staging: brcm80211: assure common sources are truly common
[zen-stable.git] / drivers / infiniband / hw / ehca / ipz_pt_fn.c
blob1898d6e7cce5374b48d811c7cf00e041c20d0b05
1 /*
2 * IBM eServer eHCA Infiniband device driver for Linux on POWER
4 * internal queue handling
6 * Authors: Waleri Fomin <fomin@de.ibm.com>
7 * Reinhard Ernst <rernst@de.ibm.com>
8 * Christoph Raisch <raisch@de.ibm.com>
10 * Copyright (c) 2005 IBM Corporation
12 * This source code is distributed under a dual license of GPL v2.0 and OpenIB
13 * BSD.
15 * OpenIB BSD License
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are met:
20 * Redistributions of source code must retain the above copyright notice, this
21 * list of conditions and the following disclaimer.
23 * Redistributions in binary form must reproduce the above copyright notice,
24 * this list of conditions and the following disclaimer in the documentation
25 * and/or other materials
26 * provided with the distribution.
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
29 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
36 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
41 #include <linux/slab.h>
43 #include "ehca_tools.h"
44 #include "ipz_pt_fn.h"
45 #include "ehca_classes.h"
47 #define PAGES_PER_KPAGE (PAGE_SIZE >> EHCA_PAGESHIFT)
49 struct kmem_cache *small_qp_cache;
51 void *ipz_qpageit_get_inc(struct ipz_queue *queue)
53 void *ret = ipz_qeit_get(queue);
54 queue->current_q_offset += queue->pagesize;
55 if (queue->current_q_offset > queue->queue_length) {
56 queue->current_q_offset -= queue->pagesize;
57 ret = NULL;
59 if (((u64)ret) % queue->pagesize) {
60 ehca_gen_err("ERROR!! not at PAGE-Boundary");
61 return NULL;
63 return ret;
66 void *ipz_qeit_eq_get_inc(struct ipz_queue *queue)
68 void *ret = ipz_qeit_get(queue);
69 u64 last_entry_in_q = queue->queue_length - queue->qe_size;
71 queue->current_q_offset += queue->qe_size;
72 if (queue->current_q_offset > last_entry_in_q) {
73 queue->current_q_offset = 0;
74 queue->toggle_state = (~queue->toggle_state) & 1;
77 return ret;
80 int ipz_queue_abs_to_offset(struct ipz_queue *queue, u64 addr, u64 *q_offset)
82 int i;
83 for (i = 0; i < queue->queue_length / queue->pagesize; i++) {
84 u64 page = (u64)virt_to_abs(queue->queue_pages[i]);
85 if (addr >= page && addr < page + queue->pagesize) {
86 *q_offset = addr - page + i * queue->pagesize;
87 return 0;
90 return -EINVAL;
93 #if PAGE_SHIFT < EHCA_PAGESHIFT
94 #error Kernel pages must be at least as large than eHCA pages (4K) !
95 #endif
98 * allocate pages for queue:
99 * outer loop allocates whole kernel pages (page aligned) and
100 * inner loop divides a kernel page into smaller hca queue pages
102 static int alloc_queue_pages(struct ipz_queue *queue, const u32 nr_of_pages)
104 int k, f = 0;
105 u8 *kpage;
107 while (f < nr_of_pages) {
108 kpage = (u8 *)get_zeroed_page(GFP_KERNEL);
109 if (!kpage)
110 goto out;
112 for (k = 0; k < PAGES_PER_KPAGE && f < nr_of_pages; k++) {
113 queue->queue_pages[f] = (struct ipz_page *)kpage;
114 kpage += EHCA_PAGESIZE;
115 f++;
118 return 1;
120 out:
121 for (f = 0; f < nr_of_pages && queue->queue_pages[f];
122 f += PAGES_PER_KPAGE)
123 free_page((unsigned long)(queue->queue_pages)[f]);
124 return 0;
127 static int alloc_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd)
129 int order = ilog2(queue->pagesize) - 9;
130 struct ipz_small_queue_page *page;
131 unsigned long bit;
133 mutex_lock(&pd->lock);
135 if (!list_empty(&pd->free[order]))
136 page = list_entry(pd->free[order].next,
137 struct ipz_small_queue_page, list);
138 else {
139 page = kmem_cache_zalloc(small_qp_cache, GFP_KERNEL);
140 if (!page)
141 goto out;
