4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
58 #include <asm/linkage.h>
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
74 #include "multicalls.h"
79 * Protects atomic reservation decrease/increase against concurrent increases.
80 * Also protects non-atomic updates of current_pages and balloon lists.
82 DEFINE_SPINLOCK(xen_reservation_lock
);
85 * Identity map, in addition to plain kernel map. This needs to be
86 * large enough to allocate page table pages to allocate the rest.
87 * Each page can map 2MB.
89 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
90 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
93 /* l3 pud for userspace vsyscall mapping */
94 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
95 #endif /* CONFIG_X86_64 */
98 * Note about cr3 (pagetable base) values:
100 * xen_cr3 contains the current logical cr3 value; it contains the
101 * last set cr3. This may not be the current effective cr3, because
102 * its update may be being lazily deferred. However, a vcpu looking
103 * at its own cr3 can use this value knowing that it everything will
104 * be self-consistent.
106 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
107 * hypercall to set the vcpu cr3 is complete (so it may be a little
108 * out of date, but it will never be set early). If one vcpu is
109 * looking at another vcpu's cr3 value, it should use this variable.
111 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
112 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
116 * Just beyond the highest usermode address. STACK_TOP_MAX has a
117 * redzone above it, so round it up to a PGD boundary.
119 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
121 unsigned long arbitrary_virt_to_mfn(void *vaddr
)
123 xmaddr_t maddr
= arbitrary_virt_to_machine(vaddr
);
125 return PFN_DOWN(maddr
.maddr
);
128 xmaddr_t
arbitrary_virt_to_machine(void *vaddr
)
130 unsigned long address
= (unsigned long)vaddr
;
136 * if the PFN is in the linear mapped vaddr range, we can just use
137 * the (quick) virt_to_machine() p2m lookup
139 if (virt_addr_valid(vaddr
))
140 return virt_to_machine(vaddr
);
142 /* otherwise we have to do a (slower) full page-table walk */
144 pte
= lookup_address(address
, &level
);
146 offset
= address
& ~PAGE_MASK
;
147 return XMADDR(((phys_addr_t
)pte_mfn(*pte
) << PAGE_SHIFT
) + offset
);
149 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine
);
151 void make_lowmem_page_readonly(void *vaddr
)
154 unsigned long address
= (unsigned long)vaddr
;
157 pte
= lookup_address(address
, &level
);
159 return; /* vaddr missing */
161 ptev
= pte_wrprotect(*pte
);
163 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
167 void make_lowmem_page_readwrite(void *vaddr
)
170 unsigned long address
= (unsigned long)vaddr
;
173 pte
= lookup_address(address
, &level
);
175 return; /* vaddr missing */
177 ptev
= pte_mkwrite(*pte
);
179 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
184 static bool xen_page_pinned(void *ptr
)
186 struct page
*page
= virt_to_page(ptr
);
188 return PagePinned(page
);
191 void xen_set_domain_pte(pte_t
*ptep
, pte_t pteval
, unsigned domid
)
193 struct multicall_space mcs
;
194 struct mmu_update
*u
;
196 mcs
= xen_mc_entry(sizeof(*u
));
199 /* ptep might be kmapped when using 32-bit HIGHPTE */
200 u
->ptr
= virt_to_machine(ptep
).maddr
;
201 u
->val
= pte_val_ma(pteval
);
203 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, domid
);
205 xen_mc_issue(PARAVIRT_LAZY_MMU
);
207 EXPORT_SYMBOL_GPL(xen_set_domain_pte
);
209 static void xen_extend_mmu_update(const struct mmu_update
*update
)
211 struct multicall_space mcs
;
212 struct mmu_update
*u
;
214 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
216 if (mcs
.mc
!= NULL
) {
219 mcs
= __xen_mc_entry(sizeof(*u
));
220 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
227 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
235 /* ptr may be ioremapped for 64-bit pagetable setup */
236 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
237 u
.val
= pmd_val_ma(val
);
238 xen_extend_mmu_update(&u
);
240 xen_mc_issue(PARAVIRT_LAZY_MMU
);
245 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
247 /* If page is not pinned, we can just update the entry
249 if (!xen_page_pinned(ptr
)) {
254 xen_set_pmd_hyper(ptr
, val
);
258 * Associate a virtual page frame with a given physical page frame
259 * and protection flags for that frame.
261 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
263 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
266 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
270 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
275 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
276 u
.val
= pte_val_ma(pteval
);
277 xen_extend_mmu_update(&u
);
279 xen_mc_issue(PARAVIRT_LAZY_MMU
);
284 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
286 if (!xen_batched_set_pte(ptep
, pteval
))
287 native_set_pte(ptep
, pteval
);
290 static void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
291 pte_t
*ptep
, pte_t pteval
)
293 xen_set_pte(ptep
, pteval
);
296 pte_t
xen_ptep_modify_prot_start(struct mm_struct
*mm
,
297 unsigned long addr
, pte_t
*ptep
)
299 /* Just return the pte as-is. We preserve the bits on commit */
303 void xen_ptep_modify_prot_commit(struct mm_struct
*mm
, unsigned long addr
,
304 pte_t
*ptep
, pte_t pte
)
310 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
311 u
.val
= pte_val_ma(pte
);
312 xen_extend_mmu_update(&u
);
314 xen_mc_issue(PARAVIRT_LAZY_MMU
);
317 /* Assume pteval_t is equivalent to all the other *val_t types. */
318 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
320 if (val
& _PAGE_PRESENT
) {
321 unsigned long mfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
322 pteval_t flags
= val
& PTE_FLAGS_MASK
;
323 val
= ((pteval_t
)mfn_to_pfn(mfn
) << PAGE_SHIFT
) | flags
;
329 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
331 if (val
& _PAGE_PRESENT
) {
332 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
333 pteval_t flags
= val
& PTE_FLAGS_MASK
;
336 if (!xen_feature(XENFEAT_auto_translated_physmap
))
337 mfn
= get_phys_to_machine(pfn
);
341 * If there's no mfn for the pfn, then just create an
342 * empty non-present pte. Unfortunately this loses
343 * information about the original pfn, so
344 * pte_mfn_to_pfn is asymmetric.
346 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
351 * Paramount to do this test _after_ the
352 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
353 * IDENTITY_FRAME_BIT resolves to true.
