staging: brcm80211: assure common sources are truly common
[zen-stable.git] / drivers / firewire / core-device.c
blob6113b896e7901013d8564967e45edd5d8988c5d7
1 /*
2 * Device probing and sysfs code.
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
43 #include <asm/system.h>
45 #include "core.h"
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
52 EXPORT_SYMBOL(fw_csr_iterator_init);
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
59 return ci->p++ < ci->end;
61 EXPORT_SYMBOL(fw_csr_iterator_next);
63 static const u32 *search_leaf(const u32 *directory, int search_key)
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
74 last_key = key;
77 return NULL;
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
82 unsigned int quadlets, i;
83 char c;
85 if (!size || !buf)
86 return -EINVAL;
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
104 buf[i] = '\0';
106 return i;
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf)
124 return -ENOENT;
126 return textual_leaf_to_string(leaf, buf, size);
128 EXPORT_SYMBOL(fw_csr_string);
130 static void get_ids(const u32 *directory, int *id)
132 struct fw_csr_iterator ci;
133 int key, value;
135 fw_csr_iterator_init(&ci, directory);
136 while (fw_csr_iterator_next(&ci, &key, &value)) {
137 switch (key) {
138 case CSR_VENDOR: id[0] = value; break;
139 case CSR_MODEL: id[1] = value; break;
140 case CSR_SPECIFIER_ID: id[2] = value; break;
141 case CSR_VERSION: id[3] = value; break;
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
148 get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 get_ids(unit->directory, id);
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
154 int match = 0;
156 if (id[0] == id_table->vendor_id)
157 match |= IEEE1394_MATCH_VENDOR_ID;
158 if (id[1] == id_table->model_id)
159 match |= IEEE1394_MATCH_MODEL_ID;
160 if (id[2] == id_table->specifier_id)
161 match |= IEEE1394_MATCH_SPECIFIER_ID;
162 if (id[3] == id_table->version)
163 match |= IEEE1394_MATCH_VERSION;
165 return (match & id_table->match_flags) == id_table->match_flags;
168 static bool is_fw_unit(struct device *dev);
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
172 const struct ieee1394_device_id *id_table =
173 container_of(drv, struct fw_driver, driver)->id_table;
174 int id[] = {0, 0, 0, 0};
176 /* We only allow binding to fw_units. */
177 if (!is_fw_unit(dev))
178 return 0;
180 get_modalias_ids(fw_unit(dev), id);
182 for (; id_table->match_flags != 0; id_table++)
183 if (match_ids(id_table, id))
184 return 1;
186 return 0;
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
191 int id[] = {0, 0, 0, 0};
193 get_modalias_ids(unit, id);
195 return snprintf(buffer, buffer_size,
196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 id[0], id[1], id[2], id[3]);
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
202 struct fw_unit *unit = fw_unit(dev);
203 char modalias[64];
205 get_modalias(unit, modalias, sizeof(modalias));
207 if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 return -ENOMEM;
210 return 0;
213 struct bus_type fw_bus_type = {
214 .name = "firewire",
215 .match = fw_unit_match,
217 EXPORT_SYMBOL(fw_bus_type);
219 int fw_device_enable_phys_dma(struct fw_device *device)
221 int generation = device->generation;
223 /* device->node_id, accessed below, must not be older than generation */
224 smp_rmb();
226 return device->card->driver->enable_phys_dma(device->card,
227 device->node_id,
228 generation);
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
232 struct config_rom_attribute {
233 struct device_attribute attr;
234 u32 key;
237 static ssize_t show_immediate(struct device *dev,
238 struct device_attribute *dattr, char *buf)
240 struct config_rom_attribute *attr =
241 container_of(dattr, struct config_rom_attribute, attr);
242 struct fw_csr_iterator ci;
243 const u32 *dir;
244 int key, value, ret = -ENOENT;
246 down_read(&fw_device_rwsem);
248 if (is_fw_unit(dev))
