2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <linux/moduleparam.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
22 #include <asm/setup.h>
24 #define PAGE_SHIFT_64K 16
25 #define PAGE_SHIFT_16M 24
26 #define PAGE_SHIFT_16G 34
28 unsigned int HPAGE_SHIFT
;
31 * Tracks gpages after the device tree is scanned and before the
32 * huge_boot_pages list is ready. On 64-bit implementations, this is
33 * just used to track 16G pages and so is a single array. 32-bit
34 * implementations may have more than one gpage size due to limitations
35 * of the memory allocators, so we need multiple arrays
38 #define MAX_NUMBER_GPAGES 1024
39 static u64 gpage_freearray
[MAX_NUMBER_GPAGES
];
40 static unsigned nr_gpages
;
42 #define MAX_NUMBER_GPAGES 128
44 u64 gpage_list
[MAX_NUMBER_GPAGES
];
45 unsigned int nr_gpages
;
47 static struct psize_gpages gpage_freearray
[MMU_PAGE_COUNT
];
50 static inline int shift_to_mmu_psize(unsigned int shift
)
54 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
)
55 if (mmu_psize_defs
[psize
].shift
== shift
)
60 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize
)
62 if (mmu_psize_defs
[mmu_psize
].shift
)
63 return mmu_psize_defs
[mmu_psize
].shift
;
67 #define hugepd_none(hpd) ((hpd).pd == 0)
69 pte_t
*find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
, unsigned *shift
)
74 hugepd_t
*hpdp
= NULL
;
75 unsigned pdshift
= PGDIR_SHIFT
;
80 pg
= pgdir
+ pgd_index(ea
);
82 hpdp
= (hugepd_t
*)pg
;
83 } else if (!pgd_none(*pg
)) {
85 pu
= pud_offset(pg
, ea
);
87 hpdp
= (hugepd_t
*)pu
;
88 else if (!pud_none(*pu
)) {
90 pm
= pmd_offset(pu
, ea
);
92 hpdp
= (hugepd_t
*)pm
;
93 else if (!pmd_none(*pm
)) {
94 return pte_offset_kernel(pm
, ea
);
103 *shift
= hugepd_shift(*hpdp
);
104 return hugepte_offset(hpdp
, ea
, pdshift
);
107 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
109 return find_linux_pte_or_hugepte(mm
->pgd
, addr
, NULL
);
112 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
113 unsigned long address
, unsigned pdshift
, unsigned pshift
)
115 struct kmem_cache
*cachep
;
119 cachep
= PGT_CACHE(pdshift
- pshift
);
122 int num_hugepd
= 1 << (pshift
- pdshift
);
123 cachep
= hugepte_cache
;
126 new = kmem_cache_zalloc(cachep
, GFP_KERNEL
|__GFP_REPEAT
);
128 BUG_ON(pshift
> HUGEPD_SHIFT_MASK
);
129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK
);
134 spin_lock(&mm
->page_table_lock
);
136 if (!hugepd_none(*hpdp
))
137 kmem_cache_free(cachep
, new);
139 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
142 * We have multiple higher-level entries that point to the same
143 * actual pte location. Fill in each as we go and backtrack on error.
144 * We need all of these so the DTLB pgtable walk code can find the
145 * right higher-level entry without knowing if it's a hugepage or not.
147 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++) {
148 if (unlikely(!hugepd_none(*hpdp
)))
151 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
153 /* If we bailed from the for loop early, an error occurred, clean up */
154 if (i
< num_hugepd
) {
155 for (i
= i
- 1 ; i
>= 0; i
--, hpdp
--)
157 kmem_cache_free(cachep
, new);
160 spin_unlock(&mm
->page_table_lock
);
164 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
169 hugepd_t
*hpdp
= NULL
;
170 unsigned pshift
= __ffs(sz
);
171 unsigned pdshift
= PGDIR_SHIFT
;
175 pg
= pgd_offset(mm
, addr
);
176 if (pshift
>= PUD_SHIFT
) {
177 hpdp
= (hugepd_t
*)pg
;
180 pu
= pud_alloc(mm
, pg
, addr
);
181 if (pshift
>= PMD_SHIFT
) {
182 hpdp
= (hugepd_t
*)pu
;
185 pm
= pmd_alloc(mm
, pu
, addr
);
186 hpdp
= (hugepd_t
*)pm
;
193 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
195 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
198 return hugepte_offset(hpdp
, addr
, pdshift
);
202 /* Build list of addresses of gigantic pages. This function is used in early
203 * boot before the buddy or bootmem allocator is setup.
