xhci: Clean up 32-bit build warnings.
[zen-stable.git] / drivers / usb / host / xhci-mem.c
blob36cbe2226a44e46b3acd6c8269ede7ab57fc03ad
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
28 #include "xhci.h"
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
40 dma_addr_t dma;
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return NULL;
52 memset(seg->trbs, 0, SEGMENT_SIZE);
53 seg->dma = dma;
54 seg->next = NULL;
56 return seg;
59 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
61 if (seg->trbs) {
62 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
63 seg->trbs = NULL;
65 kfree(seg);
69 * Make the prev segment point to the next segment.
71 * Change the last TRB in the prev segment to be a Link TRB which points to the
72 * DMA address of the next segment. The caller needs to set any Link TRB
73 * related flags, such as End TRB, Toggle Cycle, and no snoop.
75 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
76 struct xhci_segment *next, bool link_trbs, bool isoc)
78 u32 val;
80 if (!prev || !next)
81 return;
82 prev->next = next;
83 if (link_trbs) {
84 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
85 cpu_to_le64(next->dma);
87 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
88 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
89 val &= ~TRB_TYPE_BITMASK;
90 val |= TRB_TYPE(TRB_LINK);
91 /* Always set the chain bit with 0.95 hardware */
92 /* Set chain bit for isoc rings on AMD 0.96 host */
93 if (xhci_link_trb_quirk(xhci) ||
94 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
95 val |= TRB_CHAIN;
96 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
100 /* XXX: Do we need the hcd structure in all these functions? */
101 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
103 struct xhci_segment *seg;
104 struct xhci_segment *first_seg;
106 if (!ring)
107 return;
108 if (ring->first_seg) {
109 first_seg = ring->first_seg;
110 seg = first_seg->next;
111 while (seg != first_seg) {
112 struct xhci_segment *next = seg->next;
113 xhci_segment_free(xhci, seg);
114 seg = next;
116 xhci_segment_free(xhci, first_seg);
117 ring->first_seg = NULL;
119 kfree(ring);
122 static void xhci_initialize_ring_info(struct xhci_ring *ring)
124 /* The ring is empty, so the enqueue pointer == dequeue pointer */
125 ring->enqueue = ring->first_seg->trbs;
126 ring->enq_seg = ring->first_seg;
127 ring->dequeue = ring->enqueue;
128 ring->deq_seg = ring->first_seg;
129 /* The ring is initialized to 0. The producer must write 1 to the cycle
130 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
131 * compare CCS to the cycle bit to check ownership, so CCS = 1.
133 ring->cycle_state = 1;
134 /* Not necessary for new rings, but needed for re-initialized rings */
135 ring->enq_updates = 0;
136 ring->deq_updates = 0;
140 * Create a new ring with zero or more segments.
142 * Link each segment together into a ring.
143 * Set the end flag and the cycle toggle bit on the last segment.
144 * See section 4.9.1 and figures 15 and 16.
146 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
147 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
149 struct xhci_ring *ring;
150 struct xhci_segment *prev;
152 ring = kzalloc(sizeof *(ring), flags);
153 if (!ring)
154 return NULL;
156 INIT_LIST_HEAD(&ring->td_list);
157 if (num_segs == 0)
158 return ring;
160 ring->first_seg = xhci_segment_alloc(xhci, flags);
161 if (!ring->first_seg)
162 goto fail;
163 num_segs--;
165 prev = ring->first_seg;
166 while (num_segs > 0) {
167 struct xhci_segment *next;
169 next = xhci_segment_alloc(xhci, flags);
170 if (!next)
171 goto fail;
172 xhci_link_segments(xhci, prev, next, link_trbs, isoc);
174 prev = next;
175 num_segs--;
177 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
179 if (link_trbs) {
180 /* See section 4.9.2.1 and 6.4.4.1 */
181 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
182 cpu_to_le32(LINK_TOGGLE);
184 xhci_initialize_ring_info(ring);
185 return ring;
187 fail:
188 xhci_ring_free(xhci, ring);
189 return NULL;
192 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
193 struct xhci_virt_device *virt_dev,
194 unsigned int ep_index)
196 int rings_cached;
198 rings_cached = virt_dev->num_rings_cached;
199 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
200 virt_dev->ring_cache[rings_cached] =
201 virt_dev->eps[ep_index].ring;
202 virt_dev->num_rings_cached++;
203 xhci_dbg(xhci, "Cached old ring, "
204 "%d ring%s cached\n",
205 virt_dev->num_rings_cached,
206 (virt_dev->num_rings_cached > 1) ? "s" : "");
207 } else {
208 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
209 xhci_dbg(xhci, "Ring cache full (%d rings), "
210 "freeing ring\n",
211 virt_dev->num_rings_cached);
213 virt_dev->eps[ep_index].ring = NULL;
216 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
217 * pointers to the beginning of the ring.
219 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
220 struct xhci_ring *ring, bool isoc)
222 struct xhci_segment *seg = ring->first_seg;
223 do {
224 memset(seg->trbs, 0,
225 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
226 /* All endpoint rings have link TRBs */
227 xhci_link_segments(xhci, seg, seg->next, 1, isoc);
228 seg = seg->next;
229 } while (seg != ring->first_seg);
230 xhci_initialize_ring_info(ring);
231 /* td list should be empty since all URBs have been cancelled,
232 * but just in case...
234 INIT_LIST_HEAD(&ring->td_list);
237 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
239 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
240 int type, gfp_t flags)
242 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
243 if (!ctx)
244 return NULL;
246 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
247 ctx->type = type;
248 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
249 if (type == XHCI_CTX_TYPE_INPUT)
250 ctx->size += CTX_SIZE(xhci->hcc_params);
252 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
253 memset(ctx->bytes, 0, ctx->size);
254 return ctx;
257 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
258 struct xhci_container_ctx *ctx)
260 if (!ctx)
261 return;
262 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
263 kfree(ctx);
266 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
267 struct xhci_container_ctx *ctx)
269 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
270 return (struct xhci_input_control_ctx *)ctx->bytes;
273 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
274 struct xhci_container_ctx *ctx)
276 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
277 return (struct xhci_slot_ctx *)ctx->bytes;
279 return (struct xhci_slot_ctx *)
280 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
283 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
284 struct xhci_container_ctx *ctx,
285 unsigned int ep_index)
287 /* increment ep index by offset of start of ep ctx array */
288 ep_index++;
289 if (ctx->type == XHCI_CTX_TYPE_INPUT)
290 ep_index++;
292 return (struct xhci_ep_ctx *)
293 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
297 /***************** Streams structures manipulation *************************/
299 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
300 unsigned int num_stream_ctxs,
301 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
305 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
306 dma_free_coherent(&pdev->dev,
307 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
308 stream_ctx, dma);
309 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
310 return dma_pool_free(xhci->small_streams_pool,
311 stream_ctx, dma);
312 else
313 return dma_pool_free(xhci->medium_streams_pool,
314 stream_ctx, dma);
318 * The stream context array for each endpoint with bulk streams enabled can
319 * vary in size, based on:
320 * - how many streams the endpoint supports,
321 * - the maximum primary stream array size the host controller supports,
322 * - and how many streams the device driver asks for.
324 * The stream context array must be a power of 2, and can be as small as
325 * 64 bytes or as large as 1MB.