249 dir = fw_unit(dev)->directory;
250 else
251 dir = fw_device(dev)->config_rom + 5;
253 fw_csr_iterator_init(&ci, dir);
254 while (fw_csr_iterator_next(&ci, &key, &value))
255 if (attr->key == key) {
256 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 "0x%06x\n", value);
258 break;
261 up_read(&fw_device_rwsem);
263 return ret;
266 #define IMMEDIATE_ATTR(name, key) \
267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
269 static ssize_t show_text_leaf(struct device *dev,
270 struct device_attribute *dattr, char *buf)
272 struct config_rom_attribute *attr =
273 container_of(dattr, struct config_rom_attribute, attr);
274 const u32 *dir;
275 size_t bufsize;
276 char dummy_buf[2];
277 int ret;
279 down_read(&fw_device_rwsem);
281 if (is_fw_unit(dev))
282 dir = fw_unit(dev)->directory;
283 else
284 dir = fw_device(dev)->config_rom + 5;
286 if (buf) {
287 bufsize = PAGE_SIZE - 1;
288 } else {
289 buf = dummy_buf;
290 bufsize = 1;
293 ret = fw_csr_string(dir, attr->key, buf, bufsize);
295 if (ret >= 0) {
296 /* Strip trailing whitespace and add newline. */
297 while (ret > 0 && isspace(buf[ret - 1]))
298 ret--;
299 strcpy(buf + ret, "\n");
300 ret++;
303 up_read(&fw_device_rwsem);
305 return ret;
308 #define TEXT_LEAF_ATTR(name, key) \
309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
311 static struct config_rom_attribute config_rom_attributes[] = {
312 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 IMMEDIATE_ATTR(version, CSR_VERSION),
316 IMMEDIATE_ATTR(model, CSR_MODEL),
317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
322 static void init_fw_attribute_group(struct device *dev,
323 struct device_attribute *attrs,
324 struct fw_attribute_group *group)
326 struct device_attribute *attr;
327 int i, j;
329 for (j = 0; attrs[j].attr.name != NULL; j++)
330 group->attrs[j] = &attrs[j].attr;
332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 attr = &config_rom_attributes[i].attr;
334 if (attr->show(dev, attr, NULL) < 0)
335 continue;
336 group->attrs[j++] = &attr->attr;
339 group->attrs[j] = NULL;
340 group->groups[0] = &group->group;
341 group->groups[1] = NULL;
342 group->group.attrs = group->attrs;
343 dev->groups = (const struct attribute_group **) group->groups;
346 static ssize_t modalias_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
349 struct fw_unit *unit = fw_unit(dev);
350 int length;
352 length = get_modalias(unit, buf, PAGE_SIZE);
353 strcpy(buf + length, "\n");
355 return length + 1;
358 static ssize_t rom_index_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
361 struct fw_device *device = fw_device(dev->parent);
362 struct fw_unit *unit = fw_unit(dev);
364 return snprintf(buf, PAGE_SIZE, "%d\n",
365 (int)(unit->directory - device->config_rom));
368 static struct device_attribute fw_unit_attributes[] = {
369 __ATTR_RO(modalias),
370 __ATTR_RO(rom_index),
371 __ATTR_NULL,
374 static ssize_t config_rom_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
377 struct fw_device *device = fw_device(dev);
378 size_t length;
380 down_read(&fw_device_rwsem);
381 length = device->config_rom_length * 4;
382 memcpy(buf, device->config_rom, length);
383 up_read(&fw_device_rwsem);
385 return length;
388 static ssize_t guid_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
391 struct fw_device *device = fw_device(dev);
392 int ret;
394 down_read(&fw_device_rwsem);
395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 device->config_rom[3], device->config_rom[4]);
397 up_read(&fw_device_rwsem);
399 return ret;
402 static int units_sprintf(char *buf, const u32 *directory)
404 struct fw_csr_iterator ci;
405 int key, value;
406 int specifier_id = 0;
407 int version = 0;
409 fw_csr_iterator_init(&ci, directory);
410 while (fw_csr_iterator_next(&ci, &key, &value)) {
411 switch (key) {
412 case CSR_SPECIFIER_ID:
413 specifier_id = value;
414 break;
415 case CSR_VERSION:
416 version = value;
417 break;
421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