355 mfn
&= ~FOREIGN_FRAME_BIT
;
356 if (mfn
& IDENTITY_FRAME_BIT
) {
357 mfn
&= ~IDENTITY_FRAME_BIT
;
358 flags
|= _PAGE_IOMAP
;
361 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
367 static pteval_t
iomap_pte(pteval_t val
)
369 if (val
& _PAGE_PRESENT
) {
370 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
371 pteval_t flags
= val
& PTE_FLAGS_MASK
;
373 /* We assume the pte frame number is a MFN, so
374 just use it as-is. */
375 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
381 static pteval_t
xen_pte_val(pte_t pte
)
383 pteval_t pteval
= pte
.pte
;
385 /* If this is a WC pte, convert back from Xen WC to Linux WC */
386 if ((pteval
& (_PAGE_PAT
| _PAGE_PCD
| _PAGE_PWT
)) == _PAGE_PAT
) {
387 WARN_ON(!pat_enabled
);
388 pteval
= (pteval
& ~_PAGE_PAT
) | _PAGE_PWT
;
391 if (xen_initial_domain() && (pteval
& _PAGE_IOMAP
))
394 return pte_mfn_to_pfn(pteval
);
396 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
398 static pgdval_t
xen_pgd_val(pgd_t pgd
)
400 return pte_mfn_to_pfn(pgd
.pgd
);
402 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
405 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
406 * are reserved for now, to correspond to the Intel-reserved PAT
409 * We expect Linux's PAT set as follows:
411 * Idx PTE flags Linux Xen Default
418 * 6 PAT PCD UC- UC UC-
419 * 7 PAT PCD PWT UC UC UC
422 void xen_set_pat(u64 pat
)
424 /* We expect Linux to use a PAT setting of
425 * UC UC- WC WB (ignoring the PAT flag) */
426 WARN_ON(pat
!= 0x0007010600070106ull
);
429 static pte_t
xen_make_pte(pteval_t pte
)
431 phys_addr_t addr
= (pte
& PTE_PFN_MASK
);
433 /* If Linux is trying to set a WC pte, then map to the Xen WC.
434 * If _PAGE_PAT is set, then it probably means it is really
435 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
436 * things work out OK...
438 * (We should never see kernel mappings with _PAGE_PSE set,
439 * but we could see hugetlbfs mappings, I think.).
441 if (pat_enabled
&& !WARN_ON(pte
& _PAGE_PAT
)) {
442 if ((pte
& (_PAGE_PCD
| _PAGE_PWT
)) == _PAGE_PWT
)
443 pte
= (pte
& ~(_PAGE_PCD
| _PAGE_PWT
)) | _PAGE_PAT
;
447 * Unprivileged domains are allowed to do IOMAPpings for
448 * PCI passthrough, but not map ISA space. The ISA
449 * mappings are just dummy local mappings to keep other
450 * parts of the kernel happy.
452 if (unlikely(pte
& _PAGE_IOMAP
) &&
453 (xen_initial_domain() || addr
>= ISA_END_ADDRESS
)) {
454 pte
= iomap_pte(pte
);
457 pte
= pte_pfn_to_mfn(pte
);
460 return native_make_pte(pte
);
462 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
464 #ifdef CONFIG_XEN_DEBUG
465 pte_t
xen_make_pte_debug(pteval_t pte
)
467 phys_addr_t addr
= (pte
& PTE_PFN_MASK
);
468 phys_addr_t other_addr
;
469 bool io_page
= false;
472 if (pte
& _PAGE_IOMAP
)
475 _pte
= xen_make_pte(pte
);
481 (xen_initial_domain() || addr
>= ISA_END_ADDRESS
)) {
482 other_addr
= pfn_to_mfn(addr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
483 WARN_ONCE(addr
!= other_addr
,
484 "0x%lx is using VM_IO, but it is 0x%lx!\n",
485 (unsigned long)addr
, (unsigned long)other_addr
);
487 pteval_t iomap_set
= (_pte
.pte
& PTE_FLAGS_MASK
) & _PAGE_IOMAP
;
488 other_addr
= (_pte
.pte
& PTE_PFN_MASK
);
489 WARN_ONCE((addr
== other_addr
) && (!io_page
) && (!iomap_set
),
490 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
491 (unsigned long)addr
);
496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug
);
499 static pgd_t
xen_make_pgd(pgdval_t pgd
)
501 pgd
= pte_pfn_to_mfn(pgd
);
502 return native_make_pgd(pgd
);
504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
506 static pmdval_t
xen_pmd_val(pmd_t pmd
)
508 return pte_mfn_to_pfn(pmd
.pmd
);
510 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
512 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
520 /* ptr may be ioremapped for 64-bit pagetable setup */
521 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
522 u
.val
= pud_val_ma(val
);
523 xen_extend_mmu_update(&u
);
525 xen_mc_issue(PARAVIRT_LAZY_MMU
);
530 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
532 /* If page is not pinned, we can just update the entry
534 if (!xen_page_pinned(ptr
)) {
539 xen_set_pud_hyper(ptr
, val
);
542 #ifdef CONFIG_X86_PAE
543 static void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
545 set_64bit((u64
*)ptep
, native_pte_val(pte
));
548 static void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
550 if (!xen_batched_set_pte(ptep
, native_make_pte(0)))
551 native_pte_clear(mm
, addr
, ptep
);
554 static void xen_pmd_clear(pmd_t
*pmdp
)
556 set_pmd(pmdp
, __pmd(0));
558 #endif /* CONFIG_X86_PAE */
560 static pmd_t
xen_make_pmd(pmdval_t pmd
)
562 pmd
= pte_pfn_to_mfn(pmd
);
563 return native_make_pmd(pmd
);
565 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
567 #if PAGETABLE_LEVELS == 4
568 static pudval_t
xen_pud_val(pud_t pud
)
570 return pte_mfn_to_pfn(pud
.pud
);
572 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
574 static pud_t
xen_make_pud(pudval_t pud
)
576 pud
= pte_pfn_to_mfn(pud
);
578 return native_make_pud(pud
);
580 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
582 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
584 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
585 unsigned offset
= pgd
- pgd_page
;
586 pgd_t
*user_ptr
= NULL
;
588 if (offset
< pgd_index(USER_LIMIT
)) {
589 struct page
*page
= virt_to_page(pgd_page
);
590 user_ptr
= (pgd_t
*)page
->private;
598 static void __xen_set_pgd_hyper(pgd_t
*ptr
, pgd_t val
)
602 u
.ptr
= virt_to_machine(ptr
).maddr
;
603 u
.val
= pgd_val_ma(val
);
604 xen_extend_mmu_update(&u
);
608 * Raw hypercall-based set_pgd, intended for in early boot before
609 * there's a page structure. This implies:
610 * 1. The only existing pagetable is the kernel's
611 * 2. It is always pinned
612 * 3. It has no user pagetable attached to it
614 static void __init
xen_set_pgd_hyper(pgd_t
*ptr
, pgd_t val
)
620 __xen_set_pgd_hyper(ptr
, val
);
622 xen_mc_issue(PARAVIRT_LAZY_MMU
);
627 static void xen_set_pgd(pgd_t
*ptr
, pgd_t val
)
629 pgd_t
*user_ptr
= xen_get_user_pgd(ptr
);
631 /* If page is not pinned, we can just update the entry
633 if (!xen_page_pinned(ptr
)) {
636 WARN_ON(xen_page_pinned(user_ptr
));
642 /* If it's pinned, then we can at least batch the kernel and
643 user updates together. */
646 __xen_set_pgd_hyper(ptr
, val
);
648 __xen_set_pgd_hyper(user_ptr
, val
);
650 xen_mc_issue(PARAVIRT_LAZY_MMU
);
652 #endif /* PAGETABLE_LEVELS == 4 */
655 * (Yet another) pagetable walker. This one is intended for pinning a
656 * pagetable. This means that it walks a pagetable and calls the
657 * callback function on each page it finds making up the page table,
658 * at every level. It walks the entire pagetable, but it only bothers
659 * pinning pte pages which are below limit. In the normal case this
660 * will be STACK_TOP_MAX, but at boot we need to pin up to
663 * For 32-bit the important bit is that we don't pin beyond there,
664 * because then we start getting into Xen's ptes.
