OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on OMAP4
[zen-stable.git] / net / sunrpc / sched.c
blob8efd96c0b9e66726dda493c9f5c83a9d08d93460
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
23 #include <linux/sunrpc/clnt.h>
25 #include "sunrpc.h"
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
42 static void rpc_async_schedule(struct work_struct *);
43 static void rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
47 * RPC tasks sit here while waiting for conditions to improve.
49 static struct rpc_wait_queue delay_queue;
52 * rpciod-related stuff
54 struct workqueue_struct *rpciod_workqueue;
57 * Disable the timer for a given RPC task. Should be called with
58 * queue->lock and bh_disabled in order to avoid races within
59 * rpc_run_timer().
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
64 if (task->tk_timeout == 0)
65 return;
66 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67 task->tk_timeout = 0;
68 list_del(&task->u.tk_wait.timer_list);
69 if (list_empty(&queue->timer_list.list))
70 del_timer(&queue->timer_list.timer);
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
76 queue->timer_list.expires = expires;
77 mod_timer(&queue->timer_list.timer, expires);
81 * Set up a timer for the current task.
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
86 if (!task->tk_timeout)
87 return;
89 dprintk("RPC: %5u setting alarm for %lu ms\n",
90 task->tk_pid, task->tk_timeout * 1000 / HZ);
92 task->u.tk_wait.expires = jiffies + task->tk_timeout;
93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 * Add new request to a priority queue.
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
102 struct rpc_task *task,
103 unsigned char queue_priority)
105 struct list_head *q;
106 struct rpc_task *t;
108 INIT_LIST_HEAD(&task->u.tk_wait.links);
109 q = &queue->tasks[queue_priority];
110 if (unlikely(queue_priority > queue->maxpriority))
111 q = &queue->tasks[queue->maxpriority];
112 list_for_each_entry(t, q, u.tk_wait.list) {
113 if (t->tk_owner == task->tk_owner) {
114 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
115 return;
118 list_add_tail(&task->u.tk_wait.list, q);
122 * Add new request to wait queue.
124 * Swapper tasks always get inserted at the head of the queue.
125 * This should avoid many nasty memory deadlocks and hopefully
126 * improve overall performance.
127 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
129 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
130 struct rpc_task *task,
131 unsigned char queue_priority)
133 BUG_ON (RPC_IS_QUEUED(task));
135 if (RPC_IS_PRIORITY(queue))
136 __rpc_add_wait_queue_priority(queue, task, queue_priority);
137 else if (RPC_IS_SWAPPER(task))
138 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
139 else
140 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
141 task->tk_waitqueue = queue;
142 queue->qlen++;
143 rpc_set_queued(task);
145 dprintk("RPC: %5u added to queue %p \"%s\"\n",
146 task->tk_pid, queue, rpc_qname(queue));
150 * Remove request from a priority queue.
152 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
154 struct rpc_task *t;
156 if (!list_empty(&task->u.tk_wait.links)) {
157 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
158 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
159 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
164 * Remove request from queue.
165 * Note: must be called with spin lock held.
167 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 __rpc_disable_timer(queue, task);
170 if (RPC_IS_PRIORITY(queue))
171 __rpc_remove_wait_queue_priority(task);
172 list_del(&task->u.tk_wait.list);
173 queue->qlen--;
174 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
175 task->tk_pid, queue, rpc_qname(queue));
178 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
180 queue->priority = priority;
181 queue->count = 1 << (priority * 2);
184 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
186 queue->owner = pid;
187 queue->nr = RPC_BATCH_COUNT;
190 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
192 rpc_set_waitqueue_priority(queue, queue->maxpriority);
193 rpc_set_waitqueue_owner(queue, 0);
196 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
198 int i;
200 spin_lock_init(&queue->lock);
201 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
202 INIT_LIST_HEAD(&queue->tasks[i]);
203 queue->maxpriority = nr_queues - 1;
204 rpc_reset_waitqueue_priority(queue);
205 queue->qlen = 0;
206 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
207 INIT_LIST_HEAD(&queue->timer_list.list);
208 #ifdef RPC_DEBUG
209 queue->name = qname;
210 #endif
213 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 __rpc_init_priority_wait_queue(queue, qname, 1);
223 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 del_timer_sync(&queue->timer_list.timer);
229 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231 static int rpc_wait_bit_killable(void *word)
233 if (fatal_signal_pending(current))
234 return -ERESTARTSYS;
235 freezable_schedule();
236 return 0;
239 #ifdef RPC_DEBUG
240 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 static atomic_t rpc_pid;
244 task->tk_pid = atomic_inc_return(&rpc_pid);
246 #else
247 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
250 #endif
252 static void rpc_set_active(struct rpc_task *task)
254 rpc_task_set_debuginfo(task);
255 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
259 * Mark an RPC call as having completed by clearing the 'active' bit
260 * and then waking up all tasks that were sleeping.