424 static ssize_t units_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
427 struct fw_device *device = fw_device(dev);
428 struct fw_csr_iterator ci;
429 int key, value, i = 0;
431 down_read(&fw_device_rwsem);
432 fw_csr_iterator_init(&ci, &device->config_rom[5]);
433 while (fw_csr_iterator_next(&ci, &key, &value)) {
434 if (key != (CSR_UNIT | CSR_DIRECTORY))
435 continue;
436 i += units_sprintf(&buf[i], ci.p + value - 1);
437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438 break;
440 up_read(&fw_device_rwsem);
442 if (i)
443 buf[i - 1] = '\n';
445 return i;
448 static struct device_attribute fw_device_attributes[] = {
449 __ATTR_RO(config_rom),
450 __ATTR_RO(guid),
451 __ATTR_RO(units),
452 __ATTR_NULL,
455 static int read_rom(struct fw_device *device,
456 int generation, int index, u32 *data)
458 int rcode;
460 /* device->node_id, accessed below, must not be older than generation */
461 smp_rmb();
463 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
464 device->node_id, generation, device->max_speed,
465 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
466 data, 4);
467 be32_to_cpus(data);
469 return rcode;
472 #define MAX_CONFIG_ROM_SIZE 256
475 * Read the bus info block, perform a speed probe, and read all of the rest of
476 * the config ROM. We do all this with a cached bus generation. If the bus
477 * generation changes under us, read_config_rom will fail and get retried.
478 * It's better to start all over in this case because the node from which we
479 * are reading the ROM may have changed the ROM during the reset.
481 static int read_config_rom(struct fw_device *device, int generation)
483 const u32 *old_rom, *new_rom;
484 u32 *rom, *stack;
485 u32 sp, key;
486 int i, end, length, ret = -1;
488 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
489 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
490 if (rom == NULL)
491 return -ENOMEM;
493 stack = &rom[MAX_CONFIG_ROM_SIZE];
494 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
496 device->max_speed = SCODE_100;
498 /* First read the bus info block. */
499 for (i = 0; i < 5; i++) {
500 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
501 goto out;
503 * As per IEEE1212 7.2, during power-up, devices can
504 * reply with a 0 for the first quadlet of the config
505 * rom to indicate that they are booting (for example,
506 * if the firmware is on the disk of a external
507 * harddisk). In that case we just fail, and the
508 * retry mechanism will try again later.
510 if (i == 0 && rom[i] == 0)
511 goto out;
514 device->max_speed = device->node->max_speed;
517 * Determine the speed of
518 * - devices with link speed less than PHY speed,
519 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
520 * - all devices if there are 1394b repeaters.
521 * Note, we cannot use the bus info block's link_spd as starting point
522 * because some buggy firmwares set it lower than necessary and because
523 * 1394-1995 nodes do not have the field.
525 if ((rom[2] & 0x7) < device->max_speed ||
526 device->max_speed == SCODE_BETA ||
527 device->card->beta_repeaters_present) {
528 u32 dummy;
530 /* for S1600 and S3200 */
531 if (device->max_speed == SCODE_BETA)
532 device->max_speed = device->card->link_speed;
534 while (device->max_speed > SCODE_100) {
535 if (read_rom(device, generation, 0, &dummy) ==
536 RCODE_COMPLETE)
537 break;
538 device->max_speed--;
543 * Now parse the config rom. The config rom is a recursive
544 * directory structure so we parse it using a stack of
545 * references to the blocks that make up the structure. We
546 * push a reference to the root directory on the stack to
547 * start things off.
549 length = i;
550 sp = 0;
551 stack[sp++] = 0xc0000005;
552 while (sp > 0) {
554 * Pop the next block reference of the stack. The
555 * lower 24 bits is the offset into the config rom,
556 * the upper 8 bits are the type of the reference the
557 * block.
