staging: brcm80211: assure common sources are truly common
[zen-stable.git] / drivers / firewire / core-card.c
blobbe0492398ef9573be4eb752b78e485e5b22d0e71
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
38 #include "core.h"
40 int fw_compute_block_crc(__be32 *block)
42 int length;
43 u16 crc;
45 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 *block |= cpu_to_be32(crc);
49 return length;
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
62 #define BIB_CRC(v) ((v) << 0)
63 #define BIB_CRC_LENGTH(v) ((v) << 16)
64 #define BIB_INFO_LENGTH(v) ((v) << 24)
65 #define BIB_BUS_NAME 0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v) ((v) << 0)
67 #define BIB_GENERATION(v) ((v) << 4)
68 #define BIB_MAX_ROM(v) ((v) << 8)
69 #define BIB_MAX_RECEIVE(v) ((v) << 12)
70 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
71 #define BIB_PMC ((1) << 27)
72 #define BIB_BMC ((1) << 28)
73 #define BIB_ISC ((1) << 29)
74 #define BIB_CMC ((1) << 30)
75 #define BIB_IRMC ((1) << 31)
76 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
78 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
80 struct fw_descriptor *desc;
81 int i, j, k, length;
84 * Initialize contents of config rom buffer. On the OHCI
85 * controller, block reads to the config rom accesses the host
86 * memory, but quadlet read access the hardware bus info block
87 * registers. That's just crack, but it means we should make
88 * sure the contents of bus info block in host memory matches
89 * the version stored in the OHCI registers.
92 config_rom[0] = cpu_to_be32(
93 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
94 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
95 config_rom[2] = cpu_to_be32(
96 BIB_LINK_SPEED(card->link_speed) |
97 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
98 BIB_MAX_ROM(2) |
99 BIB_MAX_RECEIVE(card->max_receive) |
100 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
101 config_rom[3] = cpu_to_be32(card->guid >> 32);
102 config_rom[4] = cpu_to_be32(card->guid);
104 /* Generate root directory. */
105 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
106 i = 7;
107 j = 7 + descriptor_count;
109 /* Generate root directory entries for descriptors. */
110 list_for_each_entry (desc, &descriptor_list, link) {
111 if (desc->immediate > 0)
112 config_rom[i++] = cpu_to_be32(desc->immediate);
113 config_rom[i] = cpu_to_be32(desc->key | (j - i));
114 i++;
115 j += desc->length;
118 /* Update root directory length. */
119 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
121 /* End of root directory, now copy in descriptors. */
122 list_for_each_entry (desc, &descriptor_list, link) {
123 for (k = 0; k < desc->length; k++)
124 config_rom[i + k] = cpu_to_be32(desc->data[k]);
125 i += desc->length;
128 /* Calculate CRCs for all blocks in the config rom. This
129 * assumes that CRC length and info length are identical for
130 * the bus info block, which is always the case for this
131 * implementation. */
132 for (i = 0; i < j; i += length + 1)
133 length = fw_compute_block_crc(config_rom + i);
135 WARN_ON(j != config_rom_length);
138 static void update_config_roms(void)
140 struct fw_card *card;
142 list_for_each_entry (card, &card_list, link) {
143 generate_config_rom(card, tmp_config_rom);
144 card->driver->set_config_rom(card, tmp_config_rom,
145 config_rom_length);
149 static size_t required_space(struct fw_descriptor *desc)
151 /* descriptor + entry into root dir + optional immediate entry */
152 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
155 int fw_core_add_descriptor(struct fw_descriptor *desc)
157 size_t i;
158 int ret;
161 * Check descriptor is valid; the length of all blocks in the
162 * descriptor has to add up to exactly the length of the
163 * block.
