staging: brcm80211: assure common sources are truly common
[zen-stable.git] / drivers / firewire / ohci.c
blobbd3c61b6dd8d5a76cab9f6380fd4e4a08e959ed6
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
106 struct context;
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 bool running;
129 bool flushing;
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
134 * free buffers.
136 struct list_head buffer_list;
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
142 struct descriptor_buffer *buffer_tail;
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
148 struct descriptor *last;
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
154 struct descriptor *prev;
156 descriptor_callback_t callback;
158 struct tasklet_struct tasklet;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 struct iso_context {
169 struct fw_iso_context base;
170 struct context context;
171 int excess_bytes;
172 void *header;
173 size_t header_length;
175 u8 sync;
176 u8 tags;
179 #define CONFIG_ROM_SIZE 1024
181 struct fw_ohci {
182 struct fw_card card;
184 __iomem char *registers;
185 int node_id;
186 int generation;
187 int request_generation; /* for timestamping incoming requests */
188 unsigned quirks;
189 unsigned int pri_req_max;
190 u32 bus_time;
191 bool is_root;
192 bool csr_state_setclear_abdicate;
193 int n_ir;
194 int n_it;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
199 spinlock_t lock;
201 struct mutex phy_reg_mutex;
203 void *misc_buffer;
204 dma_addr_t misc_buffer_bus;
206 struct ar_context ar_request_ctx;
207 struct ar_context ar_response_ctx;
208 struct context at_request_ctx;
209 struct context at_response_ctx;
211 u32 it_context_mask; /* unoccupied IT contexts */
212 struct iso_context *it_context_list;
213 u64 ir_context_channels; /* unoccupied channels */
214 u32 ir_context_mask; /* unoccupied IR contexts */
215 struct iso_context *ir_context_list;
216 u64 mc_channels; /* channels in use by the multichannel IR context */
217 bool mc_allocated;
219 __be32 *config_rom;
220 dma_addr_t config_rom_bus;
221 __be32 *next_config_rom;
222 dma_addr_t next_config_rom_bus;
223 __be32 next_header;
225 __le32 *self_id_cpu;
226 dma_addr_t self_id_bus;
227 struct tasklet_struct bus_reset_tasklet;
229 u32 self_id_buffer[512];
232 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
234 return container_of(card, struct fw_ohci, card);
237 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
238 #define IR_CONTEXT_BUFFER_FILL 0x80000000
239 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
240 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
241 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
242 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
244 #define CONTEXT_RUN 0x8000
245 #define CONTEXT_WAKE 0x1000
246 #define CONTEXT_DEAD 0x0800
247 #define CONTEXT_ACTIVE 0x0400
249 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
250 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
251 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
253 #define OHCI1394_REGISTER_SIZE 0x800
254 #define OHCI_LOOP_COUNT 500
255 #define OHCI1394_PCI_HCI_Control 0x40
256 #define SELF_ID_BUF_SIZE 0x800
257 #define OHCI_TCODE_PHY_PACKET 0x0e
258 #define OHCI_VERSION_1_1 0x010010
260 static char ohci_driver_name[] = KBUILD_MODNAME;
262 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
263 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
264 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
266 #define QUIRK_CYCLE_TIMER 1
267 #define QUIRK_RESET_PACKET 2
268 #define QUIRK_BE_HEADERS 4
269 #define QUIRK_NO_1394A 8
270 #define QUIRK_NO_MSI 16
272 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
273 static const struct {
274 unsigned short vendor, device, revision, flags;
275 } ohci_quirks[] = {
276 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
277 QUIRK_CYCLE_TIMER},
279 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
280 QUIRK_BE_HEADERS},
282 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
283 QUIRK_NO_MSI},
285 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
286 QUIRK_NO_MSI},
288 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
289 QUIRK_CYCLE_TIMER},
291 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
292 QUIRK_CYCLE_TIMER},
294 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
295 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
297 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
298 QUIRK_RESET_PACKET},
300 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
301 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 /* This overrides anything that was found in ohci_quirks[]. */
305 static int param_quirks;
306 module_param_named(quirks, param_quirks, int, 0644);
307 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
308 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
309 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
310 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
311 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
312 ", disable MSI = " __stringify(QUIRK_NO_MSI)
313 ")");
315 #define OHCI_PARAM_DEBUG_AT_AR 1
316 #define OHCI_PARAM_DEBUG_SELFIDS 2
317 #define OHCI_PARAM_DEBUG_IRQS 4
318 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
320 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
322 static int param_debug;
323 module_param_named(debug, param_debug, int, 0644);
324 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
325 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
326 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
327 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
328 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
329 ", or a combination, or all = -1)");
331 static void log_irqs(u32 evt)
333 if (likely(!(param_debug &
334 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
335 return;
337 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
338 !(evt & OHCI1394_busReset))
339 return;
341 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
342 evt & OHCI1394_selfIDComplete ? " selfID" : "",
343 evt & OHCI1394_RQPkt ? " AR_req" : "",
344 evt & OHCI1394_RSPkt ? " AR_resp" : "",
345 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
346 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
347 evt & OHCI1394_isochRx ? " IR" : "",
348 evt & OHCI1394_isochTx ? " IT" : "",
349 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
350 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
351 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
352 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
353 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
354 evt & OHCI1394_busReset ? " busReset" : "",
355 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
356 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
357 OHCI1394_respTxComplete | OHCI1394_isochRx |
358 OHCI1394_isochTx | OHCI1394_postedWriteErr |
359 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
360 OHCI1394_cycleInconsistent |
361 OHCI1394_regAccessFail | OHCI1394_busReset)
362 ? " ?" : "");
365 static const char *speed[] = {
366 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
368 static const char *power[] = {
369 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
370 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
372 static const char port[] = { '.', '-', 'p', 'c', };
374 static char _p(u32 *s, int shift)
376 return port[*s >> shift & 3];
379 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
381 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
382 return;
384 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
385 self_id_count, generation, node_id);
387 for (; self_id_count--; ++s)
388 if ((*s & 1 << 23) == 0)
389 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
390 "%s gc=%d %s %s%s%s\n",
391 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
392 speed[*s >> 14 & 3], *s >> 16 & 63,
393 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
394 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
395 else
396 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
397 *s, *s >> 24 & 63,
398 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
399 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
402 static const char *evts[] = {
403 [0x00] = "evt_no_status", [0x01] = "-reserved-",
404 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
405 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
406 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
407 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
408 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
409 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
410 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
411 [0x10] = "-reserved-", [0x11] = "ack_complete",
412 [0x12] = "ack_pending ", [0x13] = "-reserved-",
413 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
414 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
415 [0x18] = "-reserved-", [0x19] = "-reserved-",
416 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
417 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
418 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
419 [0x20] = "pending/cancelled",
421 static const char *tcodes[] = {
422 [0x0] = "QW req", [0x1] = "BW req",
423 [0x2] = "W resp", [0x3] = "-reserved-",
424 [0x4] = "QR req", [0x5] = "BR req",
425 [0x6] = "QR resp", [0x7] = "BR resp",
426 [0x8] = "cycle start", [0x9] = "Lk req",
427 [0xa] = "async stream packet", [0xb] = "Lk resp",
428 [0xc] = "-reserved-", [0xd] = "-reserved-",
429 [0xe] = "link internal", [0xf] = "-reserved-",
432 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
434 int tcode = header[0] >> 4 & 0xf;
435 char specific[12];
437 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
438 return;
440 if (unlikely(evt >= ARRAY_SIZE(evts)))
441 evt = 0x1f;
443 if (evt == OHCI1394_evt_bus_reset) {
444 fw_notify("A%c evt_bus_reset, generation %d\n",
445 dir, (header[2] >> 16) & 0xff);
446 return;
449 switch (tcode) {
450 case 0x0: case 0x6: case 0x8:
451 snprintf(specific, sizeof(specific), " = %08x",
452 be32_to_cpu((__force __be32)header[3]));
453 break;
454 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
455 snprintf(specific, sizeof(specific), " %x,%x",
456 header[3] >> 16, header[3] & 0xffff);
457 break;
458 default:
459 specific[0] = '\0';
462 switch (tcode) {
463 case 0xa:
464 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
465 break;
466 case 0xe:
467 fw_notify("A%c %s, PHY %08x %08x\n",
468 dir, evts[evt], header[1], header[2]);
469 break;
470 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
471 fw_notify("A%c spd %x tl %02x, "
472 "%04x -> %04x, %s, "
473 "%s, %04x%08x%s\n",
474 dir, speed, header[0] >> 10 & 0x3f,
475 header[1] >> 16, header[0] >> 16, evts[evt],
476 tcodes[tcode], header[1] & 0xffff, header[2], specific);
477 break;
478 default:
479 fw_notify("A%c spd %x tl %02x, "
480 "%04x -> %04x, %s, "
481 "%s%s\n",
482 dir, speed, header[0] >> 10 & 0x3f,
483 header[1] >> 16, header[0] >> 16, evts[evt],
484 tcodes[tcode], specific);
488 #else
490 #define param_debug 0
491 static inline void log_irqs(u32 evt) {}
492 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
493 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
495 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
497 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
499 writel(data, ohci->registers + offset);
502 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
504 return readl(ohci->registers + offset);
507 static inline void flush_writes(const struct fw_ohci *ohci)
509 /* Do a dummy read to flush writes. */
510 reg_read(ohci, OHCI1394_Version);
513 static int read_phy_reg(struct fw_ohci *ohci, int addr)
515 u32 val;
516 int i;
518 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
519 for (i = 0; i < 3 + 100; i++) {
520 val = reg_read(ohci, OHCI1394_PhyControl);
521 if (val & OHCI1394_PhyControl_ReadDone)
522 return OHCI1394_PhyControl_ReadData(val);
525 * Try a few times without waiting. Sleeping is necessary
526 * only when the link/PHY interface is busy.
528 if (i >= 3)
529 msleep(1);
531 fw_error("failed to read phy reg\n");
533 return -EBUSY;
536 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
538 int i;
540 reg_write(ohci, OHCI1394_PhyControl,
541 OHCI1394_PhyControl_Write(addr, val));
542 for (i = 0; i < 3 + 100; i++) {
543 val = reg_read(ohci, OHCI1394_PhyControl);
544 if (!(val & OHCI1394_PhyControl_WritePending))
545 return 0;
547 if (i >= 3)
548 msleep(1);
550 fw_error("failed to write phy reg\n");
552 return -EBUSY;
555 static int update_phy_reg(struct fw_ohci *ohci, int addr,
556 int clear_bits, int set_bits)
558 int ret = read_phy_reg(ohci, addr);
559 if (ret < 0)
560 return ret;
563 * The interrupt status bits are cleared by writing a one bit.
564 * Avoid clearing them unless explicitly requested in set_bits.