559 key = stack[--sp];
560 i = key & 0xffffff;
561 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
562 goto out;
564 /* Read header quadlet for the block to get the length. */
565 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
566 goto out;
567 end = i + (rom[i] >> 16) + 1;
568 if (end > MAX_CONFIG_ROM_SIZE) {
570 * This block extends outside the config ROM which is
571 * a firmware bug. Ignore this whole block, i.e.
572 * simply set a fake block length of 0.
574 fw_error("skipped invalid ROM block %x at %llx\n",
575 rom[i],
576 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
577 rom[i] = 0;
578 end = i;
580 i++;
583 * Now read in the block. If this is a directory
584 * block, check the entries as we read them to see if
585 * it references another block, and push it in that case.
587 for (; i < end; i++) {
588 if (read_rom(device, generation, i, &rom[i]) !=
589 RCODE_COMPLETE)
590 goto out;
592 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
593 continue;
595 * Offset points outside the ROM. May be a firmware
596 * bug or an Extended ROM entry (IEEE 1212-2001 clause
597 * 7.7.18). Simply overwrite this pointer here by a
598 * fake immediate entry so that later iterators over
599 * the ROM don't have to check offsets all the time.
601 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
602 fw_error("skipped unsupported ROM entry %x at %llx\n",
603 rom[i],
604 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
605 rom[i] = 0;
606 continue;
608 stack[sp++] = i + rom[i];
610 if (length < i)
611 length = i;
614 old_rom = device->config_rom;
615 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
616 if (new_rom == NULL)
617 goto out;
619 down_write(&fw_device_rwsem);
620 device->config_rom = new_rom;
621 device->config_rom_length = length;
622 up_write(&fw_device_rwsem);
624 kfree(old_rom);
625 ret = 0;
626 device->max_rec = rom[2] >> 12 & 0xf;
627 device->cmc = rom[2] >> 30 & 1;
628 device->irmc = rom[2] >> 31 & 1;
629 out:
630 kfree(rom);
632 return ret;
635 static void fw_unit_release(struct device *dev)
637 struct fw_unit *unit = fw_unit(dev);
639 kfree(unit);
642 static struct device_type fw_unit_type = {
643 .uevent = fw_unit_uevent,
644 .release = fw_unit_release,
647 static bool is_fw_unit(struct device *dev)
649 return dev->type == &fw_unit_type;
652 static void create_units(struct fw_device *device)
654 struct fw_csr_iterator ci;
655 struct fw_unit *unit;
656 int key, value, i;
658 i = 0;
659 fw_csr_iterator_init(&ci, &device->config_rom[5]);
660 while (fw_csr_iterator_next(&ci, &key, &value)) {
661 if (key != (CSR_UNIT | CSR_DIRECTORY))
662 continue;
665 * Get the address of the unit directory and try to
666 * match the drivers id_tables against it.