327 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
328 unsigned int num_stream_ctxs, dma_addr_t *dma,
329 gfp_t mem_flags)
331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
333 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
334 return dma_alloc_coherent(&pdev->dev,
335 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
336 dma, mem_flags);
337 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
338 return dma_pool_alloc(xhci->small_streams_pool,
339 mem_flags, dma);
340 else
341 return dma_pool_alloc(xhci->medium_streams_pool,
342 mem_flags, dma);
345 struct xhci_ring *xhci_dma_to_transfer_ring(
346 struct xhci_virt_ep *ep,
347 u64 address)
349 if (ep->ep_state & EP_HAS_STREAMS)
350 return radix_tree_lookup(&ep->stream_info->trb_address_map,
351 address >> SEGMENT_SHIFT);
352 return ep->ring;
355 /* Only use this when you know stream_info is valid */
356 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
357 static struct xhci_ring *dma_to_stream_ring(
358 struct xhci_stream_info *stream_info,
359 u64 address)
361 return radix_tree_lookup(&stream_info->trb_address_map,
362 address >> SEGMENT_SHIFT);
364 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
366 struct xhci_ring *xhci_stream_id_to_ring(
367 struct xhci_virt_device *dev,
368 unsigned int ep_index,
369 unsigned int stream_id)
371 struct xhci_virt_ep *ep = &dev->eps[ep_index];
373 if (stream_id == 0)
374 return ep->ring;
375 if (!ep->stream_info)
376 return NULL;
378 if (stream_id > ep->stream_info->num_streams)
379 return NULL;
380 return ep->stream_info->stream_rings[stream_id];
383 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
384 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
385 unsigned int num_streams,
386 struct xhci_stream_info *stream_info)
388 u32 cur_stream;
389 struct xhci_ring *cur_ring;
390 u64 addr;
392 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
393 struct xhci_ring *mapped_ring;
394 int trb_size = sizeof(union xhci_trb);
396 cur_ring = stream_info->stream_rings[cur_stream];
397 for (addr = cur_ring->first_seg->dma;
398 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
399 addr += trb_size) {
400 mapped_ring = dma_to_stream_ring(stream_info, addr);
401 if (cur_ring != mapped_ring) {
402 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
403 "didn't map to stream ID %u; "
404 "mapped to ring %p\n",
405 (unsigned long long) addr,
406 cur_stream,
407 mapped_ring);
408 return -EINVAL;
411 /* One TRB after the end of the ring segment shouldn't return a
412 * pointer to the current ring (although it may be a part of a
413 * different ring).
415 mapped_ring = dma_to_stream_ring(stream_info, addr);
416 if (mapped_ring != cur_ring) {
417 /* One TRB before should also fail */
418 addr = cur_ring->first_seg->dma - trb_size;
419 mapped_ring = dma_to_stream_ring(stream_info, addr);
421 if (mapped_ring == cur_ring) {
422 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
423 "mapped to valid stream ID %u; "
424 "mapped ring = %p\n",
425 (unsigned long long) addr,
426 cur_stream,
427 mapped_ring);
428 return -EINVAL;
431 return 0;
433 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
436 * Change an endpoint's internal structure so it supports stream IDs. The
437 * number of requested streams includes stream 0, which cannot be used by device
438 * drivers.
440 * The number of stream contexts in the stream context array may be bigger than
441 * the number of streams the driver wants to use. This is because the number of
442 * stream context array entries must be a power of two.
444 * We need a radix tree for mapping physical addresses of TRBs to which stream
445 * ID they belong to. We need to do this because the host controller won't tell
446 * us which stream ring the TRB came from. We could store the stream ID in an
447 * event data TRB, but that doesn't help us for the cancellation case, since the
448 * endpoint may stop before it reaches that event data TRB.
450 * The radix tree maps the upper portion of the TRB DMA address to a ring
451 * segment that has the same upper portion of DMA addresses. For example, say I
452 * have segments of size 1KB, that are always 64-byte aligned. A segment may
453 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
454 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
455 * pass the radix tree a key to get the right stream ID:
457 * 0x10c90fff >> 10 = 0x43243
458 * 0x10c912c0 >> 10 = 0x43244
459 * 0x10c91400 >> 10 = 0x43245
461 * Obviously, only those TRBs with DMA addresses that are within the segment
462 * will make the radix tree return the stream ID for that ring.
464 * Caveats for the radix tree:
466 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
467 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
468 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
469 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
470 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
471 * extended systems (where the DMA address can be bigger than 32-bits),
472 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
474 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
475 unsigned int num_stream_ctxs,
476 unsigned int num_streams, gfp_t mem_flags)
478 struct xhci_stream_info *stream_info;
479 u32 cur_stream;
480 struct xhci_ring *cur_ring;
481 unsigned long key;
482 u64 addr;
483 int ret;
485 xhci_dbg(xhci, "Allocating %u streams and %u "
486 "stream context array entries.\n",
487 num_streams, num_stream_ctxs);
488 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
489 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
490 return NULL;
492 xhci->cmd_ring_reserved_trbs++;
494 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
495 if (!stream_info)
496 goto cleanup_trbs;
498 stream_info->num_streams = num_streams;
499 stream_info->num_stream_ctxs = num_stream_ctxs;
501 /* Initialize the array of virtual pointers to stream rings. */
502 stream_info->stream_rings = kzalloc(
503 sizeof(struct xhci_ring *)*num_streams,
504 mem_flags);
505 if (!stream_info->stream_rings)
506 goto cleanup_info;
508 /* Initialize the array of DMA addresses for stream rings for the HW. */
509 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
510 num_stream_ctxs, &stream_info->ctx_array_dma,
511 mem_flags);
512 if (!stream_info->stream_ctx_array)
513 goto cleanup_ctx;
514 memset(stream_info->stream_ctx_array, 0,
515 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
517 /* Allocate everything needed to free the stream rings later */
518 stream_info->free_streams_command =
519 xhci_alloc_command(xhci, true, true, mem_flags);
520 if (!stream_info->free_streams_command)
521 goto cleanup_ctx;
523 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
525 /* Allocate rings for all the streams that the driver will use,
526 * and add their segment DMA addresses to the radix tree.
527 * Stream 0 is reserved.
529 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
530 stream_info->stream_rings[cur_stream] =
531 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
532 cur_ring = stream_info->stream_rings[cur_stream];
533 if (!cur_ring)
534 goto cleanup_rings;
535 cur_ring->stream_id = cur_stream;
536 /* Set deq ptr, cycle bit, and stream context type */
537 addr = cur_ring->first_seg->dma |
538 SCT_FOR_CTX(SCT_PRI_TR) |
539 cur_ring->cycle_state;
540 stream_info->stream_ctx_array[cur_stream].stream_ring =
541 cpu_to_le64(addr);
542 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
543 cur_stream, (unsigned long long) addr);
545 key = (unsigned long)
546 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
547 ret = radix_tree_insert(&stream_info->trb_address_map,
548 key, cur_ring);
549 if (ret) {
550 xhci_ring_free(xhci, cur_ring);
551 stream_info->stream_rings[cur_stream] = NULL;
552 goto cleanup_rings;
555 /* Leave the other unused stream ring pointers in the stream context
556 * array initialized to zero. This will cause the xHC to give us an
557 * error if the device asks for a stream ID we don't have setup (if it
558 * was any other way, the host controller would assume the ring is
559 * "empty" and wait forever for data to be queued to that stream ID).
561 #if XHCI_DEBUG
562 /* Do a little test on the radix tree to make sure it returns the
563 * correct values.
565 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
566 goto cleanup_rings;
567 #endif
569 return stream_info;
571 cleanup_rings:
572 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
573 cur_ring = stream_info->stream_rings[cur_stream];
574 if (cur_ring) {
575 addr = cur_ring->first_seg->dma;
576 radix_tree_delete(&stream_info->trb_address_map,
577 addr >> SEGMENT_SHIFT);
578 xhci_ring_free(xhci, cur_ring);
579 stream_info->stream_rings[cur_stream] = NULL;
582 xhci_free_command(xhci, stream_info->free_streams_command);
583 cleanup_ctx:
584 kfree(stream_info->stream_rings);
585 cleanup_info:
586 kfree(stream_info);
587 cleanup_trbs:
588 xhci->cmd_ring_reserved_trbs--;
589 return NULL;
592 * Sets the MaxPStreams field and the Linear Stream Array field.
593 * Sets the dequeue pointer to the stream context array.
595 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
596 struct xhci_ep_ctx *ep_ctx,
597 struct xhci_stream_info *stream_info)
599 u32 max_primary_streams;
600 /* MaxPStreams is the number of stream context array entries, not the
601 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
602 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
604 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
605 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
606 1 << (max_primary_streams + 1));
607 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
608 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
609 | EP_HAS_LSA);
610 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
614 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
615 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
616 * not at the beginning of the ring).
618 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
619 struct xhci_ep_ctx *ep_ctx,
620 struct xhci_virt_ep *ep)
622 dma_addr_t addr;
623 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
624 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
625 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
628 /* Frees all stream contexts associated with the endpoint,
630 * Caller should fix the endpoint context streams fields.
