2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
39 struct xhci_segment
*seg
;
42 seg
= kzalloc(sizeof *seg
, flags
);
46 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
52 memset(seg
->trbs
, 0, SEGMENT_SIZE
);
59 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
62 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
69 * Make the prev segment point to the next segment.
71 * Change the last TRB in the prev segment to be a Link TRB which points to the
72 * DMA address of the next segment. The caller needs to set any Link TRB
73 * related flags, such as End TRB, Toggle Cycle, and no snoop.
75 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
76 struct xhci_segment
*next
, bool link_trbs
, bool isoc
)
84 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
85 cpu_to_le64(next
->dma
);
87 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
88 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
89 val
&= ~TRB_TYPE_BITMASK
;
90 val
|= TRB_TYPE(TRB_LINK
);
91 /* Always set the chain bit with 0.95 hardware */
92 /* Set chain bit for isoc rings on AMD 0.96 host */
93 if (xhci_link_trb_quirk(xhci
) ||
94 (isoc
&& (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
96 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
100 /* XXX: Do we need the hcd structure in all these functions? */
101 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
103 struct xhci_segment
*seg
;
104 struct xhci_segment
*first_seg
;
108 if (ring
->first_seg
) {
109 first_seg
= ring
->first_seg
;
110 seg
= first_seg
->next
;
111 while (seg
!= first_seg
) {
112 struct xhci_segment
*next
= seg
->next
;
113 xhci_segment_free(xhci
, seg
);
116 xhci_segment_free(xhci
, first_seg
);
117 ring
->first_seg
= NULL
;
122 static void xhci_initialize_ring_info(struct xhci_ring
*ring
)
124 /* The ring is empty, so the enqueue pointer == dequeue pointer */
125 ring
->enqueue
= ring
->first_seg
->trbs
;
126 ring
->enq_seg
= ring
->first_seg
;
127 ring
->dequeue
= ring
->enqueue
;
128 ring
->deq_seg
= ring
->first_seg
;
129 /* The ring is initialized to 0. The producer must write 1 to the cycle
130 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
131 * compare CCS to the cycle bit to check ownership, so CCS = 1.
133 ring
->cycle_state
= 1;
134 /* Not necessary for new rings, but needed for re-initialized rings */
135 ring
->enq_updates
= 0;
136 ring
->deq_updates
= 0;
140 * Create a new ring with zero or more segments.
142 * Link each segment together into a ring.
143 * Set the end flag and the cycle toggle bit on the last segment.
144 * See section 4.9.1 and figures 15 and 16.
146 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
147 unsigned int num_segs
, bool link_trbs
, bool isoc
, gfp_t flags
)
149 struct xhci_ring
*ring
;
150 struct xhci_segment
*prev
;
152 ring
= kzalloc(sizeof *(ring
), flags
);
156 INIT_LIST_HEAD(&ring
->td_list
);
160 ring
->first_seg
= xhci_segment_alloc(xhci
, flags
);
161 if (!ring
->first_seg
)
165 prev
= ring
->first_seg
;
166 while (num_segs
> 0) {
167 struct xhci_segment
*next
;
169 next
= xhci_segment_alloc(xhci
, flags
);
172 xhci_link_segments(xhci
, prev
, next
, link_trbs
, isoc
);
177 xhci_link_segments(xhci
, prev
, ring
->first_seg
, link_trbs
, isoc
);
180 /* See section 4.9.2.1 and 6.4.4.1 */
181 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
|=
182 cpu_to_le32(LINK_TOGGLE
);
184 xhci_initialize_ring_info(ring
);
188 xhci_ring_free(xhci
, ring
);
192 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
193 struct xhci_virt_device
*virt_dev
,
194 unsigned int ep_index
)
198 rings_cached
= virt_dev
->num_rings_cached
;
199 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
200 virt_dev
->ring_cache
[rings_cached
] =
201 virt_dev
->eps
[ep_index
].ring
;
202 virt_dev
->num_rings_cached
++;
203 xhci_dbg(xhci
, "Cached old ring, "
204 "%d ring%s cached\n",
205 virt_dev
->num_rings_cached
,
206 (virt_dev
->num_rings_cached
> 1) ? "s" : "");
208 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
209 xhci_dbg(xhci
, "Ring cache full (%d rings), "
211 virt_dev
->num_rings_cached
);
213 virt_dev
->eps
[ep_index
].ring
= NULL
;
216 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
217 * pointers to the beginning of the ring.
219 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
220 struct xhci_ring
*ring
, bool isoc
)
222 struct xhci_segment
*seg
= ring
->first_seg
;
225 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
226 /* All endpoint rings have link TRBs */
227 xhci_link_segments(xhci
, seg
, seg
->next
, 1, isoc
);
229 } while (seg
!= ring
->first_seg
);
230 xhci_initialize_ring_info(ring
);
231 /* td list should be empty since all URBs have been cancelled,
232 * but just in case...
234 INIT_LIST_HEAD(&ring
->td_list
);
237 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
239 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
240 int type
, gfp_t flags
)
242 struct xhci_container_ctx
*ctx
= kzalloc(sizeof(*ctx
), flags
);
246 BUG_ON((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
));
248 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
249 if (type
== XHCI_CTX_TYPE_INPUT
)
250 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
252 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
253 memset(ctx
->bytes
, 0, ctx
->size
);
257 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
258 struct xhci_container_ctx
*ctx
)
262 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
266 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
267 struct xhci_container_ctx
*ctx
)
269 BUG_ON(ctx
->type
!= XHCI_CTX_TYPE_INPUT
);
270 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
273 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
274 struct xhci_container_ctx
*ctx
)
276 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
277 return (struct xhci_slot_ctx
*)ctx
->bytes
;
279 return (struct xhci_slot_ctx
*)
280 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
283 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
284 struct xhci_container_ctx
*ctx
,
285 unsigned int ep_index
)
287 /* increment ep index by offset of start of ep ctx array */
289 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
292 return (struct xhci_ep_ctx
*)
293 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
297 /***************** Streams structures manipulation *************************/
299 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
300 unsigned int num_stream_ctxs
,
301 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
303 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
305 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
306 dma_free_coherent(&pdev
->dev
,
307 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
309 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
310 return dma_pool_free(xhci
->small_streams_pool
,
313 return dma_pool_free(xhci
->medium_streams_pool
,
318 * The stream context array for each endpoint with bulk streams enabled can
319 * vary in size, based on:
320 * - how many streams the endpoint supports,
321 * - the maximum primary stream array size the host controller supports,
322 * - and how many streams the device driver asks for.
324 * The stream context array must be a power of 2, and can be as small as
325 * 64 bytes or as large as 1MB.