205 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
207 unsigned int idx
= shift_to_mmu_psize(__ffs(page_size
));
213 gpage_freearray
[idx
].nr_gpages
= number_of_pages
;
215 for (i
= 0; i
< number_of_pages
; i
++) {
216 gpage_freearray
[idx
].gpage_list
[i
] = addr
;
222 * Moves the gigantic page addresses from the temporary list to the
223 * huge_boot_pages list.
225 int alloc_bootmem_huge_page(struct hstate
*hstate
)
227 struct huge_bootmem_page
*m
;
228 int idx
= shift_to_mmu_psize(hstate
->order
+ PAGE_SHIFT
);
229 int nr_gpages
= gpage_freearray
[idx
].nr_gpages
;
234 #ifdef CONFIG_HIGHMEM
236 * If gpages can be in highmem we can't use the trick of storing the
237 * data structure in the page; allocate space for this
239 m
= alloc_bootmem(sizeof(struct huge_bootmem_page
));
240 m
->phys
= gpage_freearray
[idx
].gpage_list
[--nr_gpages
];
242 m
= phys_to_virt(gpage_freearray
[idx
].gpage_list
[--nr_gpages
]);
245 list_add(&m
->list
, &huge_boot_pages
);
246 gpage_freearray
[idx
].nr_gpages
= nr_gpages
;
247 gpage_freearray
[idx
].gpage_list
[nr_gpages
] = 0;
253 * Scan the command line hugepagesz= options for gigantic pages; store those in
254 * a list that we use to allocate the memory once all options are parsed.
257 unsigned long gpage_npages
[MMU_PAGE_COUNT
];
259 static int __init
do_gpage_early_setup(char *param
, char *val
)
261 static phys_addr_t size
;
262 unsigned long npages
;
265 * The hugepagesz and hugepages cmdline options are interleaved. We
266 * use the size variable to keep track of whether or not this was done
267 * properly and skip over instances where it is incorrect. Other
268 * command-line parsing code will issue warnings, so we don't need to.
271 if ((strcmp(param
, "default_hugepagesz") == 0) ||
272 (strcmp(param
, "hugepagesz") == 0)) {
273 size
= memparse(val
, NULL
);
274 } else if (strcmp(param
, "hugepages") == 0) {
276 if (sscanf(val
, "%lu", &npages
) <= 0)
278 gpage_npages
[shift_to_mmu_psize(__ffs(size
))] = npages
;
287 * This function allocates physical space for pages that are larger than the
288 * buddy allocator can handle. We want to allocate these in highmem because
289 * the amount of lowmem is limited. This means that this function MUST be
290 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
291 * allocate to grab highmem.
293 void __init
reserve_hugetlb_gpages(void)
295 static __initdata
char cmdline
[COMMAND_LINE_SIZE
];
296 phys_addr_t size
, base
;
299 strlcpy(cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
300 parse_args("hugetlb gpages", cmdline
, NULL
, 0, &do_gpage_early_setup
);
303 * Walk gpage list in reverse, allocating larger page sizes first.
304 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
305 * When we reach the point in the list where pages are no longer
306 * considered gpages, we're done.
308 for (i
= MMU_PAGE_COUNT
-1; i
>= 0; i
--) {
309 if (mmu_psize_defs
[i
].shift
== 0 || gpage_npages
[i
] == 0)
311 else if (mmu_psize_to_shift(i
) < (MAX_ORDER
+ PAGE_SHIFT
))
314 size
= (phys_addr_t
)(1ULL << mmu_psize_to_shift(i
));
315 base
= memblock_alloc_base(size
* gpage_npages
[i
], size
,
316 MEMBLOCK_ALLOC_ANYWHERE
);
317 add_gpage(base
, size
, gpage_npages
[i
]);
323 /* Build list of addresses of gigantic pages. This function is used in early
324 * boot before the buddy or bootmem allocator is setup.