262 static int rpc_complete_task(struct rpc_task *task)
264 void *m = &task->tk_runstate;
265 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
266 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
267 unsigned long flags;
268 int ret;
270 spin_lock_irqsave(&wq->lock, flags);
271 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
272 ret = atomic_dec_and_test(&task->tk_count);
273 if (waitqueue_active(wq))
274 __wake_up_locked_key(wq, TASK_NORMAL, &k);
275 spin_unlock_irqrestore(&wq->lock, flags);
276 return ret;
280 * Allow callers to wait for completion of an RPC call
282 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
283 * to enforce taking of the wq->lock and hence avoid races with
284 * rpc_complete_task().
286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
288 if (action == NULL)
289 action = rpc_wait_bit_killable;
290 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
291 action, TASK_KILLABLE);
293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
296 * Make an RPC task runnable.
298 * Note: If the task is ASYNC, this must be called with
299 * the spinlock held to protect the wait queue operation.
301 static void rpc_make_runnable(struct rpc_task *task)
303 rpc_clear_queued(task);
304 if (rpc_test_and_set_running(task))
305 return;
306 if (RPC_IS_ASYNC(task)) {
307 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
308 queue_work(rpciod_workqueue, &task->u.tk_work);
309 } else
310 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
314 * Prepare for sleeping on a wait queue.
315 * By always appending tasks to the list we ensure FIFO behavior.
316 * NB: An RPC task will only receive interrupt-driven events as long
317 * as it's on a wait queue.
319 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
320 struct rpc_task *task,
321 rpc_action action,
322 unsigned char queue_priority)
324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325 task->tk_pid, rpc_qname(q), jiffies);
327 __rpc_add_wait_queue(q, task, queue_priority);
329 BUG_ON(task->tk_callback != NULL);
330 task->tk_callback = action;
331 __rpc_add_timer(q, task);
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 rpc_action action)
337 /* We shouldn't ever put an inactive task to sleep */
338 BUG_ON(!RPC_IS_ACTIVATED(task));
341 * Protect the queue operations.
343 spin_lock_bh(&q->lock);
344 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
345 spin_unlock_bh(&q->lock);
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
349 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
350 rpc_action action, int priority)
352 /* We shouldn't ever put an inactive task to sleep */
353 BUG_ON(!RPC_IS_ACTIVATED(task));
356 * Protect the queue operations.
358 spin_lock_bh(&q->lock);
359 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
360 spin_unlock_bh(&q->lock);
364 * __rpc_do_wake_up_task - wake up a single rpc_task
365 * @queue: wait queue
366 * @task: task to be woken up
368 * Caller must hold queue->lock, and have cleared the task queued flag.
370 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
372 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
373 task->tk_pid, jiffies);
375 /* Has the task been executed yet? If not, we cannot wake it up! */
376 if (!RPC_IS_ACTIVATED(task)) {
377 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
378 return;
381 __rpc_remove_wait_queue(queue, task);
383 rpc_make_runnable(task);
385 dprintk("RPC: __rpc_wake_up_task done\n");
389 * Wake up a queued task while the queue lock is being held
391 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
393 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
394 __rpc_do_wake_up_task(queue, task);
398 * Tests whether rpc queue is empty
400 int rpc_queue_empty(struct rpc_wait_queue *queue)
402 int res;
404 spin_lock_bh(&queue->lock);
405 res = queue->qlen;
406 spin_unlock_bh(&queue->lock);
407 return res == 0;
409 EXPORT_SYMBOL_GPL(rpc_queue_empty);
412 * Wake up a task on a specific queue
414 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
416 spin_lock_bh(&queue->lock);
417 rpc_wake_up_task_queue_locked(queue, task);
418 spin_unlock_bh(&queue->lock);
420 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
423 * Wake up the next task on a priority queue.