632 void xhci_free_stream_info(struct xhci_hcd *xhci,
633 struct xhci_stream_info *stream_info)
635 int cur_stream;
636 struct xhci_ring *cur_ring;
637 dma_addr_t addr;
639 if (!stream_info)
640 return;
642 for (cur_stream = 1; cur_stream < stream_info->num_streams;
643 cur_stream++) {
644 cur_ring = stream_info->stream_rings[cur_stream];
645 if (cur_ring) {
646 addr = cur_ring->first_seg->dma;
647 radix_tree_delete(&stream_info->trb_address_map,
648 addr >> SEGMENT_SHIFT);
649 xhci_ring_free(xhci, cur_ring);
650 stream_info->stream_rings[cur_stream] = NULL;
653 xhci_free_command(xhci, stream_info->free_streams_command);
654 xhci->cmd_ring_reserved_trbs--;
655 if (stream_info->stream_ctx_array)
656 xhci_free_stream_ctx(xhci,
657 stream_info->num_stream_ctxs,
658 stream_info->stream_ctx_array,
659 stream_info->ctx_array_dma);
661 if (stream_info)
662 kfree(stream_info->stream_rings);
663 kfree(stream_info);
667 /***************** Device context manipulation *************************/
669 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
670 struct xhci_virt_ep *ep)
672 init_timer(&ep->stop_cmd_timer);
673 ep->stop_cmd_timer.data = (unsigned long) ep;
674 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
675 ep->xhci = xhci;
678 static void xhci_free_tt_info(struct xhci_hcd *xhci,
679 struct xhci_virt_device *virt_dev,
680 int slot_id)
682 struct list_head *tt;
683 struct list_head *tt_list_head;
684 struct list_head *tt_next;
685 struct xhci_tt_bw_info *tt_info;
687 /* If the device never made it past the Set Address stage,
688 * it may not have the real_port set correctly.
690 if (virt_dev->real_port == 0 ||
691 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
692 xhci_dbg(xhci, "Bad real port.\n");
693 return;
696 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
697 if (list_empty(tt_list_head))
698 return;
700 list_for_each(tt, tt_list_head) {
701 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
702 if (tt_info->slot_id == slot_id)
703 break;
705 /* Cautionary measure in case the hub was disconnected before we
706 * stored the TT information.
708 if (tt_info->slot_id != slot_id)
709 return;
711 tt_next = tt->next;
712 tt_info = list_entry(tt, struct xhci_tt_bw_info,
713 tt_list);
714 /* Multi-TT hubs will have more than one entry */
715 do {
716 list_del(tt);
717 kfree(tt_info);
718 tt = tt_next;
719 if (list_empty(tt_list_head))
720 break;
721 tt_next = tt->next;
722 tt_info = list_entry(tt, struct xhci_tt_bw_info,
723 tt_list);
724 } while (tt_info->slot_id == slot_id);
727 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
728 struct xhci_virt_device *virt_dev,
729 struct usb_device *hdev,
730 struct usb_tt *tt, gfp_t mem_flags)
732 struct xhci_tt_bw_info *tt_info;
733 unsigned int num_ports;
734 int i, j;
736 if (!tt->multi)
737 num_ports = 1;
738 else
739 num_ports = hdev->maxchild;
741 for (i = 0; i < num_ports; i++, tt_info++) {
742 struct xhci_interval_bw_table *bw_table;
744 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
745 if (!tt_info)
746 goto free_tts;
747 INIT_LIST_HEAD(&tt_info->tt_list);
748 list_add(&tt_info->tt_list,
749 &xhci->rh_bw[virt_dev->real_port - 1].tts);
750 tt_info->slot_id = virt_dev->udev->slot_id;
751 if (tt->multi)
752 tt_info->ttport = i+1;
753 bw_table = &tt_info->bw_table;
754 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
755 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
757 return 0;
759 free_tts:
760 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
761 return -ENOMEM;
765 /* All the xhci_tds in the ring's TD list should be freed at this point.
766 * Should be called with xhci->lock held if there is any chance the TT lists
767 * will be manipulated by the configure endpoint, allocate device, or update
768 * hub functions while this function is removing the TT entries from the list.
770 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
772 struct xhci_virt_device *dev;
773 int i;
774 int old_active_eps = 0;
776 /* Slot ID 0 is reserved */
777 if (slot_id == 0 || !xhci->devs[slot_id])
778 return;
780 dev = xhci->devs[slot_id];
781 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
782 if (!dev)
783 return;
785 if (dev->tt_info)
786 old_active_eps = dev->tt_info->active_eps;
788 for (i = 0; i < 31; ++i) {
789 if (dev->eps[i].ring)
790 xhci_ring_free(xhci, dev->eps[i].ring);
791 if (dev->eps[i].stream_info)
792 xhci_free_stream_info(xhci,
793 dev->eps[i].stream_info);
794 /* Endpoints on the TT/root port lists should have been removed
795 * when usb_disable_device() was called for the device.
796 * We can't drop them anyway, because the udev might have gone
797 * away by this point, and we can't tell what speed it was.
799 if (!list_empty(&dev->eps[i].bw_endpoint_list))
800 xhci_warn(xhci, "Slot %u endpoint %u "
801 "not removed from BW list!\n",
802 slot_id, i);
804 /* If this is a hub, free the TT(s) from the TT list */
805 xhci_free_tt_info(xhci, dev, slot_id);
806 /* If necessary, update the number of active TTs on this root port */
807 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
809 if (dev->ring_cache) {
810 for (i = 0; i < dev->num_rings_cached; i++)
811 xhci_ring_free(xhci, dev->ring_cache[i]);
812 kfree(dev->ring_cache);
815 if (dev->in_ctx)
816 xhci_free_container_ctx(xhci, dev->in_ctx);
817 if (dev->out_ctx)
818 xhci_free_container_ctx(xhci, dev->out_ctx);
820 kfree(xhci->devs[slot_id]);
821 xhci->devs[slot_id] = NULL;
824 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
825 struct usb_device *udev, gfp_t flags)
827 struct xhci_virt_device *dev;
828 int i;
830 /* Slot ID 0 is reserved */
831 if (slot_id == 0 || xhci->devs[slot_id]) {
832 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
833 return 0;
836 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
837 if (!xhci->devs[slot_id])
838 return 0;
839 dev = xhci->devs[slot_id];
841 /* Allocate the (output) device context that will be used in the HC. */
842 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
843 if (!dev->out_ctx)
844 goto fail;
846 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
847 (unsigned long long)dev->out_ctx->dma);
849 /* Allocate the (input) device context for address device command */
850 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
851 if (!dev->in_ctx)
852 goto fail;
854 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
855 (unsigned long long)dev->in_ctx->dma);
857 /* Initialize the cancellation list and watchdog timers for each ep */
858 for (i = 0; i < 31; i++) {
859 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
860 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
861 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
864 /* Allocate endpoint 0 ring */
865 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
866 if (!dev->eps[0].ring)
867 goto fail;
869 /* Allocate pointers to the ring cache */
870 dev->ring_cache = kzalloc(
871 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
872 flags);
873 if (!dev->ring_cache)
874 goto fail;
875 dev->num_rings_cached = 0;
877 init_completion(&dev->cmd_completion);
878 INIT_LIST_HEAD(&dev->cmd_list);
879 dev->udev = udev;
881 /* Point to output device context in dcbaa. */
882 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
883 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
884 slot_id,
885 &xhci->dcbaa->dev_context_ptrs[slot_id],
886 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
888 return 1;
889 fail:
890 xhci_free_virt_device(xhci, slot_id);
891 return 0;
894 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
895 struct usb_device *udev)
897 struct xhci_virt_device *virt_dev;
898 struct xhci_ep_ctx *ep0_ctx;
899 struct xhci_ring *ep_ring;
901 virt_dev = xhci->devs[udev->slot_id];
902 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
903 ep_ring = virt_dev->eps[0].ring;
905 * FIXME we don't keep track of the dequeue pointer very well after a
906 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
907 * host to our enqueue pointer. This should only be called after a
908 * configured device has reset, so all control transfers should have
909 * been completed or cancelled before the reset.
911 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
912 ep_ring->enqueue)
913 | ep_ring->cycle_state);
917 * The xHCI roothub may have ports of differing speeds in any order in the port
918 * status registers. xhci->port_array provides an array of the port speed for
919 * each offset into the port status registers.