668 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
669 if (unit == NULL) {
670 fw_error("failed to allocate memory for unit\n");
671 continue;
674 unit->directory = ci.p + value - 1;
675 unit->device.bus = &fw_bus_type;
676 unit->device.type = &fw_unit_type;
677 unit->device.parent = &device->device;
678 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
680 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
681 ARRAY_SIZE(fw_unit_attributes) +
682 ARRAY_SIZE(config_rom_attributes));
683 init_fw_attribute_group(&unit->device,
684 fw_unit_attributes,
685 &unit->attribute_group);
687 if (device_register(&unit->device) < 0)
688 goto skip_unit;
690 continue;
692 skip_unit:
693 kfree(unit);
697 static int shutdown_unit(struct device *device, void *data)
699 device_unregister(device);
701 return 0;
705 * fw_device_rwsem acts as dual purpose mutex:
706 * - serializes accesses to fw_device_idr,
707 * - serializes accesses to fw_device.config_rom/.config_rom_length and
708 * fw_unit.directory, unless those accesses happen at safe occasions
710 DECLARE_RWSEM(fw_device_rwsem);
712 DEFINE_IDR(fw_device_idr);
713 int fw_cdev_major;
715 struct fw_device *fw_device_get_by_devt(dev_t devt)
717 struct fw_device *device;
719 down_read(&fw_device_rwsem);
720 device = idr_find(&fw_device_idr, MINOR(devt));
721 if (device)
722 fw_device_get(device);
723 up_read(&fw_device_rwsem);
725 return device;
729 * These defines control the retry behavior for reading the config
730 * rom. It shouldn't be necessary to tweak these; if the device
731 * doesn't respond to a config rom read within 10 seconds, it's not
732 * going to respond at all. As for the initial delay, a lot of
733 * devices will be able to respond within half a second after bus
734 * reset. On the other hand, it's not really worth being more
735 * aggressive than that, since it scales pretty well; if 10 devices
736 * are plugged in, they're all getting read within one second.
739 #define MAX_RETRIES 10
740 #define RETRY_DELAY (3 * HZ)
741 #define INITIAL_DELAY (HZ / 2)
742 #define SHUTDOWN_DELAY (2 * HZ)
744 static void fw_device_shutdown(struct work_struct *work)
746 struct fw_device *device =
747 container_of(work, struct fw_device, work.work);
748 int minor = MINOR(device->device.devt);
750 if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
751 && !list_empty(&device->card->link)) {
752 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
753 return;
756 if (atomic_cmpxchg(&device->state,
757 FW_DEVICE_GONE,
758 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
759 return;
761 fw_device_cdev_remove(device);
762 device_for_each_child(&device->device, NULL, shutdown_unit);
763 device_unregister(&device->device);
765 down_write(&fw_device_rwsem);
766 idr_remove(&fw_device_idr, minor);
767 up_write(&fw_device_rwsem);
769 fw_device_put(device);
772 static void fw_device_release(struct device *dev)
774 struct fw_device *device = fw_device(dev);
775 struct fw_card *card = device->card;
776 unsigned long flags;
779 * Take the card lock so we don't set this to NULL while a
780 * FW_NODE_UPDATED callback is being handled or while the
781 * bus manager work looks at this node.
783 spin_lock_irqsave(&card->lock, flags);
784 device->node->data = NULL;
785 spin_unlock_irqrestore(&card->lock, flags);
787 fw_node_put(device->node);
788 kfree(device->config_rom);
789 kfree(device);
790 fw_card_put(card);
793 static struct device_type fw_device_type = {
794 .release = fw_device_release,
797 static bool is_fw_device(struct device *dev)
799 return dev->type == &fw_device_type;
802 static int update_unit(struct device *dev, void *data)
804 struct fw_unit *unit = fw_unit(dev);
805 struct fw_driver *driver = (struct fw_driver *)dev->driver;
807 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
808 device_lock(dev);
809 driver->update(unit);
810 device_unlock(dev);
813 return 0;
816 static void fw_device_update(struct work_struct *work)
818 struct fw_device *device =
819 container_of(work, struct fw_device, work.work);
821 fw_device_cdev_update(device);
822 device_for_each_child(&device->device, NULL, update_unit);
826 * If a device was pending for deletion because its node went away but its
827 * bus info block and root directory header matches that of a newly discovered
828 * device, revive the existing fw_device.
829 * The newly allocated fw_device becomes obsolete instead.