165 i = 0;
166 while (i < desc->length)
167 i += (desc->data[i] >> 16) + 1;
169 if (i != desc->length)
170 return -EINVAL;
172 mutex_lock(&card_mutex);
174 if (config_rom_length + required_space(desc) > 256) {
175 ret = -EBUSY;
176 } else {
177 list_add_tail(&desc->link, &descriptor_list);
178 config_rom_length += required_space(desc);
179 descriptor_count++;
180 if (desc->immediate > 0)
181 descriptor_count++;
182 update_config_roms();
183 ret = 0;
186 mutex_unlock(&card_mutex);
188 return ret;
190 EXPORT_SYMBOL(fw_core_add_descriptor);
192 void fw_core_remove_descriptor(struct fw_descriptor *desc)
194 mutex_lock(&card_mutex);
196 list_del(&desc->link);
197 config_rom_length -= required_space(desc);
198 descriptor_count--;
199 if (desc->immediate > 0)
200 descriptor_count--;
201 update_config_roms();
203 mutex_unlock(&card_mutex);
205 EXPORT_SYMBOL(fw_core_remove_descriptor);
207 static int reset_bus(struct fw_card *card, bool short_reset)
209 int reg = short_reset ? 5 : 1;
210 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
212 return card->driver->update_phy_reg(card, reg, 0, bit);
215 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
217 /* We don't try hard to sort out requests of long vs. short resets. */
218 card->br_short = short_reset;
220 /* Use an arbitrary short delay to combine multiple reset requests. */
221 fw_card_get(card);
222 if (!schedule_delayed_work(&card->br_work,
223 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
224 fw_card_put(card);
226 EXPORT_SYMBOL(fw_schedule_bus_reset);
228 static void br_work(struct work_struct *work)
230 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
232 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
233 if (card->reset_jiffies != 0 &&
234 time_is_after_jiffies(card->reset_jiffies + 2 * HZ)) {
235 if (!schedule_delayed_work(&card->br_work, 2 * HZ))
236 fw_card_put(card);
237 return;
240 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
241 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
242 reset_bus(card, card->br_short);
243 fw_card_put(card);
246 static void allocate_broadcast_channel(struct fw_card *card, int generation)
248 int channel, bandwidth = 0;
250 if (!card->broadcast_channel_allocated) {
251 fw_iso_resource_manage(card, generation, 1ULL << 31,
252 &channel, &bandwidth, true,
253 card->bm_transaction_data);
254 if (channel != 31) {
255 fw_notify("failed to allocate broadcast channel\n");
256 return;
258 card->broadcast_channel_allocated = true;
261 device_for_each_child(card->device, (void *)(long)generation,
262 fw_device_set_broadcast_channel);
265 static const char gap_count_table[] = {
266 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
269 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
271 fw_card_get(card);
272 if (!schedule_delayed_work(&card->bm_work, delay))
273 fw_card_put(card);
276 static void bm_work(struct work_struct *work)
278 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
279 struct fw_device *root_device, *irm_device;
280 struct fw_node *root_node;
281 int root_id, new_root_id, irm_id, bm_id, local_id;
282 int gap_count, generation, grace, rcode;
283 bool do_reset = false;
284 bool root_device_is_running;
285 bool root_device_is_cmc;
286 bool irm_is_1394_1995_only;
288 spin_lock_irq(&card->lock);
290 if (card->local_node == NULL) {
291 spin_unlock_irq(&card->lock);
292 goto out_put_card;
295 generation = card->generation;
297 root_node = card->root_node;
298 fw_node_get(root_node);
299 root_device = root_node->data;
300 root_device_is_running = root_device &&
301 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
302 root_device_is_cmc = root_device && root_device->cmc;
304 irm_device = card->irm_node->data;
305 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
306 (irm_device->config_rom[2] & 0x000000f0) == 0;
308 root_id = root_node->node_id;
309 irm_id = card->irm_node->node_id;
310 local_id = card->local_node->node_id;
312 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
314 if ((is_next_generation(generation, card->bm_generation) &&
315 !card->bm_abdicate) ||
316 (card->bm_generation != generation && grace)) {
318 * This first step is to figure out who is IRM and
319 * then try to become bus manager. If the IRM is not
320 * well defined (e.g. does not have an active link
321 * layer or does not responds to our lock request, we
322 * will have to do a little vigilante bus management.
323 * In that case, we do a goto into the gap count logic
324 * so that when we do the reset, we still optimize the
325 * gap count. That could well save a reset in the
326 * next generation.