921 * The xHCI hardware wants to know the roothub port number that the USB device
922 * is attached to (or the roothub port its ancestor hub is attached to). All we
923 * know is the index of that port under either the USB 2.0 or the USB 3.0
924 * roothub, but that doesn't give us the real index into the HW port status
925 * registers. Scan through the xHCI roothub port array, looking for the Nth
926 * entry of the correct port speed. Return the port number of that entry.
928 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
929 struct usb_device *udev)
931 struct usb_device *top_dev;
932 unsigned int num_similar_speed_ports;
933 unsigned int faked_port_num;
934 int i;
936 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
937 top_dev = top_dev->parent)
938 /* Found device below root hub */;
939 faked_port_num = top_dev->portnum;
940 for (i = 0, num_similar_speed_ports = 0;
941 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
942 u8 port_speed = xhci->port_array[i];
945 * Skip ports that don't have known speeds, or have duplicate
946 * Extended Capabilities port speed entries.
948 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
949 continue;
952 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
953 * 1.1 ports are under the USB 2.0 hub. If the port speed
954 * matches the device speed, it's a similar speed port.
956 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
957 num_similar_speed_ports++;
958 if (num_similar_speed_ports == faked_port_num)
959 /* Roothub ports are numbered from 1 to N */
960 return i+1;
962 return 0;
965 /* Setup an xHCI virtual device for a Set Address command */
966 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
968 struct xhci_virt_device *dev;
969 struct xhci_ep_ctx *ep0_ctx;
970 struct xhci_slot_ctx *slot_ctx;
971 u32 port_num;
972 struct usb_device *top_dev;
974 dev = xhci->devs[udev->slot_id];
975 /* Slot ID 0 is reserved */
976 if (udev->slot_id == 0 || !dev) {
977 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
978 udev->slot_id);
979 return -EINVAL;
981 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
982 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
984 /* 3) Only the control endpoint is valid - one endpoint context */
985 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
986 switch (udev->speed) {
987 case USB_SPEED_SUPER:
988 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
989 break;
990 case USB_SPEED_HIGH:
991 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
992 break;
993 case USB_SPEED_FULL:
994 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
995 break;
996 case USB_SPEED_LOW:
997 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
998 break;
999 case USB_SPEED_WIRELESS:
1000 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1001 return -EINVAL;
1002 break;
1003 default:
1004 /* Speed was set earlier, this shouldn't happen. */
1005 BUG();
1007 /* Find the root hub port this device is under */
1008 port_num = xhci_find_real_port_number(xhci, udev);
1009 if (!port_num)
1010 return -EINVAL;
1011 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1012 /* Set the port number in the virtual_device to the faked port number */
1013 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1014 top_dev = top_dev->parent)
1015 /* Found device below root hub */;
1016 dev->fake_port = top_dev->portnum;
1017 dev->real_port = port_num;
1018 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1019 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1021 /* Find the right bandwidth table that this device will be a part of.
1022 * If this is a full speed device attached directly to a root port (or a
1023 * decendent of one), it counts as a primary bandwidth domain, not a
1024 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1025 * will never be created for the HS root hub.
1027 if (!udev->tt || !udev->tt->hub->parent) {
1028 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1029 } else {
1030 struct xhci_root_port_bw_info *rh_bw;
1031 struct xhci_tt_bw_info *tt_bw;
1033 rh_bw = &xhci->rh_bw[port_num - 1];
1034 /* Find the right TT. */
1035 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1036 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1037 continue;
1039 if (!dev->udev->tt->multi ||
1040 (udev->tt->multi &&
1041 tt_bw->ttport == dev->udev->ttport)) {
1042 dev->bw_table = &tt_bw->bw_table;
1043 dev->tt_info = tt_bw;
1044 break;
1047 if (!dev->tt_info)
1048 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1051 /* Is this a LS/FS device under an external HS hub? */
1052 if (udev->tt && udev->tt->hub->parent) {
1053 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1054 (udev->ttport << 8));
1055 if (udev->tt->multi)
1056 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1058 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1059 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1061 /* Step 4 - ring already allocated */
1062 /* Step 5 */
1063 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1065 * XXX: Not sure about wireless USB devices.
1067 switch (udev->speed) {
1068 case USB_SPEED_SUPER:
1069 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1070 break;
1071 case USB_SPEED_HIGH:
1072 /* USB core guesses at a 64-byte max packet first for FS devices */
1073 case USB_SPEED_FULL:
1074 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1075 break;
1076 case USB_SPEED_LOW:
1077 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1078 break;
1079 case USB_SPEED_WIRELESS:
1080 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1081 return -EINVAL;
1082 break;
1083 default:
1084 /* New speed? */
1085 BUG();
1087 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1088 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1090 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1091 dev->eps[0].ring->cycle_state);
1093 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1095 return 0;
1099 * Convert interval expressed as 2^(bInterval - 1) == interval into
1100 * straight exponent value 2^n == interval.
1103 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1104 struct usb_host_endpoint *ep)
1106 unsigned int interval;
1108 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1109 if (interval != ep->desc.bInterval - 1)
1110 dev_warn(&udev->dev,
1111 "ep %#x - rounding interval to %d %sframes\n",
1112 ep->desc.bEndpointAddress,
1113 1 << interval,
1114 udev->speed == USB_SPEED_FULL ? "" : "micro");
1116 if (udev->speed == USB_SPEED_FULL) {
1118 * Full speed isoc endpoints specify interval in frames,
1119 * not microframes. We are using microframes everywhere,
1120 * so adjust accordingly.
1122 interval += 3; /* 1 frame = 2^3 uframes */
1125 return interval;
1129 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1130 * microframes, rounded down to nearest power of 2.
1132 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1133 struct usb_host_endpoint *ep)
1135 unsigned int interval;
1137 interval = fls(8 * ep->desc.bInterval) - 1;
1138 interval = clamp_val(interval, 3, 10);
1139 if ((1 << interval) != 8 * ep->desc.bInterval)
1140 dev_warn(&udev->dev,
1141 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1142 ep->desc.bEndpointAddress,
1143 1 << interval,
1144 8 * ep->desc.bInterval);
1146 return interval;
1149 /* Return the polling or NAK interval.
1151 * The polling interval is expressed in "microframes". If xHCI's Interval field
1152 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1154 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1155 * is set to 0.
1157 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1158 struct usb_host_endpoint *ep)
1160 unsigned int interval = 0;
1162 switch (udev->speed) {
1163 case USB_SPEED_HIGH:
1164 /* Max NAK rate */
1165 if (usb_endpoint_xfer_control(&ep->desc) ||
1166 usb_endpoint_xfer_bulk(&ep->desc)) {
1167 interval = ep->desc.bInterval;
1168 break;
1170 /* Fall through - SS and HS isoc/int have same decoding */
1172 case USB_SPEED_SUPER:
1173 if (usb_endpoint_xfer_int(&ep->desc) ||
1174 usb_endpoint_xfer_isoc(&ep->desc)) {
1175 interval = xhci_parse_exponent_interval(udev, ep);
1177 break;
1179 case USB_SPEED_FULL:
1180 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1181 interval = xhci_parse_exponent_interval(udev, ep);
1182 break;
1185 * Fall through for interrupt endpoint interval decoding
1186 * since it uses the same rules as low speed interrupt
1187 * endpoints.
1190 case USB_SPEED_LOW:
1191 if (usb_endpoint_xfer_int(&ep->desc) ||
1192 usb_endpoint_xfer_isoc(&ep->desc)) {
1194 interval = xhci_parse_frame_interval(udev, ep);
1196 break;
1198 default:
1199 BUG();
1201 return EP_INTERVAL(interval);
1204 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1205 * High speed endpoint descriptors can define "the number of additional
1206 * transaction opportunities per microframe", but that goes in the Max Burst
1207 * endpoint context field.
