /* Where to start from */
609 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
610 * we need to make room for the encapsulating header
612 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
615 * Fragment the datagram.
618 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
619 not_last_frag = iph->frag_off & htons(IP_MF);
622 * Keep copying data until we run out.
625 while (left > 0) {
626 len = left;
627 /* IF: it doesn't fit, use 'mtu' - the data space left */
628 if (len > mtu)
629 len = mtu;
630 /* IF: we are not sending up to and including the packet end
631 then align the next start on an eight byte boundary */
632 if (len < left) {
633 len &= ~7;
636 * Allocate buffer.
639 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
640 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
641 err = -ENOMEM;
642 goto fail;
646 * Set up data on packet
649 ip_copy_metadata(skb2, skb);
650 skb_reserve(skb2, ll_rs);
651 skb_put(skb2, len + hlen);
652 skb_reset_network_header(skb2);
653 skb2->transport_header = skb2->network_header + hlen;
656 * Charge the memory for the fragment to any owner
657 * it might possess
660 if (skb->sk)
661 skb_set_owner_w(skb2, skb->sk);
664 * Copy the packet header into the new buffer.
667 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
670 * Copy a block of the IP datagram.
672 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
673 BUG();
674 left -= len;
677 * Fill in the new header fields.
679 iph = ip_hdr(skb2);
680 iph->frag_off = htons((offset >> 3));
682 /* ANK: dirty, but effective trick. Upgrade options only if
683 * the segment to be fragmented was THE FIRST (otherwise,
684 * options are already fixed) and make it ONCE
685 * on the initial skb, so that all the following fragments
686 * will inherit fixed options.
688 if (offset == 0)
689 ip_options_fragment(skb);
692 * Added AC : If we are fragmenting a fragment that's not the
693 * last fragment then keep MF on each bit
695 if (left > 0 || not_last_frag)
696 iph->frag_off |= htons(IP_MF);
697 ptr += len;
698 offset += len;
701 * Put this fragment into the sending queue.
703 iph->tot_len = htons(len + hlen);
705 ip_send_check(iph);
707 err = output(skb2);
708 if (err)
709 goto fail;
711 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
713 kfree_skb(skb);
714 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
715 return err;
717 fail:
718 kfree_skb(skb);
719 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
720 return err;
722 EXPORT_SYMBOL(ip_fragment);
725 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
727 struct iovec *iov = from;
729 if (skb->ip_summed == CHECKSUM_PARTIAL) {
730 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
731 return -EFAULT;
732 } else {
733 __wsum csum = 0;
734 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
735 return -EFAULT;
736 skb->csum = csum_block_add(skb->csum, csum, odd);
738 return 0;
740 EXPORT_SYMBOL(ip_generic_getfrag);
742 static inline __wsum
743 csum_page(struct page *page, int offset, int copy)
745 char *kaddr;
746 __wsum csum;
747 kaddr = kmap(page);
748 csum = csum_partial(kaddr + offset, copy, 0);
749 kunmap(page);
750 return csum;
753 static inline int ip_ufo_append_data(struct sock *sk,
754 struct sk_buff_head *queue,
755 int getfrag(void *from, char *to, int offset, int len,
756 int odd, struct sk_buff *skb),
757 void *from, int length, int hh_len, int fragheaderlen,
758 int transhdrlen, int maxfraglen, unsigned int flags)
760 struct sk_buff *skb;
761 int err;
763 /* There is support for UDP fragmentation offload by network
764 * device, so create one single skb packet containing complete
765 * udp datagram
767 if ((skb = skb_peek_tail(queue)) == NULL) {
768 skb = sock_alloc_send_skb(sk,
769 hh_len + fragheaderlen + transhdrlen + 20,
770 (flags & MSG_DONTWAIT), &err);
772 if (skb == NULL)
773 return err;
775 /* reserve space for Hardware header */
776 skb_reserve(skb, hh_len);
778 /* create space for UDP/IP header */
779 skb_put(skb, fragheaderlen + transhdrlen);
781 /* initialize network header pointer */
782 skb_reset_network_header(skb);
784 /* initialize protocol header pointer */