327 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
328 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
331 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
333 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
334 return dma_alloc_coherent(&pdev
->dev
,
335 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
337 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
338 return dma_pool_alloc(xhci
->small_streams_pool
,
341 return dma_pool_alloc(xhci
->medium_streams_pool
,
345 struct xhci_ring
*xhci_dma_to_transfer_ring(
346 struct xhci_virt_ep
*ep
,
349 if (ep
->ep_state
& EP_HAS_STREAMS
)
350 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
351 address
>> SEGMENT_SHIFT
);
355 /* Only use this when you know stream_info is valid */
356 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
357 static struct xhci_ring
*dma_to_stream_ring(
358 struct xhci_stream_info
*stream_info
,
361 return radix_tree_lookup(&stream_info
->trb_address_map
,
362 address
>> SEGMENT_SHIFT
);
364 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
366 struct xhci_ring
*xhci_stream_id_to_ring(
367 struct xhci_virt_device
*dev
,
368 unsigned int ep_index
,
369 unsigned int stream_id
)
371 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
375 if (!ep
->stream_info
)
378 if (stream_id
> ep
->stream_info
->num_streams
)
380 return ep
->stream_info
->stream_rings
[stream_id
];
383 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
384 static int xhci_test_radix_tree(struct xhci_hcd
*xhci
,
385 unsigned int num_streams
,
386 struct xhci_stream_info
*stream_info
)
389 struct xhci_ring
*cur_ring
;
392 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
393 struct xhci_ring
*mapped_ring
;
394 int trb_size
= sizeof(union xhci_trb
);
396 cur_ring
= stream_info
->stream_rings
[cur_stream
];
397 for (addr
= cur_ring
->first_seg
->dma
;
398 addr
< cur_ring
->first_seg
->dma
+ SEGMENT_SIZE
;
400 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
401 if (cur_ring
!= mapped_ring
) {
402 xhci_warn(xhci
, "WARN: DMA address 0x%08llx "
403 "didn't map to stream ID %u; "
404 "mapped to ring %p\n",
405 (unsigned long long) addr
,
411 /* One TRB after the end of the ring segment shouldn't return a
412 * pointer to the current ring (although it may be a part of a
415 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
416 if (mapped_ring
!= cur_ring
) {
417 /* One TRB before should also fail */
418 addr
= cur_ring
->first_seg
->dma
- trb_size
;
419 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
421 if (mapped_ring
== cur_ring
) {
422 xhci_warn(xhci
, "WARN: Bad DMA address 0x%08llx "
423 "mapped to valid stream ID %u; "
424 "mapped ring = %p\n",
425 (unsigned long long) addr
,
433 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
436 * Change an endpoint's internal structure so it supports stream IDs. The
437 * number of requested streams includes stream 0, which cannot be used by device
440 * The number of stream contexts in the stream context array may be bigger than
441 * the number of streams the driver wants to use. This is because the number of
442 * stream context array entries must be a power of two.
444 * We need a radix tree for mapping physical addresses of TRBs to which stream
445 * ID they belong to. We need to do this because the host controller won't tell
446 * us which stream ring the TRB came from. We could store the stream ID in an
447 * event data TRB, but that doesn't help us for the cancellation case, since the
448 * endpoint may stop before it reaches that event data TRB.
450 * The radix tree maps the upper portion of the TRB DMA address to a ring
451 * segment that has the same upper portion of DMA addresses. For example, say I
452 * have segments of size 1KB, that are always 64-byte aligned. A segment may
453 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
454 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
455 * pass the radix tree a key to get the right stream ID:
457 * 0x10c90fff >> 10 = 0x43243
458 * 0x10c912c0 >> 10 = 0x43244
459 * 0x10c91400 >> 10 = 0x43245
461 * Obviously, only those TRBs with DMA addresses that are within the segment
462 * will make the radix tree return the stream ID for that ring.
464 * Caveats for the radix tree:
466 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
467 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
468 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
469 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
470 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
471 * extended systems (where the DMA address can be bigger than 32-bits),
472 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
474 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
475 unsigned int num_stream_ctxs
,
476 unsigned int num_streams
, gfp_t mem_flags
)
478 struct xhci_stream_info
*stream_info
;
480 struct xhci_ring
*cur_ring
;
485 xhci_dbg(xhci
, "Allocating %u streams and %u "
486 "stream context array entries.\n",
487 num_streams
, num_stream_ctxs
);
488 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
489 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
492 xhci
->cmd_ring_reserved_trbs
++;
494 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
498 stream_info
->num_streams
= num_streams
;
499 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
501 /* Initialize the array of virtual pointers to stream rings. */
502 stream_info
->stream_rings
= kzalloc(
503 sizeof(struct xhci_ring
*)*num_streams
,
505 if (!stream_info
->stream_rings
)
508 /* Initialize the array of DMA addresses for stream rings for the HW. */
509 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
510 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
512 if (!stream_info
->stream_ctx_array
)
514 memset(stream_info
->stream_ctx_array
, 0,
515 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
517 /* Allocate everything needed to free the stream rings later */
518 stream_info
->free_streams_command
=
519 xhci_alloc_command(xhci
, true, true, mem_flags
);
520 if (!stream_info
->free_streams_command
)
523 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
525 /* Allocate rings for all the streams that the driver will use,
526 * and add their segment DMA addresses to the radix tree.
527 * Stream 0 is reserved.
529 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
530 stream_info
->stream_rings
[cur_stream
] =
531 xhci_ring_alloc(xhci
, 1, true, false, mem_flags
);
532 cur_ring
= stream_info
->stream_rings
[cur_stream
];
535 cur_ring
->stream_id
= cur_stream
;
536 /* Set deq ptr, cycle bit, and stream context type */
537 addr
= cur_ring
->first_seg
->dma
|
538 SCT_FOR_CTX(SCT_PRI_TR
) |
539 cur_ring
->cycle_state
;
540 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
542 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
543 cur_stream
, (unsigned long long) addr
);
545 key
= (unsigned long)
546 (cur_ring
->first_seg
->dma
>> SEGMENT_SHIFT
);
547 ret
= radix_tree_insert(&stream_info
->trb_address_map
,
550 xhci_ring_free(xhci
, cur_ring
);
551 stream_info
->stream_rings
[cur_stream
] = NULL
;
555 /* Leave the other unused stream ring pointers in the stream context
556 * array initialized to zero. This will cause the xHC to give us an
557 * error if the device asks for a stream ID we don't have setup (if it
558 * was any other way, the host controller would assume the ring is
559 * "empty" and wait forever for data to be queued to that stream ID).
562 /* Do a little test on the radix tree to make sure it returns the
565 if (xhci_test_radix_tree(xhci
, num_streams
, stream_info
))
572 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
573 cur_ring
= stream_info
->stream_rings
[cur_stream
];
575 addr
= cur_ring
->first_seg
->dma
;
576 radix_tree_delete(&stream_info
->trb_address_map
,
577 addr
>> SEGMENT_SHIFT
);
578 xhci_ring_free(xhci
, cur_ring
);
579 stream_info
->stream_rings
[cur_stream
] = NULL
;
582 xhci_free_command(xhci
, stream_info
->free_streams_command
);
584 kfree(stream_info
->stream_rings
);
588 xhci
->cmd_ring_reserved_trbs
--;
592 * Sets the MaxPStreams field and the Linear Stream Array field.
593 * Sets the dequeue pointer to the stream context array.
595 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
596 struct xhci_ep_ctx
*ep_ctx
,
597 struct xhci_stream_info
*stream_info
)
599 u32 max_primary_streams
;
600 /* MaxPStreams is the number of stream context array entries, not the
601 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
602 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
604 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
605 xhci_dbg(xhci
, "Setting number of stream ctx array entries to %u\n",
606 1 << (max_primary_streams
+ 1));
607 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
608 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
610 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
614 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
615 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
616 * not at the beginning of the ring).
618 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
619 struct xhci_ep_ctx
*ep_ctx
,
620 struct xhci_virt_ep
*ep
)
623 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
624 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
625 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
628 /* Frees all stream contexts associated with the endpoint,
630 * Caller should fix the endpoint context streams fields.