1209 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1210 struct usb_host_endpoint *ep)
1212 if (udev->speed != USB_SPEED_SUPER ||
1213 !usb_endpoint_xfer_isoc(&ep->desc))
1214 return 0;
1215 return ep->ss_ep_comp.bmAttributes;
1218 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1219 struct usb_host_endpoint *ep)
1221 int in;
1222 u32 type;
1224 in = usb_endpoint_dir_in(&ep->desc);
1225 if (usb_endpoint_xfer_control(&ep->desc)) {
1226 type = EP_TYPE(CTRL_EP);
1227 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1228 if (in)
1229 type = EP_TYPE(BULK_IN_EP);
1230 else
1231 type = EP_TYPE(BULK_OUT_EP);
1232 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1233 if (in)
1234 type = EP_TYPE(ISOC_IN_EP);
1235 else
1236 type = EP_TYPE(ISOC_OUT_EP);
1237 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1238 if (in)
1239 type = EP_TYPE(INT_IN_EP);
1240 else
1241 type = EP_TYPE(INT_OUT_EP);
1242 } else {
1243 BUG();
1245 return type;
1248 /* Return the maximum endpoint service interval time (ESIT) payload.
1249 * Basically, this is the maxpacket size, multiplied by the burst size
1250 * and mult size.
1252 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1253 struct usb_device *udev,
1254 struct usb_host_endpoint *ep)
1256 int max_burst;
1257 int max_packet;
1259 /* Only applies for interrupt or isochronous endpoints */
1260 if (usb_endpoint_xfer_control(&ep->desc) ||
1261 usb_endpoint_xfer_bulk(&ep->desc))
1262 return 0;
1264 if (udev->speed == USB_SPEED_SUPER)
1265 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1267 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1268 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1269 /* A 0 in max burst means 1 transfer per ESIT */
1270 return max_packet * (max_burst + 1);
1273 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1274 * Drivers will have to call usb_alloc_streams() to do that.
1276 int xhci_endpoint_init(struct xhci_hcd *xhci,
1277 struct xhci_virt_device *virt_dev,
1278 struct usb_device *udev,
1279 struct usb_host_endpoint *ep,
1280 gfp_t mem_flags)
1282 unsigned int ep_index;
1283 struct xhci_ep_ctx *ep_ctx;
1284 struct xhci_ring *ep_ring;
1285 unsigned int max_packet;
1286 unsigned int max_burst;
1287 u32 max_esit_payload;
1289 ep_index = xhci_get_endpoint_index(&ep->desc);
1290 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1292 /* Set up the endpoint ring */
1294 * Isochronous endpoint ring needs bigger size because one isoc URB
1295 * carries multiple packets and it will insert multiple tds to the
1296 * ring.
1297 * This should be replaced with dynamic ring resizing in the future.
1299 if (usb_endpoint_xfer_isoc(&ep->desc))
1300 virt_dev->eps[ep_index].new_ring =
1301 xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1302 else
1303 virt_dev->eps[ep_index].new_ring =
1304 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1305 if (!virt_dev->eps[ep_index].new_ring) {
1306 /* Attempt to use the ring cache */
1307 if (virt_dev->num_rings_cached == 0)
1308 return -ENOMEM;
1309 virt_dev->eps[ep_index].new_ring =
1310 virt_dev->ring_cache[virt_dev->num_rings_cached];
1311 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1312 virt_dev->num_rings_cached--;
1313 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1314 usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1316 virt_dev->eps[ep_index].skip = false;
1317 ep_ring = virt_dev->eps[ep_index].new_ring;
1318 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1320 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1321 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1323 /* FIXME dig Mult and streams info out of ep companion desc */
1325 /* Allow 3 retries for everything but isoc;
1326 * CErr shall be set to 0 for Isoch endpoints.
1328 if (!usb_endpoint_xfer_isoc(&ep->desc))
1329 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1330 else
1331 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1333 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1335 /* Set the max packet size and max burst */
1336 switch (udev->speed) {
1337 case USB_SPEED_SUPER:
1338 max_packet = usb_endpoint_maxp(&ep->desc);
1339 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1340 /* dig out max burst from ep companion desc */
1341 max_packet = ep->ss_ep_comp.bMaxBurst;
1342 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1343 break;
1344 case USB_SPEED_HIGH:
1345 /* bits 11:12 specify the number of additional transaction
1346 * opportunities per microframe (USB 2.0, section 9.6.6)
1348 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1349 usb_endpoint_xfer_int(&ep->desc)) {
1350 max_burst = (usb_endpoint_maxp(&ep->desc)
1351 & 0x1800) >> 11;
1352 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1354 /* Fall through */
1355 case USB_SPEED_FULL:
1356 case USB_SPEED_LOW:
1357 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1358 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1359 break;
1360 default:
1361 BUG();
1363 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1364 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1367 * XXX no idea how to calculate the average TRB buffer length for bulk
1368 * endpoints, as the driver gives us no clue how big each scatter gather
1369 * list entry (or buffer) is going to be.
1371 * For isochronous and interrupt endpoints, we set it to the max
1372 * available, until we have new API in the USB core to allow drivers to
1373 * declare how much bandwidth they actually need.
1375 * Normally, it would be calculated by taking the total of the buffer
1376 * lengths in the TD and then dividing by the number of TRBs in a TD,
1377 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1378 * use Event Data TRBs, and we don't chain in a link TRB on short
1379 * transfers, we're basically dividing by 1.
1381 * xHCI 1.0 specification indicates that the Average TRB Length should
1382 * be set to 8 for control endpoints.
1384 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1385 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1386 else
1387 ep_ctx->tx_info |=
1388 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1390 /* FIXME Debug endpoint context */
1391 return 0;
1394 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1395 struct xhci_virt_device *virt_dev,
1396 struct usb_host_endpoint *ep)
1398 unsigned int ep_index;
1399 struct xhci_ep_ctx *ep_ctx;
1401 ep_index = xhci_get_endpoint_index(&ep->desc);
1402 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1404 ep_ctx->ep_info = 0;
1405 ep_ctx->ep_info2 = 0;
1406 ep_ctx->deq = 0;
1407 ep_ctx->tx_info = 0;
1408 /* Don't free the endpoint ring until the set interface or configuration
1409 * request succeeds.
1413 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1415 bw_info->ep_interval = 0;
1416 bw_info->mult = 0;
1417 bw_info->num_packets = 0;
1418 bw_info->max_packet_size = 0;
1419 bw_info->type = 0;
1420 bw_info->max_esit_payload = 0;
1423 void xhci_update_bw_info(struct xhci_hcd *xhci,
1424 struct xhci_container_ctx *in_ctx,
1425 struct xhci_input_control_ctx *ctrl_ctx,
1426 struct xhci_virt_device *virt_dev)
1428 struct xhci_bw_info *bw_info;
1429 struct xhci_ep_ctx *ep_ctx;
1430 unsigned int ep_type;
1431 int i;
1433 for (i = 1; i < 31; ++i) {
1434 bw_info = &virt_dev->eps[i].bw_info;
1436 /* We can't tell what endpoint type is being dropped, but
1437 * unconditionally clearing the bandwidth info for non-periodic
1438 * endpoints should be harmless because the info will never be
1439 * set in the first place.
1441 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1442 /* Dropped endpoint */
1443 xhci_clear_endpoint_bw_info(bw_info);
1444 continue;
1447 if (EP_IS_ADDED(ctrl_ctx, i)) {
1448 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1449 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1451 /* Ignore non-periodic endpoints */
1452 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1453 ep_type != ISOC_IN_EP &&
1454 ep_type != INT_IN_EP)
1455 continue;
1457 /* Added or changed endpoint */
1458 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1459 le32_to_cpu(ep_ctx->ep_info));
1460 /* Number of packets and mult are zero-based in the
1461 * input context, but we want one-based for the
1462 * interval table.
1464 bw_info->mult = CTX_TO_EP_MULT(
1465 le32_to_cpu(ep_ctx->ep_info)) + 1;
1466 bw_info->num_packets = CTX_TO_MAX_BURST(
1467 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1468 bw_info->max_packet_size = MAX_PACKET_DECODED(
1469 le32_to_cpu(ep_ctx->ep_info2));
1470 bw_info->type = ep_type;
1471 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1472 le32_to_cpu(ep_ctx->tx_info));
1477 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1478 * Useful when you want to change one particular aspect of the endpoint and then
1479 * issue a configure endpoint command.