666 * For 64-bit, we must skip the Xen hole in the middle of the address
667 * space, just after the big x86-64 virtual hole.
669 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
670 int (*func
)(struct mm_struct
*mm
, struct page
*,
675 unsigned hole_low
, hole_high
;
676 unsigned pgdidx_limit
, pudidx_limit
, pmdidx_limit
;
677 unsigned pgdidx
, pudidx
, pmdidx
;
679 /* The limit is the last byte to be touched */
681 BUG_ON(limit
>= FIXADDR_TOP
);
683 if (xen_feature(XENFEAT_auto_translated_physmap
))
687 * 64-bit has a great big hole in the middle of the address
688 * space, which contains the Xen mappings. On 32-bit these
689 * will end up making a zero-sized hole and so is a no-op.
691 hole_low
= pgd_index(USER_LIMIT
);
692 hole_high
= pgd_index(PAGE_OFFSET
);
694 pgdidx_limit
= pgd_index(limit
);
696 pudidx_limit
= pud_index(limit
);
701 pmdidx_limit
= pmd_index(limit
);
706 for (pgdidx
= 0; pgdidx
<= pgdidx_limit
; pgdidx
++) {
709 if (pgdidx
>= hole_low
&& pgdidx
< hole_high
)
712 if (!pgd_val(pgd
[pgdidx
]))
715 pud
= pud_offset(&pgd
[pgdidx
], 0);
717 if (PTRS_PER_PUD
> 1) /* not folded */
718 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
720 for (pudidx
= 0; pudidx
< PTRS_PER_PUD
; pudidx
++) {
723 if (pgdidx
== pgdidx_limit
&&
724 pudidx
> pudidx_limit
)
727 if (pud_none(pud
[pudidx
]))
730 pmd
= pmd_offset(&pud
[pudidx
], 0);
732 if (PTRS_PER_PMD
> 1) /* not folded */
733 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
735 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++) {
738 if (pgdidx
== pgdidx_limit
&&
739 pudidx
== pudidx_limit
&&
740 pmdidx
> pmdidx_limit
)
743 if (pmd_none(pmd
[pmdidx
]))
746 pte
= pmd_page(pmd
[pmdidx
]);
747 flush
|= (*func
)(mm
, pte
, PT_PTE
);
753 /* Do the top level last, so that the callbacks can use it as
754 a cue to do final things like tlb flushes. */
755 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
760 static int xen_pgd_walk(struct mm_struct
*mm
,
761 int (*func
)(struct mm_struct
*mm
, struct page
*,
765 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
768 /* If we're using split pte locks, then take the page's lock and
769 return a pointer to it. Otherwise return NULL. */
770 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
772 spinlock_t
*ptl
= NULL
;
774 #if USE_SPLIT_PTLOCKS
775 ptl
= __pte_lockptr(page
);
776 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
782 static void xen_pte_unlock(void *v
)
788 static void xen_do_pin(unsigned level
, unsigned long pfn
)
790 struct mmuext_op
*op
;
791 struct multicall_space mcs
;
793 mcs
= __xen_mc_entry(sizeof(*op
));
796 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
797 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
800 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
803 unsigned pgfl
= TestSetPagePinned(page
);
807 flush
= 0; /* already pinned */
808 else if (PageHighMem(page
))
809 /* kmaps need flushing if we found an unpinned
813 void *pt
= lowmem_page_address(page
);
814 unsigned long pfn
= page_to_pfn(page
);
815 struct multicall_space mcs
= __xen_mc_entry(0);
821 * We need to hold the pagetable lock between the time
822 * we make the pagetable RO and when we actually pin
823 * it. If we don't, then other users may come in and
824 * attempt to update the pagetable by writing it,
825 * which will fail because the memory is RO but not
826 * pinned, so Xen won't do the trap'n'emulate.
828 * If we're using split pte locks, we can't hold the
829 * entire pagetable's worth of locks during the
830 * traverse, because we may wrap the preempt count (8
831 * bits). The solution is to mark RO and pin each PTE
832 * page while holding the lock. This means the number
833 * of locks we end up holding is never more than a
834 * batch size (~32 entries, at present).
836 * If we're not using split pte locks, we needn't pin
837 * the PTE pages independently, because we're
838 * protected by the overall pagetable lock.
842 ptl
= xen_pte_lock(page
, mm
);
844 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
845 pfn_pte(pfn
, PAGE_KERNEL_RO
),
846 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
849 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
851 /* Queue a deferred unlock for when this batch
853 xen_mc_callback(xen_pte_unlock
, ptl
);
860 /* This is called just after a mm has been created, but it has not
861 been used yet. We need to make sure that its pagetable is all
862 read-only, and can be pinned. */
863 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
867 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
868 /* re-enable interrupts for flushing */
878 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
880 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
883 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
884 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
885 PFN_DOWN(__pa(user_pgd
)));
888 #else /* CONFIG_X86_32 */
889 #ifdef CONFIG_X86_PAE
890 /* Need to make sure unshared kernel PMD is pinnable */
891 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
894 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
895 #endif /* CONFIG_X86_64 */
899 static void xen_pgd_pin(struct mm_struct
*mm
)
901 __xen_pgd_pin(mm
, mm
->pgd
);
905 * On save, we need to pin all pagetables to make sure they get their
906 * mfns turned into pfns. Search the list for any unpinned pgds and pin
907 * them (unpinned pgds are not currently in use, probably because the
908 * process is under construction or destruction).
910 * Expected to be called in stop_machine() ("equivalent to taking
911 * every spinlock in the system"), so the locking doesn't really
912 * matter all that much.
914 void xen_mm_pin_all(void)
918 spin_lock(&pgd_lock
);
920 list_for_each_entry(page
, &pgd_list
, lru
) {
921 if (!PagePinned(page
)) {
922 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
923 SetPageSavePinned(page
);
927 spin_unlock(&pgd_lock
);
931 * The init_mm pagetable is really pinned as soon as its created, but
932 * that's before we have page structures to store the bits. So do all
933 * the book-keeping now.