326 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
330 while (number_of_pages
> 0) {
331 gpage_freearray
[nr_gpages
] = addr
;
338 /* Moves the gigantic page addresses from the temporary list to the
339 * huge_boot_pages list.
341 int alloc_bootmem_huge_page(struct hstate
*hstate
)
343 struct huge_bootmem_page
*m
;
346 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
347 gpage_freearray
[nr_gpages
] = 0;
348 list_add(&m
->list
, &huge_boot_pages
);
354 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
360 #define HUGEPD_FREELIST_SIZE \
361 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
363 struct hugepd_freelist
{
369 static DEFINE_PER_CPU(struct hugepd_freelist
*, hugepd_freelist_cur
);
371 static void hugepd_free_rcu_callback(struct rcu_head
*head
)
373 struct hugepd_freelist
*batch
=
374 container_of(head
, struct hugepd_freelist
, rcu
);
377 for (i
= 0; i
< batch
->index
; i
++)
378 kmem_cache_free(hugepte_cache
, batch
->ptes
[i
]);
380 free_page((unsigned long)batch
);
383 static void hugepd_free(struct mmu_gather
*tlb
, void *hugepte
)
385 struct hugepd_freelist
**batchp
;
387 batchp
= &__get_cpu_var(hugepd_freelist_cur
);
389 if (atomic_read(&tlb
->mm
->mm_users
) < 2 ||
390 cpumask_equal(mm_cpumask(tlb
->mm
),
391 cpumask_of(smp_processor_id()))) {
392 kmem_cache_free(hugepte_cache
, hugepte
);
396 if (*batchp
== NULL
) {
397 *batchp
= (struct hugepd_freelist
*)__get_free_page(GFP_ATOMIC
);
398 (*batchp
)->index
= 0;
401 (*batchp
)->ptes
[(*batchp
)->index
++] = hugepte
;
402 if ((*batchp
)->index
== HUGEPD_FREELIST_SIZE
) {
403 call_rcu_sched(&(*batchp
)->rcu
, hugepd_free_rcu_callback
);
409 static void free_hugepd_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
, int pdshift
,
410 unsigned long start
, unsigned long end
,
411 unsigned long floor
, unsigned long ceiling
)
413 pte_t
*hugepte
= hugepd_page(*hpdp
);
416 unsigned long pdmask
= ~((1UL << pdshift
) - 1);
417 unsigned int num_hugepd
= 1;
420 unsigned int shift
= hugepd_shift(*hpdp
);
422 /* Note: On 32-bit the hpdp may be the first of several */
423 num_hugepd
= (1 << (hugepd_shift(*hpdp
) - pdshift
));
434 if (end
- 1 > ceiling
- 1)
437 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++)
442 pgtable_free_tlb(tlb
, hugepte
, pdshift
- shift
);
444 hugepd_free(tlb
, hugepte
);
448 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
449 unsigned long addr
, unsigned long end
,
450 unsigned long floor
, unsigned long ceiling
)
457 pmd
= pmd_offset(pud
, addr
);
459 next
= pmd_addr_end(addr
, end
);
462 free_hugepd_range(tlb
, (hugepd_t
*)pmd
, PMD_SHIFT
,
463 addr
, next
, floor
, ceiling
);
464 } while (pmd
++, addr
= next
, addr
!= end
);
474 if (end
- 1 > ceiling
- 1)
477 pmd
= pmd_offset(pud
, start
);
479 pmd_free_tlb(tlb
, pmd
, start
);
482 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
483 unsigned long addr
, unsigned long end
,
484 unsigned long floor
, unsigned long ceiling
)
491 pud
= pud_offset(pgd
, addr
);
493 next
= pud_addr_end(addr
, end
);
494 if (!is_hugepd(pud
)) {
495 if (pud_none_or_clear_bad(pud
))
497 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
500 free_hugepd_range(tlb
, (hugepd_t
*)pud
, PUD_SHIFT
,
501 addr
, next
, floor
, ceiling
);
503 } while (pud
++, addr
= next
, addr
!= end
);
509 ceiling
&= PGDIR_MASK
;
513 if (end
- 1 > ceiling
- 1)
516 pud
= pud_offset(pgd
, start
);
518 pud_free_tlb(tlb
, pud
, start
);
522 * This function frees user-level page tables of a process.