1481 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1482 struct xhci_container_ctx *in_ctx,
1483 struct xhci_container_ctx *out_ctx,
1484 unsigned int ep_index)
1486 struct xhci_ep_ctx *out_ep_ctx;
1487 struct xhci_ep_ctx *in_ep_ctx;
1489 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1490 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1492 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1493 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1494 in_ep_ctx->deq = out_ep_ctx->deq;
1495 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1498 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1499 * Useful when you want to change one particular aspect of the endpoint and then
1500 * issue a configure endpoint command. Only the context entries field matters,
1501 * but we'll copy the whole thing anyway.
1503 void xhci_slot_copy(struct xhci_hcd *xhci,
1504 struct xhci_container_ctx *in_ctx,
1505 struct xhci_container_ctx *out_ctx)
1507 struct xhci_slot_ctx *in_slot_ctx;
1508 struct xhci_slot_ctx *out_slot_ctx;
1510 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1511 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1513 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1514 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1515 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1516 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1519 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1520 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1522 int i;
1523 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1524 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1526 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1528 if (!num_sp)
1529 return 0;
1531 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1532 if (!xhci->scratchpad)
1533 goto fail_sp;
1535 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1536 num_sp * sizeof(u64),
1537 &xhci->scratchpad->sp_dma, flags);
1538 if (!xhci->scratchpad->sp_array)
1539 goto fail_sp2;
1541 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1542 if (!xhci->scratchpad->sp_buffers)
1543 goto fail_sp3;
1545 xhci->scratchpad->sp_dma_buffers =
1546 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1548 if (!xhci->scratchpad->sp_dma_buffers)
1549 goto fail_sp4;
1551 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1552 for (i = 0; i < num_sp; i++) {
1553 dma_addr_t dma;
1554 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1555 flags);
1556 if (!buf)
1557 goto fail_sp5;
1559 xhci->scratchpad->sp_array[i] = dma;
1560 xhci->scratchpad->sp_buffers[i] = buf;
1561 xhci->scratchpad->sp_dma_buffers[i] = dma;
1564 return 0;
1566 fail_sp5:
1567 for (i = i - 1; i >= 0; i--) {
1568 dma_free_coherent(dev, xhci->page_size,
1569 xhci->scratchpad->sp_buffers[i],
1570 xhci->scratchpad->sp_dma_buffers[i]);
1572 kfree(xhci->scratchpad->sp_dma_buffers);
1574 fail_sp4:
1575 kfree(xhci->scratchpad->sp_buffers);
1577 fail_sp3:
1578 dma_free_coherent(dev, num_sp * sizeof(u64),
1579 xhci->scratchpad->sp_array,
1580 xhci->scratchpad->sp_dma);
1582 fail_sp2:
1583 kfree(xhci->scratchpad);
1584 xhci->scratchpad = NULL;
1586 fail_sp:
1587 return -ENOMEM;
1590 static void scratchpad_free(struct xhci_hcd *xhci)
1592 int num_sp;
1593 int i;
1594 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1596 if (!xhci->scratchpad)
1597 return;
1599 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1601 for (i = 0; i < num_sp; i++) {
1602 dma_free_coherent(&pdev->dev, xhci->page_size,
1603 xhci->scratchpad->sp_buffers[i],
1604 xhci->scratchpad->sp_dma_buffers[i]);
1606 kfree(xhci->scratchpad->sp_dma_buffers);
1607 kfree(xhci->scratchpad->sp_buffers);
1608 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1609 xhci->scratchpad->sp_array,
1610 xhci->scratchpad->sp_dma);
1611 kfree(xhci->scratchpad);
1612 xhci->scratchpad = NULL;
1615 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1616 bool allocate_in_ctx, bool allocate_completion,
1617 gfp_t mem_flags)
1619 struct xhci_command *command;
1621 command = kzalloc(sizeof(*command), mem_flags);
1622 if (!command)
1623 return NULL;
1625 if (allocate_in_ctx) {
1626 command->in_ctx =
1627 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1628 mem_flags);
1629 if (!command->in_ctx) {
1630 kfree(command);
1631 return NULL;
1635 if (allocate_completion) {
1636 command->completion =
1637 kzalloc(sizeof(struct completion), mem_flags);
1638 if (!command->completion) {
1639 xhci_free_container_ctx(xhci, command->in_ctx);
1640 kfree(command);
1641 return NULL;
1643 init_completion(command->completion);
1646 command->status = 0;
1647 INIT_LIST_HEAD(&command->cmd_list);
1648 return command;
1651 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1653 if (urb_priv) {
1654 kfree(urb_priv->td[0]);
1655 kfree(urb_priv);
1659 void xhci_free_command(struct xhci_hcd *xhci,
1660 struct xhci_command *command)
1662 xhci_free_container_ctx(xhci,
1663 command->in_ctx);
1664 kfree(command->completion);
1665 kfree(command);
1668 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1670 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1671 struct dev_info *dev_info, *next;
1672 unsigned long flags;
1673 int size;
1674 int i;
1676 /* Free the Event Ring Segment Table and the actual Event Ring */
1677 if (xhci->ir_set) {
1678 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1679 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1680 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1682 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1683 if (xhci->erst.entries)
1684 dma_free_coherent(&pdev->dev, size,
1685 xhci->erst.entries, xhci->erst.erst_dma_addr);
1686 xhci->erst.entries = NULL;
1687 xhci_dbg(xhci, "Freed ERST\n");
1688 if (xhci->event_ring)
1689 xhci_ring_free(xhci, xhci->event_ring);
1690 xhci->event_ring = NULL;
1691 xhci_dbg(xhci, "Freed event ring\n");
1693 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1694 if (xhci->cmd_ring)
1695 xhci_ring_free(xhci, xhci->cmd_ring);
1696 xhci->cmd_ring = NULL;
1697 xhci_dbg(xhci, "Freed command ring\n");
1699 for (i = 1; i < MAX_HC_SLOTS; ++i)
1700 xhci_free_virt_device(xhci, i);
1702 if (xhci->segment_pool)
1703 dma_pool_destroy(xhci->segment_pool);
1704 xhci->segment_pool = NULL;
1705 xhci_dbg(xhci, "Freed segment pool\n");
1707 if (xhci->device_pool)
1708 dma_pool_destroy(xhci->device_pool);
1709 xhci->device_pool = NULL;
1710 xhci_dbg(xhci, "Freed device context pool\n");
1712 if (xhci->small_streams_pool)
1713 dma_pool_destroy(xhci->small_streams_pool);
1714 xhci->small_streams_pool = NULL;
1715 xhci_dbg(xhci, "Freed small stream array pool\n");
1717 if (xhci->medium_streams_pool)
1718 dma_pool_destroy(xhci->medium_streams_pool);
1719 xhci->medium_streams_pool = NULL;
1720 xhci_dbg(xhci, "Freed medium stream array pool\n");
1722 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1723 if (xhci->dcbaa)
1724 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1725 xhci->dcbaa, xhci->dcbaa->dma);
1726 xhci->dcbaa = NULL;
1728 scratchpad_free(xhci);
1730 spin_lock_irqsave(&xhci->lock, flags);
1731 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1732 list_del(&dev_info->list);
1733 kfree(dev_info);
1735 spin_unlock_irqrestore(&xhci->lock, flags);
1737 xhci->num_usb2_ports = 0;
1738 xhci->num_usb3_ports = 0;
1739 kfree(xhci->usb2_ports);
1740 kfree(xhci->usb3_ports);
1741 kfree(xhci->port_array);
1742 kfree(xhci->rh_bw);
1744 xhci->page_size = 0;
1745 xhci->page_shift = 0;
1746 xhci->bus_state[0].bus_suspended = 0;
1747 xhci->bus_state[1].bus_suspended = 0;
1750 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1751 struct xhci_segment *input_seg,
1752 union xhci_trb *start_trb,
1753 union xhci_trb *end_trb,
1754 dma_addr_t input_dma,
1755 struct xhci_segment *result_seg,
1756 char *test_name, int test_number)
1758 unsigned long long start_dma;
1759 unsigned long long end_dma;
1760 struct xhci_segment *seg;
1762 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1763 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1765 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1766 if (seg != result_seg) {
1767 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1768 test_name, test_number);
1769 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1770 "input DMA 0x%llx\n",
1771 input_seg,
1772 (unsigned long long) input_dma);
1773 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1774 "ending TRB %p (0x%llx DMA)\n",
1775 start_trb, start_dma,
1776 end_trb, end_dma);
1777 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1778 result_seg, seg);
1779 return -1;
1781 return 0;
1784 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1785 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1787 struct {
1788 dma_addr_t input_dma;
1789 struct xhci_segment *result_seg;
1790 } simple_test_vector [] = {
1791 /* A zeroed DMA field should fail */