935 static int __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
942 static void __init
xen_mark_init_mm_pinned(void)
944 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
947 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
950 unsigned pgfl
= TestClearPagePinned(page
);
952 if (pgfl
&& !PageHighMem(page
)) {
953 void *pt
= lowmem_page_address(page
);
954 unsigned long pfn
= page_to_pfn(page
);
955 spinlock_t
*ptl
= NULL
;
956 struct multicall_space mcs
;
959 * Do the converse to pin_page. If we're using split
960 * pte locks, we must be holding the lock for while
961 * the pte page is unpinned but still RO to prevent
962 * concurrent updates from seeing it in this
963 * partially-pinned state.
965 if (level
== PT_PTE
) {
966 ptl
= xen_pte_lock(page
, mm
);
969 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
972 mcs
= __xen_mc_entry(0);
974 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
975 pfn_pte(pfn
, PAGE_KERNEL
),
976 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
979 /* unlock when batch completed */
980 xen_mc_callback(xen_pte_unlock
, ptl
);
984 return 0; /* never need to flush on unpin */
987 /* Release a pagetables pages back as normal RW */
988 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
992 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
996 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
999 xen_do_pin(MMUEXT_UNPIN_TABLE
,
1000 PFN_DOWN(__pa(user_pgd
)));
1001 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
1006 #ifdef CONFIG_X86_PAE
1007 /* Need to make sure unshared kernel PMD is unpinned */
1008 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
1012 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
1017 static void xen_pgd_unpin(struct mm_struct
*mm
)
1019 __xen_pgd_unpin(mm
, mm
->pgd
);
1023 * On resume, undo any pinning done at save, so that the rest of the
1024 * kernel doesn't see any unexpected pinned pagetables.
1026 void xen_mm_unpin_all(void)
1030 spin_lock(&pgd_lock
);
1032 list_for_each_entry(page
, &pgd_list
, lru
) {
1033 if (PageSavePinned(page
)) {
1034 BUG_ON(!PagePinned(page
));
1035 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
1036 ClearPageSavePinned(page
);
1040 spin_unlock(&pgd_lock
);
1043 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
1045 spin_lock(&next
->page_table_lock
);
1047 spin_unlock(&next
->page_table_lock
);
1050 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
1052 spin_lock(&mm
->page_table_lock
);
1054 spin_unlock(&mm
->page_table_lock
);
1059 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1060 we need to repoint it somewhere else before we can unpin it. */
1061 static void drop_other_mm_ref(void *info
)
1063 struct mm_struct
*mm
= info
;
1064 struct mm_struct
*active_mm
;
1066 active_mm
= percpu_read(cpu_tlbstate
.active_mm
);
1068 if (active_mm
== mm
&& percpu_read(cpu_tlbstate
.state
) != TLBSTATE_OK
)
1069 leave_mm(smp_processor_id());
1071 /* If this cpu still has a stale cr3 reference, then make sure
1072 it has been flushed. */
1073 if (percpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
1074 load_cr3(swapper_pg_dir
);
1077 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1082 if (current
->active_mm
== mm
) {
1083 if (current
->mm
== mm
)
1084 load_cr3(swapper_pg_dir
);
1086 leave_mm(smp_processor_id());
1089 /* Get the "official" set of cpus referring to our pagetable. */
1090 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
1091 for_each_online_cpu(cpu
) {
1092 if (!cpumask_test_cpu(cpu
, mm_cpumask(mm
))
1093 && per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
1095 smp_call_function_single(cpu
, drop_other_mm_ref
, mm
, 1);
1099 cpumask_copy(mask
, mm_cpumask(mm
));
1101 /* It's possible that a vcpu may have a stale reference to our
1102 cr3, because its in lazy mode, and it hasn't yet flushed
1103 its set of pending hypercalls yet. In this case, we can
1104 look at its actual current cr3 value, and force it to flush
1106 for_each_online_cpu(cpu
) {
1107 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
1108 cpumask_set_cpu(cpu
, mask
);
1111 if (!cpumask_empty(mask
))
1112 smp_call_function_many(mask
, drop_other_mm_ref
, mm
, 1);
1113 free_cpumask_var(mask
);
1116 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1118 if (current
->active_mm
== mm
)
1119 load_cr3(swapper_pg_dir
);
1124 * While a process runs, Xen pins its pagetables, which means that the
1125 * hypervisor forces it to be read-only, and it controls all updates
1126 * to it. This means that all pagetable updates have to go via the
1127 * hypervisor, which is moderately expensive.
1129 * Since we're pulling the pagetable down, we switch to use init_mm,
1130 * unpin old process pagetable and mark it all read-write, which
1131 * allows further operations on it to be simple memory accesses.
1133 * The only subtle point is that another CPU may be still using the
1134 * pagetable because of lazy tlb flushing. This means we need need to
1135 * switch all CPUs off this pagetable before we can unpin it.