632 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
633 struct xhci_stream_info
*stream_info
)
636 struct xhci_ring
*cur_ring
;
642 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
644 cur_ring
= stream_info
->stream_rings
[cur_stream
];
646 addr
= cur_ring
->first_seg
->dma
;
647 radix_tree_delete(&stream_info
->trb_address_map
,
648 addr
>> SEGMENT_SHIFT
);
649 xhci_ring_free(xhci
, cur_ring
);
650 stream_info
->stream_rings
[cur_stream
] = NULL
;
653 xhci_free_command(xhci
, stream_info
->free_streams_command
);
654 xhci
->cmd_ring_reserved_trbs
--;
655 if (stream_info
->stream_ctx_array
)
656 xhci_free_stream_ctx(xhci
,
657 stream_info
->num_stream_ctxs
,
658 stream_info
->stream_ctx_array
,
659 stream_info
->ctx_array_dma
);
662 kfree(stream_info
->stream_rings
);
667 /***************** Device context manipulation *************************/
669 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
670 struct xhci_virt_ep
*ep
)
672 init_timer(&ep
->stop_cmd_timer
);
673 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
674 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
678 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
679 struct xhci_virt_device
*virt_dev
,
682 struct list_head
*tt
;
683 struct list_head
*tt_list_head
;
684 struct list_head
*tt_next
;
685 struct xhci_tt_bw_info
*tt_info
;
687 /* If the device never made it past the Set Address stage,
688 * it may not have the real_port set correctly.
690 if (virt_dev
->real_port
== 0 ||
691 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
692 xhci_dbg(xhci
, "Bad real port.\n");
696 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
697 if (list_empty(tt_list_head
))
700 list_for_each(tt
, tt_list_head
) {
701 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
, tt_list
);
702 if (tt_info
->slot_id
== slot_id
)
705 /* Cautionary measure in case the hub was disconnected before we
706 * stored the TT information.
708 if (tt_info
->slot_id
!= slot_id
)
712 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
,
714 /* Multi-TT hubs will have more than one entry */
719 if (list_empty(tt_list_head
))
722 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
,
724 } while (tt_info
->slot_id
== slot_id
);
727 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
728 struct xhci_virt_device
*virt_dev
,
729 struct usb_device
*hdev
,
730 struct usb_tt
*tt
, gfp_t mem_flags
)
732 struct xhci_tt_bw_info
*tt_info
;
733 unsigned int num_ports
;
739 num_ports
= hdev
->maxchild
;
741 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
742 struct xhci_interval_bw_table
*bw_table
;
744 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
747 INIT_LIST_HEAD(&tt_info
->tt_list
);
748 list_add(&tt_info
->tt_list
,
749 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
750 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
752 tt_info
->ttport
= i
+1;
753 bw_table
= &tt_info
->bw_table
;
754 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
755 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
760 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
765 /* All the xhci_tds in the ring's TD list should be freed at this point.
766 * Should be called with xhci->lock held if there is any chance the TT lists
767 * will be manipulated by the configure endpoint, allocate device, or update
768 * hub functions while this function is removing the TT entries from the list.
770 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
772 struct xhci_virt_device
*dev
;
774 int old_active_eps
= 0;
776 /* Slot ID 0 is reserved */
777 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
780 dev
= xhci
->devs
[slot_id
];
781 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
786 old_active_eps
= dev
->tt_info
->active_eps
;
788 for (i
= 0; i
< 31; ++i
) {
789 if (dev
->eps
[i
].ring
)
790 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
791 if (dev
->eps
[i
].stream_info
)
792 xhci_free_stream_info(xhci
,
793 dev
->eps
[i
].stream_info
);
794 /* Endpoints on the TT/root port lists should have been removed
795 * when usb_disable_device() was called for the device.
796 * We can't drop them anyway, because the udev might have gone
797 * away by this point, and we can't tell what speed it was.
799 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
800 xhci_warn(xhci
, "Slot %u endpoint %u "
801 "not removed from BW list!\n",
804 /* If this is a hub, free the TT(s) from the TT list */
805 xhci_free_tt_info(xhci
, dev
, slot_id
);
806 /* If necessary, update the number of active TTs on this root port */
807 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
809 if (dev
->ring_cache
) {
810 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
811 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
812 kfree(dev
->ring_cache
);
816 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
818 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
820 kfree(xhci
->devs
[slot_id
]);
821 xhci
->devs
[slot_id
] = NULL
;
824 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
825 struct usb_device
*udev
, gfp_t flags
)
827 struct xhci_virt_device
*dev
;
830 /* Slot ID 0 is reserved */
831 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
832 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
836 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
837 if (!xhci
->devs
[slot_id
])
839 dev
= xhci
->devs
[slot_id
];
841 /* Allocate the (output) device context that will be used in the HC. */
842 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
846 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
847 (unsigned long long)dev
->out_ctx
->dma
);
849 /* Allocate the (input) device context for address device command */
850 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
854 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
855 (unsigned long long)dev
->in_ctx
->dma
);
857 /* Initialize the cancellation list and watchdog timers for each ep */
858 for (i
= 0; i
< 31; i
++) {
859 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
860 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
861 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
864 /* Allocate endpoint 0 ring */
865 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 1, true, false, flags
);
866 if (!dev
->eps
[0].ring
)
869 /* Allocate pointers to the ring cache */
870 dev
->ring_cache
= kzalloc(
871 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
873 if (!dev
->ring_cache
)
875 dev
->num_rings_cached
= 0;
877 init_completion(&dev
->cmd_completion
);
878 INIT_LIST_HEAD(&dev
->cmd_list
);
881 /* Point to output device context in dcbaa. */
882 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
883 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
885 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
886 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
890 xhci_free_virt_device(xhci
, slot_id
);
894 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
895 struct usb_device
*udev
)
897 struct xhci_virt_device
*virt_dev
;
898 struct xhci_ep_ctx
*ep0_ctx
;
899 struct xhci_ring
*ep_ring
;
901 virt_dev
= xhci
->devs
[udev
->slot_id
];
902 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
903 ep_ring
= virt_dev
->eps
[0].ring
;
905 * FIXME we don't keep track of the dequeue pointer very well after a
906 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
907 * host to our enqueue pointer. This should only be called after a
908 * configured device has reset, so all control transfers should have
909 * been completed or cancelled before the reset.
911 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
913 | ep_ring
->cycle_state
);
917 * The xHCI roothub may have ports of differing speeds in any order in the port
918 * status registers. xhci->port_array provides an array of the port speed for
919 * each offset into the port status registers.
921 * The xHCI hardware wants to know the roothub port number that the USB device
922 * is attached to (or the roothub port its ancestor hub is attached to). All we
923 * know is the index of that port under either the USB 2.0 or the USB 3.0
924 * roothub, but that doesn't give us the real index into the HW port status
925 * registers. Scan through the xHCI roothub port array, looking for the Nth
926 * entry of the correct port speed. Return the port number of that entry.
928 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
929 struct usb_device
*udev
)
931 struct usb_device
*top_dev
;
932 unsigned int num_similar_speed_ports
;
933 unsigned int faked_port_num
;
936 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
937 top_dev
= top_dev
->parent
)
938 /* Found device below root hub */;
939 faked_port_num
= top_dev
->portnum
;
940 for (i
= 0, num_similar_speed_ports
= 0;
941 i
< HCS_MAX_PORTS(xhci
->hcs_params1
); i
++) {
942 u8 port_speed
= xhci
->port_array
[i
];
945 * Skip ports that don't have known speeds, or have duplicate
946 * Extended Capabilities port speed entries.
948 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
952 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
953 * 1.1 ports are under the USB 2.0 hub. If the port speed
954 * matches the device speed, it's a similar speed port.