566 if (addr == 5)
567 clear_bits |= PHY_INT_STATUS_BITS;
569 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
572 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
574 int ret;
576 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
577 if (ret < 0)
578 return ret;
580 return read_phy_reg(ohci, addr);
583 static int ohci_read_phy_reg(struct fw_card *card, int addr)
585 struct fw_ohci *ohci = fw_ohci(card);
586 int ret;
588 mutex_lock(&ohci->phy_reg_mutex);
589 ret = read_phy_reg(ohci, addr);
590 mutex_unlock(&ohci->phy_reg_mutex);
592 return ret;
595 static int ohci_update_phy_reg(struct fw_card *card, int addr,
596 int clear_bits, int set_bits)
598 struct fw_ohci *ohci = fw_ohci(card);
599 int ret;
601 mutex_lock(&ohci->phy_reg_mutex);
602 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
603 mutex_unlock(&ohci->phy_reg_mutex);
605 return ret;
608 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
610 return page_private(ctx->pages[i]);
613 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
615 struct descriptor *d;
617 d = &ctx->descriptors[index];
618 d->branch_address &= cpu_to_le32(~0xf);
619 d->res_count = cpu_to_le16(PAGE_SIZE);
620 d->transfer_status = 0;
622 wmb(); /* finish init of new descriptors before branch_address update */
623 d = &ctx->descriptors[ctx->last_buffer_index];
624 d->branch_address |= cpu_to_le32(1);
626 ctx->last_buffer_index = index;
628 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
629 flush_writes(ctx->ohci);
632 static void ar_context_release(struct ar_context *ctx)
634 unsigned int i;
636 if (ctx->buffer)
637 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
639 for (i = 0; i < AR_BUFFERS; i++)
640 if (ctx->pages[i]) {
641 dma_unmap_page(ctx->ohci->card.device,
642 ar_buffer_bus(ctx, i),
643 PAGE_SIZE, DMA_FROM_DEVICE);
644 __free_page(ctx->pages[i]);
648 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
650 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
651 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
652 flush_writes(ctx->ohci);
654 fw_error("AR error: %s; DMA stopped\n", error_msg);
656 /* FIXME: restart? */
659 static inline unsigned int ar_next_buffer_index(unsigned int index)
661 return (index + 1) % AR_BUFFERS;
664 static inline unsigned int ar_prev_buffer_index(unsigned int index)
666 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
669 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
671 return ar_next_buffer_index(ctx->last_buffer_index);
675 * We search for the buffer that contains the last AR packet DMA data written
676 * by the controller.
678 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
679 unsigned int *buffer_offset)
681 unsigned int i, next_i, last = ctx->last_buffer_index;
682 __le16 res_count, next_res_count;
684 i = ar_first_buffer_index(ctx);
685 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
687 /* A buffer that is not yet completely filled must be the last one. */
688 while (i != last && res_count == 0) {
690 /* Peek at the next descriptor. */
691 next_i = ar_next_buffer_index(i);
692 rmb(); /* read descriptors in order */
693 next_res_count = ACCESS_ONCE(
694 ctx->descriptors[next_i].res_count);
696 * If the next descriptor is still empty, we must stop at this
697 * descriptor.
699 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
701 * The exception is when the DMA data for one packet is
702 * split over three buffers; in this case, the middle
703 * buffer's descriptor might be never updated by the
704 * controller and look still empty, and we have to peek
705 * at the third one.
707 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
708 next_i = ar_next_buffer_index(next_i);
709 rmb();
710 next_res_count = ACCESS_ONCE(
711 ctx->descriptors[next_i].res_count);
712 if (next_res_count != cpu_to_le16(PAGE_SIZE))
713 goto next_buffer_is_active;
716 break;
719 next_buffer_is_active:
720 i = next_i;
721 res_count = next_res_count;
724 rmb(); /* read res_count before the DMA data */
726 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
727 if (*buffer_offset > PAGE_SIZE) {
728 *buffer_offset = 0;
729 ar_context_abort(ctx, "corrupted descriptor");
732 return i;
735 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
736 unsigned int end_buffer_index,
737 unsigned int end_buffer_offset)
739 unsigned int i;
741 i = ar_first_buffer_index(ctx);
742 while (i != end_buffer_index) {
743 dma_sync_single_for_cpu(ctx->ohci->card.device,
744 ar_buffer_bus(ctx, i),
745 PAGE_SIZE, DMA_FROM_DEVICE);
746 i = ar_next_buffer_index(i);
748 if (end_buffer_offset > 0)
749 dma_sync_single_for_cpu(ctx->ohci->card.device,
750 ar_buffer_bus(ctx, i),
751 end_buffer_offset, DMA_FROM_DEVICE);
754 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
755 #define cond_le32_to_cpu(v) \
756 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
757 #else
758 #define cond_le32_to_cpu(v) le32_to_cpu(v)
759 #endif
761 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
763 struct fw_ohci *ohci = ctx->ohci;
764 struct fw_packet p;
765 u32 status, length, tcode;
766 int evt;
768 p.header[0] = cond_le32_to_cpu(buffer[0]);
769 p.header[1] = cond_le32_to_cpu(buffer[1]);
770 p.header[2] = cond_le32_to_cpu(buffer[2]);
772 tcode = (p.header[0] >> 4) & 0x0f;
773 switch (tcode) {
774 case TCODE_WRITE_QUADLET_REQUEST:
775 case TCODE_READ_QUADLET_RESPONSE:
776 p.header[3] = (__force __u32) buffer[3];
777 p.header_length = 16;
778 p.payload_length = 0;
779 break;
781 case TCODE_READ_BLOCK_REQUEST :
782 p.header[3] = cond_le32_to_cpu(buffer[3]);
783 p.header_length = 16;
784 p.payload_length = 0;
785 break;
787 case TCODE_WRITE_BLOCK_REQUEST:
788 case TCODE_READ_BLOCK_RESPONSE:
789 case TCODE_LOCK_REQUEST:
790 case TCODE_LOCK_RESPONSE:
791 p.header[3] = cond_le32_to_cpu(buffer[3]);
792 p.header_length = 16;
793 p.payload_length = p.header[3] >> 16;
794 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
795 ar_context_abort(ctx, "invalid packet length");
796 return NULL;
798 break;
800 case TCODE_WRITE_RESPONSE:
801 case TCODE_READ_QUADLET_REQUEST:
802 case OHCI_TCODE_PHY_PACKET:
803 p.header_length = 12;
804 p.payload_length = 0;
805 break;
807 default:
808 ar_context_abort(ctx, "invalid tcode");
809 return NULL;
812 p.payload = (void *) buffer + p.header_length;
814 /* FIXME: What to do about evt_* errors? */
815 length = (p.header_length + p.payload_length + 3) / 4;
816 status = cond_le32_to_cpu(buffer[length]);
817 evt = (status >> 16) & 0x1f;
819 p.ack = evt - 16;
820 p.speed = (status >> 21) & 0x7;
821 p.timestamp = status & 0xffff;
822 p.generation = ohci->request_generation;
824 log_ar_at_event('R', p.speed, p.header, evt);
827 * Several controllers, notably from NEC and VIA, forget to
828 * write ack_complete status at PHY packet reception.
830 if (evt == OHCI1394_evt_no_status &&
831 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
832 p.ack = ACK_COMPLETE;
835 * The OHCI bus reset handler synthesizes a PHY packet with
836 * the new generation number when a bus reset happens (see
837 * section 8.4.2.3). This helps us determine when a request
838 * was received and make sure we send the response in the same
839 * generation. We only need this for requests; for responses
840 * we use the unique tlabel for finding the matching
841 * request.
843 * Alas some chips sometimes emit bus reset packets with a
844 * wrong generation. We set the correct generation for these
845 * at a slightly incorrect time (in bus_reset_tasklet).
847 if (evt == OHCI1394_evt_bus_reset) {
848 if (!(ohci->quirks & QUIRK_RESET_PACKET))
849 ohci->request_generation = (p.header[2] >> 16) & 0xff;
850 } else if (ctx == &ohci->ar_request_ctx) {
851 fw_core_handle_request(&ohci->card, &p);
852 } else {
853 fw_core_handle_response(&ohci->card, &p);
856 return buffer + length + 1;
859 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
861 void *next;
863 while (p < end) {
864 next = handle_ar_packet(ctx, p);
865 if (!next)
866 return p;
867 p = next;
870 return p;
873 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
875 unsigned int i;
877 i = ar_first_buffer_index(ctx);
878 while (i != end_buffer) {
879 dma_sync_single_for_device(ctx->ohci->card.device,
880 ar_buffer_bus(ctx, i),
881 PAGE_SIZE, DMA_FROM_DEVICE);
882 ar_context_link_page(ctx, i);
883 i = ar_next_buffer_index(i);
887 static void ar_context_tasklet(unsigned long data)
889 struct ar_context *ctx = (struct ar_context *)data;
890 unsigned int end_buffer_index, end_buffer_offset;
891 void *p, *end;
893 p = ctx->pointer;
894 if (!p)
895 return;
897 end_buffer_index = ar_search_last_active_buffer(ctx,
898 &end_buffer_offset);
899 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
900 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
902 if (end_buffer_index < ar_first_buffer_index(ctx)) {
904 * The filled part of the overall buffer wraps around; handle
905 * all packets up to the buffer end here. If the last packet
906 * wraps around, its tail will be visible after the buffer end
907 * because the buffer start pages are mapped there again.
909 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
910 p = handle_ar_packets(ctx, p, buffer_end);
911 if (p < buffer_end)
912 goto error;
913 /* adjust p to point back into the actual buffer */
914 p -= AR_BUFFERS * PAGE_SIZE;
917 p = handle_ar_packets(ctx, p, end);
918 if (p != end) {
919 if (p > end)
920 ar_context_abort(ctx, "inconsistent descriptor");
921 goto error;
924 ctx->pointer = p;
925 ar_recycle_buffers(ctx, end_buffer_index);
927 return;
929 error:
930 ctx->pointer = NULL;
933 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
934 unsigned int descriptors_offset, u32 regs)
936 unsigned int i;
937 dma_addr_t dma_addr;
938 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
939 struct descriptor *d;
941 ctx->regs = regs;
942 ctx->ohci = ohci;
943 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
945 for (i = 0; i < AR_BUFFERS; i++) {
946 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
947 if (!ctx->pages[i])
948 goto out_of_memory;
949 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
950 0, PAGE_SIZE, DMA_FROM_DEVICE);
951 if (dma_mapping_error(ohci->card.device, dma_addr)) {
952 __free_page(ctx->pages[i]);
953 ctx->pages[i] = NULL;
954 goto out_of_memory;
956 set_page_private(ctx->pages[i], dma_addr);
959 for (i = 0; i < AR_BUFFERS; i++)
960 pages[i] = ctx->pages[i];
961 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
962 pages[AR_BUFFERS + i] = ctx->pages[i];
963 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
964 -1, PAGE_KERNEL);
965 if (!ctx->buffer)
966 goto out_of_memory;
968 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
969 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
971 for (i = 0; i < AR_BUFFERS; i++) {
972 d = &ctx->descriptors[i];
973 d->req_count = cpu_to_le16(PAGE_SIZE);
974 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
975 DESCRIPTOR_STATUS |
976 DESCRIPTOR_BRANCH_ALWAYS);
977 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
978 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
979 ar_next_buffer_index(i) * sizeof(struct descriptor));
982 return 0;
984 out_of_memory:
985 ar_context_release(ctx);
987 return -ENOMEM;
990 static void ar_context_run(struct ar_context *ctx)
992 unsigned int i;
994 for (i = 0; i < AR_BUFFERS; i++)
995 ar_context_link_page(ctx, i);
997 ctx->pointer = ctx->buffer;
999 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1000 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1001 flush_writes(ctx->ohci);
1004 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1006 int b, key;
1008 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
1009 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
1011 /* figure out which descriptor the branch address goes in */
1012 if (z == 2 && (b == 3 || key == 2))
1013 return d;
1014 else
1015 return d + z - 1;
1018 static void context_tasklet(unsigned long data)
1020 struct context *ctx = (struct context *) data;
1021 struct descriptor *d, *last;
1022 u32 address;
1023 int z;
1024 struct descriptor_buffer *desc;
1026 desc = list_entry(ctx->buffer_list.next,
1027 struct descriptor_buffer, list);
1028 last = ctx->last;
1029 while (last->branch_address != 0) {
1030 struct descriptor_buffer *old_desc = desc;
1031 address = le32_to_cpu(last->branch_address);
1032 z = address & 0xf;
1033 address &= ~0xf;
1035 /* If the branch address points to a buffer outside of the
1036 * current buffer, advance to the next buffer. */
1037 if (address < desc->buffer_bus ||
1038 address >= desc->buffer_bus + desc->used)
1039 desc = list_entry(desc->list.next,
1040 struct descriptor_buffer, list);
1041 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1042 last = find_branch_descriptor(d, z);
1044 if (!ctx->callback(ctx, d, last))
1045 break;
1047 if (old_desc != desc) {
1048 /* If we've advanced to the next buffer, move the
1049 * previous buffer to the free list. */
1050 unsigned long flags;
1051 old_desc->used = 0;
1052 spin_lock_irqsave(&ctx->ohci->lock, flags);
1053 list_move_tail(&old_desc->list, &ctx->buffer_list);
1054 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1056 ctx->last = last;
1061 * Allocate a new buffer and add it to the list of free buffers for this
1062 * context. Must be called with ohci->lock held.