1792 { 0, NULL },
1793 /* One TRB before the ring start should fail */
1794 { xhci->event_ring->first_seg->dma - 16, NULL },
1795 /* One byte before the ring start should fail */
1796 { xhci->event_ring->first_seg->dma - 1, NULL },
1797 /* Starting TRB should succeed */
1798 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1799 /* Ending TRB should succeed */
1800 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1801 xhci->event_ring->first_seg },
1802 /* One byte after the ring end should fail */
1803 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1804 /* One TRB after the ring end should fail */
1805 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1806 /* An address of all ones should fail */
1807 { (dma_addr_t) (~0), NULL },
1809 struct {
1810 struct xhci_segment *input_seg;
1811 union xhci_trb *start_trb;
1812 union xhci_trb *end_trb;
1813 dma_addr_t input_dma;
1814 struct xhci_segment *result_seg;
1815 } complex_test_vector [] = {
1816 /* Test feeding a valid DMA address from a different ring */
1817 { .input_seg = xhci->event_ring->first_seg,
1818 .start_trb = xhci->event_ring->first_seg->trbs,
1819 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1820 .input_dma = xhci->cmd_ring->first_seg->dma,
1821 .result_seg = NULL,
1823 /* Test feeding a valid end TRB from a different ring */
1824 { .input_seg = xhci->event_ring->first_seg,
1825 .start_trb = xhci->event_ring->first_seg->trbs,
1826 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1827 .input_dma = xhci->cmd_ring->first_seg->dma,
1828 .result_seg = NULL,
1830 /* Test feeding a valid start and end TRB from a different ring */
1831 { .input_seg = xhci->event_ring->first_seg,
1832 .start_trb = xhci->cmd_ring->first_seg->trbs,
1833 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1834 .input_dma = xhci->cmd_ring->first_seg->dma,
1835 .result_seg = NULL,
1837 /* TRB in this ring, but after this TD */
1838 { .input_seg = xhci->event_ring->first_seg,
1839 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1840 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1841 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1842 .result_seg = NULL,
1844 /* TRB in this ring, but before this TD */
1845 { .input_seg = xhci->event_ring->first_seg,
1846 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1847 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1848 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1849 .result_seg = NULL,
1851 /* TRB in this ring, but after this wrapped TD */
1852 { .input_seg = xhci->event_ring->first_seg,
1853 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1854 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1855 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1856 .result_seg = NULL,
1858 /* TRB in this ring, but before this wrapped TD */
1859 { .input_seg = xhci->event_ring->first_seg,
1860 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1861 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1862 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1863 .result_seg = NULL,
1865 /* TRB not in this ring, and we have a wrapped TD */
1866 { .input_seg = xhci->event_ring->first_seg,
1867 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1868 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1869 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1870 .result_seg = NULL,
1874 unsigned int num_tests;
1875 int i, ret;
1877 num_tests = ARRAY_SIZE(simple_test_vector);
1878 for (i = 0; i < num_tests; i++) {
1879 ret = xhci_test_trb_in_td(xhci,
1880 xhci->event_ring->first_seg,
1881 xhci->event_ring->first_seg->trbs,
1882 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1883 simple_test_vector[i].input_dma,
1884 simple_test_vector[i].result_seg,
1885 "Simple", i);
1886 if (ret < 0)
1887 return ret;
1890 num_tests = ARRAY_SIZE(complex_test_vector);
1891 for (i = 0; i < num_tests; i++) {
1892 ret = xhci_test_trb_in_td(xhci,
1893 complex_test_vector[i].input_seg,
1894 complex_test_vector[i].start_trb,
1895 complex_test_vector[i].end_trb,
1896 complex_test_vector[i].input_dma,
1897 complex_test_vector[i].result_seg,
1898 "Complex", i);
1899 if (ret < 0)
1900 return ret;
1902 xhci_dbg(xhci, "TRB math tests passed.\n");
1903 return 0;
1906 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1908 u64 temp;
1909 dma_addr_t deq;
1911 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1912 xhci->event_ring->dequeue);
1913 if (deq == 0 && !in_interrupt())
1914 xhci_warn(xhci, "WARN something wrong with SW event ring "
1915 "dequeue ptr.\n");
1916 /* Update HC event ring dequeue pointer */
1917 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1918 temp &= ERST_PTR_MASK;
1919 /* Don't clear the EHB bit (which is RW1C) because
1920 * there might be more events to service.
1922 temp &= ~ERST_EHB;
1923 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1924 "preserving EHB bit\n");
1925 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1926 &xhci->ir_set->erst_dequeue);
1929 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1930 __le32 __iomem *addr, u8 major_revision)
1932 u32 temp, port_offset, port_count;
1933 int i;
1935 if (major_revision > 0x03) {
1936 xhci_warn(xhci, "Ignoring unknown port speed, "
1937 "Ext Cap %p, revision = 0x%x\n",
1938 addr, major_revision);
1939 /* Ignoring port protocol we can't understand. FIXME */
1940 return;
1943 /* Port offset and count in the third dword, see section 7.2 */
1944 temp = xhci_readl(xhci, addr + 2);
1945 port_offset = XHCI_EXT_PORT_OFF(temp);
1946 port_count = XHCI_EXT_PORT_COUNT(temp);
1947 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1948 "count = %u, revision = 0x%x\n",
1949 addr, port_offset, port_count, major_revision);
1950 /* Port count includes the current port offset */
1951 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1952 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1953 return;
1955 /* Check the host's USB2 LPM capability */
1956 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1957 (temp & XHCI_L1C)) {
1958 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1959 xhci->sw_lpm_support = 1;
1962 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1963 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1964 xhci->sw_lpm_support = 1;
1965 if (temp & XHCI_HLC) {
1966 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1967 xhci->hw_lpm_support = 1;
1971 port_offset--;
1972 for (i = port_offset; i < (port_offset + port_count); i++) {
1973 /* Duplicate entry. Ignore the port if the revisions differ. */
1974 if (xhci->port_array[i] != 0) {
1975 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1976 " port %u\n", addr, i);
1977 xhci_warn(xhci, "Port was marked as USB %u, "
1978 "duplicated as USB %u\n",
1979 xhci->port_array[i], major_revision);
1980 /* Only adjust the roothub port counts if we haven't
1981 * found a similar duplicate.
1983 if (xhci->port_array[i] != major_revision &&
1984 xhci->port_array[i] != DUPLICATE_ENTRY) {
1985 if (xhci->port_array[i] == 0x03)
1986 xhci->num_usb3_ports--;
1987 else
1988 xhci->num_usb2_ports--;
1989 xhci->port_array[i] = DUPLICATE_ENTRY;
1991 /* FIXME: Should we disable the port? */
1992 continue;
1994 xhci->port_array[i] = major_revision;
1995 if (major_revision == 0x03)
1996 xhci->num_usb3_ports++;
1997 else
1998 xhci->num_usb2_ports++;
2000 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2004 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2005 * specify what speeds each port is supposed to be. We can't count on the port
2006 * speed bits in the PORTSC register being correct until a device is connected,
2007 * but we need to set up the two fake roothubs with the correct number of USB
2008 * 3.0 and USB 2.0 ports at host controller initialization time.
2010 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2012 __le32 __iomem *addr;
2013 u32 offset;
2014 unsigned int num_ports;
2015 int i, j, port_index;
2017 addr = &xhci->cap_regs->hcc_params;
2018 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2019 if (offset == 0) {
2020 xhci_err(xhci, "No Extended Capability registers, "
2021 "unable to set up roothub.\n");
2022 return -ENODEV;
2025 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2026 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2027 if (!xhci->port_array)
2028 return -ENOMEM;
2030 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2031 if (!xhci->rh_bw)
2032 return -ENOMEM;
2033 for (i = 0; i < num_ports; i++) {
2034 struct xhci_interval_bw_table *bw_table;
2036 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2037 bw_table = &xhci->rh_bw[i].bw_table;
2038 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2039 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2043 * For whatever reason, the first capability offset is from the
2044 * capability register base, not from the HCCPARAMS register.