956 if ((port_speed
== 0x03) == (udev
->speed
== USB_SPEED_SUPER
))
957 num_similar_speed_ports
++;
958 if (num_similar_speed_ports
== faked_port_num
)
959 /* Roothub ports are numbered from 1 to N */
965 /* Setup an xHCI virtual device for a Set Address command */
966 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
968 struct xhci_virt_device
*dev
;
969 struct xhci_ep_ctx
*ep0_ctx
;
970 struct xhci_slot_ctx
*slot_ctx
;
972 struct usb_device
*top_dev
;
974 dev
= xhci
->devs
[udev
->slot_id
];
975 /* Slot ID 0 is reserved */
976 if (udev
->slot_id
== 0 || !dev
) {
977 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
981 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
982 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
984 /* 3) Only the control endpoint is valid - one endpoint context */
985 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
986 switch (udev
->speed
) {
987 case USB_SPEED_SUPER
:
988 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
991 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
994 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
997 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
999 case USB_SPEED_WIRELESS
:
1000 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1004 /* Speed was set earlier, this shouldn't happen. */
1007 /* Find the root hub port this device is under */
1008 port_num
= xhci_find_real_port_number(xhci
, udev
);
1011 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1012 /* Set the port number in the virtual_device to the faked port number */
1013 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1014 top_dev
= top_dev
->parent
)
1015 /* Found device below root hub */;
1016 dev
->fake_port
= top_dev
->portnum
;
1017 dev
->real_port
= port_num
;
1018 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1019 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1021 /* Find the right bandwidth table that this device will be a part of.
1022 * If this is a full speed device attached directly to a root port (or a
1023 * decendent of one), it counts as a primary bandwidth domain, not a
1024 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1025 * will never be created for the HS root hub.
1027 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1028 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1030 struct xhci_root_port_bw_info
*rh_bw
;
1031 struct xhci_tt_bw_info
*tt_bw
;
1033 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1034 /* Find the right TT. */
1035 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1036 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1039 if (!dev
->udev
->tt
->multi
||
1041 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1042 dev
->bw_table
= &tt_bw
->bw_table
;
1043 dev
->tt_info
= tt_bw
;
1048 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1051 /* Is this a LS/FS device under an external HS hub? */
1052 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1053 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1054 (udev
->ttport
<< 8));
1055 if (udev
->tt
->multi
)
1056 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1058 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1059 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1061 /* Step 4 - ring already allocated */
1063 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1065 * XXX: Not sure about wireless USB devices.
1067 switch (udev
->speed
) {
1068 case USB_SPEED_SUPER
:
1069 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(512));
1071 case USB_SPEED_HIGH
:
1072 /* USB core guesses at a 64-byte max packet first for FS devices */
1073 case USB_SPEED_FULL
:
1074 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(64));
1077 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(8));
1079 case USB_SPEED_WIRELESS
:
1080 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1087 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1088 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1090 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1091 dev
->eps
[0].ring
->cycle_state
);
1093 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1099 * Convert interval expressed as 2^(bInterval - 1) == interval into
1100 * straight exponent value 2^n == interval.
1103 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1104 struct usb_host_endpoint
*ep
)
1106 unsigned int interval
;
1108 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1109 if (interval
!= ep
->desc
.bInterval
- 1)
1110 dev_warn(&udev
->dev
,
1111 "ep %#x - rounding interval to %d %sframes\n",
1112 ep
->desc
.bEndpointAddress
,
1114 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1116 if (udev
->speed
== USB_SPEED_FULL
) {
1118 * Full speed isoc endpoints specify interval in frames,
1119 * not microframes. We are using microframes everywhere,
1120 * so adjust accordingly.
1122 interval
+= 3; /* 1 frame = 2^3 uframes */
1129 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1130 * microframes, rounded down to nearest power of 2.
1132 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1133 struct usb_host_endpoint
*ep
)
1135 unsigned int interval
;
1137 interval
= fls(8 * ep
->desc
.bInterval
) - 1;
1138 interval
= clamp_val(interval
, 3, 10);
1139 if ((1 << interval
) != 8 * ep
->desc
.bInterval
)
1140 dev_warn(&udev
->dev
,
1141 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1142 ep
->desc
.bEndpointAddress
,
1144 8 * ep
->desc
.bInterval
);
1149 /* Return the polling or NAK interval.
1151 * The polling interval is expressed in "microframes". If xHCI's Interval field
1152 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1154 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1157 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1158 struct usb_host_endpoint
*ep
)
1160 unsigned int interval
= 0;
1162 switch (udev
->speed
) {
1163 case USB_SPEED_HIGH
:
1165 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1166 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1167 interval
= ep
->desc
.bInterval
;
1170 /* Fall through - SS and HS isoc/int have same decoding */
1172 case USB_SPEED_SUPER
:
1173 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1174 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1175 interval
= xhci_parse_exponent_interval(udev
, ep
);
1179 case USB_SPEED_FULL
:
1180 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1181 interval
= xhci_parse_exponent_interval(udev
, ep
);
1185 * Fall through for interrupt endpoint interval decoding
1186 * since it uses the same rules as low speed interrupt
1191 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1192 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1194 interval
= xhci_parse_frame_interval(udev
, ep
);
1201 return EP_INTERVAL(interval
);
1204 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1205 * High speed endpoint descriptors can define "the number of additional
1206 * transaction opportunities per microframe", but that goes in the Max Burst
1207 * endpoint context field.
1209 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1210 struct usb_host_endpoint
*ep
)
1212 if (udev
->speed
!= USB_SPEED_SUPER
||
1213 !usb_endpoint_xfer_isoc(&ep
->desc
))
1215 return ep
->ss_ep_comp
.bmAttributes
;
1218 static u32
xhci_get_endpoint_type(struct usb_device
*udev
,
1219 struct usb_host_endpoint
*ep
)
1224 in
= usb_endpoint_dir_in(&ep
->desc
);
1225 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1226 type
= EP_TYPE(CTRL_EP
);
1227 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1229 type
= EP_TYPE(BULK_IN_EP
);
1231 type
= EP_TYPE(BULK_OUT_EP
);
1232 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1234 type
= EP_TYPE(ISOC_IN_EP
);
1236 type
= EP_TYPE(ISOC_OUT_EP
);
1237 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
1239 type
= EP_TYPE(INT_IN_EP
);
1241 type
= EP_TYPE(INT_OUT_EP
);
1248 /* Return the maximum endpoint service interval time (ESIT) payload.
1249 * Basically, this is the maxpacket size, multiplied by the burst size
1252 static u32
xhci_get_max_esit_payload(struct xhci_hcd
*xhci
,
1253 struct usb_device
*udev
,
1254 struct usb_host_endpoint
*ep
)
1259 /* Only applies for interrupt or isochronous endpoints */
1260 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1261 usb_endpoint_xfer_bulk(&ep
->desc
))
1264 if (udev
->speed
== USB_SPEED_SUPER
)
1265 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1267 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1268 max_burst
= (usb_endpoint_maxp(&ep
->desc
) & 0x1800) >> 11;
1269 /* A 0 in max burst means 1 transfer per ESIT */
1270 return max_packet
* (max_burst
+ 1);
1273 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1274 * Drivers will have to call usb_alloc_streams() to do that.
1276 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1277 struct xhci_virt_device
*virt_dev
,
1278 struct usb_device
*udev
,
1279 struct usb_host_endpoint
*ep
,
1282 unsigned int ep_index
;
1283 struct xhci_ep_ctx
*ep_ctx
;
1284 struct xhci_ring
*ep_ring
;
1285 unsigned int max_packet
;
1286 unsigned int max_burst
;
1287 u32 max_esit_payload
;
1289 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1290 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1292 /* Set up the endpoint ring */
1294 * Isochronous endpoint ring needs bigger size because one isoc URB
1295 * carries multiple packets and it will insert multiple tds to the
1297 * This should be replaced with dynamic ring resizing in the future.