1064 static int context_add_buffer(struct context *ctx)
1066 struct descriptor_buffer *desc;
1067 dma_addr_t uninitialized_var(bus_addr);
1068 int offset;
1071 * 16MB of descriptors should be far more than enough for any DMA
1072 * program. This will catch run-away userspace or DoS attacks.
1074 if (ctx->total_allocation >= 16*1024*1024)
1075 return -ENOMEM;
1077 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1078 &bus_addr, GFP_ATOMIC);
1079 if (!desc)
1080 return -ENOMEM;
1082 offset = (void *)&desc->buffer - (void *)desc;
1083 desc->buffer_size = PAGE_SIZE - offset;
1084 desc->buffer_bus = bus_addr + offset;
1085 desc->used = 0;
1087 list_add_tail(&desc->list, &ctx->buffer_list);
1088 ctx->total_allocation += PAGE_SIZE;
1090 return 0;
1093 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1094 u32 regs, descriptor_callback_t callback)
1096 ctx->ohci = ohci;
1097 ctx->regs = regs;
1098 ctx->total_allocation = 0;
1100 INIT_LIST_HEAD(&ctx->buffer_list);
1101 if (context_add_buffer(ctx) < 0)
1102 return -ENOMEM;
1104 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1105 struct descriptor_buffer, list);
1107 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1108 ctx->callback = callback;
1111 * We put a dummy descriptor in the buffer that has a NULL
1112 * branch address and looks like it's been sent. That way we
1113 * have a descriptor to append DMA programs to.
1115 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1116 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1117 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1118 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1119 ctx->last = ctx->buffer_tail->buffer;
1120 ctx->prev = ctx->buffer_tail->buffer;
1122 return 0;
1125 static void context_release(struct context *ctx)
1127 struct fw_card *card = &ctx->ohci->card;
1128 struct descriptor_buffer *desc, *tmp;
1130 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1131 dma_free_coherent(card->device, PAGE_SIZE, desc,
1132 desc->buffer_bus -
1133 ((void *)&desc->buffer - (void *)desc));
1136 /* Must be called with ohci->lock held */
1137 static struct descriptor *context_get_descriptors(struct context *ctx,
1138 int z, dma_addr_t *d_bus)
1140 struct descriptor *d = NULL;
1141 struct descriptor_buffer *desc = ctx->buffer_tail;
1143 if (z * sizeof(*d) > desc->buffer_size)
1144 return NULL;
1146 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1147 /* No room for the descriptor in this buffer, so advance to the
1148 * next one. */
1150 if (desc->list.next == &ctx->buffer_list) {
1151 /* If there is no free buffer next in the list,
1152 * allocate one. */
1153 if (context_add_buffer(ctx) < 0)
1154 return NULL;
1156 desc = list_entry(desc->list.next,
1157 struct descriptor_buffer, list);
1158 ctx->buffer_tail = desc;
1161 d = desc->buffer + desc->used / sizeof(*d);
1162 memset(d, 0, z * sizeof(*d));
1163 *d_bus = desc->buffer_bus + desc->used;
1165 return d;
1168 static void context_run(struct context *ctx, u32 extra)
1170 struct fw_ohci *ohci = ctx->ohci;
1172 reg_write(ohci, COMMAND_PTR(ctx->regs),
1173 le32_to_cpu(ctx->last->branch_address));
1174 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1175 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1176 ctx->running = true;
1177 flush_writes(ohci);
1180 static void context_append(struct context *ctx,
1181 struct descriptor *d, int z, int extra)
1183 dma_addr_t d_bus;
1184 struct descriptor_buffer *desc = ctx->buffer_tail;
1186 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1188 desc->used += (z + extra) * sizeof(*d);
1190 wmb(); /* finish init of new descriptors before branch_address update */
1191 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1192 ctx->prev = find_branch_descriptor(d, z);
1194 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1195 flush_writes(ctx->ohci);
1198 static void context_stop(struct context *ctx)
1200 u32 reg;
1201 int i;
1203 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1204 ctx->running = false;
1205 flush_writes(ctx->ohci);
1207 for (i = 0; i < 10; i++) {
1208 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1209 if ((reg & CONTEXT_ACTIVE) == 0)
1210 return;
1212 mdelay(1);
1214 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1217 struct driver_data {
1218 struct fw_packet *packet;
1222 * This function apppends a packet to the DMA queue for transmission.
1223 * Must always be called with the ochi->lock held to ensure proper
1224 * generation handling and locking around packet queue manipulation.
1226 static int at_context_queue_packet(struct context *ctx,
1227 struct fw_packet *packet)
1229 struct fw_ohci *ohci = ctx->ohci;
1230 dma_addr_t d_bus, uninitialized_var(payload_bus);
1231 struct driver_data *driver_data;
1232 struct descriptor *d, *last;
1233 __le32 *header;
1234 int z, tcode;
1236 d = context_get_descriptors(ctx, 4, &d_bus);
1237 if (d == NULL) {
1238 packet->ack = RCODE_SEND_ERROR;
1239 return -1;
1242 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1243 d[0].res_count = cpu_to_le16(packet->timestamp);
1246 * The DMA format for asyncronous link packets is different
1247 * from the IEEE1394 layout, so shift the fields around
1248 * accordingly.
1251 tcode = (packet->header[0] >> 4) & 0x0f;
1252 header = (__le32 *) &d[1];
1253 switch (tcode) {
1254 case TCODE_WRITE_QUADLET_REQUEST:
1255 case TCODE_WRITE_BLOCK_REQUEST:
1256 case TCODE_WRITE_RESPONSE:
1257 case TCODE_READ_QUADLET_REQUEST:
1258 case TCODE_READ_BLOCK_REQUEST:
1259 case TCODE_READ_QUADLET_RESPONSE:
1260 case TCODE_READ_BLOCK_RESPONSE:
1261 case TCODE_LOCK_REQUEST:
1262 case TCODE_LOCK_RESPONSE:
1263 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1264 (packet->speed << 16));
1265 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1266 (packet->header[0] & 0xffff0000));
1267 header[2] = cpu_to_le32(packet->header[2]);
1269 if (TCODE_IS_BLOCK_PACKET(tcode))
1270 header[3] = cpu_to_le32(packet->header[3]);
1271 else
1272 header[3] = (__force __le32) packet->header[3];
1274 d[0].req_count = cpu_to_le16(packet->header_length);
1275 break;
1277 case TCODE_LINK_INTERNAL:
1278 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1279 (packet->speed << 16));
1280 header[1] = cpu_to_le32(packet->header[1]);
1281 header[2] = cpu_to_le32(packet->header[2]);
1282 d[0].req_count = cpu_to_le16(12);
1284 if (is_ping_packet(&packet->header[1]))
1285 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1286 break;
1288 case TCODE_STREAM_DATA:
1289 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1290 (packet->speed << 16));
1291 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1292 d[0].req_count = cpu_to_le16(8);
1293 break;
1295 default:
1296 /* BUG(); */
1297 packet->ack = RCODE_SEND_ERROR;
1298 return -1;
1301 driver_data = (struct driver_data *) &d[3];
1302 driver_data->packet = packet;
1303 packet->driver_data = driver_data;
1305 if (packet->payload_length > 0) {
1306 payload_bus =
1307 dma_map_single(ohci->card.device, packet->payload,
1308 packet->payload_length, DMA_TO_DEVICE);
1309 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1310 packet->ack = RCODE_SEND_ERROR;
1311 return -1;
1313 packet->payload_bus = payload_bus;
1314 packet->payload_mapped = true;
1316 d[2].req_count = cpu_to_le16(packet->payload_length);
1317 d[2].data_address = cpu_to_le32(payload_bus);
1318 last = &d[2];
1319 z = 3;
1320 } else {
1321 last = &d[0];
1322 z = 2;
1325 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1326 DESCRIPTOR_IRQ_ALWAYS |
1327 DESCRIPTOR_BRANCH_ALWAYS);
1330 * If the controller and packet generations don't match, we need to
1331 * bail out and try again. If IntEvent.busReset is set, the AT context
1332 * is halted, so appending to the context and trying to run it is
1333 * futile. Most controllers do the right thing and just flush the AT
1334 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1335 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1336 * up stalling out. So we just bail out in software and try again
1337 * later, and everyone is happy.
1338 * FIXME: Test of IntEvent.busReset may no longer be necessary since we
1339 * flush AT queues in bus_reset_tasklet.
1340 * FIXME: Document how the locking works.
1342 if (ohci->generation != packet->generation ||
1343 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1344 if (packet->payload_mapped)
1345 dma_unmap_single(ohci->card.device, payload_bus,
1346 packet->payload_length, DMA_TO_DEVICE);
1347 packet->ack = RCODE_GENERATION;
1348 return -1;
1351 context_append(ctx, d, z, 4 - z);
1353 if (!ctx->running)
1354 context_run(ctx, 0);
1356 return 0;
1359 static void at_context_flush(struct context *ctx)
1361 tasklet_disable(&ctx->tasklet);
1363 ctx->flushing = true;
1364 context_tasklet((unsigned long)ctx);
1365 ctx->flushing = false;
1367 tasklet_enable(&ctx->tasklet);
1370 static int handle_at_packet(struct context *context,
1371 struct descriptor *d,
1372 struct descriptor *last)
1374 struct driver_data *driver_data;
1375 struct fw_packet *packet;
1376 struct fw_ohci *ohci = context->ohci;
1377 int evt;
1379 if (last->transfer_status == 0 && !context->flushing)
1380 /* This descriptor isn't done yet, stop iteration. */
1381 return 0;
1383 driver_data = (struct driver_data *) &d[3];
1384 packet = driver_data->packet;
1385 if (packet == NULL)
1386 /* This packet was cancelled, just continue. */
1387 return 1;
1389 if (packet->payload_mapped)
1390 dma_unmap_single(ohci->card.device, packet->payload_bus,
1391 packet->payload_length, DMA_TO_DEVICE);
1393 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1394 packet->timestamp = le16_to_cpu(last->res_count);
1396 log_ar_at_event('T', packet->speed, packet->header, evt);
1398 switch (evt) {
1399 case OHCI1394_evt_timeout:
1400 /* Async response transmit timed out. */
1401 packet->ack = RCODE_CANCELLED;
1402 break;
1404 case OHCI1394_evt_flushed:
1406 * The packet was flushed should give same error as
1407 * when we try to use a stale generation count.