1137 static void xen_exit_mmap(struct mm_struct
*mm
)
1139 get_cpu(); /* make sure we don't move around */
1140 xen_drop_mm_ref(mm
);
1143 spin_lock(&mm
->page_table_lock
);
1145 /* pgd may not be pinned in the error exit path of execve */
1146 if (xen_page_pinned(mm
->pgd
))
1149 spin_unlock(&mm
->page_table_lock
);
1152 static void __init
xen_pagetable_setup_start(pgd_t
*base
)
1156 static __init
void xen_mapping_pagetable_reserve(u64 start
, u64 end
)
1158 /* reserve the range used */
1159 native_pagetable_reserve(start
, end
);
1161 /* set as RW the rest */
1162 printk(KERN_DEBUG
"xen: setting RW the range %llx - %llx\n", end
,
1163 PFN_PHYS(pgt_buf_top
));
1164 while (end
< PFN_PHYS(pgt_buf_top
)) {
1165 make_lowmem_page_readwrite(__va(end
));
1170 static void xen_post_allocator_init(void);
1172 static void __init
xen_pagetable_setup_done(pgd_t
*base
)
1174 xen_setup_shared_info();
1175 xen_post_allocator_init();
1178 static void xen_write_cr2(unsigned long cr2
)
1180 percpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1183 static unsigned long xen_read_cr2(void)
1185 return percpu_read(xen_vcpu
)->arch
.cr2
;
1188 unsigned long xen_read_cr2_direct(void)
1190 return percpu_read(xen_vcpu_info
.arch
.cr2
);
1193 static void xen_flush_tlb(void)
1195 struct mmuext_op
*op
;
1196 struct multicall_space mcs
;
1200 mcs
= xen_mc_entry(sizeof(*op
));
1203 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1204 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1206 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1211 static void xen_flush_tlb_single(unsigned long addr
)
1213 struct mmuext_op
*op
;
1214 struct multicall_space mcs
;
1218 mcs
= xen_mc_entry(sizeof(*op
));
1220 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1221 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1222 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1224 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1229 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1230 struct mm_struct
*mm
, unsigned long va
)
1233 struct mmuext_op op
;
1234 DECLARE_BITMAP(mask
, NR_CPUS
);
1236 struct multicall_space mcs
;
1238 if (cpumask_empty(cpus
))
1239 return; /* nothing to do */
1241 mcs
= xen_mc_entry(sizeof(*args
));
1243 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1245 /* Remove us, and any offline CPUS. */
1246 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1247 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1249 if (va
== TLB_FLUSH_ALL
) {
1250 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1252 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1253 args
->op
.arg1
.linear_addr
= va
;
1256 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1258 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1261 static unsigned long xen_read_cr3(void)
1263 return percpu_read(xen_cr3
);
1266 static void set_current_cr3(void *v
)
1268 percpu_write(xen_current_cr3
, (unsigned long)v
);
1271 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1273 struct mmuext_op
*op
;
1274 struct multicall_space mcs
;
1278 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1282 WARN_ON(mfn
== 0 && kernel
);
1284 mcs
= __xen_mc_entry(sizeof(*op
));
1287 op
->cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1290 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1293 percpu_write(xen_cr3
, cr3
);
1295 /* Update xen_current_cr3 once the batch has actually
1297 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1301 static void xen_write_cr3(unsigned long cr3
)
1303 BUG_ON(preemptible());
1305 xen_mc_batch(); /* disables interrupts */
1307 /* Update while interrupts are disabled, so its atomic with
1309 percpu_write(xen_cr3
, cr3
);
1311 __xen_write_cr3(true, cr3
);
1313 #ifdef CONFIG_X86_64
1315 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1317 __xen_write_cr3(false, __pa(user_pgd
));
1319 __xen_write_cr3(false, 0);
1323 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1326 static int xen_pgd_alloc(struct mm_struct
*mm
)
1328 pgd_t
*pgd
= mm
->pgd
;
1331 BUG_ON(PagePinned(virt_to_page(pgd
)));
1333 #ifdef CONFIG_X86_64
1335 struct page
*page
= virt_to_page(pgd
);
1338 BUG_ON(page
->private != 0);
1342 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1343 page
->private = (unsigned long)user_pgd
;
1345 if (user_pgd
!= NULL
) {
1346 user_pgd
[pgd_index(VSYSCALL_START
)] =
1347 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1351 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1358 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1360 #ifdef CONFIG_X86_64
1361 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1364 free_page((unsigned long)user_pgd
);
1368 #ifdef CONFIG_X86_32
1369 static pte_t __init
mask_rw_pte(pte_t
*ptep
, pte_t pte
)
1371 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1372 if (pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1373 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1378 #else /* CONFIG_X86_64 */
1379 static pte_t __init
mask_rw_pte(pte_t
*ptep
, pte_t pte
)
1381 unsigned long pfn
= pte_pfn(pte
);
1384 * If the new pfn is within the range of the newly allocated
1385 * kernel pagetable, and it isn't being mapped into an
1386 * early_ioremap fixmap slot as a freshly allocated page, make sure
1389 if (((!is_early_ioremap_ptep(ptep
) &&
1390 pfn
>= pgt_buf_start
&& pfn
< pgt_buf_top
)) ||
1391 (is_early_ioremap_ptep(ptep
) && pfn
!= (pgt_buf_end
- 1)))
1392 pte
= pte_wrprotect(pte
);
1396 #endif /* CONFIG_X86_64 */
1398 /* Init-time set_pte while constructing initial pagetables, which
1399 doesn't allow RO pagetable pages to be remapped RW */
1400 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1402 pte
= mask_rw_pte(ptep
, pte
);
1404 xen_set_pte(ptep
, pte
);
1407 static void pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1409 struct mmuext_op op
;
1411 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1412 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1416 /* Early in boot, while setting up the initial pagetable, assume
1417 everything is pinned. */
1418 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1420 #ifdef CONFIG_FLATMEM
1421 BUG_ON(mem_map
); /* should only be used early */
1423 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1424 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1427 /* Used for pmd and pud */
1428 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1430 #ifdef CONFIG_FLATMEM
1431 BUG_ON(mem_map
); /* should only be used early */
1433 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1436 /* Early release_pte assumes that all pts are pinned, since there's
1437 only init_mm and anything attached to that is pinned. */
1438 static void __init
xen_release_pte_init(unsigned long pfn
)
1440 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1441 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1444 static void __init
xen_release_pmd_init(unsigned long pfn
)
1446 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1449 /* This needs to make sure the new pte page is pinned iff its being
1450 attached to a pinned pagetable. */
1451 static void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
, unsigned level
)
1453 struct page
*page
= pfn_to_page(pfn
);
1455 if (PagePinned(virt_to_page(mm
->pgd
))) {
1456 SetPagePinned(page
);
1458 if (!PageHighMem(page
)) {
1459 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn
)));
1460 if (level
== PT_PTE
&& USE_SPLIT_PTLOCKS
)
1461 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1463 /* make sure there are no stray mappings of
1465 kmap_flush_unused();
1470 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1472 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1475 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1477 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1480 /* This should never happen until we're OK to use struct page */
1481 static void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1483 struct page
*page
= pfn_to_page(pfn
);
1485 if (PagePinned(page
)) {
1486 if (!PageHighMem(page
)) {
1487 if (level
== PT_PTE
&& USE_SPLIT_PTLOCKS
)
1488 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1489 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1491 ClearPagePinned(page
);
1495 static void xen_release_pte(unsigned long pfn
)
1497 xen_release_ptpage(pfn
, PT_PTE
);
1500 static void xen_release_pmd(unsigned long pfn
)
1502 xen_release_ptpage(pfn
, PT_PMD
);
1505 #if PAGETABLE_LEVELS == 4
1506 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1508 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1511 static void xen_release_pud(unsigned long pfn
)
1513 xen_release_ptpage(pfn
, PT_PUD
);
1517 void __init
xen_reserve_top(void)
1519 #ifdef CONFIG_X86_32
1520 unsigned long top
= HYPERVISOR_VIRT_START
;
1521 struct xen_platform_parameters pp
;
1523 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1524 top
= pp
.virt_start
;
1526 reserve_top_address(-top
);
1527 #endif /* CONFIG_X86_32 */
1531 * Like __va(), but returns address in the kernel mapping (which is
1532 * all we have until the physical memory mapping has been set up.