785 skb->transport_header = skb->network_header + fragheaderlen;
787 skb->ip_summed = CHECKSUM_PARTIAL;
788 skb->csum = 0;
790 /* specify the length of each IP datagram fragment */
791 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
792 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
793 __skb_queue_tail(queue, skb);
796 return skb_append_datato_frags(sk, skb, getfrag, from,
797 (length - transhdrlen));
800 static int __ip_append_data(struct sock *sk,
801 struct flowi4 *fl4,
802 struct sk_buff_head *queue,
803 struct inet_cork *cork,
804 int getfrag(void *from, char *to, int offset,
805 int len, int odd, struct sk_buff *skb),
806 void *from, int length, int transhdrlen,
807 unsigned int flags)
809 struct inet_sock *inet = inet_sk(sk);
810 struct sk_buff *skb;
812 struct ip_options *opt = cork->opt;
813 int hh_len;
814 int exthdrlen;
815 int mtu;
816 int copy;
817 int err;
818 int offset = 0;
819 unsigned int maxfraglen, fragheaderlen;
820 int csummode = CHECKSUM_NONE;
821 struct rtable *rt = (struct rtable *)cork->dst;
823 skb = skb_peek_tail(queue);
825 exthdrlen = !skb ? rt->dst.header_len : 0;
826 mtu = cork->fragsize;
828 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
830 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
831 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
833 if (cork->length + length > 0xFFFF - fragheaderlen) {
834 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
835 mtu-exthdrlen);
836 return -EMSGSIZE;
840 * transhdrlen > 0 means that this is the first fragment and we wish
841 * it won't be fragmented in the future.
843 if (transhdrlen &&
844 length + fragheaderlen <= mtu &&
845 rt->dst.dev->features & NETIF_F_V4_CSUM &&
846 !exthdrlen)
847 csummode = CHECKSUM_PARTIAL;
849 cork->length += length;
850 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
851 (sk->sk_protocol == IPPROTO_UDP) &&
852 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
853 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
854 hh_len, fragheaderlen, transhdrlen,
855 maxfraglen, flags);
856 if (err)
857 goto error;
858 return 0;
861 /* So, what's going on in the loop below?
863 * We use calculated fragment length to generate chained skb,
864 * each of segments is IP fragment ready for sending to network after
865 * adding appropriate IP header.
868 if (!skb)
869 goto alloc_new_skb;
871 while (length > 0) {
872 /* Check if the remaining data fits into current packet. */
873 copy = mtu - skb->len;
874 if (copy < length)
875 copy = maxfraglen - skb->len;
876 if (copy <= 0) {
877 char *data;
878 unsigned int datalen;
879 unsigned int fraglen;
880 unsigned int fraggap;
881 unsigned int alloclen;
882 struct sk_buff *skb_prev;
883 alloc_new_skb:
884 skb_prev = skb;
885 if (skb_prev)
886 fraggap = skb_prev->len - maxfraglen;
887 else
888 fraggap = 0;
891 * If remaining data exceeds the mtu,
892 * we know we need more fragment(s).
894 datalen = length + fraggap;
895 if (datalen > mtu - fragheaderlen)
896 datalen = maxfraglen - fragheaderlen;
897 fraglen = datalen + fragheaderlen;
899 if ((flags & MSG_MORE) &&
900 !(rt->dst.dev->features&NETIF_F_SG))
901 alloclen = mtu;
902 else
903 alloclen = fraglen;
905 alloclen += exthdrlen;
907 /* The last fragment gets additional space at tail.
908 * Note, with MSG_MORE we overallocate on fragments,
909 * because we have no idea what fragment will be
910 * the last.
912 if (datalen == length + fraggap)
913 alloclen += rt->dst.trailer_len;
915 if (transhdrlen) {
916 skb = sock_alloc_send_skb(sk,
917 alloclen + hh_len + 15,
918 (flags & MSG_DONTWAIT), &err);
919 } else {
920 skb = NULL;
921 if (atomic_read(&sk->sk_wmem_alloc) <=
922 2 * sk->sk_sndbuf)
923 skb = sock_wmalloc(sk,
924 alloclen + hh_len + 15, 1,
925 sk->sk_allocation);
926 if (unlikely(skb == NULL))
927 err = -ENOBUFS;
928 else
929 /* only the initial fragment is
930 time stamped */
931 cork->tx_flags = 0;
933 if (skb == NULL)
934 goto error;
937 * Fill in the control structures
939 skb->ip_summed = csummode;
940 skb->csum = 0;
941 skb_reserve(skb, hh_len);
942 skb_shinfo(skb)->tx_flags = cork->tx_flags;
945 * Find where to start putting bytes.