1299 if (usb_endpoint_xfer_isoc(&ep
->desc
))
1300 virt_dev
->eps
[ep_index
].new_ring
=
1301 xhci_ring_alloc(xhci
, 8, true, true, mem_flags
);
1303 virt_dev
->eps
[ep_index
].new_ring
=
1304 xhci_ring_alloc(xhci
, 1, true, false, mem_flags
);
1305 if (!virt_dev
->eps
[ep_index
].new_ring
) {
1306 /* Attempt to use the ring cache */
1307 if (virt_dev
->num_rings_cached
== 0)
1309 virt_dev
->eps
[ep_index
].new_ring
=
1310 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
1311 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
1312 virt_dev
->num_rings_cached
--;
1313 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
,
1314 usb_endpoint_xfer_isoc(&ep
->desc
) ? true : false);
1316 virt_dev
->eps
[ep_index
].skip
= false;
1317 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1318 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
);
1320 ep_ctx
->ep_info
= cpu_to_le32(xhci_get_endpoint_interval(udev
, ep
)
1321 | EP_MULT(xhci_get_endpoint_mult(udev
, ep
)));
1323 /* FIXME dig Mult and streams info out of ep companion desc */
1325 /* Allow 3 retries for everything but isoc;
1326 * CErr shall be set to 0 for Isoch endpoints.
1328 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1329 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(3));
1331 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(0));
1333 ep_ctx
->ep_info2
|= cpu_to_le32(xhci_get_endpoint_type(udev
, ep
));
1335 /* Set the max packet size and max burst */
1336 switch (udev
->speed
) {
1337 case USB_SPEED_SUPER
:
1338 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1339 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1340 /* dig out max burst from ep companion desc */
1341 max_packet
= ep
->ss_ep_comp
.bMaxBurst
;
1342 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_packet
));
1344 case USB_SPEED_HIGH
:
1345 /* bits 11:12 specify the number of additional transaction
1346 * opportunities per microframe (USB 2.0, section 9.6.6)
1348 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1349 usb_endpoint_xfer_int(&ep
->desc
)) {
1350 max_burst
= (usb_endpoint_maxp(&ep
->desc
)
1352 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_burst
));
1355 case USB_SPEED_FULL
:
1357 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1358 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1363 max_esit_payload
= xhci_get_max_esit_payload(xhci
, udev
, ep
);
1364 ep_ctx
->tx_info
= cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload
));
1367 * XXX no idea how to calculate the average TRB buffer length for bulk
1368 * endpoints, as the driver gives us no clue how big each scatter gather
1369 * list entry (or buffer) is going to be.
1371 * For isochronous and interrupt endpoints, we set it to the max
1372 * available, until we have new API in the USB core to allow drivers to
1373 * declare how much bandwidth they actually need.
1375 * Normally, it would be calculated by taking the total of the buffer
1376 * lengths in the TD and then dividing by the number of TRBs in a TD,
1377 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1378 * use Event Data TRBs, and we don't chain in a link TRB on short
1379 * transfers, we're basically dividing by 1.
1381 * xHCI 1.0 specification indicates that the Average TRB Length should
1382 * be set to 8 for control endpoints.
1384 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
== 0x100)
1385 ep_ctx
->tx_info
|= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1388 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload
));
1390 /* FIXME Debug endpoint context */
1394 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1395 struct xhci_virt_device
*virt_dev
,
1396 struct usb_host_endpoint
*ep
)
1398 unsigned int ep_index
;
1399 struct xhci_ep_ctx
*ep_ctx
;
1401 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1402 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1404 ep_ctx
->ep_info
= 0;
1405 ep_ctx
->ep_info2
= 0;
1407 ep_ctx
->tx_info
= 0;
1408 /* Don't free the endpoint ring until the set interface or configuration
1413 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1415 bw_info
->ep_interval
= 0;
1417 bw_info
->num_packets
= 0;
1418 bw_info
->max_packet_size
= 0;
1420 bw_info
->max_esit_payload
= 0;
1423 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1424 struct xhci_container_ctx
*in_ctx
,
1425 struct xhci_input_control_ctx
*ctrl_ctx
,
1426 struct xhci_virt_device
*virt_dev
)
1428 struct xhci_bw_info
*bw_info
;
1429 struct xhci_ep_ctx
*ep_ctx
;
1430 unsigned int ep_type
;
1433 for (i
= 1; i
< 31; ++i
) {
1434 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1436 /* We can't tell what endpoint type is being dropped, but
1437 * unconditionally clearing the bandwidth info for non-periodic
1438 * endpoints should be harmless because the info will never be
1439 * set in the first place.
1441 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1442 /* Dropped endpoint */
1443 xhci_clear_endpoint_bw_info(bw_info
);
1447 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1448 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1449 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1451 /* Ignore non-periodic endpoints */
1452 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1453 ep_type
!= ISOC_IN_EP
&&
1454 ep_type
!= INT_IN_EP
)
1457 /* Added or changed endpoint */
1458 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1459 le32_to_cpu(ep_ctx
->ep_info
));
1460 /* Number of packets and mult are zero-based in the
1461 * input context, but we want one-based for the
1464 bw_info
->mult
= CTX_TO_EP_MULT(
1465 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1466 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1467 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1468 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1469 le32_to_cpu(ep_ctx
->ep_info2
));
1470 bw_info
->type
= ep_type
;
1471 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1472 le32_to_cpu(ep_ctx
->tx_info
));
1477 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1478 * Useful when you want to change one particular aspect of the endpoint and then
1479 * issue a configure endpoint command.
1481 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1482 struct xhci_container_ctx
*in_ctx
,
1483 struct xhci_container_ctx
*out_ctx
,
1484 unsigned int ep_index
)
1486 struct xhci_ep_ctx
*out_ep_ctx
;
1487 struct xhci_ep_ctx
*in_ep_ctx
;
1489 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1490 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1492 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1493 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1494 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1495 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1498 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1499 * Useful when you want to change one particular aspect of the endpoint and then
1500 * issue a configure endpoint command. Only the context entries field matters,
1501 * but we'll copy the whole thing anyway.