329 if (!card->irm_node->link_on) {
330 new_root_id = local_id;
331 fw_notify("%s, making local node (%02x) root.\n",
332 "IRM has link off", new_root_id);
333 goto pick_me;
336 if (irm_is_1394_1995_only) {
337 new_root_id = local_id;
338 fw_notify("%s, making local node (%02x) root.\n",
339 "IRM is not 1394a compliant", new_root_id);
340 goto pick_me;
343 card->bm_transaction_data[0] = cpu_to_be32(0x3f);
344 card->bm_transaction_data[1] = cpu_to_be32(local_id);
346 spin_unlock_irq(&card->lock);
348 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
349 irm_id, generation, SCODE_100,
350 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
351 card->bm_transaction_data, 8);
353 if (rcode == RCODE_GENERATION)
354 /* Another bus reset, BM work has been rescheduled. */
355 goto out;
357 bm_id = be32_to_cpu(card->bm_transaction_data[0]);
359 spin_lock_irq(&card->lock);
360 if (rcode == RCODE_COMPLETE && generation == card->generation)
361 card->bm_node_id =
362 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
363 spin_unlock_irq(&card->lock);
365 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
366 /* Somebody else is BM. Only act as IRM. */
367 if (local_id == irm_id)
368 allocate_broadcast_channel(card, generation);
370 goto out;
373 if (rcode == RCODE_SEND_ERROR) {
375 * We have been unable to send the lock request due to
376 * some local problem. Let's try again later and hope
377 * that the problem has gone away by then.
379 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
380 goto out;
383 spin_lock_irq(&card->lock);
385 if (rcode != RCODE_COMPLETE) {
387 * The lock request failed, maybe the IRM
388 * isn't really IRM capable after all. Let's
389 * do a bus reset and pick the local node as
390 * root, and thus, IRM.
392 new_root_id = local_id;
393 fw_notify("%s, making local node (%02x) root.\n",
394 "BM lock failed", new_root_id);
395 goto pick_me;
397 } else if (card->bm_generation != generation) {
399 * We weren't BM in the last generation, and the last
400 * bus reset is less than 125ms ago. Reschedule this job.
402 spin_unlock_irq(&card->lock);
403 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
404 goto out;
408 * We're bus manager for this generation, so next step is to
409 * make sure we have an active cycle master and do gap count
410 * optimization.
412 card->bm_generation = generation;
414 if (root_device == NULL) {
416 * Either link_on is false, or we failed to read the
417 * config rom. In either case, pick another root.
419 new_root_id = local_id;
420 } else if (!root_device_is_running) {
422 * If we haven't probed this device yet, bail out now
423 * and let's try again once that's done.
425 spin_unlock_irq(&card->lock);
426 goto out;
427 } else if (root_device_is_cmc) {
429 * We will send out a force root packet for this
430 * node as part of the gap count optimization.
432 new_root_id = root_id;
433 } else {
435 * Current root has an active link layer and we
436 * successfully read the config rom, but it's not
437 * cycle master capable.
439 new_root_id = local_id;
442 pick_me:
444 * Pick a gap count from 1394a table E-1. The table doesn't cover
445 * the typically much larger 1394b beta repeater delays though.
447 if (!card->beta_repeaters_present &&
448 root_node->max_hops < ARRAY_SIZE(gap_count_table))
449 gap_count = gap_count_table[root_node->max_hops];
450 else
451 gap_count = 63;
454 * Finally, figure out if we should do a reset or not. If we have
455 * done less than 5 resets with the same physical topology and we
456 * have either a new root or a new gap count setting, let's do it.
459 if (card->bm_retries++ < 5 &&
460 (card->gap_count != gap_count || new_root_id != root_id))
461 do_reset = true;
463 spin_unlock_irq(&card->lock);
465 if (do_reset) {
466 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
467 card->index, new_root_id, gap_count);
468 fw_send_phy_config(card, new_root_id, generation, gap_count);
469 reset_bus(card, true);
470 /* Will allocate broadcast channel after the reset. */
471 goto out;
474 if (root_device_is_cmc) {
476 * Make sure that the cycle master sends cycle start packets.