947 data = skb_put(skb, fraglen + exthdrlen);
948 skb_set_network_header(skb, exthdrlen);
949 skb->transport_header = (skb->network_header +
950 fragheaderlen);
951 data += fragheaderlen + exthdrlen;
953 if (fraggap) {
954 skb->csum = skb_copy_and_csum_bits(
955 skb_prev, maxfraglen,
956 data + transhdrlen, fraggap, 0);
957 skb_prev->csum = csum_sub(skb_prev->csum,
958 skb->csum);
959 data += fraggap;
960 pskb_trim_unique(skb_prev, maxfraglen);
963 copy = datalen - transhdrlen - fraggap;
964 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
965 err = -EFAULT;
966 kfree_skb(skb);
967 goto error;
970 offset += copy;
971 length -= datalen - fraggap;
972 transhdrlen = 0;
973 exthdrlen = 0;
974 csummode = CHECKSUM_NONE;
977 * Put the packet on the pending queue.
979 __skb_queue_tail(queue, skb);
980 continue;
983 if (copy > length)
984 copy = length;
986 if (!(rt->dst.dev->features&NETIF_F_SG)) {
987 unsigned int off;
989 off = skb->len;
990 if (getfrag(from, skb_put(skb, copy),
991 offset, copy, off, skb) < 0) {
992 __skb_trim(skb, off);
993 err = -EFAULT;
994 goto error;
996 } else {
997 int i = skb_shinfo(skb)->nr_frags;
998 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
999 struct page *page = cork->page;
1000 int off = cork->off;
1001 unsigned int left;
1003 if (page && (left = PAGE_SIZE - off) > 0) {
1004 if (copy >= left)
1005 copy = left;
1006 if (page != skb_frag_page(frag)) {
1007 if (i == MAX_SKB_FRAGS) {
1008 err = -EMSGSIZE;
1009 goto error;
1011 skb_fill_page_desc(skb, i, page, off, 0);
1012 skb_frag_ref(skb, i);
1013 frag = &skb_shinfo(skb)->frags[i];
1015 } else if (i < MAX_SKB_FRAGS) {
1016 if (copy > PAGE_SIZE)
1017 copy = PAGE_SIZE;
1018 page = alloc_pages(sk->sk_allocation, 0);
1019 if (page == NULL) {
1020 err = -ENOMEM;
1021 goto error;
1023 cork->page = page;
1024 cork->off = 0;
1026 skb_fill_page_desc(skb, i, page, 0, 0);
1027 frag = &skb_shinfo(skb)->frags[i];
1028 } else {
1029 err = -EMSGSIZE;
1030 goto error;
1032 if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag),
1033 offset, copy, skb->len, skb) < 0) {
1034 err = -EFAULT;
1035 goto error;
1037 cork->off += copy;
1038 skb_frag_size_add(frag, copy);
1039 skb->len += copy;
1040 skb->data_len += copy;
1041 skb->truesize += copy;
1042 atomic_add(copy, &sk->sk_wmem_alloc);
1044 offset += copy;
1045 length -= copy;
1048 return 0;
1050 error:
1051 cork->length -= length;
1052 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1053 return err;
1056 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1057 struct ipcm_cookie *ipc, struct rtable **rtp)
1059 struct inet_sock *inet = inet_sk(sk);
1060 struct ip_options_rcu *opt;
1061 struct rtable *rt;
1064 * setup for corking.
1066 opt = ipc->opt;
1067 if (opt) {
1068 if (cork->opt == NULL) {
1069 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1070 sk->sk_allocation);
1071 if (unlikely(cork->opt == NULL))
1072 return -ENOBUFS;
1074 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1075 cork->flags |= IPCORK_OPT;
1076 cork->addr = ipc->addr;
1078 rt = *rtp;
1079 if (unlikely(!rt))
1080 return -EFAULT;
1082 * We steal reference to this route, caller should not release it
1084 *rtp = NULL;
1085 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1086 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1087 cork->dst = &rt->dst;
1088 cork->length = 0;
1089 cork->tx_flags = ipc->tx_flags;
1090 cork->page = NULL;
1091 cork->off = 0;
1093 return 0;
1097 * ip_append_data() and ip_append_page() can make one large IP datagram
1098 * from many pieces of data. Each pieces will be holded on the socket
1099 * until ip_push_pending_frames() is called. Each piece can be a page
1100 * or non-page data.