1503 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1504 struct xhci_container_ctx
*in_ctx
,
1505 struct xhci_container_ctx
*out_ctx
)
1507 struct xhci_slot_ctx
*in_slot_ctx
;
1508 struct xhci_slot_ctx
*out_slot_ctx
;
1510 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1511 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1513 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1514 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1515 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1516 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1519 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1520 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1523 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1524 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1526 xhci_dbg(xhci
, "Allocating %d scratchpad buffers\n", num_sp
);
1531 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1532 if (!xhci
->scratchpad
)
1535 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1536 num_sp
* sizeof(u64
),
1537 &xhci
->scratchpad
->sp_dma
, flags
);
1538 if (!xhci
->scratchpad
->sp_array
)
1541 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1542 if (!xhci
->scratchpad
->sp_buffers
)
1545 xhci
->scratchpad
->sp_dma_buffers
=
1546 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
1548 if (!xhci
->scratchpad
->sp_dma_buffers
)
1551 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1552 for (i
= 0; i
< num_sp
; i
++) {
1554 void *buf
= dma_alloc_coherent(dev
, xhci
->page_size
, &dma
,
1559 xhci
->scratchpad
->sp_array
[i
] = dma
;
1560 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1561 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
1567 for (i
= i
- 1; i
>= 0; i
--) {
1568 dma_free_coherent(dev
, xhci
->page_size
,
1569 xhci
->scratchpad
->sp_buffers
[i
],
1570 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1572 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1575 kfree(xhci
->scratchpad
->sp_buffers
);
1578 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1579 xhci
->scratchpad
->sp_array
,
1580 xhci
->scratchpad
->sp_dma
);
1583 kfree(xhci
->scratchpad
);
1584 xhci
->scratchpad
= NULL
;
1590 static void scratchpad_free(struct xhci_hcd
*xhci
)
1594 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1596 if (!xhci
->scratchpad
)
1599 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1601 for (i
= 0; i
< num_sp
; i
++) {
1602 dma_free_coherent(&pdev
->dev
, xhci
->page_size
,
1603 xhci
->scratchpad
->sp_buffers
[i
],
1604 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1606 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1607 kfree(xhci
->scratchpad
->sp_buffers
);
1608 dma_free_coherent(&pdev
->dev
, num_sp
* sizeof(u64
),
1609 xhci
->scratchpad
->sp_array
,
1610 xhci
->scratchpad
->sp_dma
);
1611 kfree(xhci
->scratchpad
);
1612 xhci
->scratchpad
= NULL
;
1615 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1616 bool allocate_in_ctx
, bool allocate_completion
,
1619 struct xhci_command
*command
;
1621 command
= kzalloc(sizeof(*command
), mem_flags
);
1625 if (allocate_in_ctx
) {
1627 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1629 if (!command
->in_ctx
) {
1635 if (allocate_completion
) {
1636 command
->completion
=
1637 kzalloc(sizeof(struct completion
), mem_flags
);
1638 if (!command
->completion
) {
1639 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1643 init_completion(command
->completion
);
1646 command
->status
= 0;
1647 INIT_LIST_HEAD(&command
->cmd_list
);
1651 void xhci_urb_free_priv(struct xhci_hcd
*xhci
, struct urb_priv
*urb_priv
)
1654 kfree(urb_priv
->td
[0]);
1659 void xhci_free_command(struct xhci_hcd
*xhci
,
1660 struct xhci_command
*command
)
1662 xhci_free_container_ctx(xhci
,
1664 kfree(command
->completion
);
1668 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1670 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1671 struct dev_info
*dev_info
, *next
;
1672 unsigned long flags
;
1676 /* Free the Event Ring Segment Table and the actual Event Ring */
1678 xhci_writel(xhci
, 0, &xhci
->ir_set
->erst_size
);
1679 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_base
);
1680 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_dequeue
);
1682 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1683 if (xhci
->erst
.entries
)
1684 dma_free_coherent(&pdev
->dev
, size
,
1685 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1686 xhci
->erst
.entries
= NULL
;
1687 xhci_dbg(xhci
, "Freed ERST\n");
1688 if (xhci
->event_ring
)
1689 xhci_ring_free(xhci
, xhci
->event_ring
);
1690 xhci
->event_ring
= NULL
;
1691 xhci_dbg(xhci
, "Freed event ring\n");
1693 xhci_write_64(xhci
, 0, &xhci
->op_regs
->cmd_ring
);
1695 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1696 xhci
->cmd_ring
= NULL
;
1697 xhci_dbg(xhci
, "Freed command ring\n");
1699 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
1700 xhci_free_virt_device(xhci
, i
);
1702 if (xhci
->segment_pool
)
1703 dma_pool_destroy(xhci
->segment_pool
);
1704 xhci
->segment_pool
= NULL
;
1705 xhci_dbg(xhci
, "Freed segment pool\n");
1707 if (xhci
->device_pool
)
1708 dma_pool_destroy(xhci
->device_pool
);
1709 xhci
->device_pool
= NULL
;
1710 xhci_dbg(xhci
, "Freed device context pool\n");
1712 if (xhci
->small_streams_pool
)
1713 dma_pool_destroy(xhci
->small_streams_pool
);
1714 xhci
->small_streams_pool
= NULL
;
1715 xhci_dbg(xhci
, "Freed small stream array pool\n");
1717 if (xhci
->medium_streams_pool
)
1718 dma_pool_destroy(xhci
->medium_streams_pool
);
1719 xhci
->medium_streams_pool
= NULL
;
1720 xhci_dbg(xhci
, "Freed medium stream array pool\n");
1722 xhci_write_64(xhci
, 0, &xhci
->op_regs
->dcbaa_ptr
);
1724 dma_free_coherent(&pdev
->dev
, sizeof(*xhci
->dcbaa
),
1725 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1728 scratchpad_free(xhci
);
1730 spin_lock_irqsave(&xhci
->lock
, flags
);
1731 list_for_each_entry_safe(dev_info
, next
, &xhci
->lpm_failed_devs
, list
) {
1732 list_del(&dev_info
->list
);
1735 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1737 xhci
->num_usb2_ports
= 0;
1738 xhci
->num_usb3_ports
= 0;
1739 kfree(xhci
->usb2_ports
);
1740 kfree(xhci
->usb3_ports
);
1741 kfree(xhci
->port_array
);
1744 xhci
->page_size
= 0;
1745 xhci
->page_shift
= 0;
1746 xhci
->bus_state
[0].bus_suspended
= 0;
1747 xhci
->bus_state
[1].bus_suspended
= 0;
1750 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1751 struct xhci_segment
*input_seg
,
1752 union xhci_trb
*start_trb
,
1753 union xhci_trb
*end_trb
,
1754 dma_addr_t input_dma
,
1755 struct xhci_segment
*result_seg
,
1756 char *test_name
, int test_number
)
1758 unsigned long long start_dma
;
1759 unsigned long long end_dma
;
1760 struct xhci_segment
*seg
;
1762 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1763 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1765 seg
= trb_in_td(input_seg
, start_trb
, end_trb
, input_dma
);
1766 if (seg
!= result_seg
) {
1767 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1768 test_name
, test_number
);
1769 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1770 "input DMA 0x%llx\n",
1772 (unsigned long long) input_dma
);
1773 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1774 "ending TRB %p (0x%llx DMA)\n",
1775 start_trb
, start_dma
,
1777 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1784 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1785 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
1788 dma_addr_t input_dma
;
1789 struct xhci_segment
*result_seg
;
1790 } simple_test_vector
[] = {
1791 /* A zeroed DMA field should fail */
1793 /* One TRB before the ring start should fail */
1794 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1795 /* One byte before the ring start should fail */
1796 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1797 /* Starting TRB should succeed */
1798 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1799 /* Ending TRB should succeed */
1800 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1801 xhci
->event_ring
->first_seg
},
1802 /* One byte after the ring end should fail */
1803 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1804 /* One TRB after the ring end should fail */
1805 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1806 /* An address of all ones should fail */
1807 { (dma_addr_t
) (~0), NULL
},
1810 struct xhci_segment
*input_seg
;
1811 union xhci_trb
*start_trb
;
1812 union xhci_trb
*end_trb
;
1813 dma_addr_t input_dma
;
1814 struct xhci_segment
*result_seg
;
1815 } complex_test_vector
[] = {
1816 /* Test feeding a valid DMA address from a different ring */
1817 { .input_seg
= xhci
->event_ring
->first_seg
,