425 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
427 struct list_head *q;
428 struct rpc_task *task;
431 * Service a batch of tasks from a single owner.
433 q = &queue->tasks[queue->priority];
434 if (!list_empty(q)) {
435 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
436 if (queue->owner == task->tk_owner) {
437 if (--queue->nr)
438 goto out;
439 list_move_tail(&task->u.tk_wait.list, q);
442 * Check if we need to switch queues.
444 if (--queue->count)
445 goto new_owner;
449 * Service the next queue.
451 do {
452 if (q == &queue->tasks[0])
453 q = &queue->tasks[queue->maxpriority];
454 else
455 q = q - 1;
456 if (!list_empty(q)) {
457 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
458 goto new_queue;
460 } while (q != &queue->tasks[queue->priority]);
462 rpc_reset_waitqueue_priority(queue);
463 return NULL;
465 new_queue:
466 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
467 new_owner:
468 rpc_set_waitqueue_owner(queue, task->tk_owner);
469 out:
470 rpc_wake_up_task_queue_locked(queue, task);
471 return task;
475 * Wake up the next task on the wait queue.
477 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
479 struct rpc_task *task = NULL;
481 dprintk("RPC: wake_up_next(%p \"%s\")\n",
482 queue, rpc_qname(queue));
483 spin_lock_bh(&queue->lock);
484 if (RPC_IS_PRIORITY(queue))
485 task = __rpc_wake_up_next_priority(queue);
486 else {
487 task_for_first(task, &queue->tasks[0])
488 rpc_wake_up_task_queue_locked(queue, task);
490 spin_unlock_bh(&queue->lock);
492 return task;
494 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
497 * rpc_wake_up - wake up all rpc_tasks
498 * @queue: rpc_wait_queue on which the tasks are sleeping
500 * Grabs queue->lock
502 void rpc_wake_up(struct rpc_wait_queue *queue)
504 struct list_head *head;
506 spin_lock_bh(&queue->lock);
507 head = &queue->tasks[queue->maxpriority];
508 for (;;) {
509 while (!list_empty(head)) {
510 struct rpc_task *task;
511 task = list_first_entry(head,
512 struct rpc_task,
513 u.tk_wait.list);
514 rpc_wake_up_task_queue_locked(queue, task);
516 if (head == &queue->tasks[0])
517 break;
518 head--;
520 spin_unlock_bh(&queue->lock);
522 EXPORT_SYMBOL_GPL(rpc_wake_up);
525 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
526 * @queue: rpc_wait_queue on which the tasks are sleeping
527 * @status: status value to set
529 * Grabs queue->lock
531 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
533 struct list_head *head;
535 spin_lock_bh(&queue->lock);
536 head = &queue->tasks[queue->maxpriority];
537 for (;;) {
538 while (!list_empty(head)) {
539 struct rpc_task *task;
540 task = list_first_entry(head,
541 struct rpc_task,
542 u.tk_wait.list);
543 task->tk_status = status;
544 rpc_wake_up_task_queue_locked(queue, task);
546 if (head == &queue->tasks[0])
547 break;
548 head--;
550 spin_unlock_bh(&queue->lock);
552 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
554 static void __rpc_queue_timer_fn(unsigned long ptr)
556 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
557 struct rpc_task *task, *n;
558 unsigned long expires, now, timeo;
560 spin_lock(&queue->lock);
561 expires = now = jiffies;
562 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
563 timeo = task->u.tk_wait.expires;
564 if (time_after_eq(now, timeo)) {
565 dprintk("RPC: %5u timeout\n", task->tk_pid);
566 task->tk_status = -ETIMEDOUT;
567 rpc_wake_up_task_queue_locked(queue, task);
568 continue;
570 if (expires == now || time_after(expires, timeo))
571 expires = timeo;
573 if (!list_empty(&queue->timer_list.list))
574 rpc_set_queue_timer(queue, expires);
575 spin_unlock(&queue->lock);
578 static void __rpc_atrun(struct rpc_task *task)
580 task->tk_status = 0;
584 * Run a task at a later time
586 void rpc_delay(struct rpc_task *task, unsigned long delay)
588 task->tk_timeout = delay;
589 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
591 EXPORT_SYMBOL_GPL(rpc_delay);