1102 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1103 * this interface potentially.
1105 * LATER: length must be adjusted by pad at tail, when it is required.
1107 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1108 int getfrag(void *from, char *to, int offset, int len,
1109 int odd, struct sk_buff *skb),
1110 void *from, int length, int transhdrlen,
1111 struct ipcm_cookie *ipc, struct rtable **rtp,
1112 unsigned int flags)
1114 struct inet_sock *inet = inet_sk(sk);
1115 int err;
1117 if (flags&MSG_PROBE)
1118 return 0;
1120 if (skb_queue_empty(&sk->sk_write_queue)) {
1121 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1122 if (err)
1123 return err;
1124 } else {
1125 transhdrlen = 0;
1128 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1129 from, length, transhdrlen, flags);
1132 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1133 int offset, size_t size, int flags)
1135 struct inet_sock *inet = inet_sk(sk);
1136 struct sk_buff *skb;
1137 struct rtable *rt;
1138 struct ip_options *opt = NULL;
1139 struct inet_cork *cork;
1140 int hh_len;
1141 int mtu;
1142 int len;
1143 int err;
1144 unsigned int maxfraglen, fragheaderlen, fraggap;
1146 if (inet->hdrincl)
1147 return -EPERM;
1149 if (flags&MSG_PROBE)
1150 return 0;
1152 if (skb_queue_empty(&sk->sk_write_queue))
1153 return -EINVAL;
1155 cork = &inet->cork.base;
1156 rt = (struct rtable *)cork->dst;
1157 if (cork->flags & IPCORK_OPT)
1158 opt = cork->opt;
1160 if (!(rt->dst.dev->features&NETIF_F_SG))
1161 return -EOPNOTSUPP;
1163 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1164 mtu = cork->fragsize;
1166 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1167 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1169 if (cork->length + size > 0xFFFF - fragheaderlen) {
1170 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1171 return -EMSGSIZE;
1174 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1175 return -EINVAL;
1177 cork->length += size;
1178 if ((size + skb->len > mtu) &&
1179 (sk->sk_protocol == IPPROTO_UDP) &&
1180 (rt->dst.dev->features & NETIF_F_UFO)) {
1181 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1182 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1186 while (size > 0) {
1187 int i;
1189 if (skb_is_gso(skb))
1190 len = size;
1191 else {
1193 /* Check if the remaining data fits into current packet. */
1194 len = mtu - skb->len;
1195 if (len < size)
1196 len = maxfraglen - skb->len;
1198 if (len <= 0) {
1199 struct sk_buff *skb_prev;
1200 int alloclen;
1202 skb_prev = skb;
1203 fraggap = skb_prev->len - maxfraglen;
1205 alloclen = fragheaderlen + hh_len + fraggap + 15;
1206 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1207 if (unlikely(!skb)) {
1208 err = -ENOBUFS;
1209 goto error;
1213 * Fill in the control structures
1215 skb->ip_summed = CHECKSUM_NONE;
1216 skb->csum = 0;
1217 skb_reserve(skb, hh_len);
1220 * Find where to start putting bytes.
1222 skb_put(skb, fragheaderlen + fraggap);
1223 skb_reset_network_header(skb);
1224 skb->transport_header = (skb->network_header +
1225 fragheaderlen);
1226 if (fraggap) {
1227 skb->csum = skb_copy_and_csum_bits(skb_prev,
1228 maxfraglen,
1229 skb_transport_header(skb),
1230 fraggap, 0);
1231 skb_prev->csum = csum_sub(skb_prev->csum,
1232 skb->csum);
1233 pskb_trim_unique(skb_prev, maxfraglen);
1237 * Put the packet on the pending queue.