1409 packet->ack = RCODE_GENERATION;
1410 break;
1412 case OHCI1394_evt_missing_ack:
1413 if (context->flushing)
1414 packet->ack = RCODE_GENERATION;
1415 else {
1417 * Using a valid (current) generation count, but the
1418 * node is not on the bus or not sending acks.
1420 packet->ack = RCODE_NO_ACK;
1422 break;
1424 case ACK_COMPLETE + 0x10:
1425 case ACK_PENDING + 0x10:
1426 case ACK_BUSY_X + 0x10:
1427 case ACK_BUSY_A + 0x10:
1428 case ACK_BUSY_B + 0x10:
1429 case ACK_DATA_ERROR + 0x10:
1430 case ACK_TYPE_ERROR + 0x10:
1431 packet->ack = evt - 0x10;
1432 break;
1434 case OHCI1394_evt_no_status:
1435 if (context->flushing) {
1436 packet->ack = RCODE_GENERATION;
1437 break;
1439 /* fall through */
1441 default:
1442 packet->ack = RCODE_SEND_ERROR;
1443 break;
1446 packet->callback(packet, &ohci->card, packet->ack);
1448 return 1;
1451 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1452 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1453 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1454 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1455 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1457 static void handle_local_rom(struct fw_ohci *ohci,
1458 struct fw_packet *packet, u32 csr)
1460 struct fw_packet response;
1461 int tcode, length, i;
1463 tcode = HEADER_GET_TCODE(packet->header[0]);
1464 if (TCODE_IS_BLOCK_PACKET(tcode))
1465 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1466 else
1467 length = 4;
1469 i = csr - CSR_CONFIG_ROM;
1470 if (i + length > CONFIG_ROM_SIZE) {
1471 fw_fill_response(&response, packet->header,
1472 RCODE_ADDRESS_ERROR, NULL, 0);
1473 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1474 fw_fill_response(&response, packet->header,
1475 RCODE_TYPE_ERROR, NULL, 0);
1476 } else {
1477 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1478 (void *) ohci->config_rom + i, length);
1481 fw_core_handle_response(&ohci->card, &response);
1484 static void handle_local_lock(struct fw_ohci *ohci,
1485 struct fw_packet *packet, u32 csr)
1487 struct fw_packet response;
1488 int tcode, length, ext_tcode, sel, try;
1489 __be32 *payload, lock_old;
1490 u32 lock_arg, lock_data;
1492 tcode = HEADER_GET_TCODE(packet->header[0]);
1493 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1494 payload = packet->payload;
1495 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1497 if (tcode == TCODE_LOCK_REQUEST &&
1498 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1499 lock_arg = be32_to_cpu(payload[0]);
1500 lock_data = be32_to_cpu(payload[1]);
1501 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1502 lock_arg = 0;
1503 lock_data = 0;
1504 } else {
1505 fw_fill_response(&response, packet->header,
1506 RCODE_TYPE_ERROR, NULL, 0);
1507 goto out;
1510 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1511 reg_write(ohci, OHCI1394_CSRData, lock_data);
1512 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1513 reg_write(ohci, OHCI1394_CSRControl, sel);
1515 for (try = 0; try < 20; try++)
1516 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1517 lock_old = cpu_to_be32(reg_read(ohci,
1518 OHCI1394_CSRData));
1519 fw_fill_response(&response, packet->header,
1520 RCODE_COMPLETE,
1521 &lock_old, sizeof(lock_old));
1522 goto out;
1525 fw_error("swap not done (CSR lock timeout)\n");
1526 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1528 out:
1529 fw_core_handle_response(&ohci->card, &response);
1532 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1534 u64 offset, csr;
1536 if (ctx == &ctx->ohci->at_request_ctx) {
1537 packet->ack = ACK_PENDING;
1538 packet->callback(packet, &ctx->ohci->card, packet->ack);
1541 offset =
1542 ((unsigned long long)
1543 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1544 packet->header[2];
1545 csr = offset - CSR_REGISTER_BASE;
1547 /* Handle config rom reads. */
1548 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1549 handle_local_rom(ctx->ohci, packet, csr);
1550 else switch (csr) {
1551 case CSR_BUS_MANAGER_ID:
1552 case CSR_BANDWIDTH_AVAILABLE:
1553 case CSR_CHANNELS_AVAILABLE_HI:
1554 case CSR_CHANNELS_AVAILABLE_LO:
1555 handle_local_lock(ctx->ohci, packet, csr);
1556 break;
1557 default:
1558 if (ctx == &ctx->ohci->at_request_ctx)
1559 fw_core_handle_request(&ctx->ohci->card, packet);
1560 else
1561 fw_core_handle_response(&ctx->ohci->card, packet);
1562 break;
1565 if (ctx == &ctx->ohci->at_response_ctx) {
1566 packet->ack = ACK_COMPLETE;
1567 packet->callback(packet, &ctx->ohci->card, packet->ack);
1571 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1573 unsigned long flags;
1574 int ret;
1576 spin_lock_irqsave(&ctx->ohci->lock, flags);
1578 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1579 ctx->ohci->generation == packet->generation) {
1580 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1581 handle_local_request(ctx, packet);
1582 return;
1585 ret = at_context_queue_packet(ctx, packet);
1586 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1588 if (ret < 0)
1589 packet->callback(packet, &ctx->ohci->card, packet->ack);
1593 static u32 cycle_timer_ticks(u32 cycle_timer)
1595 u32 ticks;
1597 ticks = cycle_timer & 0xfff;
1598 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1599 ticks += (3072 * 8000) * (cycle_timer >> 25);
1601 return ticks;
1605 * Some controllers exhibit one or more of the following bugs when updating the
1606 * iso cycle timer register:
1607 * - When the lowest six bits are wrapping around to zero, a read that happens
1608 * at the same time will return garbage in the lowest ten bits.
1609 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1610 * not incremented for about 60 ns.
1611 * - Occasionally, the entire register reads zero.
1613 * To catch these, we read the register three times and ensure that the
1614 * difference between each two consecutive reads is approximately the same, i.e.
1615 * less than twice the other. Furthermore, any negative difference indicates an
1616 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1617 * execute, so we have enough precision to compute the ratio of the differences.)
1619 static u32 get_cycle_time(struct fw_ohci *ohci)
1621 u32 c0, c1, c2;
1622 u32 t0, t1, t2;
1623 s32 diff01, diff12;
1624 int i;
1626 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1628 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1629 i = 0;
1630 c1 = c2;
1631 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1632 do {
1633 c0 = c1;
1634 c1 = c2;
1635 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1636 t0 = cycle_timer_ticks(c0);
1637 t1 = cycle_timer_ticks(c1);
1638 t2 = cycle_timer_ticks(c2);
1639 diff01 = t1 - t0;
1640 diff12 = t2 - t1;
1641 } while ((diff01 <= 0 || diff12 <= 0 ||
1642 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1643 && i++ < 20);
1646 return c2;
1650 * This function has to be called at least every 64 seconds. The bus_time
1651 * field stores not only the upper 25 bits of the BUS_TIME register but also
1652 * the most significant bit of the cycle timer in bit 6 so that we can detect
1653 * changes in this bit.
1655 static u32 update_bus_time(struct fw_ohci *ohci)
1657 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1659 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1660 ohci->bus_time += 0x40;
1662 return ohci->bus_time | cycle_time_seconds;
1665 static void bus_reset_tasklet(unsigned long data)
1667 struct fw_ohci *ohci = (struct fw_ohci *)data;
1668 int self_id_count, i, j, reg;
1669 int generation, new_generation;
1670 unsigned long flags;
1671 void *free_rom = NULL;
1672 dma_addr_t free_rom_bus = 0;
1673 bool is_new_root;
1675 reg = reg_read(ohci, OHCI1394_NodeID);
1676 if (!(reg & OHCI1394_NodeID_idValid)) {
1677 fw_notify("node ID not valid, new bus reset in progress\n");
1678 return;
1680 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1681 fw_notify("malconfigured bus\n");
1682 return;
1684 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1685 OHCI1394_NodeID_nodeNumber);
1687 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1688 if (!(ohci->is_root && is_new_root))
1689 reg_write(ohci, OHCI1394_LinkControlSet,
1690 OHCI1394_LinkControl_cycleMaster);
1691 ohci->is_root = is_new_root;
1693 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1694 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1695 fw_notify("inconsistent self IDs\n");
1696 return;
1699 * The count in the SelfIDCount register is the number of
1700 * bytes in the self ID receive buffer. Since we also receive
1701 * the inverted quadlets and a header quadlet, we shift one
1702 * bit extra to get the actual number of self IDs.
1704 self_id_count = (reg >> 3) & 0xff;
1705 if (self_id_count == 0 || self_id_count > 252) {
1706 fw_notify("inconsistent self IDs\n");
1707 return;
1709 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1710 rmb();
1712 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1713 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1714 fw_notify("inconsistent self IDs\n");
1715 return;
1717 ohci->self_id_buffer[j] =
1718 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1720 rmb();
1723 * Check the consistency of the self IDs we just read. The
1724 * problem we face is that a new bus reset can start while we
1725 * read out the self IDs from the DMA buffer. If this happens,
1726 * the DMA buffer will be overwritten with new self IDs and we
1727 * will read out inconsistent data. The OHCI specification
1728 * (section 11.2) recommends a technique similar to
1729 * linux/seqlock.h, where we remember the generation of the
1730 * self IDs in the buffer before reading them out and compare
1731 * it to the current generation after reading them out. If
1732 * the two generations match we know we have a consistent set
1733 * of self IDs.
1736 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1737 if (new_generation != generation) {
1738 fw_notify("recursive bus reset detected, "
1739 "discarding self ids\n");
1740 return;
1743 /* FIXME: Document how the locking works. */
1744 spin_lock_irqsave(&ohci->lock, flags);
1746 ohci->generation = -1; /* prevent AT packet queueing */
1747 context_stop(&ohci->at_request_ctx);
1748 context_stop(&ohci->at_response_ctx);
1750 spin_unlock_irqrestore(&ohci->lock, flags);
1753 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1754 * packets in the AT queues and software needs to drain them.
1755 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1757 at_context_flush(&ohci->at_request_ctx);
1758 at_context_flush(&ohci->at_response_ctx);
1760 spin_lock_irqsave(&ohci->lock, flags);
1762 ohci->generation = generation;
1763 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1765 if (ohci->quirks & QUIRK_RESET_PACKET)
1766 ohci->request_generation = generation;
1769 * This next bit is unrelated to the AT context stuff but we
1770 * have to do it under the spinlock also. If a new config rom
1771 * was set up before this reset, the old one is now no longer
1772 * in use and we can free it. Update the config rom pointers
1773 * to point to the current config rom and clear the
1774 * next_config_rom pointer so a new update can take place.
1777 if (ohci->next_config_rom != NULL) {
1778 if (ohci->next_config_rom != ohci->config_rom) {
1779 free_rom = ohci->config_rom;
1780 free_rom_bus = ohci->config_rom_bus;
1782 ohci->config_rom = ohci->next_config_rom;
1783 ohci->config_rom_bus = ohci->next_config_rom_bus;
1784 ohci->next_config_rom = NULL;
1787 * Restore config_rom image and manually update
1788 * config_rom registers. Writing the header quadlet
1789 * will indicate that the config rom is ready, so we
1790 * do that last.