594 * Helper to call task->tk_ops->rpc_call_prepare
596 void rpc_prepare_task(struct rpc_task *task)
598 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
601 static void
602 rpc_init_task_statistics(struct rpc_task *task)
604 /* Initialize retry counters */
605 task->tk_garb_retry = 2;
606 task->tk_cred_retry = 2;
607 task->tk_rebind_retry = 2;
609 /* starting timestamp */
610 task->tk_start = ktime_get();
613 static void
614 rpc_reset_task_statistics(struct rpc_task *task)
616 task->tk_timeouts = 0;
617 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
619 rpc_init_task_statistics(task);
623 * Helper that calls task->tk_ops->rpc_call_done if it exists
625 void rpc_exit_task(struct rpc_task *task)
627 task->tk_action = NULL;
628 if (task->tk_ops->rpc_call_done != NULL) {
629 task->tk_ops->rpc_call_done(task, task->tk_calldata);
630 if (task->tk_action != NULL) {
631 WARN_ON(RPC_ASSASSINATED(task));
632 /* Always release the RPC slot and buffer memory */
633 xprt_release(task);
634 rpc_reset_task_statistics(task);
639 void rpc_exit(struct rpc_task *task, int status)
641 task->tk_status = status;
642 task->tk_action = rpc_exit_task;
643 if (RPC_IS_QUEUED(task))
644 rpc_wake_up_queued_task(task->tk_waitqueue, task);
646 EXPORT_SYMBOL_GPL(rpc_exit);
648 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
650 if (ops->rpc_release != NULL)
651 ops->rpc_release(calldata);
655 * This is the RPC `scheduler' (or rather, the finite state machine).
657 static void __rpc_execute(struct rpc_task *task)
659 struct rpc_wait_queue *queue;
660 int task_is_async = RPC_IS_ASYNC(task);
661 int status = 0;
663 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
664 task->tk_pid, task->tk_flags);
666 BUG_ON(RPC_IS_QUEUED(task));
668 for (;;) {
669 void (*do_action)(struct rpc_task *);
672 * Execute any pending callback first.
674 do_action = task->tk_callback;
675 task->tk_callback = NULL;
676 if (do_action == NULL) {
678 * Perform the next FSM step.
679 * tk_action may be NULL if the task has been killed.
680 * In particular, note that rpc_killall_tasks may
681 * do this at any time, so beware when dereferencing.
683 do_action = task->tk_action;
684 if (do_action == NULL)
685 break;
687 do_action(task);
690 * Lockless check for whether task is sleeping or not.
692 if (!RPC_IS_QUEUED(task))
693 continue;
695 * The queue->lock protects against races with
696 * rpc_make_runnable().
698 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
699 * rpc_task, rpc_make_runnable() can assign it to a
700 * different workqueue. We therefore cannot assume that the
701 * rpc_task pointer may still be dereferenced.
703 queue = task->tk_waitqueue;
704 spin_lock_bh(&queue->lock);
705 if (!RPC_IS_QUEUED(task)) {
706 spin_unlock_bh(&queue->lock);
707 continue;
709 rpc_clear_running(task);
710 spin_unlock_bh(&queue->lock);
711 if (task_is_async)
712 return;
714 /* sync task: sleep here */
715 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
716 status = out_of_line_wait_on_bit(&task->tk_runstate,
717 RPC_TASK_QUEUED, rpc_wait_bit_killable,
718 TASK_KILLABLE);
719 if (status == -ERESTARTSYS) {
721 * When a sync task receives a signal, it exits with
722 * -ERESTARTSYS. In order to catch any callbacks that
723 * clean up after sleeping on some queue, we don't
724 * break the loop here, but go around once more.
726 dprintk("RPC: %5u got signal\n", task->tk_pid);
727 task->tk_flags |= RPC_TASK_KILLED;
728 rpc_exit(task, -ERESTARTSYS);
730 rpc_set_running(task);
731 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
734 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
735 task->tk_status);
736 /* Release all resources associated with the task */
737 rpc_release_task(task);
741 * User-visible entry point to the scheduler.
743 * This may be called recursively if e.g. an async NFS task updates
744 * the attributes and finds that dirty pages must be flushed.