831 static int lookup_existing_device(struct device *dev, void *data)
833 struct fw_device *old = fw_device(dev);
834 struct fw_device *new = data;
835 struct fw_card *card = new->card;
836 int match = 0;
838 if (!is_fw_device(dev))
839 return 0;
841 down_read(&fw_device_rwsem); /* serialize config_rom access */
842 spin_lock_irq(&card->lock); /* serialize node access */
844 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
845 atomic_cmpxchg(&old->state,
846 FW_DEVICE_GONE,
847 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
848 struct fw_node *current_node = new->node;
849 struct fw_node *obsolete_node = old->node;
851 new->node = obsolete_node;
852 new->node->data = new;
853 old->node = current_node;
854 old->node->data = old;
856 old->max_speed = new->max_speed;
857 old->node_id = current_node->node_id;
858 smp_wmb(); /* update node_id before generation */
859 old->generation = card->generation;
860 old->config_rom_retries = 0;
861 fw_notify("rediscovered device %s\n", dev_name(dev));
863 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
864 schedule_delayed_work(&old->work, 0);
866 if (current_node == card->root_node)
867 fw_schedule_bm_work(card, 0);
869 match = 1;
872 spin_unlock_irq(&card->lock);
873 up_read(&fw_device_rwsem);
875 return match;
878 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
880 static void set_broadcast_channel(struct fw_device *device, int generation)
882 struct fw_card *card = device->card;
883 __be32 data;
884 int rcode;
886 if (!card->broadcast_channel_allocated)
887 return;
890 * The Broadcast_Channel Valid bit is required by nodes which want to
891 * transmit on this channel. Such transmissions are practically
892 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
893 * to be IRM capable and have a max_rec of 8 or more. We use this fact
894 * to narrow down to which nodes we send Broadcast_Channel updates.
896 if (!device->irmc || device->max_rec < 8)
897 return;
900 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
901 * Perform a read test first.
903 if (device->bc_implemented == BC_UNKNOWN) {
904 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
905 device->node_id, generation, device->max_speed,
906 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
907 &data, 4);
908 switch (rcode) {
909 case RCODE_COMPLETE:
910 if (data & cpu_to_be32(1 << 31)) {
911 device->bc_implemented = BC_IMPLEMENTED;
912 break;
914 /* else fall through to case address error */
915 case RCODE_ADDRESS_ERROR:
916 device->bc_implemented = BC_UNIMPLEMENTED;
920 if (device->bc_implemented == BC_IMPLEMENTED) {
921 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
922 BROADCAST_CHANNEL_VALID);
923 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
924 device->node_id, generation, device->max_speed,
925 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
926 &data, 4);
930 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
932 if (is_fw_device(dev))
933 set_broadcast_channel(fw_device(dev), (long)gen);
935 return 0;
938 static void fw_device_init(struct work_struct *work)
940 struct fw_device *device =
941 container_of(work, struct fw_device, work.work);
942 struct device *revived_dev;
943 int minor, ret;
946 * All failure paths here set node->data to NULL, so that we
947 * don't try to do device_for_each_child() on a kfree()'d
948 * device.
951 if (read_config_rom(device, device->generation) < 0) {
952 if (device->config_rom_retries < MAX_RETRIES &&
953 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
954 device->config_rom_retries++;
955 schedule_delayed_work(&device->work, RETRY_DELAY);
956 } else {
957 fw_notify("giving up on config rom for node id %x\n",
958 device->node_id);
959 if (device->node == device->card->root_node)
960 fw_schedule_bm_work(device->card, 0);
961 fw_device_release(&device->device);
963 return;
966 revived_dev = device_find_child(device->card->device,
967 device, lookup_existing_device);
968 if (revived_dev) {
969 put_device(revived_dev);
970 fw_device_release(&device->device);
972 return;
975 device_initialize(&device->device);
977 fw_device_get(device);
978 down_write(&fw_device_rwsem);
979 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
980 idr_get_new(&fw_device_idr, device, &minor) :
981 -ENOMEM;
982 up_write(&fw_device_rwsem);
984 if (ret < 0)
985 goto error;
987 device->device.bus = &fw_bus_type;
988 device->device.type = &fw_device_type;
989 device->device.parent = device->card->device;
990 device->device.devt = MKDEV(fw_cdev_major, minor);
991 dev_set_name(&device->device, "fw%d", minor);
993 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
994 ARRAY_SIZE(fw_device_attributes) +
995 ARRAY_SIZE(config_rom_attributes));
996 init_fw_attribute_group(&device->device,
997 fw_device_attributes,
998 &device->attribute_group);
1000 if (device_add(&device->device)) {
1001 fw_error("Failed to add device.\n");
1002 goto error_with_cdev;
1005 create_units(device);
1008 * Transition the device to running state. If it got pulled
1009 * out from under us while we did the intialization work, we
1010 * have to shut down the device again here. Normally, though,
1011 * fw_node_event will be responsible for shutting it down when
1012 * necessary. We have to use the atomic cmpxchg here to avoid
1013 * racing with the FW_NODE_DESTROYED case in
1014 * fw_node_event().