1792 reg_write(ohci, OHCI1394_BusOptions,
1793 be32_to_cpu(ohci->config_rom[2]));
1794 ohci->config_rom[0] = ohci->next_header;
1795 reg_write(ohci, OHCI1394_ConfigROMhdr,
1796 be32_to_cpu(ohci->next_header));
1799 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1800 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1801 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1802 #endif
1804 spin_unlock_irqrestore(&ohci->lock, flags);
1806 if (free_rom)
1807 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1808 free_rom, free_rom_bus);
1810 log_selfids(ohci->node_id, generation,
1811 self_id_count, ohci->self_id_buffer);
1813 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1814 self_id_count, ohci->self_id_buffer,
1815 ohci->csr_state_setclear_abdicate);
1816 ohci->csr_state_setclear_abdicate = false;
1819 static irqreturn_t irq_handler(int irq, void *data)
1821 struct fw_ohci *ohci = data;
1822 u32 event, iso_event;
1823 int i;
1825 event = reg_read(ohci, OHCI1394_IntEventClear);
1827 if (!event || !~event)
1828 return IRQ_NONE;
1831 * busReset and postedWriteErr must not be cleared yet
1832 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1834 reg_write(ohci, OHCI1394_IntEventClear,
1835 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1836 log_irqs(event);
1838 if (event & OHCI1394_selfIDComplete)
1839 tasklet_schedule(&ohci->bus_reset_tasklet);
1841 if (event & OHCI1394_RQPkt)
1842 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1844 if (event & OHCI1394_RSPkt)
1845 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1847 if (event & OHCI1394_reqTxComplete)
1848 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1850 if (event & OHCI1394_respTxComplete)
1851 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1853 if (event & OHCI1394_isochRx) {
1854 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1855 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1857 while (iso_event) {
1858 i = ffs(iso_event) - 1;
1859 tasklet_schedule(
1860 &ohci->ir_context_list[i].context.tasklet);
1861 iso_event &= ~(1 << i);
1865 if (event & OHCI1394_isochTx) {
1866 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1867 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1869 while (iso_event) {
1870 i = ffs(iso_event) - 1;
1871 tasklet_schedule(
1872 &ohci->it_context_list[i].context.tasklet);
1873 iso_event &= ~(1 << i);
1877 if (unlikely(event & OHCI1394_regAccessFail))
1878 fw_error("Register access failure - "
1879 "please notify linux1394-devel@lists.sf.net\n");
1881 if (unlikely(event & OHCI1394_postedWriteErr)) {
1882 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1883 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1884 reg_write(ohci, OHCI1394_IntEventClear,
1885 OHCI1394_postedWriteErr);
1886 fw_error("PCI posted write error\n");
1889 if (unlikely(event & OHCI1394_cycleTooLong)) {
1890 if (printk_ratelimit())
1891 fw_notify("isochronous cycle too long\n");
1892 reg_write(ohci, OHCI1394_LinkControlSet,
1893 OHCI1394_LinkControl_cycleMaster);
1896 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1898 * We need to clear this event bit in order to make
1899 * cycleMatch isochronous I/O work. In theory we should
1900 * stop active cycleMatch iso contexts now and restart
1901 * them at least two cycles later. (FIXME?)
1903 if (printk_ratelimit())
1904 fw_notify("isochronous cycle inconsistent\n");
1907 if (event & OHCI1394_cycle64Seconds) {
1908 spin_lock(&ohci->lock);
1909 update_bus_time(ohci);
1910 spin_unlock(&ohci->lock);
1911 } else
1912 flush_writes(ohci);
1914 return IRQ_HANDLED;
1917 static int software_reset(struct fw_ohci *ohci)
1919 int i;
1921 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1923 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1924 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1925 OHCI1394_HCControl_softReset) == 0)
1926 return 0;
1927 msleep(1);
1930 return -EBUSY;
1933 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1935 size_t size = length * 4;
1937 memcpy(dest, src, size);
1938 if (size < CONFIG_ROM_SIZE)
1939 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1942 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1944 bool enable_1394a;
1945 int ret, clear, set, offset;
1947 /* Check if the driver should configure link and PHY. */
1948 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1949 OHCI1394_HCControl_programPhyEnable))
1950 return 0;
1952 /* Paranoia: check whether the PHY supports 1394a, too. */
1953 enable_1394a = false;
1954 ret = read_phy_reg(ohci, 2);
1955 if (ret < 0)
1956 return ret;
1957 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1958 ret = read_paged_phy_reg(ohci, 1, 8);
1959 if (ret < 0)
1960 return ret;
1961 if (ret >= 1)
1962 enable_1394a = true;
1965 if (ohci->quirks & QUIRK_NO_1394A)
1966 enable_1394a = false;
1968 /* Configure PHY and link consistently. */
1969 if (enable_1394a) {
1970 clear = 0;
1971 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1972 } else {
1973 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1974 set = 0;
1976 ret = update_phy_reg(ohci, 5, clear, set);
1977 if (ret < 0)
1978 return ret;
1980 if (enable_1394a)
1981 offset = OHCI1394_HCControlSet;
1982 else
1983 offset = OHCI1394_HCControlClear;
1984 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1986 /* Clean up: configuration has been taken care of. */
1987 reg_write(ohci, OHCI1394_HCControlClear,
1988 OHCI1394_HCControl_programPhyEnable);
1990 return 0;
1993 static int ohci_enable(struct fw_card *card,
1994 const __be32 *config_rom, size_t length)
1996 struct fw_ohci *ohci = fw_ohci(card);
1997 struct pci_dev *dev = to_pci_dev(card->device);
1998 u32 lps, seconds, version, irqs;
1999 int i, ret;
2001 if (software_reset(ohci)) {
2002 fw_error("Failed to reset ohci card.\n");
2003 return -EBUSY;
2007 * Now enable LPS, which we need in order to start accessing
2008 * most of the registers. In fact, on some cards (ALI M5251),
2009 * accessing registers in the SClk domain without LPS enabled
2010 * will lock up the machine. Wait 50msec to make sure we have
2011 * full link enabled. However, with some cards (well, at least
2012 * a JMicron PCIe card), we have to try again sometimes.
2014 reg_write(ohci, OHCI1394_HCControlSet,
2015 OHCI1394_HCControl_LPS |
2016 OHCI1394_HCControl_postedWriteEnable);
2017 flush_writes(ohci);
2019 for (lps = 0, i = 0; !lps && i < 3; i++) {
2020 msleep(50);
2021 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2022 OHCI1394_HCControl_LPS;
2025 if (!lps) {
2026 fw_error("Failed to set Link Power Status\n");
2027 return -EIO;
2030 reg_write(ohci, OHCI1394_HCControlClear,
2031 OHCI1394_HCControl_noByteSwapData);
2033 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2034 reg_write(ohci, OHCI1394_LinkControlSet,
2035 OHCI1394_LinkControl_rcvSelfID |
2036 OHCI1394_LinkControl_rcvPhyPkt |
2037 OHCI1394_LinkControl_cycleTimerEnable |
2038 OHCI1394_LinkControl_cycleMaster);
2040 reg_write(ohci, OHCI1394_ATRetries,
2041 OHCI1394_MAX_AT_REQ_RETRIES |
2042 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2043 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2044 (200 << 16));
2046 seconds = lower_32_bits(get_seconds());
2047 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2048 ohci->bus_time = seconds & ~0x3f;
2050 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2051 if (version >= OHCI_VERSION_1_1) {
2052 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2053 0xfffffffe);
2054 card->broadcast_channel_auto_allocated = true;
2057 /* Get implemented bits of the priority arbitration request counter. */
2058 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2059 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2060 reg_write(ohci, OHCI1394_FairnessControl, 0);
2061 card->priority_budget_implemented = ohci->pri_req_max != 0;
2063 ar_context_run(&ohci->ar_request_ctx);
2064 ar_context_run(&ohci->ar_response_ctx);
2066 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2067 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2068 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2070 ret = configure_1394a_enhancements(ohci);
2071 if (ret < 0)
2072 return ret;
2074 /* Activate link_on bit and contender bit in our self ID packets.*/
2075 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2076 if (ret < 0)
2077 return ret;
2080 * When the link is not yet enabled, the atomic config rom
2081 * update mechanism described below in ohci_set_config_rom()
2082 * is not active. We have to update ConfigRomHeader and
2083 * BusOptions manually, and the write to ConfigROMmap takes
2084 * effect immediately. We tie this to the enabling of the
2085 * link, so we have a valid config rom before enabling - the
2086 * OHCI requires that ConfigROMhdr and BusOptions have valid
2087 * values before enabling.
2089 * However, when the ConfigROMmap is written, some controllers
2090 * always read back quadlets 0 and 2 from the config rom to
2091 * the ConfigRomHeader and BusOptions registers on bus reset.
2092 * They shouldn't do that in this initial case where the link
2093 * isn't enabled. This means we have to use the same
2094 * workaround here, setting the bus header to 0 and then write
2095 * the right values in the bus reset tasklet.
2098 if (config_rom) {
2099 ohci->next_config_rom =
2100 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2101 &ohci->next_config_rom_bus,
2102 GFP_KERNEL);
2103 if (ohci->next_config_rom == NULL)
2104 return -ENOMEM;
2106 copy_config_rom(ohci->next_config_rom, config_rom, length);
2107 } else {
2109 * In the suspend case, config_rom is NULL, which
2110 * means that we just reuse the old config rom.
2112 ohci->next_config_rom = ohci->config_rom;
2113 ohci->next_config_rom_bus = ohci->config_rom_bus;
2116 ohci->next_header = ohci->next_config_rom[0];
2117 ohci->next_config_rom[0] = 0;
2118 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2119 reg_write(ohci, OHCI1394_BusOptions,
2120 be32_to_cpu(ohci->next_config_rom[2]));
2121 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2123 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2125 if (!(ohci->quirks & QUIRK_NO_MSI))
2126 pci_enable_msi(dev);
2127 if (request_irq(dev->irq, irq_handler,
2128 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2129 ohci_driver_name, ohci)) {
2130 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2131 pci_disable_msi(dev);
2132 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2133 ohci->config_rom, ohci->config_rom_bus);
2134 return -EIO;
2137 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2138 OHCI1394_RQPkt | OHCI1394_RSPkt |
2139 OHCI1394_isochTx | OHCI1394_isochRx |
2140 OHCI1394_postedWriteErr |
2141 OHCI1394_selfIDComplete |
2142 OHCI1394_regAccessFail |
2143 OHCI1394_cycle64Seconds |
2144 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
2145 OHCI1394_masterIntEnable;
2146 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2147 irqs |= OHCI1394_busReset;
2148 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2150 reg_write(ohci, OHCI1394_HCControlSet,
2151 OHCI1394_HCControl_linkEnable |
2152 OHCI1394_HCControl_BIBimageValid);
2153 flush_writes(ohci);
2155 /* We are ready to go, reset bus to finish initialization. */
2156 fw_schedule_bus_reset(&ohci->card, false, true);
2158 return 0;
2161 static int ohci_set_config_rom(struct fw_card *card,
2162 const __be32 *config_rom, size_t length)
2164 struct fw_ohci *ohci;
2165 unsigned long flags;
2166 int ret = -EBUSY;
2167 __be32 *next_config_rom;
2168 dma_addr_t uninitialized_var(next_config_rom_bus);
2170 ohci = fw_ohci(card);
2173 * When the OHCI controller is enabled, the config rom update
2174 * mechanism is a bit tricky, but easy enough to use. See
2175 * section 5.5.6 in the OHCI specification.
2177 * The OHCI controller caches the new config rom address in a
2178 * shadow register (ConfigROMmapNext) and needs a bus reset
2179 * for the changes to take place. When the bus reset is
2180 * detected, the controller loads the new values for the
2181 * ConfigRomHeader and BusOptions registers from the specified
2182 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2183 * shadow register. All automatically and atomically.