745 * NOTE: Upon exit of this function the task is guaranteed to be
746 * released. In particular note that tk_release() will have
747 * been called, so your task memory may have been freed.
749 void rpc_execute(struct rpc_task *task)
751 rpc_set_active(task);
752 rpc_make_runnable(task);
753 if (!RPC_IS_ASYNC(task))
754 __rpc_execute(task);
757 static void rpc_async_schedule(struct work_struct *work)
759 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
763 * rpc_malloc - allocate an RPC buffer
764 * @task: RPC task that will use this buffer
765 * @size: requested byte size
767 * To prevent rpciod from hanging, this allocator never sleeps,
768 * returning NULL if the request cannot be serviced immediately.
769 * The caller can arrange to sleep in a way that is safe for rpciod.
771 * Most requests are 'small' (under 2KiB) and can be serviced from a
772 * mempool, ensuring that NFS reads and writes can always proceed,
773 * and that there is good locality of reference for these buffers.
775 * In order to avoid memory starvation triggering more writebacks of
776 * NFS requests, we avoid using GFP_KERNEL.
778 void *rpc_malloc(struct rpc_task *task, size_t size)
780 struct rpc_buffer *buf;
781 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
783 size += sizeof(struct rpc_buffer);
784 if (size <= RPC_BUFFER_MAXSIZE)
785 buf = mempool_alloc(rpc_buffer_mempool, gfp);
786 else
787 buf = kmalloc(size, gfp);
789 if (!buf)
790 return NULL;
792 buf->len = size;
793 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
794 task->tk_pid, size, buf);
795 return &buf->data;
797 EXPORT_SYMBOL_GPL(rpc_malloc);
800 * rpc_free - free buffer allocated via rpc_malloc
801 * @buffer: buffer to free
804 void rpc_free(void *buffer)
806 size_t size;
807 struct rpc_buffer *buf;
809 if (!buffer)
810 return;
812 buf = container_of(buffer, struct rpc_buffer, data);
813 size = buf->len;
815 dprintk("RPC: freeing buffer of size %zu at %p\n",
816 size, buf);
818 if (size <= RPC_BUFFER_MAXSIZE)
819 mempool_free(buf, rpc_buffer_mempool);
820 else
821 kfree(buf);
823 EXPORT_SYMBOL_GPL(rpc_free);
826 * Creation and deletion of RPC task structures
828 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
830 memset(task, 0, sizeof(*task));
831 atomic_set(&task->tk_count, 1);
832 task->tk_flags = task_setup_data->flags;
833 task->tk_ops = task_setup_data->callback_ops;
834 task->tk_calldata = task_setup_data->callback_data;
835 INIT_LIST_HEAD(&task->tk_task);
837 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
838 task->tk_owner = current->tgid;
840 /* Initialize workqueue for async tasks */
841 task->tk_workqueue = task_setup_data->workqueue;
843 if (task->tk_ops->rpc_call_prepare != NULL)
844 task->tk_action = rpc_prepare_task;
846 rpc_init_task_statistics(task);
848 dprintk("RPC: new task initialized, procpid %u\n",
849 task_pid_nr(current));
852 static struct rpc_task *
853 rpc_alloc_task(void)
855 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
859 * Create a new task for the specified client.