1534 static void *__ka(phys_addr_t paddr
)
1536 #ifdef CONFIG_X86_64
1537 return (void *)(paddr
+ __START_KERNEL_map
);
1543 /* Convert a machine address to physical address */
1544 static unsigned long m2p(phys_addr_t maddr
)
1548 maddr
&= PTE_PFN_MASK
;
1549 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1554 /* Convert a machine address to kernel virtual */
1555 static void *m2v(phys_addr_t maddr
)
1557 return __ka(m2p(maddr
));
1560 /* Set the page permissions on an identity-mapped pages */
1561 static void set_page_prot(void *addr
, pgprot_t prot
)
1563 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1564 pte_t pte
= pfn_pte(pfn
, prot
);
1566 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, 0))
1570 static void __init
xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1572 unsigned pmdidx
, pteidx
;
1576 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1581 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
1584 /* Reuse or allocate a page of ptes */
1585 if (pmd_present(pmd
[pmdidx
]))
1586 pte_page
= m2v(pmd
[pmdidx
].pmd
);
1588 /* Check for free pte pages */
1589 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
1592 pte_page
= &level1_ident_pgt
[ident_pte
];
1593 ident_pte
+= PTRS_PER_PTE
;
1595 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
1598 /* Install mappings */
1599 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
1602 if (!pte_none(pte_page
[pteidx
]))
1605 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
1606 pte_page
[pteidx
] = pte
;
1610 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
1611 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
1613 set_page_prot(pmd
, PAGE_KERNEL_RO
);
1616 void __init
xen_setup_machphys_mapping(void)
1618 struct xen_machphys_mapping mapping
;
1619 unsigned long machine_to_phys_nr_ents
;
1621 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1622 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1623 machine_to_phys_nr_ents
= mapping
.max_mfn
+ 1;
1625 machine_to_phys_nr_ents
= MACH2PHYS_NR_ENTRIES
;
1627 machine_to_phys_order
= fls(machine_to_phys_nr_ents
- 1);
1630 #ifdef CONFIG_X86_64
1631 static void convert_pfn_mfn(void *v
)
1636 /* All levels are converted the same way, so just treat them
1638 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1639 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1643 * Set up the initial kernel pagetable.
1645 * We can construct this by grafting the Xen provided pagetable into
1646 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1647 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1648 * means that only the kernel has a physical mapping to start with -
1649 * but that's enough to get __va working. We need to fill in the rest
1650 * of the physical mapping once some sort of allocator has been set
1653 pgd_t
* __init
xen_setup_kernel_pagetable(pgd_t
*pgd
,
1654 unsigned long max_pfn
)
1659 /* max_pfn_mapped is the last pfn mapped in the initial memory
1660 * mappings. Considering that on Xen after the kernel mappings we
1661 * have the mappings of some pages that don't exist in pfn space, we
1662 * set max_pfn_mapped to the last real pfn mapped. */
1663 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1665 /* Zap identity mapping */
1666 init_level4_pgt
[0] = __pgd(0);
1668 /* Pre-constructed entries are in pfn, so convert to mfn */
1669 convert_pfn_mfn(init_level4_pgt
);
1670 convert_pfn_mfn(level3_ident_pgt
);
1671 convert_pfn_mfn(level3_kernel_pgt
);
1673 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1674 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1676 memcpy(level2_ident_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1677 memcpy(level2_kernel_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1679 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
+ PMD_SIZE
)].pgd
);
1680 l2
= m2v(l3
[pud_index(__START_KERNEL_map
+ PMD_SIZE
)].pud
);
1681 memcpy(level2_fixmap_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1683 /* Set up identity map */
1684 xen_map_identity_early(level2_ident_pgt
, max_pfn
);
1686 /* Make pagetable pieces RO */
1687 set_page_prot(init_level4_pgt
, PAGE_KERNEL_RO
);
1688 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1689 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1690 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1691 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1692 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1694 /* Pin down new L4 */
1695 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1696 PFN_DOWN(__pa_symbol(init_level4_pgt
)));
1698 /* Unpin Xen-provided one */
1699 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1702 pgd
= init_level4_pgt
;
1705 * At this stage there can be no user pgd, and no page
1706 * structure to attach it to, so make sure we just set kernel
1710 __xen_write_cr3(true, __pa(pgd
));
1711 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1713 memblock_x86_reserve_range(__pa(xen_start_info
->pt_base
),
1714 __pa(xen_start_info
->pt_base
+
1715 xen_start_info
->nr_pt_frames
* PAGE_SIZE
),
1720 #else /* !CONFIG_X86_64 */
1721 static RESERVE_BRK_ARRAY(pmd_t
, initial_kernel_pmd
, PTRS_PER_PMD
);
1722 static RESERVE_BRK_ARRAY(pmd_t
, swapper_kernel_pmd
, PTRS_PER_PMD
);
1724 static void __init
xen_write_cr3_init(unsigned long cr3
)
1726 unsigned long pfn
= PFN_DOWN(__pa(swapper_pg_dir
));
1728 BUG_ON(read_cr3() != __pa(initial_page_table
));
1729 BUG_ON(cr3
!= __pa(swapper_pg_dir
));
1732 * We are switching to swapper_pg_dir for the first time (from
1733 * initial_page_table) and therefore need to mark that page
1734 * read-only and then pin it.
1736 * Xen disallows sharing of kernel PMDs for PAE
1737 * guests. Therefore we must copy the kernel PMD from
1738 * initial_page_table into a new kernel PMD to be used in
1741 swapper_kernel_pmd
=
1742 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
1743 memcpy(swapper_kernel_pmd
, initial_kernel_pmd
,
1744 sizeof(pmd_t
) * PTRS_PER_PMD
);
1745 swapper_pg_dir
[KERNEL_PGD_BOUNDARY
] =
1746 __pgd(__pa(swapper_kernel_pmd
) | _PAGE_PRESENT
);
1747 set_page_prot(swapper_kernel_pmd
, PAGE_KERNEL_RO
);
1749 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
1751 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, pfn
);
1753 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
1754 PFN_DOWN(__pa(initial_page_table
)));
1755 set_page_prot(initial_page_table
, PAGE_KERNEL
);
1756 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL
);
1758 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
1761 pgd_t
* __init
xen_setup_kernel_pagetable(pgd_t
*pgd
,
1762 unsigned long max_pfn
)
1766 initial_kernel_pmd
=
1767 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
1769 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1771 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
1772 memcpy(initial_kernel_pmd
, kernel_pmd
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1774 xen_map_identity_early(initial_kernel_pmd
, max_pfn
);
1776 memcpy(initial_page_table
, pgd
, sizeof(pgd_t
) * PTRS_PER_PGD
);
1777 initial_page_table
[KERNEL_PGD_BOUNDARY
] =
1778 __pgd(__pa(initial_kernel_pmd
) | _PAGE_PRESENT
);
1780 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL_RO
);
1781 set_page_prot(initial_page_table
, PAGE_KERNEL_RO
);
1782 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
1784 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1786 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
1787 PFN_DOWN(__pa(initial_page_table
)));
1788 xen_write_cr3(__pa(initial_page_table
));
1790 memblock_x86_reserve_range(__pa(xen_start_info
->pt_base
),
1791 __pa(xen_start_info
->pt_base
+
1792 xen_start_info
->nr_pt_frames
* PAGE_SIZE
),
1795 return initial_page_table
;
1797 #endif /* CONFIG_X86_64 */
1799 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
1801 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
1805 phys
>>= PAGE_SHIFT
;
1808 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
1809 #ifdef CONFIG_X86_F00F_BUG
1812 #ifdef CONFIG_X86_32
1815 # ifdef CONFIG_HIGHMEM
1816 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
1819 case VSYSCALL_LAST_PAGE
... VSYSCALL_FIRST_PAGE
:
1821 case FIX_TEXT_POKE0
:
1822 case FIX_TEXT_POKE1
:
1823 /* All local page mappings */
1824 pte
= pfn_pte(phys
, prot
);
1827 #ifdef CONFIG_X86_LOCAL_APIC
1828 case FIX_APIC_BASE
: /* maps dummy local APIC */
1829 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
1833 #ifdef CONFIG_X86_IO_APIC
1834 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
1836 * We just don't map the IO APIC - all access is via
1837 * hypercalls. Keep the address in the pte for reference.