2185 * Now, there's a twist to this story. The automatic load of
2186 * ConfigRomHeader and BusOptions doesn't honor the
2187 * noByteSwapData bit, so with a be32 config rom, the
2188 * controller will load be32 values in to these registers
2189 * during the atomic update, even on litte endian
2190 * architectures. The workaround we use is to put a 0 in the
2191 * header quadlet; 0 is endian agnostic and means that the
2192 * config rom isn't ready yet. In the bus reset tasklet we
2193 * then set up the real values for the two registers.
2195 * We use ohci->lock to avoid racing with the code that sets
2196 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2199 next_config_rom =
2200 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2201 &next_config_rom_bus, GFP_KERNEL);
2202 if (next_config_rom == NULL)
2203 return -ENOMEM;
2205 spin_lock_irqsave(&ohci->lock, flags);
2207 if (ohci->next_config_rom == NULL) {
2208 ohci->next_config_rom = next_config_rom;
2209 ohci->next_config_rom_bus = next_config_rom_bus;
2211 copy_config_rom(ohci->next_config_rom, config_rom, length);
2213 ohci->next_header = config_rom[0];
2214 ohci->next_config_rom[0] = 0;
2216 reg_write(ohci, OHCI1394_ConfigROMmap,
2217 ohci->next_config_rom_bus);
2218 ret = 0;
2221 spin_unlock_irqrestore(&ohci->lock, flags);
2224 * Now initiate a bus reset to have the changes take
2225 * effect. We clean up the old config rom memory and DMA
2226 * mappings in the bus reset tasklet, since the OHCI
2227 * controller could need to access it before the bus reset
2228 * takes effect.
2230 if (ret == 0)
2231 fw_schedule_bus_reset(&ohci->card, true, true);
2232 else
2233 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2234 next_config_rom, next_config_rom_bus);
2236 return ret;
2239 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2241 struct fw_ohci *ohci = fw_ohci(card);
2243 at_context_transmit(&ohci->at_request_ctx, packet);
2246 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2248 struct fw_ohci *ohci = fw_ohci(card);
2250 at_context_transmit(&ohci->at_response_ctx, packet);
2253 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2255 struct fw_ohci *ohci = fw_ohci(card);
2256 struct context *ctx = &ohci->at_request_ctx;
2257 struct driver_data *driver_data = packet->driver_data;
2258 int ret = -ENOENT;
2260 tasklet_disable(&ctx->tasklet);
2262 if (packet->ack != 0)
2263 goto out;
2265 if (packet->payload_mapped)
2266 dma_unmap_single(ohci->card.device, packet->payload_bus,
2267 packet->payload_length, DMA_TO_DEVICE);
2269 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2270 driver_data->packet = NULL;
2271 packet->ack = RCODE_CANCELLED;
2272 packet->callback(packet, &ohci->card, packet->ack);
2273 ret = 0;
2274 out:
2275 tasklet_enable(&ctx->tasklet);
2277 return ret;
2280 static int ohci_enable_phys_dma(struct fw_card *card,
2281 int node_id, int generation)
2283 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2284 return 0;
2285 #else
2286 struct fw_ohci *ohci = fw_ohci(card);
2287 unsigned long flags;
2288 int n, ret = 0;
2291 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2292 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2295 spin_lock_irqsave(&ohci->lock, flags);
2297 if (ohci->generation != generation) {
2298 ret = -ESTALE;
2299 goto out;
2303 * Note, if the node ID contains a non-local bus ID, physical DMA is
2304 * enabled for _all_ nodes on remote buses.
2307 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2308 if (n < 32)
2309 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2310 else
2311 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2313 flush_writes(ohci);
2314 out:
2315 spin_unlock_irqrestore(&ohci->lock, flags);
2317 return ret;
2318 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2321 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2323 struct fw_ohci *ohci = fw_ohci(card);
2324 unsigned long flags;
2325 u32 value;
2327 switch (csr_offset) {
2328 case CSR_STATE_CLEAR:
2329 case CSR_STATE_SET:
2330 if (ohci->is_root &&
2331 (reg_read(ohci, OHCI1394_LinkControlSet) &
2332 OHCI1394_LinkControl_cycleMaster))
2333 value = CSR_STATE_BIT_CMSTR;
2334 else
2335 value = 0;
2336 if (ohci->csr_state_setclear_abdicate)
2337 value |= CSR_STATE_BIT_ABDICATE;
2339 return value;
2341 case CSR_NODE_IDS:
2342 return reg_read(ohci, OHCI1394_NodeID) << 16;
2344 case CSR_CYCLE_TIME:
2345 return get_cycle_time(ohci);
2347 case CSR_BUS_TIME:
2349 * We might be called just after the cycle timer has wrapped
2350 * around but just before the cycle64Seconds handler, so we
2351 * better check here, too, if the bus time needs to be updated.
2353 spin_lock_irqsave(&ohci->lock, flags);
2354 value = update_bus_time(ohci);
2355 spin_unlock_irqrestore(&ohci->lock, flags);
2356 return value;
2358 case CSR_BUSY_TIMEOUT:
2359 value = reg_read(ohci, OHCI1394_ATRetries);
2360 return (value >> 4) & 0x0ffff00f;
2362 case CSR_PRIORITY_BUDGET:
2363 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2364 (ohci->pri_req_max << 8);
2366 default:
2367 WARN_ON(1);
2368 return 0;
2372 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2374 struct fw_ohci *ohci = fw_ohci(card);
2375 unsigned long flags;
2377 switch (csr_offset) {
2378 case CSR_STATE_CLEAR:
2379 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2380 reg_write(ohci, OHCI1394_LinkControlClear,
2381 OHCI1394_LinkControl_cycleMaster);
2382 flush_writes(ohci);
2384 if (value & CSR_STATE_BIT_ABDICATE)
2385 ohci->csr_state_setclear_abdicate = false;
2386 break;
2388 case CSR_STATE_SET:
2389 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2390 reg_write(ohci, OHCI1394_LinkControlSet,
2391 OHCI1394_LinkControl_cycleMaster);
2392 flush_writes(ohci);
2394 if (value & CSR_STATE_BIT_ABDICATE)
2395 ohci->csr_state_setclear_abdicate = true;
2396 break;
2398 case CSR_NODE_IDS:
2399 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2400 flush_writes(ohci);
2401 break;
2403 case CSR_CYCLE_TIME:
2404 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2405 reg_write(ohci, OHCI1394_IntEventSet,
2406 OHCI1394_cycleInconsistent);
2407 flush_writes(ohci);
2408 break;
2410 case CSR_BUS_TIME:
2411 spin_lock_irqsave(&ohci->lock, flags);
2412 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2413 spin_unlock_irqrestore(&ohci->lock, flags);
2414 break;
2416 case CSR_BUSY_TIMEOUT:
2417 value = (value & 0xf) | ((value & 0xf) << 4) |
2418 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2419 reg_write(ohci, OHCI1394_ATRetries, value);
2420 flush_writes(ohci);
2421 break;
2423 case CSR_PRIORITY_BUDGET:
2424 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2425 flush_writes(ohci);
2426 break;
2428 default:
2429 WARN_ON(1);
2430 break;
2434 static void copy_iso_headers(struct iso_context *ctx, void *p)
2436 int i = ctx->header_length;
2438 if (i + ctx->base.header_size > PAGE_SIZE)
2439 return;
2442 * The iso header is byteswapped to little endian by
2443 * the controller, but the remaining header quadlets
2444 * are big endian. We want to present all the headers
2445 * as big endian, so we have to swap the first quadlet.
2447 if (ctx->base.header_size > 0)
2448 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2449 if (ctx->base.header_size > 4)
2450 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2451 if (ctx->base.header_size > 8)
2452 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2453 ctx->header_length += ctx->base.header_size;
2456 static int handle_ir_packet_per_buffer(struct context *context,
2457 struct descriptor *d,
2458 struct descriptor *last)
2460 struct iso_context *ctx =
2461 container_of(context, struct iso_context, context);
2462 struct descriptor *pd;
2463 __le32 *ir_header;
2464 void *p;
2466 for (pd = d; pd <= last; pd++)
2467 if (pd->transfer_status)
2468 break;
2469 if (pd > last)
2470 /* Descriptor(s) not done yet, stop iteration */
2471 return 0;
2473 p = last + 1;
2474 copy_iso_headers(ctx, p);
2476 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2477 ir_header = (__le32 *) p;
2478 ctx->base.callback.sc(&ctx->base,
2479 le32_to_cpu(ir_header[0]) & 0xffff,
2480 ctx->header_length, ctx->header,
2481 ctx->base.callback_data);
2482 ctx->header_length = 0;
2485 return 1;
2488 /* d == last because each descriptor block is only a single descriptor. */
2489 static int handle_ir_buffer_fill(struct context *context,
2490 struct descriptor *d,
2491 struct descriptor *last)
2493 struct iso_context *ctx =
2494 container_of(context, struct iso_context, context);
2496 if (!last->transfer_status)
2497 /* Descriptor(s) not done yet, stop iteration */
2498 return 0;
2500 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2501 ctx->base.callback.mc(&ctx->base,
2502 le32_to_cpu(last->data_address) +
2503 le16_to_cpu(last->req_count) -
2504 le16_to_cpu(last->res_count),
2505 ctx->base.callback_data);
2507 return 1;
2510 static int handle_it_packet(struct context *context,
2511 struct descriptor *d,
2512 struct descriptor *last)
2514 struct iso_context *ctx =
2515 container_of(context, struct iso_context, context);
2516 int i;
2517 struct descriptor *pd;
2519 for (pd = d; pd <= last; pd++)
2520 if (pd->transfer_status)
2521 break;
2522 if (pd > last)
2523 /* Descriptor(s) not done yet, stop iteration */
2524 return 0;
2526 i = ctx->header_length;
2527 if (i + 4 < PAGE_SIZE) {
2528 /* Present this value as big-endian to match the receive code */
2529 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2530 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2531 le16_to_cpu(pd->res_count));
2532 ctx->header_length += 4;
2534 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2535 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2536 ctx->header_length, ctx->header,
2537 ctx->base.callback_data);
2538 ctx->header_length = 0;
2540 return 1;
2543 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2545 u32 hi = channels >> 32, lo = channels;
2547 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2548 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2549 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2550 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2551 mmiowb();