861 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
863 struct rpc_task *task = setup_data->task;
864 unsigned short flags = 0;
866 if (task == NULL) {
867 task = rpc_alloc_task();
868 if (task == NULL) {
869 rpc_release_calldata(setup_data->callback_ops,
870 setup_data->callback_data);
871 return ERR_PTR(-ENOMEM);
873 flags = RPC_TASK_DYNAMIC;
876 rpc_init_task(task, setup_data);
877 task->tk_flags |= flags;
878 dprintk("RPC: allocated task %p\n", task);
879 return task;
882 static void rpc_free_task(struct rpc_task *task)
884 const struct rpc_call_ops *tk_ops = task->tk_ops;
885 void *calldata = task->tk_calldata;
887 if (task->tk_flags & RPC_TASK_DYNAMIC) {
888 dprintk("RPC: %5u freeing task\n", task->tk_pid);
889 mempool_free(task, rpc_task_mempool);
891 rpc_release_calldata(tk_ops, calldata);
894 static void rpc_async_release(struct work_struct *work)
896 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
899 static void rpc_release_resources_task(struct rpc_task *task)
901 if (task->tk_rqstp)
902 xprt_release(task);
903 if (task->tk_msg.rpc_cred) {
904 put_rpccred(task->tk_msg.rpc_cred);
905 task->tk_msg.rpc_cred = NULL;
907 rpc_task_release_client(task);
910 static void rpc_final_put_task(struct rpc_task *task,
911 struct workqueue_struct *q)
913 if (q != NULL) {
914 INIT_WORK(&task->u.tk_work, rpc_async_release);
915 queue_work(q, &task->u.tk_work);
916 } else
917 rpc_free_task(task);
920 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
922 if (atomic_dec_and_test(&task->tk_count)) {
923 rpc_release_resources_task(task);
924 rpc_final_put_task(task, q);
928 void rpc_put_task(struct rpc_task *task)
930 rpc_do_put_task(task, NULL);
932 EXPORT_SYMBOL_GPL(rpc_put_task);
934 void rpc_put_task_async(struct rpc_task *task)
936 rpc_do_put_task(task, task->tk_workqueue);
938 EXPORT_SYMBOL_GPL(rpc_put_task_async);
940 static void rpc_release_task(struct rpc_task *task)
942 dprintk("RPC: %5u release task\n", task->tk_pid);
944 BUG_ON (RPC_IS_QUEUED(task));
946 rpc_release_resources_task(task);
949 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
950 * so it should be safe to use task->tk_count as a test for whether
951 * or not any other processes still hold references to our rpc_task.
953 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
954 /* Wake up anyone who may be waiting for task completion */
955 if (!rpc_complete_task(task))
956 return;
957 } else {
958 if (!atomic_dec_and_test(&task->tk_count))
959 return;
961 rpc_final_put_task(task, task->tk_workqueue);
964 int rpciod_up(void)
966 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
969 void rpciod_down(void)
971 module_put(THIS_MODULE);
975 * Start up the rpciod workqueue.
977 static int rpciod_start(void)
979 struct workqueue_struct *wq;
982 * Create the rpciod thread and wait for it to start.
984 dprintk("RPC: creating workqueue rpciod\n");
985 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
986 rpciod_workqueue = wq;
987 return rpciod_workqueue != NULL;
990 static void rpciod_stop(void)
992 struct workqueue_struct *wq = NULL;
994 if (rpciod_workqueue == NULL)
995 return;
996 dprintk("RPC: destroying workqueue rpciod\n");
998 wq = rpciod_workqueue;
999 rpciod_workqueue = NULL;
1000 destroy_workqueue(wq);
1003 void
1004 rpc_destroy_mempool(void)
1006 rpciod_stop();
1007 if (rpc_buffer_mempool)
1008 mempool_destroy(rpc_buffer_mempool);
1009 if (rpc_task_mempool)
1010 mempool_destroy(rpc_task_mempool);
1011 if (rpc_task_slabp)
1012 kmem_cache_destroy(rpc_task_slabp);
1013 if (rpc_buffer_slabp)
1014 kmem_cache_destroy(rpc_buffer_slabp);
1015 rpc_destroy_wait_queue(&delay_queue);
1019 rpc_init_mempool(void)
1022 * The following is not strictly a mempool initialisation,
1023 * but there is no harm in doing it here
1025 rpc_init_wait_queue(&delay_queue, "delayq");
1026 if (!rpciod_start())
1027 goto err_nomem;
1029 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1030 sizeof(struct rpc_task),
1031 0, SLAB_HWCACHE_ALIGN,
1032 NULL);
1033 if (!rpc_task_slabp)
1034 goto err_nomem;
1035 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1036 RPC_BUFFER_MAXSIZE,
1037 0, SLAB_HWCACHE_ALIGN,
1038 NULL);
1039 if (!rpc_buffer_slabp)
1040 goto err_nomem;
1041 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1042 rpc_task_slabp);
1043 if (!rpc_task_mempool)
1044 goto err_nomem;
1045 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1046 rpc_buffer_slabp);
1047 if (!rpc_buffer_mempool)
1048 goto err_nomem;
1049 return 0;
1050 err_nomem:
1051 rpc_destroy_mempool();
1052 return -ENOMEM;