1839 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
1843 case FIX_PARAVIRT_BOOTMAP
:
1844 /* This is an MFN, but it isn't an IO mapping from the
1846 pte
= mfn_pte(phys
, prot
);
1850 /* By default, set_fixmap is used for hardware mappings */
1851 pte
= mfn_pte(phys
, __pgprot(pgprot_val(prot
) | _PAGE_IOMAP
));
1855 __native_set_fixmap(idx
, pte
);
1857 #ifdef CONFIG_X86_64
1858 /* Replicate changes to map the vsyscall page into the user
1859 pagetable vsyscall mapping. */
1860 if (idx
>= VSYSCALL_LAST_PAGE
&& idx
<= VSYSCALL_FIRST_PAGE
) {
1861 unsigned long vaddr
= __fix_to_virt(idx
);
1862 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
1867 void __init
xen_ident_map_ISA(void)
1872 * If we're dom0, then linear map the ISA machine addresses into
1873 * the kernel's address space.
1875 if (!xen_initial_domain())
1878 xen_raw_printk("Xen: setup ISA identity maps\n");
1880 for (pa
= ISA_START_ADDRESS
; pa
< ISA_END_ADDRESS
; pa
+= PAGE_SIZE
) {
1881 pte_t pte
= mfn_pte(PFN_DOWN(pa
), PAGE_KERNEL_IO
);
1883 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET
+ pa
, pte
, 0))
1890 static void __init
xen_post_allocator_init(void)
1892 #ifdef CONFIG_XEN_DEBUG
1893 pv_mmu_ops
.make_pte
= PV_CALLEE_SAVE(xen_make_pte_debug
);
1895 pv_mmu_ops
.set_pte
= xen_set_pte
;
1896 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
1897 pv_mmu_ops
.set_pud
= xen_set_pud
;
1898 #if PAGETABLE_LEVELS == 4
1899 pv_mmu_ops
.set_pgd
= xen_set_pgd
;
1902 /* This will work as long as patching hasn't happened yet
1903 (which it hasn't) */
1904 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
1905 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
1906 pv_mmu_ops
.release_pte
= xen_release_pte
;
1907 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
1908 #if PAGETABLE_LEVELS == 4
1909 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
1910 pv_mmu_ops
.release_pud
= xen_release_pud
;
1913 #ifdef CONFIG_X86_64
1914 SetPagePinned(virt_to_page(level3_user_vsyscall
));
1916 xen_mark_init_mm_pinned();
1919 static void xen_leave_lazy_mmu(void)
1923 paravirt_leave_lazy_mmu();
1927 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
1928 .read_cr2
= xen_read_cr2
,
1929 .write_cr2
= xen_write_cr2
,
1931 .read_cr3
= xen_read_cr3
,
1932 #ifdef CONFIG_X86_32
1933 .write_cr3
= xen_write_cr3_init
,
1935 .write_cr3
= xen_write_cr3
,
1938 .flush_tlb_user
= xen_flush_tlb
,
1939 .flush_tlb_kernel
= xen_flush_tlb
,
1940 .flush_tlb_single
= xen_flush_tlb_single
,
1941 .flush_tlb_others
= xen_flush_tlb_others
,
1943 .pte_update
= paravirt_nop
,
1944 .pte_update_defer
= paravirt_nop
,
1946 .pgd_alloc
= xen_pgd_alloc
,
1947 .pgd_free
= xen_pgd_free
,
1949 .alloc_pte
= xen_alloc_pte_init
,
1950 .release_pte
= xen_release_pte_init
,
1951 .alloc_pmd
= xen_alloc_pmd_init
,
1952 .release_pmd
= xen_release_pmd_init
,
1954 .set_pte
= xen_set_pte_init
,
1955 .set_pte_at
= xen_set_pte_at
,
1956 .set_pmd
= xen_set_pmd_hyper
,
1958 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
1959 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
1961 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
1962 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
1964 .make_pte
= PV_CALLEE_SAVE(xen_make_pte
),
1965 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
1967 #ifdef CONFIG_X86_PAE
1968 .set_pte_atomic
= xen_set_pte_atomic
,
1969 .pte_clear
= xen_pte_clear
,
1970 .pmd_clear
= xen_pmd_clear
,
1971 #endif /* CONFIG_X86_PAE */
1972 .set_pud
= xen_set_pud_hyper
,
1974 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
1975 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
1977 #if PAGETABLE_LEVELS == 4
1978 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
1979 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
1980 .set_pgd
= xen_set_pgd_hyper
,
1982 .alloc_pud
= xen_alloc_pmd_init
,
1983 .release_pud
= xen_release_pmd_init
,
1984 #endif /* PAGETABLE_LEVELS == 4 */
1986 .activate_mm
= xen_activate_mm
,
1987 .dup_mmap
= xen_dup_mmap
,
1988 .exit_mmap
= xen_exit_mmap
,
1991 .enter
= paravirt_enter_lazy_mmu
,
1992 .leave
= xen_leave_lazy_mmu
,
1995 .set_fixmap
= xen_set_fixmap
,
1998 void __init
xen_init_mmu_ops(void)
2000 x86_init
.mapping
.pagetable_reserve
= xen_mapping_pagetable_reserve
;
2001 x86_init
.paging
.pagetable_setup_start
= xen_pagetable_setup_start
;
2002 x86_init
.paging
.pagetable_setup_done
= xen_pagetable_setup_done
;
2003 pv_mmu_ops
= xen_mmu_ops
;
2005 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2008 /* Protected by xen_reservation_lock. */
2009 #define MAX_CONTIG_ORDER 9 /* 2MB */
2010 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2012 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2013 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2014 unsigned long *in_frames
,
2015 unsigned long *out_frames
)
2018 struct multicall_space mcs
;
2021 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2022 mcs
= __xen_mc_entry(0);
2025 in_frames
[i
] = virt_to_mfn(vaddr
);
2027 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2028 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2031 out_frames
[i
] = virt_to_pfn(vaddr
);
2037 * Update the pfn-to-mfn mappings for a virtual address range, either to
2038 * point to an array of mfns, or contiguously from a single starting
2041 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2042 unsigned long *mfns
,
2043 unsigned long first_mfn
)
2050 limit
= 1u << order
;
2051 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2052 struct multicall_space mcs
;
2055 mcs
= __xen_mc_entry(0);
2059 mfn
= first_mfn
+ i
;
2061 if (i
< (limit
- 1))
2065 flags
= UVMF_INVLPG
| UVMF_ALL
;
2067 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2070 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2071 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2073 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2080 * Perform the hypercall to exchange a region of our pfns to point to
2081 * memory with the required contiguous alignment. Takes the pfns as
2082 * input, and populates mfns as output.