2552 ohci->mc_channels = channels;
2555 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2556 int type, int channel, size_t header_size)
2558 struct fw_ohci *ohci = fw_ohci(card);
2559 struct iso_context *uninitialized_var(ctx);
2560 descriptor_callback_t uninitialized_var(callback);
2561 u64 *uninitialized_var(channels);
2562 u32 *uninitialized_var(mask), uninitialized_var(regs);
2563 unsigned long flags;
2564 int index, ret = -EBUSY;
2566 spin_lock_irqsave(&ohci->lock, flags);
2568 switch (type) {
2569 case FW_ISO_CONTEXT_TRANSMIT:
2570 mask = &ohci->it_context_mask;
2571 callback = handle_it_packet;
2572 index = ffs(*mask) - 1;
2573 if (index >= 0) {
2574 *mask &= ~(1 << index);
2575 regs = OHCI1394_IsoXmitContextBase(index);
2576 ctx = &ohci->it_context_list[index];
2578 break;
2580 case FW_ISO_CONTEXT_RECEIVE:
2581 channels = &ohci->ir_context_channels;
2582 mask = &ohci->ir_context_mask;
2583 callback = handle_ir_packet_per_buffer;
2584 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2585 if (index >= 0) {
2586 *channels &= ~(1ULL << channel);
2587 *mask &= ~(1 << index);
2588 regs = OHCI1394_IsoRcvContextBase(index);
2589 ctx = &ohci->ir_context_list[index];
2591 break;
2593 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2594 mask = &ohci->ir_context_mask;
2595 callback = handle_ir_buffer_fill;
2596 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2597 if (index >= 0) {
2598 ohci->mc_allocated = true;
2599 *mask &= ~(1 << index);
2600 regs = OHCI1394_IsoRcvContextBase(index);
2601 ctx = &ohci->ir_context_list[index];
2603 break;
2605 default:
2606 index = -1;
2607 ret = -ENOSYS;
2610 spin_unlock_irqrestore(&ohci->lock, flags);
2612 if (index < 0)
2613 return ERR_PTR(ret);
2615 memset(ctx, 0, sizeof(*ctx));
2616 ctx->header_length = 0;
2617 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2618 if (ctx->header == NULL) {
2619 ret = -ENOMEM;
2620 goto out;
2622 ret = context_init(&ctx->context, ohci, regs, callback);
2623 if (ret < 0)
2624 goto out_with_header;
2626 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2627 set_multichannel_mask(ohci, 0);
2629 return &ctx->base;
2631 out_with_header:
2632 free_page((unsigned long)ctx->header);
2633 out:
2634 spin_lock_irqsave(&ohci->lock, flags);
2636 switch (type) {
2637 case FW_ISO_CONTEXT_RECEIVE:
2638 *channels |= 1ULL << channel;
2639 break;
2641 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2642 ohci->mc_allocated = false;
2643 break;
2645 *mask |= 1 << index;
2647 spin_unlock_irqrestore(&ohci->lock, flags);
2649 return ERR_PTR(ret);
2652 static int ohci_start_iso(struct fw_iso_context *base,
2653 s32 cycle, u32 sync, u32 tags)
2655 struct iso_context *ctx = container_of(base, struct iso_context, base);
2656 struct fw_ohci *ohci = ctx->context.ohci;
2657 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2658 int index;
2660 switch (ctx->base.type) {
2661 case FW_ISO_CONTEXT_TRANSMIT:
2662 index = ctx - ohci->it_context_list;
2663 match = 0;
2664 if (cycle >= 0)
2665 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2666 (cycle & 0x7fff) << 16;
2668 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2669 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2670 context_run(&ctx->context, match);
2671 break;
2673 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2674 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2675 /* fall through */
2676 case FW_ISO_CONTEXT_RECEIVE:
2677 index = ctx - ohci->ir_context_list;
2678 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2679 if (cycle >= 0) {
2680 match |= (cycle & 0x07fff) << 12;
2681 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2684 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2685 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2686 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2687 context_run(&ctx->context, control);
2689 ctx->sync = sync;
2690 ctx->tags = tags;
2692 break;
2695 return 0;
2698 static int ohci_stop_iso(struct fw_iso_context *base)
2700 struct fw_ohci *ohci = fw_ohci(base->card);
2701 struct iso_context *ctx = container_of(base, struct iso_context, base);
2702 int index;
2704 switch (ctx->base.type) {
2705 case FW_ISO_CONTEXT_TRANSMIT:
2706 index = ctx - ohci->it_context_list;
2707 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2708 break;
2710 case FW_ISO_CONTEXT_RECEIVE:
2711 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2712 index = ctx - ohci->ir_context_list;
2713 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2714 break;
2716 flush_writes(ohci);
2717 context_stop(&ctx->context);
2719 return 0;
2722 static void ohci_free_iso_context(struct fw_iso_context *base)
2724 struct fw_ohci *ohci = fw_ohci(base->card);
2725 struct iso_context *ctx = container_of(base, struct iso_context, base);
2726 unsigned long flags;
2727 int index;
2729 ohci_stop_iso(base);
2730 context_release(&ctx->context);
2731 free_page((unsigned long)ctx->header);
2733 spin_lock_irqsave(&ohci->lock, flags);
2735 switch (base->type) {
2736 case FW_ISO_CONTEXT_TRANSMIT:
2737 index = ctx - ohci->it_context_list;
2738 ohci->it_context_mask |= 1 << index;
2739 break;
2741 case FW_ISO_CONTEXT_RECEIVE:
2742 index = ctx - ohci->ir_context_list;
2743 ohci->ir_context_mask |= 1 << index;
2744 ohci->ir_context_channels |= 1ULL << base->channel;
2745 break;
2747 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2748 index = ctx - ohci->ir_context_list;
2749 ohci->ir_context_mask |= 1 << index;
2750 ohci->ir_context_channels |= ohci->mc_channels;
2751 ohci->mc_channels = 0;
2752 ohci->mc_allocated = false;
2753 break;
2756 spin_unlock_irqrestore(&ohci->lock, flags);
2759 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2761 struct fw_ohci *ohci = fw_ohci(base->card);
2762 unsigned long flags;
2763 int ret;
2765 switch (base->type) {
2766 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2768 spin_lock_irqsave(&ohci->lock, flags);
2770 /* Don't allow multichannel to grab other contexts' channels. */
2771 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2772 *channels = ohci->ir_context_channels;
2773 ret = -EBUSY;
2774 } else {
2775 set_multichannel_mask(ohci, *channels);
2776 ret = 0;
2779 spin_unlock_irqrestore(&ohci->lock, flags);
2781 break;
2782 default:
2783 ret = -EINVAL;
2786 return ret;
2789 #ifdef CONFIG_PM
2790 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2792 int i;
2793 struct iso_context *ctx;
2795 for (i = 0 ; i < ohci->n_ir ; i++) {
2796 ctx = &ohci->ir_context_list[i];
2797 if (ctx->context.running)
2798 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2801 for (i = 0 ; i < ohci->n_it ; i++) {
2802 ctx = &ohci->it_context_list[i];
2803 if (ctx->context.running)
2804 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2807 #endif
2809 static int queue_iso_transmit(struct iso_context *ctx,
2810 struct fw_iso_packet *packet,
2811 struct fw_iso_buffer *buffer,
2812 unsigned long payload)
2814 struct descriptor *d, *last, *pd;
2815 struct fw_iso_packet *p;
2816 __le32 *header;
2817 dma_addr_t d_bus, page_bus;
2818 u32 z, header_z, payload_z, irq;
2819 u32 payload_index, payload_end_index, next_page_index;
2820 int page, end_page, i, length, offset;
2822 p = packet;
2823 payload_index = payload;
2825 if (p->skip)
2826 z = 1;
2827 else
2828 z = 2;
2829 if (p->header_length > 0)
2830 z++;
2832 /* Determine the first page the payload isn't contained in. */
2833 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2834 if (p->payload_length > 0)
2835 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2836 else
2837 payload_z = 0;
2839 z += payload_z;
2841 /* Get header size in number of descriptors. */
2842 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2844 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2845 if (d == NULL)
2846 return -ENOMEM;
2848 if (!p->skip) {
2849 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2850 d[0].req_count = cpu_to_le16(8);
2852 * Link the skip address to this descriptor itself. This causes
2853 * a context to skip a cycle whenever lost cycles or FIFO
2854 * overruns occur, without dropping the data. The application
2855 * should then decide whether this is an error condition or not.
2856 * FIXME: Make the context's cycle-lost behaviour configurable?
2858 d[0].branch_address = cpu_to_le32(d_bus | z);
2860 header = (__le32 *) &d[1];
2861 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2862 IT_HEADER_TAG(p->tag) |
2863 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2864 IT_HEADER_CHANNEL(ctx->base.channel) |
2865 IT_HEADER_SPEED(ctx->base.speed));
2866 header[1] =
2867 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2868 p->payload_length));
2871 if (p->header_length > 0) {
2872 d[2].req_count = cpu_to_le16(p->header_length);
2873 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2874 memcpy(&d[z], p->header, p->header_length);
2877 pd = d + z - payload_z;
2878 payload_end_index = payload_index + p->payload_length;
2879 for (i = 0; i < payload_z; i++) {
2880 page = payload_index >> PAGE_SHIFT;
2881 offset = payload_index & ~PAGE_MASK;
2882 next_page_index = (page + 1) << PAGE_SHIFT;
2883 length =
2884 min(next_page_index, payload_end_index) - payload_index;
2885 pd[i].req_count = cpu_to_le16(length);
2887 page_bus = page_private(buffer->pages[page]);
2888 pd[i].data_address = cpu_to_le32(page_bus + offset);
2890 payload_index += length;
2893 if (p->interrupt)
2894 irq = DESCRIPTOR_IRQ_ALWAYS;
2895 else
2896 irq = DESCRIPTOR_NO_IRQ;
2898 last = z == 2 ? d : d + z - 1;
2899 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2900 DESCRIPTOR_STATUS |
2901 DESCRIPTOR_BRANCH_ALWAYS |
2902 irq);
2904 context_append(&ctx->context, d, z, header_z);
2906 return 0;
2909 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2910 struct fw_iso_packet *packet,
2911 struct fw_iso_buffer *buffer,
2912 unsigned long payload)
2914 struct descriptor *d, *pd;
2915 dma_addr_t d_bus, page_bus;
2916 u32 z, header_z, rest;
2917 int i, j, length;
2918 int page, offset, packet_count, header_size, payload_per_buffer;
2921 * The OHCI controller puts the isochronous header and trailer in the
2922 * buffer, so we need at least 8 bytes.