2045 * See section 5.3.6 for offset calculation.
2047 addr = &xhci->cap_regs->hc_capbase + offset;
2048 while (1) {
2049 u32 cap_id;
2051 cap_id = xhci_readl(xhci, addr);
2052 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2053 xhci_add_in_port(xhci, num_ports, addr,
2054 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2055 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2056 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2057 == num_ports)
2058 break;
2060 * Once you're into the Extended Capabilities, the offset is
2061 * always relative to the register holding the offset.
2063 addr += offset;
2066 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2067 xhci_warn(xhci, "No ports on the roothubs?\n");
2068 return -ENODEV;
2070 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2071 xhci->num_usb2_ports, xhci->num_usb3_ports);
2073 /* Place limits on the number of roothub ports so that the hub
2074 * descriptors aren't longer than the USB core will allocate.
2076 if (xhci->num_usb3_ports > 15) {
2077 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2078 xhci->num_usb3_ports = 15;
2080 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2081 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2082 USB_MAXCHILDREN);
2083 xhci->num_usb2_ports = USB_MAXCHILDREN;
2087 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2088 * Not sure how the USB core will handle a hub with no ports...
2090 if (xhci->num_usb2_ports) {
2091 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2092 xhci->num_usb2_ports, flags);
2093 if (!xhci->usb2_ports)
2094 return -ENOMEM;
2096 port_index = 0;
2097 for (i = 0; i < num_ports; i++) {
2098 if (xhci->port_array[i] == 0x03 ||
2099 xhci->port_array[i] == 0 ||
2100 xhci->port_array[i] == DUPLICATE_ENTRY)
2101 continue;
2103 xhci->usb2_ports[port_index] =
2104 &xhci->op_regs->port_status_base +
2105 NUM_PORT_REGS*i;
2106 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2107 "addr = %p\n", i,
2108 xhci->usb2_ports[port_index]);
2109 port_index++;
2110 if (port_index == xhci->num_usb2_ports)
2111 break;
2114 if (xhci->num_usb3_ports) {
2115 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2116 xhci->num_usb3_ports, flags);
2117 if (!xhci->usb3_ports)
2118 return -ENOMEM;
2120 port_index = 0;
2121 for (i = 0; i < num_ports; i++)
2122 if (xhci->port_array[i] == 0x03) {
2123 xhci->usb3_ports[port_index] =
2124 &xhci->op_regs->port_status_base +
2125 NUM_PORT_REGS*i;
2126 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2127 "addr = %p\n", i,
2128 xhci->usb3_ports[port_index]);
2129 port_index++;
2130 if (port_index == xhci->num_usb3_ports)
2131 break;
2134 return 0;
2137 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2139 dma_addr_t dma;
2140 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2141 unsigned int val, val2;
2142 u64 val_64;
2143 struct xhci_segment *seg;
2144 u32 page_size;
2145 int i;
2147 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2148 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2149 for (i = 0; i < 16; i++) {
2150 if ((0x1 & page_size) != 0)
2151 break;
2152 page_size = page_size >> 1;
2154 if (i < 16)
2155 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2156 else
2157 xhci_warn(xhci, "WARN: no supported page size\n");
2158 /* Use 4K pages, since that's common and the minimum the HC supports */
2159 xhci->page_shift = 12;
2160 xhci->page_size = 1 << xhci->page_shift;
2161 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2164 * Program the Number of Device Slots Enabled field in the CONFIG
2165 * register with the max value of slots the HC can handle.
2167 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2168 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2169 (unsigned int) val);
2170 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2171 val |= (val2 & ~HCS_SLOTS_MASK);
2172 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2173 (unsigned int) val);
2174 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2177 * Section 5.4.8 - doorbell array must be
2178 * "physically contiguous and 64-byte (cache line) aligned".
2180 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2181 GFP_KERNEL);
2182 if (!xhci->dcbaa)
2183 goto fail;
2184 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2185 xhci->dcbaa->dma = dma;
2186 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2187 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2188 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2191 * Initialize the ring segment pool. The ring must be a contiguous
2192 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2193 * however, the command ring segment needs 64-byte aligned segments,
2194 * so we pick the greater alignment need.
2196 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2197 SEGMENT_SIZE, 64, xhci->page_size);
2199 /* See Table 46 and Note on Figure 55 */
2200 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2201 2112, 64, xhci->page_size);
2202 if (!xhci->segment_pool || !xhci->device_pool)
2203 goto fail;
2205 /* Linear stream context arrays don't have any boundary restrictions,
2206 * and only need to be 16-byte aligned.
2208 xhci->small_streams_pool =
2209 dma_pool_create("xHCI 256 byte stream ctx arrays",
2210 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2211 xhci->medium_streams_pool =
2212 dma_pool_create("xHCI 1KB stream ctx arrays",
2213 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2214 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2215 * will be allocated with dma_alloc_coherent()
2218 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2219 goto fail;
2221 /* Set up the command ring to have one segments for now. */
2222 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2223 if (!xhci->cmd_ring)
2224 goto fail;
2225 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2226 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2227 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2229 /* Set the address in the Command Ring Control register */
2230 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2231 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2232 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2233 xhci->cmd_ring->cycle_state;
2234 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2235 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2236 xhci_dbg_cmd_ptrs(xhci);
2238 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2239 val &= DBOFF_MASK;
2240 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2241 " from cap regs base addr\n", val);
2242 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2243 xhci_dbg_regs(xhci);
2244 xhci_print_run_regs(xhci);
2245 /* Set ir_set to interrupt register set 0 */
2246 xhci->ir_set = &xhci->run_regs->ir_set[0];
2249 * Event ring setup: Allocate a normal ring, but also setup
2250 * the event ring segment table (ERST). Section 4.9.3.
2252 xhci_dbg(xhci, "// Allocating event ring\n");
2253 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2254 flags);
2255 if (!xhci->event_ring)
2256 goto fail;
2257 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2258 goto fail;
2260 xhci->erst.entries = dma_alloc_coherent(dev,
2261 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2262 GFP_KERNEL);
2263 if (!xhci->erst.entries)
2264 goto fail;
2265 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2266 (unsigned long long)dma);
2268 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2269 xhci->erst.num_entries = ERST_NUM_SEGS;
2270 xhci->erst.erst_dma_addr = dma;
2271 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2272 xhci->erst.num_entries,
2273 xhci->erst.entries,
2274 (unsigned long long)xhci->erst.erst_dma_addr);
2276 /* set ring base address and size for each segment table entry */
2277 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2278 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2279 entry->seg_addr = cpu_to_le64(seg->dma);
2280 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2281 entry->rsvd = 0;
2282 seg = seg->next;
2285 /* set ERST count with the number of entries in the segment table */
2286 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2287 val &= ERST_SIZE_MASK;
2288 val |= ERST_NUM_SEGS;
2289 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2290 val);
2291 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2293 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2294 /* set the segment table base address */
2295 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2296 (unsigned long long)xhci->erst.erst_dma_addr);
2297 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2298 val_64 &= ERST_PTR_MASK;
2299 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2300 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2302 /* Set the event ring dequeue address */
2303 xhci_set_hc_event_deq(xhci);
2304 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2305 xhci_print_ir_set(xhci, 0);
2308 * XXX: Might need to set the Interrupter Moderation Register to
2309 * something other than the default (~1ms minimum between interrupts).
2310 * See section 5.5.1.2.
2312 init_completion(&xhci->addr_dev);
2313 for (i = 0; i < MAX_HC_SLOTS; ++i)
2314 xhci->devs[i] = NULL;
2315 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2316 xhci->bus_state[0].resume_done[i] = 0;
2317 xhci->bus_state[1].resume_done[i] = 0;
2320 if (scratchpad_alloc(xhci, flags))
2321 goto fail;
2322 if (xhci_setup_port_arrays(xhci, flags))
2323 goto fail;
2325 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2327 return 0;
2329 fail:
2330 xhci_warn(xhci, "Couldn't initialize memory\n");
2331 xhci_mem_cleanup(xhci);
2332 return -ENOMEM;