1239 __skb_queue_tail(&sk->sk_write_queue, skb);
1240 continue;
1243 i = skb_shinfo(skb)->nr_frags;
1244 if (len > size)
1245 len = size;
1246 if (skb_can_coalesce(skb, i, page, offset)) {
1247 skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1248 } else if (i < MAX_SKB_FRAGS) {
1249 get_page(page);
1250 skb_fill_page_desc(skb, i, page, offset, len);
1251 } else {
1252 err = -EMSGSIZE;
1253 goto error;
1256 if (skb->ip_summed == CHECKSUM_NONE) {
1257 __wsum csum;
1258 csum = csum_page(page, offset, len);
1259 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1262 skb->len += len;
1263 skb->data_len += len;
1264 skb->truesize += len;
1265 atomic_add(len, &sk->sk_wmem_alloc);
1266 offset += len;
1267 size -= len;
1269 return 0;
1271 error:
1272 cork->length -= size;
1273 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1274 return err;
1277 static void ip_cork_release(struct inet_cork *cork)
1279 cork->flags &= ~IPCORK_OPT;
1280 kfree(cork->opt);
1281 cork->opt = NULL;
1282 dst_release(cork->dst);
1283 cork->dst = NULL;
1287 * Combined all pending IP fragments on the socket as one IP datagram
1288 * and push them out.
1290 struct sk_buff *__ip_make_skb(struct sock *sk,
1291 struct flowi4 *fl4,
1292 struct sk_buff_head *queue,
1293 struct inet_cork *cork)
1295 struct sk_buff *skb, *tmp_skb;
1296 struct sk_buff **tail_skb;
1297 struct inet_sock *inet = inet_sk(sk);
1298 struct net *net = sock_net(sk);
1299 struct ip_options *opt = NULL;
1300 struct rtable *rt = (struct rtable *)cork->dst;
1301 struct iphdr *iph;
1302 __be16 df = 0;
1303 __u8 ttl;
1305 if ((skb = __skb_dequeue(queue)) == NULL)
1306 goto out;
1307 tail_skb = &(skb_shinfo(skb)->frag_list);
1309 /* move skb->data to ip header from ext header */
1310 if (skb->data < skb_network_header(skb))
1311 __skb_pull(skb, skb_network_offset(skb));
1312 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1313 __skb_pull(tmp_skb, skb_network_header_len(skb));
1314 *tail_skb = tmp_skb;
1315 tail_skb = &(tmp_skb->next);
1316 skb->len += tmp_skb->len;
1317 skb->data_len += tmp_skb->len;
1318 skb->truesize += tmp_skb->truesize;
1319 tmp_skb->destructor = NULL;
1320 tmp_skb->sk = NULL;
1323 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1324 * to fragment the frame generated here. No matter, what transforms
1325 * how transforms change size of the packet, it will come out.
1327 if (inet->pmtudisc < IP_PMTUDISC_DO)
1328 skb->local_df = 1;
1330 /* DF bit is set when we want to see DF on outgoing frames.
1331 * If local_df is set too, we still allow to fragment this frame
1332 * locally. */
1333 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1334 (skb->len <= dst_mtu(&rt->dst) &&
1335 ip_dont_fragment(sk, &rt->dst)))
1336 df = htons(IP_DF);
1338 if (cork->flags & IPCORK_OPT)
1339 opt = cork->opt;
1341 if (rt->rt_type == RTN_MULTICAST)
1342 ttl = inet->mc_ttl;
1343 else
1344 ttl = ip_select_ttl(inet, &rt->dst);
1346 iph = (struct iphdr *)skb->data;
1347 iph->version = 4;
1348 iph->ihl = 5;
1349 iph->tos = inet->tos;
1350 iph->frag_off = df;
1351 ip_select_ident(iph, &rt->dst, sk);
1352 iph->ttl = ttl;
1353 iph->protocol = sk->sk_protocol;
1354 ip_copy_addrs(iph, fl4);
1356 if (opt) {
1357 iph->ihl += opt->optlen>>2;
1358 ip_options_build(skb, opt, cork->addr, rt, 0);
1361 skb->priority = sk->sk_priority;
1362 skb->mark = sk->sk_mark;
1364 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1365 * on dst refcount
1367 cork->dst = NULL;
1368 skb_dst_set(skb, &rt->dst);
1370 if (iph->protocol == IPPROTO_ICMP)
1371 icmp_out_count(net, ((struct icmphdr *)
1372 skb_transport_header(skb))->type);
1374 ip_cork_release(cork);
1375 out:
1376 return skb;
1379 int ip_send_skb(struct sk_buff *skb)
1381 struct net *net = sock_net(skb->sk);
1382 int err;
1384 err = ip_local_out(skb);
1385 if (err) {
1386 if (err > 0)
1387 err = net_xmit_errno(err);
1388 if (err)
1389 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1392 return err;
1395 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1397 struct sk_buff *skb;
1399 skb = ip_finish_skb(sk, fl4);
1400 if (!skb)
1401 return 0;
1403 /* Netfilter gets whole the not fragmented skb. */
1404 return ip_send_skb(skb);
1408 * Throw away all pending data on the socket.