2924 packet_count = packet->header_length / ctx->base.header_size;
2925 header_size = max(ctx->base.header_size, (size_t)8);
2927 /* Get header size in number of descriptors. */
2928 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2929 page = payload >> PAGE_SHIFT;
2930 offset = payload & ~PAGE_MASK;
2931 payload_per_buffer = packet->payload_length / packet_count;
2933 for (i = 0; i < packet_count; i++) {
2934 /* d points to the header descriptor */
2935 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2936 d = context_get_descriptors(&ctx->context,
2937 z + header_z, &d_bus);
2938 if (d == NULL)
2939 return -ENOMEM;
2941 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2942 DESCRIPTOR_INPUT_MORE);
2943 if (packet->skip && i == 0)
2944 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2945 d->req_count = cpu_to_le16(header_size);
2946 d->res_count = d->req_count;
2947 d->transfer_status = 0;
2948 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2950 rest = payload_per_buffer;
2951 pd = d;
2952 for (j = 1; j < z; j++) {
2953 pd++;
2954 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2955 DESCRIPTOR_INPUT_MORE);
2957 if (offset + rest < PAGE_SIZE)
2958 length = rest;
2959 else
2960 length = PAGE_SIZE - offset;
2961 pd->req_count = cpu_to_le16(length);
2962 pd->res_count = pd->req_count;
2963 pd->transfer_status = 0;
2965 page_bus = page_private(buffer->pages[page]);
2966 pd->data_address = cpu_to_le32(page_bus + offset);
2968 offset = (offset + length) & ~PAGE_MASK;
2969 rest -= length;
2970 if (offset == 0)
2971 page++;
2973 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2974 DESCRIPTOR_INPUT_LAST |
2975 DESCRIPTOR_BRANCH_ALWAYS);
2976 if (packet->interrupt && i == packet_count - 1)
2977 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2979 context_append(&ctx->context, d, z, header_z);
2982 return 0;
2985 static int queue_iso_buffer_fill(struct iso_context *ctx,
2986 struct fw_iso_packet *packet,
2987 struct fw_iso_buffer *buffer,
2988 unsigned long payload)
2990 struct descriptor *d;
2991 dma_addr_t d_bus, page_bus;
2992 int page, offset, rest, z, i, length;
2994 page = payload >> PAGE_SHIFT;
2995 offset = payload & ~PAGE_MASK;
2996 rest = packet->payload_length;
2998 /* We need one descriptor for each page in the buffer. */
2999 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3001 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3002 return -EFAULT;
3004 for (i = 0; i < z; i++) {
3005 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3006 if (d == NULL)
3007 return -ENOMEM;
3009 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3010 DESCRIPTOR_BRANCH_ALWAYS);
3011 if (packet->skip && i == 0)
3012 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3013 if (packet->interrupt && i == z - 1)
3014 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3016 if (offset + rest < PAGE_SIZE)
3017 length = rest;
3018 else
3019 length = PAGE_SIZE - offset;
3020 d->req_count = cpu_to_le16(length);
3021 d->res_count = d->req_count;
3022 d->transfer_status = 0;
3024 page_bus = page_private(buffer->pages[page]);
3025 d->data_address = cpu_to_le32(page_bus + offset);
3027 rest -= length;
3028 offset = 0;
3029 page++;
3031 context_append(&ctx->context, d, 1, 0);
3034 return 0;
3037 static int ohci_queue_iso(struct fw_iso_context *base,
3038 struct fw_iso_packet *packet,
3039 struct fw_iso_buffer *buffer,
3040 unsigned long payload)
3042 struct iso_context *ctx = container_of(base, struct iso_context, base);
3043 unsigned long flags;
3044 int ret = -ENOSYS;
3046 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3047 switch (base->type) {
3048 case FW_ISO_CONTEXT_TRANSMIT:
3049 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3050 break;
3051 case FW_ISO_CONTEXT_RECEIVE:
3052 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3053 break;
3054 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3055 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3056 break;
3058 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3060 return ret;
3063 static const struct fw_card_driver ohci_driver = {
3064 .enable = ohci_enable,
3065 .read_phy_reg = ohci_read_phy_reg,
3066 .update_phy_reg = ohci_update_phy_reg,
3067 .set_config_rom = ohci_set_config_rom,
3068 .send_request = ohci_send_request,
3069 .send_response = ohci_send_response,
3070 .cancel_packet = ohci_cancel_packet,
3071 .enable_phys_dma = ohci_enable_phys_dma,
3072 .read_csr = ohci_read_csr,
3073 .write_csr = ohci_write_csr,
3075 .allocate_iso_context = ohci_allocate_iso_context,
3076 .free_iso_context = ohci_free_iso_context,
3077 .set_iso_channels = ohci_set_iso_channels,
3078 .queue_iso = ohci_queue_iso,
3079 .start_iso = ohci_start_iso,
3080 .stop_iso = ohci_stop_iso,
3083 #ifdef CONFIG_PPC_PMAC
3084 static void pmac_ohci_on(struct pci_dev *dev)
3086 if (machine_is(powermac)) {
3087 struct device_node *ofn = pci_device_to_OF_node(dev);
3089 if (ofn) {
3090 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3091 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3096 static void pmac_ohci_off(struct pci_dev *dev)
3098 if (machine_is(powermac)) {
3099 struct device_node *ofn = pci_device_to_OF_node(dev);
3101 if (ofn) {
3102 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3103 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3107 #else
3108 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3109 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3110 #endif /* CONFIG_PPC_PMAC */
3112 static int __devinit pci_probe(struct pci_dev *dev,
3113 const struct pci_device_id *ent)
3115 struct fw_ohci *ohci;
3116 u32 bus_options, max_receive, link_speed, version;
3117 u64 guid;
3118 int i, err;
3119 size_t size;
3121 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3122 if (ohci == NULL) {
3123 err = -ENOMEM;
3124 goto fail;
3127 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3129 pmac_ohci_on(dev);
3131 err = pci_enable_device(dev);
3132 if (err) {
3133 fw_error("Failed to enable OHCI hardware\n");
3134 goto fail_free;
3137 pci_set_master(dev);
3138 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3139 pci_set_drvdata(dev, ohci);
3141 spin_lock_init(&ohci->lock);
3142 mutex_init(&ohci->phy_reg_mutex);
3144 tasklet_init(&ohci->bus_reset_tasklet,
3145 bus_reset_tasklet, (unsigned long)ohci);
3147 err = pci_request_region(dev, 0, ohci_driver_name);
3148 if (err) {
3149 fw_error("MMIO resource unavailable\n");
3150 goto fail_disable;
3153 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3154 if (ohci->registers == NULL) {
3155 fw_error("Failed to remap registers\n");
3156 err = -ENXIO;
3157 goto fail_iomem;
3160 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3161 if ((ohci_quirks[i].vendor == dev->vendor) &&
3162 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3163 ohci_quirks[i].device == dev->device) &&
3164 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3165 ohci_quirks[i].revision >= dev->revision)) {
3166 ohci->quirks = ohci_quirks[i].flags;
3167 break;
3169 if (param_quirks)
3170 ohci->quirks = param_quirks;
3173 * Because dma_alloc_coherent() allocates at least one page,
3174 * we save space by using a common buffer for the AR request/
3175 * response descriptors and the self IDs buffer.
3177 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3178 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3179 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3180 PAGE_SIZE,
3181 &ohci->misc_buffer_bus,
3182 GFP_KERNEL);
3183 if (!ohci->misc_buffer) {
3184 err = -ENOMEM;
3185 goto fail_iounmap;
3188 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3189 OHCI1394_AsReqRcvContextControlSet);
3190 if (err < 0)
3191 goto fail_misc_buf;
3193 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3194 OHCI1394_AsRspRcvContextControlSet);
3195 if (err < 0)
3196 goto fail_arreq_ctx;
3198 err = context_init(&ohci->at_request_ctx, ohci,
3199 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3200 if (err < 0)
3201 goto fail_arrsp_ctx;
3203 err = context_init(&ohci->at_response_ctx, ohci,
3204 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3205 if (err < 0)
3206 goto fail_atreq_ctx;
3208 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3209 ohci->ir_context_channels = ~0ULL;
3210 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3211 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3212 ohci->n_ir = hweight32(ohci->ir_context_mask);
3213 size = sizeof(struct iso_context) * ohci->n_ir;
3214 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3216 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3217 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3218 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3219 ohci->n_it = hweight32(ohci->it_context_mask);
3220 size = sizeof(struct iso_context) * ohci->n_it;
3221 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3223 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3224 err = -ENOMEM;
3225 goto fail_contexts;
3228 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3229 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3231 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3232 max_receive = (bus_options >> 12) & 0xf;
3233 link_speed = bus_options & 0x7;
3234 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3235 reg_read(ohci, OHCI1394_GUIDLo);
3237 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3238 if (err)
3239 goto fail_contexts;
3241 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3242 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3243 "%d IR + %d IT contexts, quirks 0x%x\n",
3244 dev_name(&dev->dev), version >> 16, version & 0xff,
3245 ohci->n_ir, ohci->n_it, ohci->quirks);
3247 return 0;
3249 fail_contexts:
3250 kfree(ohci->ir_context_list);
3251 kfree(ohci->it_context_list);
3252 context_release(&ohci->at_response_ctx);
3253 fail_atreq_ctx:
3254 context_release(&ohci->at_request_ctx);
3255 fail_arrsp_ctx:
3256 ar_context_release(&ohci->ar_response_ctx);
3257 fail_arreq_ctx:
3258 ar_context_release(&ohci->ar_request_ctx);
3259 fail_misc_buf:
3260 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3261 ohci->misc_buffer, ohci->misc_buffer_bus);
3262 fail_iounmap:
3263 pci_iounmap(dev, ohci->registers);
3264 fail_iomem:
3265 pci_release_region(dev, 0);
3266 fail_disable:
3267 pci_disable_device(dev);
3268 fail_free:
3269 kfree(&ohci->card);
3270 pmac_ohci_off(dev);
3271 fail:
3272 if (err == -ENOMEM)
3273 fw_error("Out of memory\n");
3275 return err;
3278 static void pci_remove(struct pci_dev *dev)
3280 struct fw_ohci *ohci;
3282 ohci = pci_get_drvdata(dev);
3283 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3284 flush_writes(ohci);
3285 fw_core_remove_card(&ohci->card);
3288 * FIXME: Fail all pending packets here, now that the upper
3289 * layers can't queue any more.
3292 software_reset(ohci);
3293 free_irq(dev->irq, ohci);
3295 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3296 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3297 ohci->next_config_rom, ohci->next_config_rom_bus);
3298 if (ohci->config_rom)
3299 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3300 ohci->config_rom, ohci->config_rom_bus);
3301 ar_context_release(&ohci->ar_request_ctx);
3302 ar_context_release(&ohci->ar_response_ctx);
3303 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3304 ohci->misc_buffer, ohci->misc_buffer_bus);
3305 context_release(&ohci->at_request_ctx);
3306 context_release(&ohci->at_response_ctx);
3307 kfree(ohci->it_context_list);
3308 kfree(ohci->ir_context_list);
3309 pci_disable_msi(dev);
3310 pci_iounmap(dev, ohci->registers);
3311 pci_release_region(dev, 0);
3312 pci_disable_device(dev);
3313 kfree(&ohci->card);
3314 pmac_ohci_off(dev);
3316 fw_notify("Removed fw-ohci device.\n");
3319 #ifdef CONFIG_PM
3320 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3322 struct fw_ohci *ohci = pci_get_drvdata(dev);
3323 int err;
3325 software_reset(ohci);
3326 free_irq(dev->irq, ohci);
3327 pci_disable_msi(dev);
3328 err = pci_save_state(dev);
3329 if (err) {
3330 fw_error("pci_save_state failed\n");
3331 return err;
3333 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3334 if (err)
3335 fw_error("pci_set_power_state failed with %d\n", err);
3336 pmac_ohci_off(dev);
3338 return 0;
3341 static int pci_resume(struct pci_dev *dev)
3343 struct fw_ohci *ohci = pci_get_drvdata(dev);
3344 int err;
3346 pmac_ohci_on(dev);
3347 pci_set_power_state(dev, PCI_D0);
3348 pci_restore_state(dev);
3349 err = pci_enable_device(dev);
3350 if (err) {
3351 fw_error("pci_enable_device failed\n");
3352 return err;
3355 /* Some systems don't setup GUID register on resume from ram */
3356 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3357 !reg_read(ohci, OHCI1394_GUIDHi)) {
3358 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3359 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3362 err = ohci_enable(&ohci->card, NULL, 0);
3363 if (err)
3364 return err;
3366 ohci_resume_iso_dma(ohci);
3368 return 0;
3370 #endif
3372 static const struct pci_device_id pci_table[] = {
3373 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3377 MODULE_DEVICE_TABLE(pci, pci_table);
3379 static struct pci_driver fw_ohci_pci_driver = {
3380 .name = ohci_driver_name,
3381 .id_table = pci_table,
3382 .probe = pci_probe,
3383 .remove = pci_remove,
3384 #ifdef CONFIG_PM
3385 .resume = pci_resume,
3386 .suspend = pci_suspend,
3387 #endif
3390 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3391 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3392 MODULE_LICENSE("GPL");
3394 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3395 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3396 MODULE_ALIAS("ohci1394");
3397 #endif
3399 static int __init fw_ohci_init(void)
3401 return pci_register_driver(&fw_ohci_pci_driver);
3404 static void __exit fw_ohci_cleanup(void)
3406 pci_unregister_driver(&fw_ohci_pci_driver);
3409 module_init(fw_ohci_init);
3410 module_exit(fw_ohci_cleanup);