524 * Must be called with pagetable lock held.
526 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
527 unsigned long addr
, unsigned long end
,
528 unsigned long floor
, unsigned long ceiling
)
534 * Because there are a number of different possible pagetable
535 * layouts for hugepage ranges, we limit knowledge of how
536 * things should be laid out to the allocation path
537 * (huge_pte_alloc(), above). Everything else works out the
538 * structure as it goes from information in the hugepd
539 * pointers. That means that we can't here use the
540 * optimization used in the normal page free_pgd_range(), of
541 * checking whether we're actually covering a large enough
542 * range to have to do anything at the top level of the walk
543 * instead of at the bottom.
545 * To make sense of this, you should probably go read the big
546 * block comment at the top of the normal free_pgd_range(),
551 next
= pgd_addr_end(addr
, end
);
552 pgd
= pgd_offset(tlb
->mm
, addr
);
553 if (!is_hugepd(pgd
)) {
554 if (pgd_none_or_clear_bad(pgd
))
556 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
560 * Increment next by the size of the huge mapping since
561 * on 32-bit there may be more than one entry at the pgd
562 * level for a single hugepage, but all of them point to
563 * the same kmem cache that holds the hugepte.
565 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pgd
));
567 free_hugepd_range(tlb
, (hugepd_t
*)pgd
, PGDIR_SHIFT
,
568 addr
, next
, floor
, ceiling
);
570 } while (addr
= next
, addr
!= end
);
574 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
581 ptep
= find_linux_pte_or_hugepte(mm
->pgd
, address
, &shift
);
583 /* Verify it is a huge page else bail. */
585 return ERR_PTR(-EINVAL
);
587 mask
= (1UL << shift
) - 1;
588 page
= pte_page(*ptep
);
590 page
+= (address
& mask
) / PAGE_SIZE
;
595 int pmd_huge(pmd_t pmd
)
600 int pud_huge(pud_t pud
)
606 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
607 pmd_t
*pmd
, int write
)
613 static noinline
int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
614 unsigned long end
, int write
, struct page
**pages
, int *nr
)
617 unsigned long pte_end
;
618 struct page
*head
, *page
, *tail
;
622 pte_end
= (addr
+ sz
) & ~(sz
-1);
627 mask
= _PAGE_PRESENT
| _PAGE_USER
;
631 if ((pte_val(pte
) & mask
) != mask
)
634 /* hugepages are never "special" */
635 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
638 head
= pte_page(pte
);
640 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
643 VM_BUG_ON(compound_head(page
) != head
);
648 } while (addr
+= PAGE_SIZE
, addr
!= end
);
650 if (!page_cache_add_speculative(head
, refs
)) {
655 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
656 /* Could be optimized better */
664 * Any tail page need their mapcount reference taken before we
669 get_huge_page_tail(tail
);
676 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
679 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
680 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
683 int gup_hugepd(hugepd_t
*hugepd
, unsigned pdshift
,
684 unsigned long addr
, unsigned long end
,
685 int write
, struct page
**pages
, int *nr
)
688 unsigned long sz
= 1UL << hugepd_shift(*hugepd
);
691 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
693 next
= hugepte_addr_end(addr
, end
, sz
);
694 if (!gup_hugepte(ptep
, sz
, addr
, end
, write
, pages
, nr
))
696 } while (ptep
++, addr
= next
, addr
!= end
);
701 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
702 unsigned long len
, unsigned long pgoff
,
705 #ifdef CONFIG_PPC_MM_SLICES
706 struct hstate
*hstate
= hstate_file(file
);
707 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
709 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1, 0);
711 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
715 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
717 #ifdef CONFIG_PPC_MM_SLICES
718 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
720 return 1UL << mmu_psize_to_shift(psize
);
722 if (!is_vm_hugetlb_page(vma
))
725 return huge_page_size(hstate_vma(vma
));
729 static inline bool is_power_of_4(unsigned long x
)
731 if (is_power_of_2(x
))
732 return (__ilog2(x
) % 2) ? false : true;
736 static int __init
add_huge_page_size(unsigned long long size
)
738 int shift
= __ffs(size
);
741 /* Check that it is a page size supported by the hardware and
742 * that it fits within pagetable and slice limits. */
743 #ifdef CONFIG_PPC_FSL_BOOK3E
744 if ((size
< PAGE_SIZE
) || !is_power_of_4(size
))
747 if (!is_power_of_2(size
)
748 || (shift
> SLICE_HIGH_SHIFT
) || (shift
<= PAGE_SHIFT
))
752 if ((mmu_psize
= shift_to_mmu_psize(shift
)) < 0)
755 #ifdef CONFIG_SPU_FS_64K_LS
756 /* Disable support for 64K huge pages when 64K SPU local store
757 * support is enabled as the current implementation conflicts.