1410 static void __ip_flush_pending_frames(struct sock *sk,
1411 struct sk_buff_head *queue,
1412 struct inet_cork *cork)
1414 struct sk_buff *skb;
1416 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1417 kfree_skb(skb);
1419 ip_cork_release(cork);
1422 void ip_flush_pending_frames(struct sock *sk)
1424 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1427 struct sk_buff *ip_make_skb(struct sock *sk,
1428 struct flowi4 *fl4,
1429 int getfrag(void *from, char *to, int offset,
1430 int len, int odd, struct sk_buff *skb),
1431 void *from, int length, int transhdrlen,
1432 struct ipcm_cookie *ipc, struct rtable **rtp,
1433 unsigned int flags)
1435 struct inet_cork cork;
1436 struct sk_buff_head queue;
1437 int err;
1439 if (flags & MSG_PROBE)
1440 return NULL;
1442 __skb_queue_head_init(&queue);
1444 cork.flags = 0;
1445 cork.addr = 0;
1446 cork.opt = NULL;
1447 err = ip_setup_cork(sk, &cork, ipc, rtp);
1448 if (err)
1449 return ERR_PTR(err);
1451 err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1452 from, length, transhdrlen, flags);
1453 if (err) {
1454 __ip_flush_pending_frames(sk, &queue, &cork);
1455 return ERR_PTR(err);
1458 return __ip_make_skb(sk, fl4, &queue, &cork);
1462 * Fetch data from kernel space and fill in checksum if needed.
1464 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1465 int len, int odd, struct sk_buff *skb)
1467 __wsum csum;
1469 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1470 skb->csum = csum_block_add(skb->csum, csum, odd);
1471 return 0;
1475 * Generic function to send a packet as reply to another packet.
1476 * Used to send TCP resets so far. ICMP should use this function too.
1478 * Should run single threaded per socket because it uses the sock
1479 * structure to pass arguments.
1481 void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1482 const struct ip_reply_arg *arg, unsigned int len)
1484 struct inet_sock *inet = inet_sk(sk);
1485 struct ip_options_data replyopts;
1486 struct ipcm_cookie ipc;
1487 struct flowi4 fl4;
1488 struct rtable *rt = skb_rtable(skb);
1490 if (ip_options_echo(&replyopts.opt.opt, skb))
1491 return;
1493 ipc.addr = daddr;
1494 ipc.opt = NULL;
1495 ipc.tx_flags = 0;
1497 if (replyopts.opt.opt.optlen) {
1498 ipc.opt = &replyopts.opt;
1500 if (replyopts.opt.opt.srr)
1501 daddr = replyopts.opt.opt.faddr;
1504 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1505 RT_TOS(arg->tos),
1506 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1507 ip_reply_arg_flowi_flags(arg),
1508 daddr, rt->rt_spec_dst,
1509 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1510 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1511 rt = ip_route_output_key(sock_net(sk), &fl4);
1512 if (IS_ERR(rt))
1513 return;
1515 /* And let IP do all the hard work.
1517 This chunk is not reenterable, hence spinlock.
1518 Note that it uses the fact, that this function is called
1519 with locally disabled BH and that sk cannot be already spinlocked.
1521 bh_lock_sock(sk);
1522 inet->tos = arg->tos;
1523 sk->sk_priority = skb->priority;
1524 sk->sk_protocol = ip_hdr(skb)->protocol;
1525 sk->sk_bound_dev_if = arg->bound_dev_if;
1526 ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1527 &ipc, &rt, MSG_DONTWAIT);
1528 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1529 if (arg->csumoffset >= 0)
1530 *((__sum16 *)skb_transport_header(skb) +
1531 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1532 arg->csum));
1533 skb->ip_summed = CHECKSUM_NONE;
1534 ip_push_pending_frames(sk, &fl4);
1537 bh_unlock_sock(sk);
1539 ip_rt_put(rt);
1542 void __init ip_init(void)
1544 ip_rt_init();
1545 inet_initpeers();
1547 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1548 igmp_mc_proc_init();
1549 #endif