143 page->page = get_zeroed_page(GFP_KERNEL);
144 if (!page->page) {
145 kmem_cache_free(small_qp_cache, page);
146 goto out;
149 list_add(&page->list, &pd->free[order]);
152 bit = find_first_zero_bit(page->bitmap, IPZ_SPAGE_PER_KPAGE >> order);
153 __set_bit(bit, page->bitmap);
154 page->fill++;
156 if (page->fill == IPZ_SPAGE_PER_KPAGE >> order)
157 list_move(&page->list, &pd->full[order]);
159 mutex_unlock(&pd->lock);
161 queue->queue_pages[0] = (void *)(page->page | (bit << (order + 9)));
162 queue->small_page = page;
163 queue->offset = bit << (order + 9);
164 return 1;
166 out:
167 ehca_err(pd->ib_pd.device, "failed to allocate small queue page");
168 mutex_unlock(&pd->lock);
169 return 0;
172 static void free_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd)
174 int order = ilog2(queue->pagesize) - 9;
175 struct ipz_small_queue_page *page = queue->small_page;
176 unsigned long bit;
177 int free_page = 0;
179 bit = ((unsigned long)queue->queue_pages[0] & ~PAGE_MASK)
180 >> (order + 9);
182 mutex_lock(&pd->lock);
184 __clear_bit(bit, page->bitmap);
185 page->fill--;
187 if (page->fill == 0) {
188 list_del(&page->list);
189 free_page = 1;
192 if (page->fill == (IPZ_SPAGE_PER_KPAGE >> order) - 1)
193 /* the page was full until we freed the chunk */
194 list_move_tail(&page->list, &pd->free[order]);
196 mutex_unlock(&pd->lock);
198 if (free_page) {
199 free_page(page->page);
200 kmem_cache_free(small_qp_cache, page);
204 int ipz_queue_ctor(struct ehca_pd *pd, struct ipz_queue *queue,
205 const u32 nr_of_pages, const u32 pagesize,
206 const u32 qe_size, const u32 nr_of_sg,
207 int is_small)
209 if (pagesize > PAGE_SIZE) {
210 ehca_gen_err("FATAL ERROR: pagesize=%x "
211 "is greater than kernel page size", pagesize);
212 return 0;
215 /* init queue fields */
216 queue->queue_length = nr_of_pages * pagesize;
217 queue->pagesize = pagesize;
218 queue->qe_size = qe_size;
219 queue->act_nr_of_sg = nr_of_sg;
220 queue->current_q_offset = 0;
221 queue->toggle_state = 1;
222 queue->small_page = NULL;
224 /* allocate queue page pointers */
225 queue->queue_pages = kzalloc(nr_of_pages * sizeof(void *), GFP_KERNEL);
226 if (!queue->queue_pages) {
227 queue->queue_pages = vzalloc(nr_of_pages * sizeof(void *));
228 if (!queue->queue_pages) {
229 ehca_gen_err("Couldn't allocate queue page list");
230 return 0;
234 /* allocate actual queue pages */
235 if (is_small) {
236 if (!alloc_small_queue_page(queue, pd))
237 goto ipz_queue_ctor_exit0;
238 } else
239 if (!alloc_queue_pages(queue, nr_of_pages))
240 goto ipz_queue_ctor_exit0;
242 return 1;
244 ipz_queue_ctor_exit0:
245 ehca_gen_err("Couldn't alloc pages queue=%p "
246 "nr_of_pages=%x", queue, nr_of_pages);
247 if (is_vmalloc_addr(queue->queue_pages))
248 vfree(queue->queue_pages);
249 else
250 kfree(queue->queue_pages);
252 return 0;
255 int ipz_queue_dtor(struct ehca_pd *pd, struct ipz_queue *queue)
257 int i, nr_pages;
259 if (!queue || !queue->queue_pages) {
260 ehca_gen_dbg("queue or queue_pages is NULL");
261 return 0;
264 if (queue->small_page)
265 free_small_queue_page(queue, pd);
266 else {
267 nr_pages = queue->queue_length / queue->pagesize;
268 for (i = 0; i < nr_pages; i += PAGES_PER_KPAGE)
269 free_page((unsigned long)queue->queue_pages[i]);
272 if (is_vmalloc_addr(queue->queue_pages))
273 vfree(queue->queue_pages);
274 else
275 kfree(queue->queue_pages);
277 return 1;
280 int ehca_init_small_qp_cache(void)
282 small_qp_cache = kmem_cache_create("ehca_cache_small_qp",
283 sizeof(struct ipz_small_queue_page),
284 0, SLAB_HWCACHE_ALIGN, NULL);
285 if (!small_qp_cache)
286 return -ENOMEM;
288 return 0;
291 void ehca_cleanup_small_qp_cache(void)
293 kmem_cache_destroy(small_qp_cache);