1818 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1819 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1820 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1823 /* Test feeding a valid end TRB from a different ring */
1824 { .input_seg
= xhci
->event_ring
->first_seg
,
1825 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1826 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1827 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1830 /* Test feeding a valid start and end TRB from a different ring */
1831 { .input_seg
= xhci
->event_ring
->first_seg
,
1832 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1833 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1834 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1837 /* TRB in this ring, but after this TD */
1838 { .input_seg
= xhci
->event_ring
->first_seg
,
1839 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1840 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1841 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1844 /* TRB in this ring, but before this TD */
1845 { .input_seg
= xhci
->event_ring
->first_seg
,
1846 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1847 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1848 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1851 /* TRB in this ring, but after this wrapped TD */
1852 { .input_seg
= xhci
->event_ring
->first_seg
,
1853 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1854 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1855 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1858 /* TRB in this ring, but before this wrapped TD */
1859 { .input_seg
= xhci
->event_ring
->first_seg
,
1860 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1861 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1862 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1865 /* TRB not in this ring, and we have a wrapped TD */
1866 { .input_seg
= xhci
->event_ring
->first_seg
,
1867 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1868 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1869 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1874 unsigned int num_tests
;
1877 num_tests
= ARRAY_SIZE(simple_test_vector
);
1878 for (i
= 0; i
< num_tests
; i
++) {
1879 ret
= xhci_test_trb_in_td(xhci
,
1880 xhci
->event_ring
->first_seg
,
1881 xhci
->event_ring
->first_seg
->trbs
,
1882 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1883 simple_test_vector
[i
].input_dma
,
1884 simple_test_vector
[i
].result_seg
,
1890 num_tests
= ARRAY_SIZE(complex_test_vector
);
1891 for (i
= 0; i
< num_tests
; i
++) {
1892 ret
= xhci_test_trb_in_td(xhci
,
1893 complex_test_vector
[i
].input_seg
,
1894 complex_test_vector
[i
].start_trb
,
1895 complex_test_vector
[i
].end_trb
,
1896 complex_test_vector
[i
].input_dma
,
1897 complex_test_vector
[i
].result_seg
,
1902 xhci_dbg(xhci
, "TRB math tests passed.\n");
1906 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
1911 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
1912 xhci
->event_ring
->dequeue
);
1913 if (deq
== 0 && !in_interrupt())
1914 xhci_warn(xhci
, "WARN something wrong with SW event ring "
1916 /* Update HC event ring dequeue pointer */
1917 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
1918 temp
&= ERST_PTR_MASK
;
1919 /* Don't clear the EHB bit (which is RW1C) because
1920 * there might be more events to service.
1923 xhci_dbg(xhci
, "// Write event ring dequeue pointer, "
1924 "preserving EHB bit\n");
1925 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
1926 &xhci
->ir_set
->erst_dequeue
);
1929 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
1930 __le32 __iomem
*addr
, u8 major_revision
)
1932 u32 temp
, port_offset
, port_count
;
1935 if (major_revision
> 0x03) {
1936 xhci_warn(xhci
, "Ignoring unknown port speed, "
1937 "Ext Cap %p, revision = 0x%x\n",
1938 addr
, major_revision
);
1939 /* Ignoring port protocol we can't understand. FIXME */
1943 /* Port offset and count in the third dword, see section 7.2 */
1944 temp
= xhci_readl(xhci
, addr
+ 2);
1945 port_offset
= XHCI_EXT_PORT_OFF(temp
);
1946 port_count
= XHCI_EXT_PORT_COUNT(temp
);
1947 xhci_dbg(xhci
, "Ext Cap %p, port offset = %u, "
1948 "count = %u, revision = 0x%x\n",
1949 addr
, port_offset
, port_count
, major_revision
);
1950 /* Port count includes the current port offset */
1951 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
1952 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1955 /* Check the host's USB2 LPM capability */
1956 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
1957 (temp
& XHCI_L1C
)) {
1958 xhci_dbg(xhci
, "xHCI 0.96: support USB2 software lpm\n");
1959 xhci
->sw_lpm_support
= 1;
1962 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
1963 xhci_dbg(xhci
, "xHCI 1.0: support USB2 software lpm\n");
1964 xhci
->sw_lpm_support
= 1;
1965 if (temp
& XHCI_HLC
) {
1966 xhci_dbg(xhci
, "xHCI 1.0: support USB2 hardware lpm\n");
1967 xhci
->hw_lpm_support
= 1;
1972 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
1973 /* Duplicate entry. Ignore the port if the revisions differ. */
1974 if (xhci
->port_array
[i
] != 0) {
1975 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
1976 " port %u\n", addr
, i
);
1977 xhci_warn(xhci
, "Port was marked as USB %u, "
1978 "duplicated as USB %u\n",
1979 xhci
->port_array
[i
], major_revision
);
1980 /* Only adjust the roothub port counts if we haven't
1981 * found a similar duplicate.
1983 if (xhci
->port_array
[i
] != major_revision
&&
1984 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
1985 if (xhci
->port_array
[i
] == 0x03)
1986 xhci
->num_usb3_ports
--;
1988 xhci
->num_usb2_ports
--;
1989 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
1991 /* FIXME: Should we disable the port? */
1994 xhci
->port_array
[i
] = major_revision
;
1995 if (major_revision
== 0x03)
1996 xhci
->num_usb3_ports
++;
1998 xhci
->num_usb2_ports
++;
2000 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2004 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2005 * specify what speeds each port is supposed to be. We can't count on the port
2006 * speed bits in the PORTSC register being correct until a device is connected,
2007 * but we need to set up the two fake roothubs with the correct number of USB
2008 * 3.0 and USB 2.0 ports at host controller initialization time.
2010 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2012 __le32 __iomem
*addr
;
2014 unsigned int num_ports
;
2015 int i
, j
, port_index
;
2017 addr
= &xhci
->cap_regs
->hcc_params
;
2018 offset
= XHCI_HCC_EXT_CAPS(xhci_readl(xhci
, addr
));
2020 xhci_err(xhci
, "No Extended Capability registers, "
2021 "unable to set up roothub.\n");
2025 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2026 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2027 if (!xhci
->port_array
)
2030 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2033 for (i
= 0; i
< num_ports
; i
++) {
2034 struct xhci_interval_bw_table
*bw_table
;
2036 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2037 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2038 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2039 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2043 * For whatever reason, the first capability offset is from the
2044 * capability register base, not from the HCCPARAMS register.
2045 * See section 5.3.6 for offset calculation.
2047 addr
= &xhci
->cap_regs
->hc_capbase
+ offset
;
2051 cap_id
= xhci_readl(xhci
, addr
);
2052 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2053 xhci_add_in_port(xhci
, num_ports
, addr
,
2054 (u8
) XHCI_EXT_PORT_MAJOR(cap_id
));
2055 offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2056 if (!offset
|| (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
)
2060 * Once you're into the Extended Capabilities, the offset is
2061 * always relative to the register holding the offset.
2066 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2067 xhci_warn(xhci
, "No ports on the roothubs?\n");
2070 xhci_dbg(xhci
, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2071 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2073 /* Place limits on the number of roothub ports so that the hub
2074 * descriptors aren't longer than the USB core will allocate.
2076 if (xhci
->num_usb3_ports
> 15) {
2077 xhci_dbg(xhci
, "Limiting USB 3.0 roothub ports to 15.\n");
2078 xhci
->num_usb3_ports
= 15;
2080 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2081 xhci_dbg(xhci
, "Limiting USB 2.0 roothub ports to %u.\n",
2083 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2087 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2088 * Not sure how the USB core will handle a hub with no ports...