1016 if (atomic_cmpxchg(&device->state,
1017 FW_DEVICE_INITIALIZING,
1018 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1019 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1020 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1021 } else {
1022 if (device->config_rom_retries)
1023 fw_notify("created device %s: GUID %08x%08x, S%d00, "
1024 "%d config ROM retries\n",
1025 dev_name(&device->device),
1026 device->config_rom[3], device->config_rom[4],
1027 1 << device->max_speed,
1028 device->config_rom_retries);
1029 else
1030 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1031 dev_name(&device->device),
1032 device->config_rom[3], device->config_rom[4],
1033 1 << device->max_speed);
1034 device->config_rom_retries = 0;
1036 set_broadcast_channel(device, device->generation);
1040 * Reschedule the IRM work if we just finished reading the
1041 * root node config rom. If this races with a bus reset we
1042 * just end up running the IRM work a couple of extra times -
1043 * pretty harmless.
1045 if (device->node == device->card->root_node)
1046 fw_schedule_bm_work(device->card, 0);
1048 return;
1050 error_with_cdev:
1051 down_write(&fw_device_rwsem);
1052 idr_remove(&fw_device_idr, minor);
1053 up_write(&fw_device_rwsem);
1054 error:
1055 fw_device_put(device); /* fw_device_idr's reference */
1057 put_device(&device->device); /* our reference */
1060 enum {
1061 REREAD_BIB_ERROR,
1062 REREAD_BIB_GONE,
1063 REREAD_BIB_UNCHANGED,
1064 REREAD_BIB_CHANGED,
1067 /* Reread and compare bus info block and header of root directory */
1068 static int reread_config_rom(struct fw_device *device, int generation)
1070 u32 q;
1071 int i;
1073 for (i = 0; i < 6; i++) {
1074 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1075 return REREAD_BIB_ERROR;
1077 if (i == 0 && q == 0)
1078 return REREAD_BIB_GONE;
1080 if (q != device->config_rom[i])
1081 return REREAD_BIB_CHANGED;
1084 return REREAD_BIB_UNCHANGED;
1087 static void fw_device_refresh(struct work_struct *work)
1089 struct fw_device *device =
1090 container_of(work, struct fw_device, work.work);
1091 struct fw_card *card = device->card;
1092 int node_id = device->node_id;
1094 switch (reread_config_rom(device, device->generation)) {
1095 case REREAD_BIB_ERROR:
1096 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1097 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1098 device->config_rom_retries++;
1099 schedule_delayed_work(&device->work, RETRY_DELAY / 2);
1101 return;
1103 goto give_up;
1105 case REREAD_BIB_GONE:
1106 goto gone;
1108 case REREAD_BIB_UNCHANGED:
1109 if (atomic_cmpxchg(&device->state,
1110 FW_DEVICE_INITIALIZING,
1111 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1112 goto gone;
1114 fw_device_update(work);
1115 device->config_rom_retries = 0;
1116 goto out;
1118 case REREAD_BIB_CHANGED:
1119 break;
1123 * Something changed. We keep things simple and don't investigate
1124 * further. We just destroy all previous units and create new ones.