478 card->bm_transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
479 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
480 root_id, generation, SCODE_100,
481 CSR_REGISTER_BASE + CSR_STATE_SET,
482 card->bm_transaction_data, 4);
483 if (rcode == RCODE_GENERATION)
484 goto out;
487 if (local_id == irm_id)
488 allocate_broadcast_channel(card, generation);
490 out:
491 fw_node_put(root_node);
492 out_put_card:
493 fw_card_put(card);
496 void fw_card_initialize(struct fw_card *card,
497 const struct fw_card_driver *driver,
498 struct device *device)
500 static atomic_t index = ATOMIC_INIT(-1);
502 card->index = atomic_inc_return(&index);
503 card->driver = driver;
504 card->device = device;
505 card->current_tlabel = 0;
506 card->tlabel_mask = 0;
507 card->split_timeout_hi = 0;
508 card->split_timeout_lo = 800 << 19;
509 card->split_timeout_cycles = 800;
510 card->split_timeout_jiffies = DIV_ROUND_UP(HZ, 10);
511 card->color = 0;
512 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
514 kref_init(&card->kref);
515 init_completion(&card->done);
516 INIT_LIST_HEAD(&card->transaction_list);
517 INIT_LIST_HEAD(&card->phy_receiver_list);
518 spin_lock_init(&card->lock);
520 card->local_node = NULL;
522 INIT_DELAYED_WORK(&card->br_work, br_work);
523 INIT_DELAYED_WORK(&card->bm_work, bm_work);
525 EXPORT_SYMBOL(fw_card_initialize);
527 int fw_card_add(struct fw_card *card,
528 u32 max_receive, u32 link_speed, u64 guid)
530 int ret;
532 card->max_receive = max_receive;
533 card->link_speed = link_speed;
534 card->guid = guid;
536 mutex_lock(&card_mutex);
538 generate_config_rom(card, tmp_config_rom);
539 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
540 if (ret == 0)
541 list_add_tail(&card->link, &card_list);
543 mutex_unlock(&card_mutex);
545 return ret;
547 EXPORT_SYMBOL(fw_card_add);
550 * The next few functions implement a dummy driver that is used once a card
551 * driver shuts down an fw_card. This allows the driver to cleanly unload,
552 * as all IO to the card will be handled (and failed) by the dummy driver
553 * instead of calling into the module. Only functions for iso context
554 * shutdown still need to be provided by the card driver.
556 * .read/write_csr() should never be called anymore after the dummy driver
557 * was bound since they are only used within request handler context.
558 * .set_config_rom() is never called since the card is taken out of card_list
559 * before switching to the dummy driver.
562 static int dummy_read_phy_reg(struct fw_card *card, int address)
564 return -ENODEV;
567 static int dummy_update_phy_reg(struct fw_card *card, int address,
568 int clear_bits, int set_bits)
570 return -ENODEV;
573 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
575 packet->callback(packet, card, RCODE_CANCELLED);
578 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
580 packet->callback(packet, card, RCODE_CANCELLED);
583 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
585 return -ENOENT;
588 static int dummy_enable_phys_dma(struct fw_card *card,
589 int node_id, int generation)
591 return -ENODEV;
594 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
595 int type, int channel, size_t header_size)
597 return ERR_PTR(-ENODEV);
600 static int dummy_start_iso(struct fw_iso_context *ctx,
601 s32 cycle, u32 sync, u32 tags)
603 return -ENODEV;
606 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
608 return -ENODEV;
611 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
612 struct fw_iso_buffer *buffer, unsigned long payload)
614 return -ENODEV;
617 static const struct fw_card_driver dummy_driver_template = {
618 .read_phy_reg = dummy_read_phy_reg,
619 .update_phy_reg = dummy_update_phy_reg,
620 .send_request = dummy_send_request,
621 .send_response = dummy_send_response,
622 .cancel_packet = dummy_cancel_packet,
623 .enable_phys_dma = dummy_enable_phys_dma,
624 .allocate_iso_context = dummy_allocate_iso_context,
625 .start_iso = dummy_start_iso,
626 .set_iso_channels = dummy_set_iso_channels,
627 .queue_iso = dummy_queue_iso,
630 void fw_card_release(struct kref *kref)
632 struct fw_card *card = container_of(kref, struct fw_card, kref);
634 complete(&card->done);
637 void fw_core_remove_card(struct fw_card *card)
639 struct fw_card_driver dummy_driver = dummy_driver_template;
641 card->driver->update_phy_reg(card, 4,
642 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
643 fw_schedule_bus_reset(card, false, true);
645 mutex_lock(&card_mutex);
646 list_del_init(&card->link);
647 mutex_unlock(&card_mutex);
649 /* Switch off most of the card driver interface. */
650 dummy_driver.free_iso_context = card->driver->free_iso_context;
651 dummy_driver.stop_iso = card->driver->stop_iso;
652 card->driver = &dummy_driver;
654 fw_destroy_nodes(card);
656 /* Wait for all users, especially device workqueue jobs, to finish. */
657 fw_card_put(card);
658 wait_for_completion(&card->done);
660 WARN_ON(!list_empty(&card->transaction_list));
662 EXPORT_SYMBOL(fw_core_remove_card);