759 if (shift
== PAGE_SHIFT_64K
)
761 #endif /* CONFIG_SPU_FS_64K_LS */
763 BUG_ON(mmu_psize_defs
[mmu_psize
].shift
!= shift
);
765 /* Return if huge page size has already been setup */
766 if (size_to_hstate(size
))
769 hugetlb_add_hstate(shift
- PAGE_SHIFT
);
774 static int __init
hugepage_setup_sz(char *str
)
776 unsigned long long size
;
778 size
= memparse(str
, &str
);
780 if (add_huge_page_size(size
) != 0)
781 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
785 __setup("hugepagesz=", hugepage_setup_sz
);
787 #ifdef CONFIG_FSL_BOOKE
788 struct kmem_cache
*hugepte_cache
;
789 static int __init
hugetlbpage_init(void)
793 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
796 if (!mmu_psize_defs
[psize
].shift
)
799 shift
= mmu_psize_to_shift(psize
);
801 /* Don't treat normal page sizes as huge... */
802 if (shift
!= PAGE_SHIFT
)
803 if (add_huge_page_size(1ULL << shift
) < 0)
808 * Create a kmem cache for hugeptes. The bottom bits in the pte have
809 * size information encoded in them, so align them to allow this
811 hugepte_cache
= kmem_cache_create("hugepte-cache", sizeof(pte_t
),
812 HUGEPD_SHIFT_MASK
+ 1, 0, NULL
);
813 if (hugepte_cache
== NULL
)
814 panic("%s: Unable to create kmem cache for hugeptes\n",
817 /* Default hpage size = 4M */
818 if (mmu_psize_defs
[MMU_PAGE_4M
].shift
)
819 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_4M
].shift
;
821 panic("%s: Unable to set default huge page size\n", __func__
);
827 static int __init
hugetlbpage_init(void)
831 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
834 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
838 if (!mmu_psize_defs
[psize
].shift
)
841 shift
= mmu_psize_to_shift(psize
);
843 if (add_huge_page_size(1ULL << shift
) < 0)
846 if (shift
< PMD_SHIFT
)
848 else if (shift
< PUD_SHIFT
)
851 pdshift
= PGDIR_SHIFT
;
853 pgtable_cache_add(pdshift
- shift
, NULL
);
854 if (!PGT_CACHE(pdshift
- shift
))
855 panic("hugetlbpage_init(): could not create "
856 "pgtable cache for %d bit pagesize\n", shift
);
859 /* Set default large page size. Currently, we pick 16M or 1M
860 * depending on what is available
862 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
863 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_16M
].shift
;
864 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
865 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_1M
].shift
;
870 module_init(hugetlbpage_init
);
872 void flush_dcache_icache_hugepage(struct page
*page
)
877 BUG_ON(!PageCompound(page
));
879 for (i
= 0; i
< (1UL << compound_order(page
)); i
++) {
880 if (!PageHighMem(page
)) {
881 __flush_dcache_icache(page_address(page
+i
));
883 start
= kmap_atomic(page
+i
, KM_PPC_SYNC_ICACHE
);
884 __flush_dcache_icache(start
);
885 kunmap_atomic(start
, KM_PPC_SYNC_ICACHE
);