2090 if (xhci
->num_usb2_ports
) {
2091 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2092 xhci
->num_usb2_ports
, flags
);
2093 if (!xhci
->usb2_ports
)
2097 for (i
= 0; i
< num_ports
; i
++) {
2098 if (xhci
->port_array
[i
] == 0x03 ||
2099 xhci
->port_array
[i
] == 0 ||
2100 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2103 xhci
->usb2_ports
[port_index
] =
2104 &xhci
->op_regs
->port_status_base
+
2106 xhci_dbg(xhci
, "USB 2.0 port at index %u, "
2108 xhci
->usb2_ports
[port_index
]);
2110 if (port_index
== xhci
->num_usb2_ports
)
2114 if (xhci
->num_usb3_ports
) {
2115 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2116 xhci
->num_usb3_ports
, flags
);
2117 if (!xhci
->usb3_ports
)
2121 for (i
= 0; i
< num_ports
; i
++)
2122 if (xhci
->port_array
[i
] == 0x03) {
2123 xhci
->usb3_ports
[port_index
] =
2124 &xhci
->op_regs
->port_status_base
+
2126 xhci_dbg(xhci
, "USB 3.0 port at index %u, "
2128 xhci
->usb3_ports
[port_index
]);
2130 if (port_index
== xhci
->num_usb3_ports
)
2137 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2140 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
2141 unsigned int val
, val2
;
2143 struct xhci_segment
*seg
;
2147 page_size
= xhci_readl(xhci
, &xhci
->op_regs
->page_size
);
2148 xhci_dbg(xhci
, "Supported page size register = 0x%x\n", page_size
);
2149 for (i
= 0; i
< 16; i
++) {
2150 if ((0x1 & page_size
) != 0)
2152 page_size
= page_size
>> 1;
2155 xhci_dbg(xhci
, "Supported page size of %iK\n", (1 << (i
+12)) / 1024);
2157 xhci_warn(xhci
, "WARN: no supported page size\n");
2158 /* Use 4K pages, since that's common and the minimum the HC supports */
2159 xhci
->page_shift
= 12;
2160 xhci
->page_size
= 1 << xhci
->page_shift
;
2161 xhci_dbg(xhci
, "HCD page size set to %iK\n", xhci
->page_size
/ 1024);
2164 * Program the Number of Device Slots Enabled field in the CONFIG
2165 * register with the max value of slots the HC can handle.
2167 val
= HCS_MAX_SLOTS(xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
));
2168 xhci_dbg(xhci
, "// xHC can handle at most %d device slots.\n",
2169 (unsigned int) val
);
2170 val2
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
2171 val
|= (val2
& ~HCS_SLOTS_MASK
);
2172 xhci_dbg(xhci
, "// Setting Max device slots reg = 0x%x.\n",
2173 (unsigned int) val
);
2174 xhci_writel(xhci
, val
, &xhci
->op_regs
->config_reg
);
2177 * Section 5.4.8 - doorbell array must be
2178 * "physically contiguous and 64-byte (cache line) aligned".
2180 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2184 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2185 xhci
->dcbaa
->dma
= dma
;
2186 xhci_dbg(xhci
, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2187 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2188 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2191 * Initialize the ring segment pool. The ring must be a contiguous
2192 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2193 * however, the command ring segment needs 64-byte aligned segments,
2194 * so we pick the greater alignment need.
2196 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2197 SEGMENT_SIZE
, 64, xhci
->page_size
);
2199 /* See Table 46 and Note on Figure 55 */
2200 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2201 2112, 64, xhci
->page_size
);
2202 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2205 /* Linear stream context arrays don't have any boundary restrictions,
2206 * and only need to be 16-byte aligned.
2208 xhci
->small_streams_pool
=
2209 dma_pool_create("xHCI 256 byte stream ctx arrays",
2210 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2211 xhci
->medium_streams_pool
=
2212 dma_pool_create("xHCI 1KB stream ctx arrays",
2213 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2214 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2215 * will be allocated with dma_alloc_coherent()
2218 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2221 /* Set up the command ring to have one segments for now. */
2222 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, true, false, flags
);
2223 if (!xhci
->cmd_ring
)
2225 xhci_dbg(xhci
, "Allocated command ring at %p\n", xhci
->cmd_ring
);
2226 xhci_dbg(xhci
, "First segment DMA is 0x%llx\n",
2227 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2229 /* Set the address in the Command Ring Control register */
2230 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2231 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2232 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2233 xhci
->cmd_ring
->cycle_state
;
2234 xhci_dbg(xhci
, "// Setting command ring address to 0x%x\n", val
);
2235 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2236 xhci_dbg_cmd_ptrs(xhci
);
2238 val
= xhci_readl(xhci
, &xhci
->cap_regs
->db_off
);
2240 xhci_dbg(xhci
, "// Doorbell array is located at offset 0x%x"
2241 " from cap regs base addr\n", val
);
2242 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2243 xhci_dbg_regs(xhci
);
2244 xhci_print_run_regs(xhci
);
2245 /* Set ir_set to interrupt register set 0 */
2246 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2249 * Event ring setup: Allocate a normal ring, but also setup
2250 * the event ring segment table (ERST). Section 4.9.3.
2252 xhci_dbg(xhci
, "// Allocating event ring\n");
2253 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, false, false,
2255 if (!xhci
->event_ring
)
2257 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
2260 xhci
->erst
.entries
= dma_alloc_coherent(dev
,
2261 sizeof(struct xhci_erst_entry
) * ERST_NUM_SEGS
, &dma
,
2263 if (!xhci
->erst
.entries
)
2265 xhci_dbg(xhci
, "// Allocated event ring segment table at 0x%llx\n",
2266 (unsigned long long)dma
);
2268 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2269 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2270 xhci
->erst
.erst_dma_addr
= dma
;
2271 xhci_dbg(xhci
, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2272 xhci
->erst
.num_entries
,
2274 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2276 /* set ring base address and size for each segment table entry */
2277 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2278 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2279 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2280 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2285 /* set ERST count with the number of entries in the segment table */
2286 val
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
2287 val
&= ERST_SIZE_MASK
;
2288 val
|= ERST_NUM_SEGS
;
2289 xhci_dbg(xhci
, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2291 xhci_writel(xhci
, val
, &xhci
->ir_set
->erst_size
);
2293 xhci_dbg(xhci
, "// Set ERST entries to point to event ring.\n");
2294 /* set the segment table base address */
2295 xhci_dbg(xhci
, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2296 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2297 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2298 val_64
&= ERST_PTR_MASK
;
2299 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2300 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2302 /* Set the event ring dequeue address */
2303 xhci_set_hc_event_deq(xhci
);
2304 xhci_dbg(xhci
, "Wrote ERST address to ir_set 0.\n");
2305 xhci_print_ir_set(xhci
, 0);
2308 * XXX: Might need to set the Interrupter Moderation Register to
2309 * something other than the default (~1ms minimum between interrupts).
2310 * See section 5.5.1.2.
2312 init_completion(&xhci
->addr_dev
);
2313 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
2314 xhci
->devs
[i
] = NULL
;
2315 for (i
= 0; i
< USB_MAXCHILDREN
; ++i
) {
2316 xhci
->bus_state
[0].resume_done
[i
] = 0;
2317 xhci
->bus_state
[1].resume_done
[i
] = 0;
2320 if (scratchpad_alloc(xhci
, flags
))
2322 if (xhci_setup_port_arrays(xhci
, flags
))
2325 INIT_LIST_HEAD(&xhci
->lpm_failed_devs
);
2330 xhci_warn(xhci
, "Couldn't initialize memory\n");
2331 xhci_mem_cleanup(xhci
);