1126 device_for_each_child(&device->device, NULL, shutdown_unit);
1128 if (read_config_rom(device, device->generation) < 0) {
1129 if (device->config_rom_retries < MAX_RETRIES &&
1130 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1131 device->config_rom_retries++;
1132 schedule_delayed_work(&device->work, RETRY_DELAY);
1134 return;
1136 goto give_up;
1139 fw_device_cdev_update(device);
1140 create_units(device);
1142 /* Userspace may want to re-read attributes. */
1143 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1145 if (atomic_cmpxchg(&device->state,
1146 FW_DEVICE_INITIALIZING,
1147 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1148 goto gone;
1150 fw_notify("refreshed device %s\n", dev_name(&device->device));
1151 device->config_rom_retries = 0;
1152 goto out;
1154 give_up:
1155 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1156 gone:
1157 atomic_set(&device->state, FW_DEVICE_GONE);
1158 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1159 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1160 out:
1161 if (node_id == card->root_node->node_id)
1162 fw_schedule_bm_work(card, 0);
1165 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1167 struct fw_device *device;
1169 switch (event) {
1170 case FW_NODE_CREATED:
1171 case FW_NODE_LINK_ON:
1172 if (!node->link_on)
1173 break;
1174 create:
1175 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1176 if (device == NULL)
1177 break;
1180 * Do minimal intialization of the device here, the
1181 * rest will happen in fw_device_init().
1183 * Attention: A lot of things, even fw_device_get(),
1184 * cannot be done before fw_device_init() finished!
1185 * You can basically just check device->state and
1186 * schedule work until then, but only while holding
1187 * card->lock.
1189 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1190 device->card = fw_card_get(card);
1191 device->node = fw_node_get(node);
1192 device->node_id = node->node_id;
1193 device->generation = card->generation;
1194 device->is_local = node == card->local_node;
1195 mutex_init(&device->client_list_mutex);
1196 INIT_LIST_HEAD(&device->client_list);
1199 * Set the node data to point back to this device so
1200 * FW_NODE_UPDATED callbacks can update the node_id
1201 * and generation for the device.
1203 node->data = device;
1206 * Many devices are slow to respond after bus resets,
1207 * especially if they are bus powered and go through
1208 * power-up after getting plugged in. We schedule the
1209 * first config rom scan half a second after bus reset.
1211 INIT_DELAYED_WORK(&device->work, fw_device_init);
1212 schedule_delayed_work(&device->work, INITIAL_DELAY);
1213 break;
1215 case FW_NODE_INITIATED_RESET:
1216 device = node->data;
1217 if (device == NULL)
1218 goto create;
1220 device->node_id = node->node_id;
1221 smp_wmb(); /* update node_id before generation */
1222 device->generation = card->generation;
1223 if (atomic_cmpxchg(&device->state,
1224 FW_DEVICE_RUNNING,
1225 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1226 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1227 schedule_delayed_work(&device->work,
1228 device->is_local ? 0 : INITIAL_DELAY);
1230 break;
1232 case FW_NODE_UPDATED:
1233 if (!node->link_on || node->data == NULL)
1234 break;
1236 device = node->data;
1237 device->node_id = node->node_id;
1238 smp_wmb(); /* update node_id before generation */
1239 device->generation = card->generation;
1240 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1241 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1242 schedule_delayed_work(&device->work, 0);
1244 break;
1246 case FW_NODE_DESTROYED:
1247 case FW_NODE_LINK_OFF:
1248 if (!node->data)
1249 break;
1252 * Destroy the device associated with the node. There
1253 * are two cases here: either the device is fully
1254 * initialized (FW_DEVICE_RUNNING) or we're in the
1255 * process of reading its config rom
1256 * (FW_DEVICE_INITIALIZING). If it is fully
1257 * initialized we can reuse device->work to schedule a
1258 * full fw_device_shutdown(). If not, there's work
1259 * scheduled to read it's config rom, and we just put
1260 * the device in shutdown state to have that code fail
1261 * to create the device.
1263 device = node->data;
1264 if (atomic_xchg(&device->state,
1265 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1266 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1267 schedule_delayed_work(&device->work,
1268 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1270 break;