2084 * Returns a success code indicating whether the hypervisor was able to
2085 * satisfy the request or not.
2087 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2088 unsigned long *pfns_in
,
2089 unsigned long extents_out
,
2090 unsigned int order_out
,
2091 unsigned long *mfns_out
,
2092 unsigned int address_bits
)
2097 struct xen_memory_exchange exchange
= {
2099 .nr_extents
= extents_in
,
2100 .extent_order
= order_in
,
2101 .extent_start
= pfns_in
,
2105 .nr_extents
= extents_out
,
2106 .extent_order
= order_out
,
2107 .extent_start
= mfns_out
,
2108 .address_bits
= address_bits
,
2113 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2115 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2116 success
= (exchange
.nr_exchanged
== extents_in
);
2118 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2119 BUG_ON(success
&& (rc
!= 0));
2124 int xen_create_contiguous_region(unsigned long vstart
, unsigned int order
,
2125 unsigned int address_bits
)
2127 unsigned long *in_frames
= discontig_frames
, out_frame
;
2128 unsigned long flags
;
2132 * Currently an auto-translated guest will not perform I/O, nor will
2133 * it require PAE page directories below 4GB. Therefore any calls to
2134 * this function are redundant and can be ignored.
2137 if (xen_feature(XENFEAT_auto_translated_physmap
))
2140 if (unlikely(order
> MAX_CONTIG_ORDER
))
2143 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2145 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2147 /* 1. Zap current PTEs, remembering MFNs. */
2148 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2150 /* 2. Get a new contiguous memory extent. */
2151 out_frame
= virt_to_pfn(vstart
);
2152 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2153 1, order
, &out_frame
,
2156 /* 3. Map the new extent in place of old pages. */
2158 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2160 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2162 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2164 return success
? 0 : -ENOMEM
;
2166 EXPORT_SYMBOL_GPL(xen_create_contiguous_region
);
2168 void xen_destroy_contiguous_region(unsigned long vstart
, unsigned int order
)
2170 unsigned long *out_frames
= discontig_frames
, in_frame
;
2171 unsigned long flags
;
2174 if (xen_feature(XENFEAT_auto_translated_physmap
))
2177 if (unlikely(order
> MAX_CONTIG_ORDER
))
2180 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2182 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2184 /* 1. Find start MFN of contiguous extent. */
2185 in_frame
= virt_to_mfn(vstart
);
2187 /* 2. Zap current PTEs. */
2188 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2190 /* 3. Do the exchange for non-contiguous MFNs. */
2191 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2194 /* 4. Map new pages in place of old pages. */
2196 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2198 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2200 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2202 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region
);
2204 #ifdef CONFIG_XEN_PVHVM
2205 static void xen_hvm_exit_mmap(struct mm_struct
*mm
)
2207 struct xen_hvm_pagetable_dying a
;
2210 a
.domid
= DOMID_SELF
;
2211 a
.gpa
= __pa(mm
->pgd
);
2212 rc
= HYPERVISOR_hvm_op(HVMOP_pagetable_dying
, &a
);
2213 WARN_ON_ONCE(rc
< 0);
2216 static int is_pagetable_dying_supported(void)
2218 struct xen_hvm_pagetable_dying a
;
2221 a
.domid
= DOMID_SELF
;
2223 rc
= HYPERVISOR_hvm_op(HVMOP_pagetable_dying
, &a
);
2225 printk(KERN_DEBUG
"HVMOP_pagetable_dying not supported\n");
2231 void __init
xen_hvm_init_mmu_ops(void)
2233 if (is_pagetable_dying_supported())
2234 pv_mmu_ops
.exit_mmap
= xen_hvm_exit_mmap
;
2238 #define REMAP_BATCH_SIZE 16
2243 struct mmu_update
*mmu_update
;
2246 static int remap_area_mfn_pte_fn(pte_t
*ptep
, pgtable_t token
,
2247 unsigned long addr
, void *data
)
2249 struct remap_data
*rmd
= data
;
2250 pte_t pte
= pte_mkspecial(pfn_pte(rmd
->mfn
++, rmd
->prot
));
2252 rmd
->mmu_update
->ptr
= virt_to_machine(ptep
).maddr
;
2253 rmd
->mmu_update
->val
= pte_val_ma(pte
);
2259 int xen_remap_domain_mfn_range(struct vm_area_struct
*vma
,
2261 unsigned long mfn
, int nr
,
2262 pgprot_t prot
, unsigned domid
)
2264 struct remap_data rmd
;
2265 struct mmu_update mmu_update
[REMAP_BATCH_SIZE
];
2267 unsigned long range
;
2270 prot
= __pgprot(pgprot_val(prot
) | _PAGE_IOMAP
);
2272 BUG_ON(!((vma
->vm_flags
& (VM_PFNMAP
| VM_RESERVED
| VM_IO
)) ==
2273 (VM_PFNMAP
| VM_RESERVED
| VM_IO
)));
2279 batch
= min(REMAP_BATCH_SIZE
, nr
);
2280 range
= (unsigned long)batch
<< PAGE_SHIFT
;
2282 rmd
.mmu_update
= mmu_update
;
2283 err
= apply_to_page_range(vma
->vm_mm
, addr
, range
,
2284 remap_area_mfn_pte_fn
, &rmd
);
2289 if (HYPERVISOR_mmu_update(mmu_update
, batch
, NULL
, domid
) < 0)
2303 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range
);
2305 #ifdef CONFIG_XEN_DEBUG_FS
2306 static int p2m_dump_open(struct inode
*inode
, struct file
*filp
)
2308 return single_open(filp
, p2m_dump_show
, NULL
);
2311 static const struct file_operations p2m_dump_fops
= {
2312 .open
= p2m_dump_open
,
2314 .llseek
= seq_lseek
,
2315 .release
= single_release
,
2317 #endif /* CONFIG_XEN_DEBUG_FS */